1
|
Kök HI, Andreeva T, Stammkötter S, Reinholdt C, Akbas O, Jahn A, Gamon F, Fuest S, Teschke M, Schäfer M, Müller M, Koch A, Jung O, Barbeck M, Greuling A, Smeets R, Hermsdorf J, Krastev R, Junker P, Stiesch M, Walther F. Characterization and modeling of additively manufactured Ti-6Al-4V alloy with modified surfaces for medical applications. Front Bioeng Biotechnol 2025; 13:1526873. [PMID: 40260020 PMCID: PMC12010145 DOI: 10.3389/fbioe.2025.1526873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/24/2025] [Indexed: 04/23/2025] Open
Abstract
In the field of biomedical implants, additively manufactured titanium alloys, particularly Ti-6Al-4V, hold significant potential due to their biocompatibility and mechanical properties. This study focuses on the characterization and modeling of additively manufactured Ti-6Al-4V alloy for dental and maxillofacial implants, emphasizing fatigue behavior, surface modification, and their combined effects on cyto- and osseocompatibility. Experimental methods, including tensile, compression, and fatigue testing, were applied alongside in silico simulations to assess the long-term mechanical performance of the material. Surface properties were further modified through sandblasting and coating techniques to enhance cell adhesion and proliferation. By using in-vitro methods, the cytocompatibility of the coatings and materials was examined followed by in-vivo tests to determine osseocompatibility. Results demonstrated that appropriate surface roughness and modifications are essential in optimizing osseointegration, while the layer-by-layer additive manufacturing process influenced the fatigue life and stability. These findings contribute to the development of patient-specific implants, optimizing both mechanical integrity and biological integration for enhanced clinical outcomes. This work summarizes the investigations on additively manufactured Ti-6Al-4V alloy of the research unit 5250 "Mechanism-based characterization and modeling of permanent and bioresorbable implants with tailored functionality based on innovative in vivo, in vitro and in silico methods" funded by the Germany Research Foundation (DFG).
Collapse
Affiliation(s)
- Hüray Ilayda Kök
- Leibniz University Hannover, Institute of Continuum Mechanics, Hannover, Germany
| | - Tonya Andreeva
- Reutlingen University, Faculty of Life Sciences, Reutlingen, Germany
| | - Sebastian Stammkötter
- TU Dortmund University, Chair of Materials Test Engineering (WPT), Dortmund, Germany
| | - Cindy Reinholdt
- Clinic and Polyclinic for Dermatology and Venerology, University Medical Center Rostock (UMR), Rostock, Germany
| | - Osman Akbas
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Anne Jahn
- Additive Manufacturing Department, Laser Zentrum Hannover e.V., Hannover, Germany
| | - Florian Gamon
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Mirko Teschke
- TU Dortmund University, Chair of Materials Test Engineering (WPT), Dortmund, Germany
| | - Miriam Schäfer
- Clinic and Polyclinic for Dermatology and Venerology, University Medical Center Rostock (UMR), Rostock, Germany
| | - Michael Müller
- Additive Manufacturing Department, Laser Zentrum Hannover e.V., Hannover, Germany
| | - Alexander Koch
- TU Dortmund University, Chair of Materials Test Engineering (WPT), Dortmund, Germany
| | - Ole Jung
- Clinic and Polyclinic for Dermatology and Venerology, University Medical Center Rostock (UMR), Rostock, Germany
| | - Mike Barbeck
- Clinic and Polyclinic for Dermatology and Venerology, University Medical Center Rostock (UMR), Rostock, Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Hermsdorf
- Additive Manufacturing Department, Laser Zentrum Hannover e.V., Hannover, Germany
| | - Rumen Krastev
- Reutlingen University, Faculty of Life Sciences, Reutlingen, Germany
| | - Philipp Junker
- Leibniz University Hannover, Institute of Continuum Mechanics, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Frank Walther
- TU Dortmund University, Chair of Materials Test Engineering (WPT), Dortmund, Germany
| |
Collapse
|
2
|
Sarvaiya BB, Kumar S, Pathan MSH, Patel S, Gupta V, Haque M. The Impact of Implant Surface Modifications on the Osseointegration Process: An Overview. Cureus 2025; 17:e81576. [PMID: 40177230 PMCID: PMC11961139 DOI: 10.7759/cureus.81576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025] Open
Abstract
Osseointegration is critical to the long-term success of endosseous dental implants. Surface factors such as roughness, topography, energy, and composition considerably impact this process. Several ways have been used to optimize surface roughness, increase surface area, and improve osseointegration. Subtractive processes such as alumina and titanium dioxide blasting, acid treatment, anodization, and laser peeling are widely utilized. Many additive techniques change implant surfaces, including plasma-sprayed hydroxyapatite, vacuum deposition, sol-gel, dip coating, electrolytic procedures, and nano-hydroxyapatite coating. Recently, biomimetic implant surfaces with calcium phosphate coatings have been created under physiological settings. These coatings can transport osteogenic agents such as bone morphogenetic proteins, growth differentiation factors, and bioactive medications, including bisphosphonates, gentamicin, and tetracycline. Advances in technology have considerably broadened the methods for surface modification of endosseous dental implants. This article provides a comprehensive overview of various surface modification techniques and current trends in oral implantology.
Collapse
Affiliation(s)
- Bansi B Sarvaiya
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mohd Shabankhan H Pathan
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Shirishkumar Patel
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Vineeta Gupta
- Department of Periodontology and Implantology, Government Dental College, Chhattisgarh, Raipur, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
3
|
Qian C, Chen S, Chen L, Zhang C, Yang L, Li Q, Kang B, Chen X, Mei P, Gu H, Liu Y, Liu Y. Tetrahedral DNA Nanostructure-Modified Nanocoating for Improved Bioaffinity and Osseointegration of Titanium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412747. [PMID: 40103513 DOI: 10.1002/smll.202412747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/20/2025] [Indexed: 03/20/2025]
Abstract
Titanium (Ti) is extensively used in the medical field because of its excellent biomechanical properties; however, how to precisely fabricate Ti surfaces at a nanoscale remains challenging. In this study, a DNA nanocoating system to functionalize Ti surfaces via a series of sequential reactions involving hydroxylation, silanization, and click chemistry is developed. Tetrahedral DNA nanostructures (TDNs) of two different sizes (≈7 and 30 nm) are assembled and characterized for subsequent surface attachment. In vitro and in vivo assays demonstrated significantly enhanced cell adhesion, spreading, proliferation, osteogenesis, and osseointegration on Ti surfaces modified with 30-nm TDNs, compared to slightly improved effects with 7-nm TDNs. Mechanistic studies showed that the focal adhesion pathway contributed to the enhanced bioaffinity of the 30-nm TDNs, as evidenced by the upregulated expression of vinculin and activation of the Akt signaling pathway. Moreover, under inflammatory or hypoxic conditions, Ti surfaces modified with 30-nm TDNs maintained excellent cellular performance comparable to that under normal conditions, suggesting a broader adaptability for DNA nanoparticles. Thus, better performance is achieved following modification with 30-nm TDNs. In summary, the proposed DNA-guided nanocoating system provides a novel and efficient strategy for the surface nanofabrication of Ti.
Collapse
Affiliation(s)
- Chenghui Qian
- Department of Multidisciplinary Consultant Center, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Si Chen
- Department of Multidisciplinary Consultant Center, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Liman Chen
- Fudan University Shanghai Cancer Center, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200433, China
| | - Chenyang Zhang
- Department of Oral Implantology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Lingyi Yang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qiaowei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Binbin Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Peter Mei
- Discipline of Orthodontics, Department of Oral Science, Faculty of Dentistry, University of Otago, Dunedin, 9016, New Zealand
| | - Hongzhou Gu
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100081, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| |
Collapse
|
4
|
Dini C, Yamashita KM, Sacramento CM, Borges MHR, Takeda TTS, Silva JPDS, Nagay BE, Costa RC, da Cruz NC, Rangel EC, Ruiz KGS, Barão VAR. Tailoring magnesium-doped coatings for improving surface and biological properties of titanium-based dental implants. Colloids Surf B Biointerfaces 2025; 246:114382. [PMID: 39591849 DOI: 10.1016/j.colsurfb.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Physicochemical modifications of biomaterials have been proposed to overcome bone integration impairment and microbial infections. The magnesium (Mg) incorporation on dental implant surfaces has shown positive results in bone-to-implant contact and in the reduction of microbial colonization. Here, we explored the potential of using different Mg precursors to synthesize coatings via plasma electrolytic oxidation (PEO) on commercially pure titanium (cpTi), aiming to optimize the surface and biological properties. For this, we investigated Mg acetate and Mg nitrate precursors in different concentrations (0.04 M and 0.12 M), using calcium (Ca) and phosphorus (P) as the base electrolyte for all groups. Coatings with only the CaP base electrolyte were used as the control group. The surfaces were characterized by confocal laser scanning microscopy, scanning electron microscopy, film thickness measurement, profilometry, wettability, X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, electrochemical behavior, and ion release. For biological analyses, the adhesion (2 h) of Streptococcus sanguinis was evaluated, as well as MC3T3-E1 osteoblastic cells proliferation at 1 and 3 days, and mineralization of calcium phosphates after 28 days. PEO treatment using different Mg precursors promoted physicochemical modifications of cpTi. The experimental groups MgN 0.04 and MgN 0.12 exhibited higher surface roughness and wettability compared to the other surfaces. Regardless of the Mg precursor, the higher the ion concentration in the electrolyte solution, the higher the Mg atomic concentration on the surfaces. Concerning the electrochemical behavior, the results indicated that the incorporation of Mg in the coatings may enhance the electrochemical performance. Mg treated surfaces did not promote greater bacterial adherence when compared to the control. MgAc 0.04 and MgAc 0.12 coatings displayed improved MC3T3-E1 pre-osteoblastic cells proliferation at day 3 compared to other groups. The hydroxyapatite formation on MgAc 0.12 surfaces was higher than in the other groups. Our data indicate that Mg precursor selection positively influences physicochemical and biological properties of coatings. Specifically, MgAc 0.12 surfaces showed the most promising surface features with greater cell proliferation, without affecting microbial colonization, being an excellent candidate for surface treatment of titanium-based dental implants.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Karen Midori Yamashita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Marques Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Thais Terumi Sadamitsu Takeda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Pedro Dos Santos Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil; School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, Minas Gerais 37130-001, Brazil
| | - Nilson Cristino da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Karina Gonzalez Silverio Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
5
|
De Vega B, Dutta A, Mumtaz A, Schroeder BC, Gerrand C, Boyd AS, Kalaskar DM. Comparative analysis of solvent-based and solvent-free (melting) methods for fabricating 3D-printed polycaprolactone-hydroxyapatite composite bone scaffolds: physicochemical/mechanical analyses and in vitro cytocompatibility. Front Bioeng Biotechnol 2025; 12:1473777. [PMID: 39834640 PMCID: PMC11743559 DOI: 10.3389/fbioe.2024.1473777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose The study conducts a comparative analysis between two prominent methods for fabricating composites for bone scaffolds-the (solid) solvent method and the solvent-free (melting) method. While previous research has explored these methods individually, this study provides a direct comparison of their outcomes in terms of physicochemical properties, cytocompatibility, and mechanical strength. We also analyse their workflow and scalability potentials. Design/methodology/approach Polycaprolactone (PCL) and hydroxyapatite (HA) composites were prepared using solvent (chloroform) and melting (180°C) methods, then 3D-printed using an extrusion-based 3D printer to fabricate scaffolds (8 × 8 × 4 mm). Rheology, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), accelerated degradation, mechanical/compression test, wettability/contact angle, live/dead assay, and DNA quantification (Picogreen) assays were evaluated. Findings The study finds that scaffolds made via the solid solvent method have higher mechanical strength and degradation rate as compared to those from the melting method, while both methods ensure adequate cytocompatibility and homogenous hydroxyapatite distribution, supporting their use in bone tissue engineering. Originality This research investigates the utility of chloroform as a solvent for PCL composite in a direct comparison with the melting method. It also highlights the differences in workflows between the two methods and their scalability implications, emphasizing the importance of considering workflow efficiency and the potential for automation in scaffold fabrication processes for bone tissue engineering applications.
Collapse
Affiliation(s)
- Brigita De Vega
- Division of Surgery and Interventional Science, University College London, Royal Free Hospital Campus, London, United Kingdom
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, Stanmore, United Kingdom
| | - Abir Dutta
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, Stanmore, United Kingdom
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Andhra Pradesh, India
| | - Aisha Mumtaz
- Department of Chemistry, University College London, London, United Kingdom
| | - Bob C. Schroeder
- Department of Chemistry, University College London, London, United Kingdom
| | - Craig Gerrand
- Bone and Soft Tissue Tumour Service, Royal National Orthopaedic Hospital, Stanmore, United Kingdom
| | - Ashleigh S. Boyd
- Division of Surgery and Interventional Science, University College London, Royal Free Hospital Campus, London, United Kingdom
- UCL Institute of Immunity and Transplantation, Pears Building, London, United Kingdom
| | - Deepak M. Kalaskar
- Division of Surgery and Interventional Science, University College London, Royal Free Hospital Campus, London, United Kingdom
- Institute of Orthopaedics and Musculoskeletal Science (IOMS), Division of Surgery and Interventional Science, University College London, Stanmore, United Kingdom
| |
Collapse
|
6
|
Shibli JA, Formiga MC, Elias GA, Mourão CF, Faverani LP, Souza JGS, Iezzi G, Piattelli A. Impact of Implant Surface and Smoking on Peri-Implant Human Bone: What we Learned from The Last 20 Years? Braz Dent J 2024; 35:e246115. [PMID: 39476114 PMCID: PMC11506316 DOI: 10.1590/0103-6440202406115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 11/03/2024] Open
Abstract
The present review summarizes the findings from human histological studies conducted over the past 20 years at the University of Guarulhos, Brazil, examining the impact of various implant surface topographies and smoking on peri-implant bone response. Seven different implant surfaces were evaluated in 90 partially or completely edentulous individuals using a total of 123 micro-implants. Histometric parameters, including bone-implant contact (BIC%), bone area within the threads (BA%), and bone density (BD), were assessed after an 8-week healing period. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were also performed. Results showed that treated surfaces, regardless of the treatment type, consistently demonstrated better histometric outcomes compared to machined surfaces. Anodized surfaces and those subjected to airborne particle abrasion, followed by acid etching, exhibited higher BIC% values than machined surfaces in smoker patients. Smoking reduced BIC% around anodized implants. The presence of inflammatory cells was observed adjacent to the peri-implant soft tissue on some treated surfaces. In conclusion, implant surface topography significantly influences early bone response under unloaded conditions, with treated surfaces promoting better human bone tissue response than machined surfaces. However, smoking negatively impacts peri-implant bone healing, emphasizing the importance of smoking cessation for optimal osseointegration.
Collapse
Affiliation(s)
- Jamil A Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Marcio C Formiga
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Giselle A Elias
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Carlos F Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Leonardo P Faverani
- Division of Oral and Maxillofacial Surgery and Implantology, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - João G S Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio"University of Chieti-Pescara, Chieti, Italy
| | - Adriano Piattelli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
7
|
Deng J, Joshua Cohen D, Matias EB, Olson LC, McClure MJ, Boyan BD, Schwartz Z. Reduced osseointegration in disuse and denervation rat models results from impaired cellular responses to multiscale microstructured titanium surfaces. J Orthop Res 2024; 42:1984-1997. [PMID: 38644051 DOI: 10.1002/jor.25843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
Immobilization-induced skeletal unloading results in muscle atrophy and rapid bone loss, thereby increasing the risk of falling and the need for implant therapy in patients with extended bed rest or neuromuscular injuries. Skeletal unloading causes bone loss by altering bone growth and resorption, suggesting that implant performance might be affected. To test this, we focused on early events in implant osseointegration. We used the rat sciatic neurectomy-induced disuse model under two different settings. In Study 1, 16 Sprague Dawley rats (SD) were separated into control, sham operated+cast immobilization, and sciatic neurectomy+casting groups; titanium implants with multiscale microtextured topography and hydrophilic chemistry (modSLA) were inserted in the distal femoral metaphysis. Neurectomy surgeries and casting were performed at the same surgical setting as implant placement; rats were euthanized 4 weeks post-implantation. In Study 2, we established the unloaded condition before implantation. A total of 12 SD rats were divided into control and sciatic+femoral neurectomy groups. A total of 24 days after sciatic and femoral neurectomy surgery, rats received implants. Study 2 rats were euthanized at 4 weeks post-implantation. MicroCT and histomorphometry showed that trabecular bone and osseointegration were reduced when disuse was established before implantation. Osteoblasts isolated from Study 1 sciatic neurectomy tibial bones exhibited impaired differentiation on modSLA culture disks, revealing a possible mechanism responsible for the decreased osseointegration observed in the Study 2 rats. This study addressed the importance of considering the mechanical unloading and muscle function history before implant insertion and suggests that implant performance was reduced due to poor cellular ability to regenerate.
Collapse
Affiliation(s)
- Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Enrique B Matias
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lucas C Olson
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Mughal A, Gillani SMH, Ahmed S, Fatima D, Hussain R, Manzur J, Nawaz MH, Minhas B, Shoaib Butt M, Bodaghi M, Ur Rehman MA. 3D-printed polyether-ether ketone/carboxymethyl cellulose scaffolds coated with Zn-Mn doped mesoporous bioactive glass nanoparticles. J Mech Behav Biomed Mater 2024; 156:106581. [PMID: 38776740 DOI: 10.1016/j.jmbbm.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Patient-specific fabrication of scaffold/implant requires an engineering approach to manufacture the ideal scaffold. Herein, we design and 3D print scaffolds comprised of polyether-ether-ketone (PEEK) and sodium-carboxymethyl cellulose (Na-CMC). The fabricated scaffold was dip coated with Zn and Mn doped bioactive glass nanoparticles (Zn-Mn MBGNs). The synthesized ink exhibit suitable shear-thinning behavior for direct ink write (DIW) 3D printing. The scaffolds were crafted with precision, featuring 85% porosity, 0.3 mm layer height, and 1.5 mm/s printing speed at room temperature. Scanning electron microscopy images reveal a well-defined scaffold with an average pore size of 600 ± 30 μm. The energy dispersive X-ray spectroscopy analysis confirmed a well dispersed/uniform coating of Zn-Mn MBGNs on the PEEK/Na-CMC scaffold. Fourier transform infrared spectroscopy approved the presence of PEEK, CMC, and Zn-Mn MBGNs. The tensile test revealed a Young's modulus of 2.05 GPa. Antibacterial assays demonstrate inhibition zone against Staphylococcus aureus and Escherichia Coli strains. Chick Chorioallantoic Membrane assays also present significant angiogenesis potential, owing to the antigenic nature of Zn-Mn MBGNs. WST-8 cell viability assays depicted cell proliferation, with a 103% viability after 7 days of culture. This study suggests that the PEEK/Na-CMC scaffolds coated with Zn-Mn MBGNs are an excellent candidate for osteoporotic fracture treatment. Thus, the fabricated scaffold can offer multifaceted properties for enhanced patient outcomes in the bone tissue regeneration.
Collapse
Affiliation(s)
- Awab Mughal
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Syed Muneeb Haider Gillani
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Sheraz Ahmed
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Duaa Fatima
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan; School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Rabia Hussain
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Jawad Manzur
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Haseeb Nawaz
- Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan
| | - Badar Minhas
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan
| | - Muhammad Shoaib Butt
- School of Chemical and Material Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad, 44000, Pakistan
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Muhammad Atiq Ur Rehman
- Centre of Excellence in Biomaterials and Tissue Engineering, Materials Science Engineering Department, Government College University, 54000, Lahore, Pakistan; Department of Materials Science & Engineering, Institute of Space Technology, 44000, Islamabad, Pakistan.
| |
Collapse
|
9
|
Yin X, Xia W, Fan H, Yang X, Xiang K, Ren Y, Zhu Z. Nanoclay Reinforced Integrated Scaffold for Dual-Lineage Regeneration of Cartilage and Subchondral Bone. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37683-37697. [PMID: 38980692 DOI: 10.1021/acsami.4c07092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tissue engineering is theoretically considered a promising approach for repairing osteochondral defects. Nevertheless, the insufficient osseous support and integration of the cartilage layer and the subchondral bone frequently lead to the failure of osteochondral repair. Drawing from this, it was proposed that incorporating glycine-modified attapulgite (GATP) into poly(1,8-octanediol-co-citrate) (POC) scaffolds via the one-step chemical cross-linking is proposed to enhance cartilage and subchondral bone defect repair simultaneously. The effects of the GATP incorporation ratio on the physicochemical properties, chondrocyte and MC3T3-E1 behavior, and osteochondral defect repair of the POC scaffold were also evaluated. In vitro studies indicated that the POC/10% GATP scaffold improved cell proliferation and adhesion, maintained cell phenotype, and upregulated chondrogenesis and osteogenesis gene expression. Animal studies suggested that the POC/10% GATP scaffold has significant repair effects on both cartilage and subchondral bone defects. Therefore, the GATP-incorporated scaffold system with dual-lineage bioactivity showed potential application in osteochondral regeneration.
Collapse
Affiliation(s)
- Xueling Yin
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Wanting Xia
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Huimin Fan
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Xiaoyu Yang
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Kaiwen Xiang
- Hospital of Central China Normal University, Wuhan, Hubei 430079, China
| | - Ye Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhihong Zhu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| |
Collapse
|
10
|
Santos AFP, da Silva RC, Hadad H, de Jesus LK, Pereira-Silva M, Nímia HH, Oliveira SHP, Guastaldi AC, Queiroz TP, Poli PP, Barbosa DDB, da Silva Fabris AL, Garcia Júnior IR, Gruber R, Souza FÁ. Early Peri-Implant Bone Healing on Laser-Modified Surfaces with and without Hydroxyapatite Coating: An In Vivo Study. BIOLOGY 2024; 13:533. [PMID: 39056725 PMCID: PMC11274123 DOI: 10.3390/biology13070533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
(1) Objective: The aim of this study was to assess the biological behavior of bone tissue on a machined surface (MS) and modifications made by a laser beam (LS) and by a laser beam incorporated with hydroxyapatite (HA) using a biomimetic method without thermic treatment (LHS). (2) Methods: Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM/EDX) was performed before and after installation in the rabbit tibiae. A total of 20 Albinus rabbits randomly received 30 implants of 3.75 × 10 mm in the right and left tibias, with two implants on each surface in each tibia. In the animals belonging to the 4-week euthanasia period group, intramuscular application of the fluorochromes calcein and alizarin was performed. In implants placed mesially in the tibiofemoral joint, biomechanical analysis was performed by means of a removal torque (N/cm). The tibias with the implants located distally to the joint were submitted for analysis by confocal laser microscopy (mineral apposition rate) and for histometric analysis by bone contact implant (%BIC) and newly formed bone area (%NBA). (3) Results: The SEM showed differences between the surfaces. The biomechanical analysis revealed significant differences in removal torque values between the MSs and LHSs over a 2-week period. Over a 4-week period, both the LSs and LHSs demonstrated removal torque values statistically higher than the MSs. BIC of the LHS implants were statistically superior to MS at the 2-week period and LHS and LS surfaces were statistically superior to MS at the 4-week period. Statistical analysis of the NBA of the implants showed difference between the LHS and MS in the period of 2 weeks. (4) Conclusions: The modifications of the LSs and LHSs provided important physicochemical modifications that favored the deposition of bone tissue on the surface of the implants.
Collapse
Affiliation(s)
- Ana Flávia Piquera Santos
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (H.H.); (L.K.d.J.); (M.P.-S.); (I.R.G.J.)
| | - Rodrigo Capalbo da Silva
- Department of Dental Materials and Prosthetics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.C.d.S.); or (H.H.N.); (D.d.B.B.)
| | - Henrique Hadad
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (H.H.); (L.K.d.J.); (M.P.-S.); (I.R.G.J.)
| | - Laís Kawamata de Jesus
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (H.H.); (L.K.d.J.); (M.P.-S.); (I.R.G.J.)
| | - Maísa Pereira-Silva
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (H.H.); (L.K.d.J.); (M.P.-S.); (I.R.G.J.)
| | - Heloisa Helena Nímia
- Department of Dental Materials and Prosthetics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.C.d.S.); or (H.H.N.); (D.d.B.B.)
- Health Sciences Institute, Pontificiae University Catholic of Minas Gerais—PUC-Minas, Poços de Caldas 37714-620, MG, Brazil
| | - Sandra Helena Penha Oliveira
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16018-805, SP, Brazil;
| | - Antônio Carlos Guastaldi
- Department of Analytical, Physical-Chemistry and Inorganic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil;
| | - Thallita Pereira Queiroz
- Department of Health Science, University of Araraquara-UNIARA, Araraquara 14801-340, SP, Brazil;
| | - Pier Paolo Poli
- Maxillofacial Surgery and Odontostomatology Unit, Fondazione IRCSS Cà Granda Maggiore Policlinico Hospital, University of Milan, 20122 Milan, Italy;
| | - Debora de Barros Barbosa
- Department of Dental Materials and Prosthetics, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (R.C.d.S.); or (H.H.N.); (D.d.B.B.)
| | - André Luis da Silva Fabris
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (H.H.); (L.K.d.J.); (M.P.-S.); (I.R.G.J.)
| | - Idelmo Rangel Garcia Júnior
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (H.H.); (L.K.d.J.); (M.P.-S.); (I.R.G.J.)
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Francisley Ávila Souza
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil; (H.H.); (L.K.d.J.); (M.P.-S.); (I.R.G.J.)
| |
Collapse
|
11
|
Matsuura T, Komatsu K, Cheng J, Park G, Ogawa T. Beyond microroughness: novel approaches to navigate osteoblast activity on implant surfaces. Int J Implant Dent 2024; 10:35. [PMID: 38967690 PMCID: PMC11226592 DOI: 10.1186/s40729-024-00554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
Considering the biological activity of osteoblasts is crucial when devising new approaches to enhance the osseointegration of implant surfaces, as their behavior profoundly influences clinical outcomes. An established inverse correlation exists between osteoblast proliferation and their functional differentiation, which constrains the rapid generation of a significant amount of bone. Examining the surface morphology of implants reveals that roughened titanium surfaces facilitate rapid but thin bone formation, whereas smooth, machined surfaces promote greater volumes of bone formation albeit at a slower pace. Consequently, osteoblasts differentiate faster on roughened surfaces but at the expense of proliferation speed. Moreover, the attachment and initial spreading behavior of osteoblasts are notably compromised on microrough surfaces. This review delves into our current understanding and recent advances in nanonodular texturing, meso-scale texturing, and UV photofunctionalization as potential strategies to address the "biological dilemma" of osteoblast kinetics, aiming to improve the quality and quantity of osseointegration. We discuss how these topographical and physicochemical strategies effectively mitigate and even overcome the dichotomy of osteoblast behavior and the biological challenges posed by microrough surfaces. Indeed, surfaces modified with these strategies exhibit enhanced recruitment, attachment, spread, and proliferation of osteoblasts compared to smooth surfaces, while maintaining or amplifying the inherent advantage of cell differentiation. These technology platforms suggest promising avenues for the development of future implants.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Gunwoo Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, 10833 Le Conte Avenue B3-087, Box951668, Los Angeles, CA, 90095-1668, USA.
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA.
| |
Collapse
|
12
|
Guo CY, Mo R, Kim H. Surface topography modulates initial platelet adhesion to titanium substrata. J Oral Biol Craniofac Res 2024; 14:471-477. [PMID: 38962718 PMCID: PMC11220530 DOI: 10.1016/j.jobcr.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 02/23/2024] [Indexed: 07/05/2024] Open
Abstract
The clinical success of implanted biomaterials such as dental implants is largely determined by the molecular signaling that occurs at the tissue-implant interface. The modification of surface topography is a widely-employed strategy for optimizing tissue integration with dental implants. However, little is known regarding the direct, cellular-level effects of substratum topography on platelet signaling and adhesion, despite these cells being the first to encounter the implant surface during surgical placement. Here we compared platelet adhesion and secretion on four (4) different titanium surfaces, notably, the modifications applied to commercially available dental implants: smooth (S) titanium; acid-etched (AE), sandblasted (SB) and a combined acid-etching/sandblasting procedure (SLA). Platelets were isolated from human blood, washed, and seeded on to the 4 test surfaces; platelet adhesion was quantified by microscopy. In addition, the secretion of critical molecules stored in platelet granules (platelet factor 4, PF4; soluble P-selectin, sCD62P; transforming growth factor-beta1, TGF-β1; platelet-derived growth factor-AB, PDGF-AB) was measured by enzyme-linked immunosorbent assay (ELISA) analysis of the supernatants. There was greater platelet adhesion to the rougher AE and SB surfaces, however, the concentration of the secreted growth factors was comparable on all surfaces. We conclude that while surface topography can be engineered to modulate initial platelet adhesion, granule secretion is likely regulated as a separate and independent process.
Collapse
Affiliation(s)
- Cecilia Yan Guo
- Centre for Blood Research, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Raymond Mo
- Centre for Blood Research, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
13
|
Minervini G. Dentistry and Cranio Facial District: The Role of Biomimetics. Biomimetics (Basel) 2024; 9:389. [PMID: 39056830 PMCID: PMC11274693 DOI: 10.3390/biomimetics9070389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Biomimetics has emerged as a pivotal field, bridging fundamental research and practical applications [...].
Collapse
Affiliation(s)
- Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, Tamil Nadu, India;
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania, Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
14
|
Li X, Zhu L, Che Z, Liu T, Yang C, Huang L. Progress of research on the surface functionalization of tantalum and porous tantalum in bone tissue engineering. Biomed Mater 2024; 19:042009. [PMID: 38838694 DOI: 10.1088/1748-605x/ad5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Tantalum and porous tantalum are ideal materials for making orthopedic implants due to their stable chemical properties and excellent biocompatibility. However, their utilization is still affected by loosening, infection, and peripheral inflammatory reactions, which sometimes ultimately lead to implant removal. An ideal bone implant should have exceptional biological activity, which can improve the surrounding biological microenvironment to enhance bone repair. Recent advances in surface functionalization have produced various strategies for developing compatibility between either of the two materials and their respective microenvironments. This review provides a systematic overview of state-of-the-art strategies for conferring biological functions to tantalum and porous tantalum implants. Furthermore, the review describes methods for preparing active surfaces and different bioactive substances that are used, summarizing their functions. Finally, this review discusses current challenges in the development of optimal bone implant materials.
Collapse
Affiliation(s)
- Xudong Li
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Liwei Zhu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Zhenjia Che
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Tengyue Liu
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chengzhe Yang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Lanfeng Huang
- The Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
15
|
Esmaeili MM, Nemati NH, Joupari MD. Evaluation of tribological and biological properties of Ti6Al4V coated with Si 3N 4/ND nanoparticles for orthopedic applications: a comprehensive analysis. Biomed Mater 2024; 19:045028. [PMID: 38772382 DOI: 10.1088/1748-605x/ad4e82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
In this study, the biocompatibility and tribological properties of Ti6Al4V coated with silicon nitride (Si3N4)/nanodiamond using the electrophoretic deposition method were investigated. Suspensions of various aqueous and alcoholic solutions were prepared in the presence of CTAB and SDS dispersers. The most stable suspension system for the electrophoresis process was selected (aqueous media/ SDS disperser). Four different voltages (20, 30, 40 and 50 V) were applied to study the effect of voltage on the coating property. One could find that processing with 40 V obtained the best coating. The nano-composite coating was characterized using scanning electron microscopy equipped with energy dispersive spectroscopy, mapping analysis and x-ray diffraction after the coating process. The samples were then subjected to two nanoindentation and nano-scratching tests to evaluate their tribological properties. Biocompatibility was assessed in an ex vivo environment using two cell culture tests to evaluate survival and cellular adhesion. The results showed that the hardness and modulus elasticity of the coated sample increased from 85 to 124 GPa and 1.14-3.55 GPa, respectively, compared to the non-coated sample. Additionally, the MTT test results indicated that cellular survival and proliferation of MG63 cells increased from 86% for the non-coated sample to 92% for the Ti6Al4V/Si3N4/ND sample. These findings have implications for orthopedic implant applications.
Collapse
Affiliation(s)
- Mohammad Mahdi Esmaeili
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Daliri Joupari
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
16
|
Mao Y, Xie X, Sun G, Yu S, Ma M, Chao R, Wan T, Xu W, Chen X, Sun L, Zhang S. Multifunctional Prosthesis Surface: Modification of Titanium with Cinnamaldehyde-Loaded Hierarchical Titanium Dioxide Nanotubes. Adv Healthc Mater 2024; 13:e2303374. [PMID: 38366905 DOI: 10.1002/adhm.202303374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Orthopedic prostheses are the ultimate therapeutic solution for various end-stage orthopedic conditions. However, aseptic loosening and pyogenic infections remain as primary complications associated with these devices. In this study, a hierarchical titanium dioxide (TiO2) nanotube drug delivery system loaded with cinnamaldehyde for the surface modification of titanium implants, is constructed. These specially designed dual-layer TiO2 nanotubes enhance material reactivity and provide an extensive drug-loading platform within a short time. The introduction of cinnamaldehyde enhances the bone integration performance of the scaffold (simultaneously promoting bone formation and inhibiting bone resorption), anti-inflammatory capacity, and antibacterial properties. In vitro experiments have demonstrated that this system promoted osteogenesis by upregulating both Wnt/β-catenin and MAPK signaling pathways. Furthermore, it inhibits osteoclast formation, suppresses macrophage-mediated inflammatory responses, and impedes the proliferation of Staphylococcus aureus and Escherichia coli. In vivo experiments shows that this material enhances bone integration in a rat model of femoral defects. In addition, it effectively enhances the antibacterial and anti-inflammatory properties in a subcutaneous implant in a rat model. This study provides a straightforward and highly effective surface modification strategy for orthopedic Ti implants.
Collapse
Affiliation(s)
- Yi Mao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xinru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangxin Sun
- Department of Oral and Maxillofacial Surgery, China Medical University School and Hospital of Stomatology, Shenyang, Liaoning, 110002, China
| | - Shiqi Yu
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mingqi Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Rui Chao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Tianhao Wan
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Weifeng Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lei Sun
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Stomatology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Shanyong Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
17
|
Berger MB, Bosh K, Deng J, Jacobs TW, Cohen DJ, Boyan BD, Schwartz Z. Wnt16 Increases Bone-to-Implant Contact in an Osteopenic Rat Model by Increasing Proliferation and Regulating the Differentiation of Bone Marrow Stromal Cells. Ann Biomed Eng 2024; 52:1744-1762. [PMID: 38517621 PMCID: PMC11082046 DOI: 10.1007/s10439-024-03488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Osseointegration is a complex biological cascade that regulates bone regeneration after implant placement. Implants possessing complex multiscale surface topographies augment this regenerative process through the regulation of bone marrow stromal cells (MSCs) that are in contact with the implant surface. One pathway regulating osteoblastic differentiation is Wnt signaling, and upregulation of non-canonical Wnts increases differentiation of MSCs on these titanium substrates. Wnt16 is a non-canonical Wnt shown to regulate bone morphology in mouse models. This study evaluated the role of Wnt16 during surface-mediated osteoblastic differentiation of MSCs in vitro and osseointegration in vivo. MSCs were cultured on Ti substrates with different surface properties and non-canonical Wnt expression was determined. Subsequently, MSCs were cultured on Ti substrates +/-Wnt16 (100 ng/mL) and anti-Wnt16 antibodies (2 μg/mL). Wnt16 expression was increased in cells grown on microrough surfaces that were processed to be hydrophilic and have nanoscale roughness. However, treatment MSCs on these surfaces with exogenous rhWnt16b increased total DNA content and osteoprotegerin production, but reduced osteoblastic differentiation and production of local factors necessary for osteogenesis. Addition of anti-Wnt16 antibodies blocked the inhibitor effects of Wnt16. The response to Wnt16 was likely independent of other osteogenic pathways like Wnt11-Wnt5a signaling and semaphorin 3a signaling. We used an established rat model of cortical and trabecular femoral bone impairment following botox injections (2 injections of 8 units/leg each, starting and maintenance doses) to assess Wnt16 effects on whole bone morphology and implant osseointegration. Wnt16 injections did not alter whole bone morphology significantly (BV/TV, cortical thickness, restoration of trabecular bone) but were effective at increasing cortical bone-to-implant contact during impaired osseointegration in the botox model. The mechanical quality of the increased bone was not sufficient to rescue the deleterious effects of botox. Clinically, these results are important to understand the interaction of cortical and trabecular bone during implant integration. They suggest a role for Wnt16 in modulating bone remodeling by reducing osteoclastic activity. Targeted strategies to temporally regulate Wnt16 after implant placement could be used to improve osseointegration by increasing the net pool of osteoprogenitor cells.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Kyla Bosh
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Thomas W Jacobs
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA.
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, 23284, USA
- Department of Periodontology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| |
Collapse
|
18
|
Hadem H, Mitra A, Ojha AK, Rajasekaran R, Satpathy B, Das D, Mukherjee S, Dhara S, Das S, Das K. Electrophoretic Deposition of 58S Bioactive Glass- Polymer Composite Coatings on 316L Stainless Steel: An Optimization for Corrosion, Bioactivity, and Cytocompatibility. ACS APPLIED BIO MATERIALS 2024; 7:2966-2981. [PMID: 38652577 DOI: 10.1021/acsabm.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study presents a facile fabrication of 58S bioactive glass (BG)-polymer composite coatings on a 316L stainless steel (SS) substrate using the electrophoretic deposition technique. The suspension characteristics and deposition kinetics of BG, along with three different polymers, namely ethylcellulose (EC), poly(acrylic acid) (PAA), and polyvinylpyrrolidone (PVP), have been utilized to fabricate the coatings. Among all coatings, 58S BG and EC polymers are selected as the final composite coating (EC6) owing to their homogeneity and good adhesion. EC6 coating exhibits a thickness of ∼18 μm and an average roughness of ∼2.5 μm. Herein, EC6 demonstrates better hydroxyapatite formation compared to PAA and PVP coatings in simulated body fluid-based mineralization studies for a period of 28 days. Corrosion studies of EC6 in phosphate-buffered saline further confirm the higher corrosion resistance properties after 14 days. In vitro cytocompatibility studies using human placental mesenchymal stem cells demonstrate an increase in cellular viability, attachment, and higher proliferation compared to the bare SS substrate. EC6 coatings promote osteogenic differentiation, which is confirmed via the upregulation of the OPN and OCN genes. Moreover, the EC6 sample exhibits improved antibacterial properties against Escherichia coli and Staphylococcus aureus compared to the uncoated ones. The findings of this work emphasize the potential of electrophoretically fabricated BG-EC composite coatings on SS substrates for orthopedic applications.
Collapse
Affiliation(s)
- Hushnaara Hadem
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Arijit Mitra
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Atul Kumar Ojha
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Ragavi Rajasekaran
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
- Rajendra Mishra School of Engineering and Entrepreneurship, Indian Institute of Technology, Kharagpur 721302, India
| | - Bangmaya Satpathy
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Debasish Das
- School of Nano Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Sayan Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Siddhartha Das
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| | - Karabi Das
- Structural Characterization of Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
19
|
Sun G, Shu T, Ma S, Li M, Qu Z, Li A. A submicron forest-like silicon surface promotes bone regeneration by regulating macrophage polarization. Front Bioeng Biotechnol 2024; 12:1356158. [PMID: 38707505 PMCID: PMC11066256 DOI: 10.3389/fbioe.2024.1356158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: Silicon is a major trace element in humans and a prospective supporting biomaterial to bone regeneration. Submicron silicon pillars, as a representative surface topography of silicon-based biomaterials, can regulate macrophage and osteoblastic cell responses. However, the design of submicron silicon pillars for promoting bone regeneration still needs to be optimized. In this study, we proposed a submicron forest-like (Fore) silicon surface (Fore) based on photoetching. The smooth (Smo) silicon surface and photoetched regular (Regu) silicon pillar surface were used for comparison in the bone regeneration evaluation. Methods: Surface parameters were investigated using a field emission scanning electron microscope, atomic force microscope, and contact angle instrument. The regulatory effect of macrophage polarization and succedent osteogenesis was studied using Raw264.7, MC3T3-E1, and rBMSCs. Finally, a mouse calvarial defect model was used for evaluating the promoting effect of bone regeneration on the three surfaces. Results: The results showed that the Fore surface can increase the expression of M2-polarized markers (CD163 and CD206) and decrease the expression of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Fore surface can promote the osteogenesis in MC3T3-E1 cells and osteoblastic differentiation of rBMSCs. Furthermore, the volume fraction of new bone and the thickness of trabeculae on the Fore surface were significantly increased, and the expression of RANKL was downregulated. In summary, the upregulation of macrophage M2 polarization on the Fore surface contributed to enhanced osteogenesis in vitro and accelerated bone regeneration in vivo. Discussion: This study strengthens our understanding of the topographic design for developing future silicon-based biomaterials.
Collapse
Affiliation(s)
- Guo Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Su H, Fujiwara T, Skalli O, Selders GS, Li T, Mao L, Bumgardner JD. Porous Nano-Fiber Structure of Modified Electrospun Chitosan GBR Membranes Improve Osteoblast Calcium Phosphate Deposition in Osteoblast-Fibroblast Co-Cultures. Mar Drugs 2024; 22:160. [PMID: 38667777 PMCID: PMC11051071 DOI: 10.3390/md22040160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Desirable characteristics of electrospun chitosan membranes (ESCM) for guided bone regeneration are their nanofiber structure that mimics the extracellular fiber matrix and porosity for the exchange of signals between bone and soft tissue compartments. However, ESCM are susceptible to swelling and loss of nanofiber and porous structure in physiological environments. A novel post-electrospinning method using di-tert-butyl dicarbonate (tBOC) prevents swelling and loss of nanofibrous structure better than sodium carbonate treatments. This study aimed to evaluate the hypothesis that retention of nanofiber morphology and high porosity of tBOC-modified ESCM (tBOC-ESCM) would support more bone mineralization in osteoblast-fibroblast co-cultures compared to Na2CO3 treated membranes (Na2CO3-ESCM) and solution-cast chitosan solid films (CM-film). The results showed that only the tBOC-ESCM retained the nanofibrous structure and had approximately 14 times more pore volume than Na2CO3-ESCM and thousands of times more pore volume than CM-films, respectively. In co-cultures, the tBOC-ESCM resulted in a significantly greater calcium-phosphate deposition by osteoblasts than either the Na2CO3-ESCM or CM-film (p < 0.05). This work supports the study hypothesis that tBOC-ESCM with nanofiber structure and high porosity promotes the exchange of signals between osteoblasts and fibroblasts, leading to improved mineralization in vitro and thus potentially improved bone healing and regeneration in guided bone regeneration applications.
Collapse
Affiliation(s)
- Hengjie Su
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Department of Biomedical Engineering, University of Tennessee Health Science Center-Memphis Joint Graduate Biomedical Engineering Program, The University of Memphis, Memphis, TN 38152, USA
| | - Tomoko Fujiwara
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA;
| | - Omar Skalli
- Integrated Microscopy Center, The University of Memphis, Memphis, TN 38152, USA
| | - Gretchen Schreyack Selders
- Department of Biomedical Engineering, University of Tennessee Health Science Center-Memphis Joint Graduate Biomedical Engineering Program, The University of Memphis, Memphis, TN 38152, USA
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linna Mao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Joel D. Bumgardner
- Department of Biomedical Engineering, University of Tennessee Health Science Center-Memphis Joint Graduate Biomedical Engineering Program, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
21
|
Kumar Shetty S, Sundar Santhanakrishnan S, Padurao S, Mirazkar Dasharatharao P. Prioritizing Biomaterial Driven Clinical Bioactivity Over Designing Intricacy during Bioprinting of Trabecular Microarchitecture: A Clinician's Perspective. ACS OMEGA 2024; 9:12426-12435. [PMID: 38524444 PMCID: PMC10956407 DOI: 10.1021/acsomega.3c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Bone tissue engineering has witnessed a historical shift from three perspectives. From a biomaterial perspective, materials have now become smarter and dynamic; from a bioengineering perspective the bioprinting techniques have now advanced to 4D bioprinting; and from a clinical perspective scaffold bioactivity has progressed toward enhanced osteoinductive scaffolds driven by intricate biomechanical, biophysical, biochemical, and biological cues. Though all of these advancements are indicative of improvised scaffold engineering, a pivotal question regarding the critical role and need of designing and replicating the intricacies of trabecular microarchitecture for enhanced, clinically appreciable osteoangiogenicity needs to be answered. This review hence critically evaluates the rationale and the need of investing substantial effort into designing complex microarchitectures amidst the era of "smart biomaterials" and dynamic 4D bioprinting aimed toward enhancing clinically appreciable bioactivity. The article explores the concept of integrating intricate designs into a scaffold microarchitecture to bolster bioactivity and the practical challenges encountered in 3D bioprinting of complex designs and meticulously examines the pivotal role of biomaterials in scaffold bioactivity, proposing a comprehensive approach to bioprinting geared toward achieving clinical bioactivity and striking a judicious balance between design intricacy and functional outcomes in bone bioprinting.
Collapse
Affiliation(s)
- Sahith Kumar Shetty
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shyam Sundar Santhanakrishnan
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shubha Padurao
- Department
of Material Science, Mangalagangothri Mangalore
University, Konaja 571449, India
| | | |
Collapse
|
22
|
Jalaluddin M, Ramanna PK, Swain M, Sonkesriya S, Rana P, Kumari D, Derbala DAA, Mirza LF, Mushtaq S, Beshir SEM. Evaluation of Fibrin Clot Interaction with Dental Implant after Different Surface Treatments: An In Vitro Study. J Contemp Dent Pract 2024; 25:276-279. [PMID: 38690702 DOI: 10.5005/jp-journals-10024-3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
AIM The current study was carried out to assess the interaction between fibrin clots and dental implants following various surface treatments. MATERIALS AND METHODS In this investigation, 45 dental implants with dimensions of 16 mm in length and 5 mm in diameter were utilized. They were divided up into three groups, each consisting of fifteen samples. Group I: Control; Group II: Ultraviolet (UV) light treated; and group III: Sandblasted and acid-etching (SLA) treated. Healthy volunteers' venous blood samples were drawn into vacutainer tubes without the use of anticoagulants. The samples were centrifuged for 3 minutes at 2700 rpm in a table centrifuge. The entire implant was submerged in room-temperature liquid fibrinogen for 60 minutes. Then, scanning electronic microscopy (SEM) was used to examine each sample. The inter- and intragroup assessments were obtained using the Mann-Whitney U test and the Kruskal-Wallis test; p-values less than 0.05 were regarded as statistically significant. RESULTS The maximum adhesion of fibrin clot was found in SLA treated group (2.42 ± 0.10) followed by the UV light-treated group (2.18 ± 0.08) and control group (1.20 ± 0.02). There was a statistically significant difference found between the three surface-treated groups (p < 0.001). CONCLUSION All surface-treatment methods exhibit adhesion between the implant surface and the fibrin clot. However, the highest adherence of fibrin clot was found in SLA treated group compared to the UV light-treated and control group. CLINICAL SIGNIFICANCE The physical and chemical characteristics of an implant's surface have a significant impact on the way blood clots organize. At the interface between the implant and the bone, blood clot production can initiate and facilitate the healing process. How to cite this article: Jalaluddin M, Ramanna PK, Swain M, et al. Evaluation of Fibrin Clot Interaction with Dental Implant after Different Surface Treatments: An In Vitro Study. J Contemp Dent Pract 2024;25(3):276-279.
Collapse
Affiliation(s)
- Mohammad Jalaluddin
- Department of Periodontics and Oral Implantology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India, Phone: +91 9338131843, e-mail:
| | - Pavithra K Ramanna
- Department of Prosthodontics, Crown and Bridge and Implantology, Vydehi Institute of Dental Sciences and Research Hospital, Bengaluru, Karnataka, India
| | - Monalisa Swain
- Department of Periodontics and Oral Implantology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Subhash Sonkesriya
- Department of Prosthodontics, Government College of Dentistry, Indore, Madhya Pradesh, India
| | - Priyanka Rana
- Department of Oral and Maxillofacial Surgery, KM Shah Dental College and Hospital, Vadodara, Gujarat, India
| | - Deesha Kumari
- Department of Public Health Dentistry, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), NITTE (Deemed to be University), Mangaluru, Karnataka, India
| | - Dina A A Derbala
- Department of Oral Surgery, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Linda F Mirza
- Department of Pediatric Dentistry, King Abdullah Medical Complex, Ministry of Health, Jeddah, Saudi Arabia
| | - Shazia Mushtaq
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saiid E M Beshir
- Department of Maxillofacial Surgery and Diagnostic Sciences, Oral and Maxillofacial Surgery Division, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
23
|
Hussain B, Simm R, Bueno J, Giannettou S, Naemi AO, Lyngstadaas SP, Haugen HJ. Biofouling on titanium implants: a novel formulation of poloxamer and peroxide for in situ removal of pellicle and multi-species oral biofilm. Regen Biomater 2024; 11:rbae014. [PMID: 38435376 PMCID: PMC10907064 DOI: 10.1093/rb/rbae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Eradicating biofouling from implant surfaces is essential in treating peri-implant infections, as it directly addresses the microbial source for infection and inflammation around dental implants. This controlled laboratory study examines the effectiveness of the four commercially available debridement solutions '(EDTA (Prefgel®), NaOCl (Perisolv®), H2O2 (Sigma-Aldrich) and Chlorhexidine (GUM® Paroex®))' in removing the acquired pellicle, preventing pellicle re-formation and removing of a multi-species oral biofilm growing on a titanium implant surface, and compare the results with the effect of a novel formulation of a peroxide-activated 'Poloxamer gel (Nubone® Clean)'. Evaluation of pellicle removal and re-formation was conducted using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy to assess the surface morphology, elemental composition and chemical surface composition. Hydrophilicity was assessed through contact angle measurements. The multi-species biofilm model included Streptococcus oralis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans, reflecting the natural oral microbiome's complexity. Biofilm biomass was quantified using safranin staining, biofilm viability was evaluated using confocal laser scanning microscopy, and SEM was used for morphological analyses of the biofilm. Results indicated that while no single agent completely eradicated the biofilm, the 'Poloxamer gel' activated with 'H2O2' exhibited promising results. It minimized re-contamination of the pellicle by significantly lowering the contact angle, indicating enhanced hydrophilicity. This combination also showed a notable reduction in carbon contaminants, suggesting the effective removal of organic residues from the titanium surface, in addition to effectively reducing viable bacterial counts. In conclusion, the 'Poloxamer gel + H2O2' combination emerged as a promising chemical decontamination strategy for peri-implant diseases. It underlines the importance of tailoring treatment methods to the unique microbial challenges in peri-implant diseases and the necessity of combining chemical decontaminating strategies with established mechanical cleaning procedures for optimal management of peri-implant diseases.
Collapse
Affiliation(s)
- Badra Hussain
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Jaime Bueno
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
- Section of the Postgraduate program in Periodontology, Faculty of Dentistry, Complutense University, Madrid (UCM), Madrid, Spain
| | - Savvas Giannettou
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | | | | | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Park J, Tesler AB, Gongadze E, Iglič A, Schmuki P, Mazare A. Nanoscale Topography of Anodic TiO 2 Nanostructures Is Crucial for Cell-Surface Interactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4430-4438. [PMID: 38232230 DOI: 10.1021/acsami.3c16033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Anodic titanium dioxide (TiO2) nanostructures, i.e., obtained by electrochemical anodization, have excellent control over the nanoscale morphology and have been extensively investigated in biomedical applications owing to their sub-100 nm nanoscale topography range and beneficial effects on biocompatibility and cell interactions. Herein, we obtain TiO2 nanopores (NPs) and nanotubes (NTs) with similar morphologies, namely, 15 nm diameter and 500 nm length, and investigate their characteristics and impact on stem cell adhesion. We show that the transition of TiO2 NPs to NTs occurs via a pore/wall splitting mechanism and the removal of the fluoride-rich layer. Furthermore, in contrast to the case of NPs, we observe increased cell adhesion and proliferation on nanotubes. The enhanced mesenchymal stem cell adhesion/proliferation seems to be related to a 3-fold increase in activated integrin clustering, as confirmed by immunogold labeling with β1 integrin antibody on the nanostructured layers. Moreover, computations of the electric field and surface charge density show increased values at the inner and outer sharp edges of the top surfaces of the NTs, which in turn can influence cell adhesion by increasing the bridging interactions mediated by proteins and molecules in the environment. Collectively, our results indicate that the nanoscale surface architecture of the lateral spacing topography can greatly influence stem cell adhesion on substrates for biomedical applications.
Collapse
Affiliation(s)
- Jung Park
- Division of Molecular Pediatrics, Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Alexander B Tesler
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
| | - Ekaterina Gongadze
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia
- Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, Ljubljana 1000, Slovenia
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc 779 00, Czech Republic
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University of Erlangen Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
25
|
Xing F, Shen HY, Zhe M, Jiang K, Lei J, Xiang Z, Liu M, Xu JZ, Li ZM. Nano-Topographically Guided, Biomineralized, 3D-Printed Polycaprolactone Scaffolds with Urine-Derived Stem Cells for Promoting Bone Regeneration. Pharmaceutics 2024; 16:204. [PMID: 38399258 PMCID: PMC10892771 DOI: 10.3390/pharmaceutics16020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Currently, biomineralization is widely used as a surface modification approach to obtain ideal material surfaces with complex hierarchical nanostructures, morphologies, unique biological functions, and categorized organizations. The fabrication of biomineralized coating for the surfaces of scaffolds, especially synthetic polymer scaffolds, can alter surface characteristics, provide a favorable microenvironment, release various bioactive substances, regulate the cellular behaviors of osteoblasts, and promote bone regeneration after implantation. However, the biomineralized coating fabricated by immersion in a simulated body fluid has the disadvantages of non-uniformity, instability, and limited capacity to act as an effective reservoir of bioactive ions for bone regeneration. In this study, in order to promote the osteoinductivity of 3D-printed PCL scaffolds, we optimized the surface biomineralization procedure by nano-topographical guidance. Compared with biomineralized coating constructed by the conventional method, the nano-topographically guided biomineralized coating possessed more mineral substances and firmly existed on the surface of scaffolds. Additionally, nano-topographically guided biomineralized coating possessed better protein adsorption and ion release capacities. To this end, the present work also demonstrated that nano-topographically guided biomineralized coating on the surface of 3D-printed PCL scaffolds can regulate the cellular behaviors of USCs, guide the osteogenic differentiation of USCs, and provide a biomimetic microenvironment for bone regeneration.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (F.X.); (Z.X.)
| | - Hui-Yuan Shen
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-Y.S.); (K.J.); (J.L.); (Z.-M.L.)
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Kai Jiang
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-Y.S.); (K.J.); (J.L.); (Z.-M.L.)
| | - Jun Lei
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-Y.S.); (K.J.); (J.L.); (Z.-M.L.)
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (F.X.); (Z.X.)
| | - Ming Liu
- Department of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (F.X.); (Z.X.)
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-Y.S.); (K.J.); (J.L.); (Z.-M.L.)
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; (H.-Y.S.); (K.J.); (J.L.); (Z.-M.L.)
| |
Collapse
|
26
|
Asadullah S, Ahmed M, Sarfraz S, Zahra M, Asari A, Wahab NHA, Sobia F, Iqbal DN. Polyimide biocomposites coated with tantalum pentoxide for stimulation of cell compatibility and enhancement of biointegration for orthopedic implant. Heliyon 2023; 9:e23284. [PMID: 38144283 PMCID: PMC10746511 DOI: 10.1016/j.heliyon.2023.e23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Orthopedic implants are an important tool in the treatment of musculoskeletal conditions and helped many patients to improve their quality of life. Various inorganic-organic biocomposites have been broadly investigated particularly in the area of load-bearing orthopedic/dental applications. Polyimide (PI) is a promising organic material and shows excellent mechanical properties, biocompatibility, bio-stability, and its elastic modulus is similar to human bone but it lacks bioactivity, which is very important for cell adhesion and ultimately for bone regeneration. In this research, tantalum pentoxide (Ta2O5) coating was prepared on the surface of PI by polydopamine (PDA) bonding. The results showed that Ta2O5 was evenly coated on the surface of PI, and with the concentration of Ta2O5 in the PDA suspension increased, the content of Ta2O5 particles on the surface of PI increased significantly. In addition, the Ta2O5 coating significantly increased the roughness and hydrophilicity of the PI matrix. Cell experiments showed that PI surface coating Ta2O5 could promote the proliferation, adhesion, and osteogenic differentiation of bone marrow-derived stromal cells (BMSCs). The results demonstrated that fabricating Ta2O5 coating on the surface of PI through PDA bonding could improve the biocompatibility as well as bioactivity of PI, and increase the application potential of PI in the field of bone repair materials.
Collapse
Affiliation(s)
- Syed Asadullah
- Chandbagh College Kot Jilani, Muridke-Sheikhupura Road, Muridke, Pakistan
| | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore-54770, Pakistan
| | - Sadaf Sarfraz
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Manzar Zahra
- Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
| | - Asnuzilawati Asari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nurul Huda Abdul Wahab
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Farah Sobia
- Punjab Food Authority, 83-C, Muslim Town, Lahore-Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore-Pakistan
| |
Collapse
|
27
|
Ozan S, Bilgin A, Kasman Ş. Laser textured Ti-6Al-7Nb alloy for biomedical applications: An investigation of texturing parameters on surface properties. Proc Inst Mech Eng H 2023; 237:1139-1153. [PMID: 37776151 DOI: 10.1177/09544119231200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Surface texturing with a laser beam is an effective method for engraving on the surface of biomaterials. The four laser texturing parameters (scan speed, frequency, fill spacing, and pulse width) having five different values were associated with five different scanning strategies (scan direction), and a total of 25 texturing conditions were tested on the Ti-6Al-7Nb alloy surface. The surface roughness and wettability of the textures created with a 20 W nanosecond fiber laser with a wavelength of 1064 nm on the surface of Ti-6Al-7Nb biocompatible alloy were investigated. Laser texturing parameters were analyzed according to the lowest surface roughness and a hydrophilic surface by creating L25 orthogonal arrays. The surface roughness values ranged between 2 and 26 µm. The lowest surface roughness with a value of 2.21 µm was achieved when the texture was processed with a frequency of 150 kHz, a fill spacing of 0.02 mm, a scan speed of 800 mm/s, a pulse width of 250 ns, and a cross-hatch strategy of 0°/90°. Considering the wettability test results, it was revealed that most of the textured surfaces have super hydrophilic and hydrophilic characteristics except the surface with a contact angle of 92.93°. The relevant surface was textured with 75 kHz frequency, 1000 mm/s scan speed, 0.05 mm fill spacing, 200 ns pulse width, and 45°/-45° cross-hatch strategy.
Collapse
Affiliation(s)
- Sertan Ozan
- Department of Mechanical Engineering, Yozgat Bozok University, Yozgat, Turkey
| | - Abdurrahman Bilgin
- Department of Mechanical Engineering, Yozgat Bozok University, Yozgat, Turkey
| | - Şefika Kasman
- Department of Mechanical Engineering, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
28
|
Ying J, Yu H, Cheng L, Li J, Wu B, Song L, Yi P, Wang H, Liu L, Zhao D. Research progress and clinical translation of three-dimensional printed porous tantalum in orthopaedics. BIOMATERIALS TRANSLATIONAL 2023; 4:166-179. [PMID: 38283089 PMCID: PMC10817782 DOI: 10.12336/biomatertransl.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 08/03/2022] [Accepted: 08/30/2023] [Indexed: 01/30/2024]
Abstract
With continuous developments in additive manufacturing technology, tantalum (Ta) metal has been manufactured into orthopaedic implants with a variety of forms, properties and uses by three-dimensional printing. Based on extensive research in recent years, the design, processing and performance aspects of this new orthopaedic implant material have been greatly improved. Besides the bionic porous structure and mechanical characteristics that are similar to human bone tissue, porous tantalum is considered to be a viable bone repair material due to its outstanding corrosion resistance, biocompatibility, bone integration and bone conductivity. Numerous in vitro, in vivo, and clinical studies have been carried out in order to analyse the safety and efficacy of these implants in orthopaedic applications. This study reviews the most recent advances in manufacturing, characteristics and clinical application of porous tantalum materials.
Collapse
Affiliation(s)
- Jiawei Ying
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Haiyu Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Liangliang Cheng
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Bin Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Liqun Song
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Pinqiao Yi
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Haiyao Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Lingpeng Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
29
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
30
|
Wang J, Yang B, Guo S, Yu S, Li H. Manufacture of titanium alloy materials with bioactive sandblasted surfaces and evaluation of osseointegration properties. Front Bioeng Biotechnol 2023; 11:1251947. [PMID: 37671189 PMCID: PMC10475539 DOI: 10.3389/fbioe.2023.1251947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Titanium alloys are some of the most important orthopedic implant materials currently available. However, their lack of bioactivity and osteoinductivity limits their osseointegration properties, resulting in suboptimal osseointegration between titanium alloy materials and bone interfaces. In this study, we used a novel sandblasting surface modification process to manufacture titanium alloy materials with bioactive sandblasted surfaces and systematically characterized their surface morphology and physicochemical properties. We also analyzed and evaluated the osseointegration between titanium alloy materials with bioactive sandblasted surfaces and bone interfaces by in vitro experiments with co-culture of osteoblasts and in vivo experiments with a rabbit model. In our in vitro experiments, the proliferation, differentiation, and mineralization of the osteoblasts on the surfaces of the materials with bioactive sandblasted surfaces were better than those in the control group. In addition, our in vivo experiments showed that the titanium alloy materials with bioactive sandblasted surfaces were able to promote the growth of trabecular bone on their surfaces compared to controls. These results indicate that the novel titanium alloy material with bioactive sandblasted surface has satisfactory bioactivity and osteoinductivity and exhibit good osseointegration properties, resulting in improved osseointegration between the material and bone interface. This work lays a foundation for subsequent clinical application research into titanium alloy materials with bioactive sandblasted surfaces.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Baohui Yang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuai Guo
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi’an, China
| | - Haopeng Li
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
31
|
Wang Z, Xiang Q, Tan X, Zhang Y, Zhu H, Pu J, Sun J, Sun M, Wang Y, Wei Q, Yu H. Functionalized Cortical Bone-Inspired Composites Adapt to the Mechanical and Biological Properties of the Edentulous Area to Resist Fretting Wear. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207255. [PMID: 36775879 PMCID: PMC10104646 DOI: 10.1002/advs.202207255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Dental implants with long-term success of osseointegration have always been the goal, however, difficulties exist. The accumulation of fretting damage at the implant-bone interface often gets overlooked. Commonly used titanium is approximately 7-fold harder and stiffer than cortical bone. Stress shielding caused by the mismatching of the elastic modulus aggravates fretting at the interface, which is accompanied by the risk of the formation of proinflammatory metal debris and implant loosening. Thus, the authors explore functionalized cortical bone-inspired composites (FCBIC) with a hierarchical structure at multiple scales, that exhibit good mechanical and biological adaptivity with cortical bone. The design is inspired by nature, combining brittle minerals with organic molecules to maintain machinability, which helps to acquire excellent energy-dissipating capability. It therefore has the comparable hardness and elastic modulus, strength, and elastic-plastic deformation to cortical bone. Meanwhile, this cortical bone analogy exhibits excellent osteoinduction and osseointegration abilities. These two properties also facilitate each other to resist fretting wear, and therefore improve the success rate of implantation. Based on these results, the biological-mechanical co-operation coefficient is proposed to describe the coupling between these two factors for designing the optimized dental implants.
Collapse
Affiliation(s)
- ZhongYi Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - QianRong Xiang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Xin Tan
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesCollege of StomatologyChongqing Medical UniversityChongqing400016China
| | - YaDong Zhang
- Research and Development DepartmentZhejiang PEKK‐X Advanced Materials Technology Co., Ltd.ShaoxingZhejiang312000China
| | - HaoQi Zhu
- Department of PhysicsCity University of Hong KongHong Kong Special Administrative Region of the People's Republic of ChinaKowloon999077China
| | - Jian Pu
- School of Mechanical EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - JiKui Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - ManLin Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - YingKai Wang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Qiang Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials and EngineeringSichuan UniversityChengduSichuan610065China
| | - HaiYang Yu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| |
Collapse
|
32
|
Berger MB, Cohen DJ, Snyder K, Sions J, Boyan BD, Schwartz Z. Bone marrow stromal cells are sensitive to discrete surface alterations in build and post-build modifications of bioinspired Ti6Al4V 3D-printed in vitro testing constructs. J Biomed Mater Res B Appl Biomater 2023; 111:829-845. [PMID: 36372947 DOI: 10.1002/jbm.b.35194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/13/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Current standards in bone-facing implant fabrication by metal 3D (M3D) printing require post-manufacturing modifications to create distinct surface properties and create implant microenvironments that promote osseointegration. However, the biological consequences of build parameters and surface modifications are not well understood. This study evaluated the relative contributions of build parameters and post-manufacturing modification techniques to cell responses that impact osseointegration in vivo. Biomimetic testing constructs were created by using a M3D printer with standard titanium-aluminum-vanadium (Ti6Al4V) print parameters. These constructs were treated by either grit-blasting and acid-etching (GB + AE) or GB + AE followed by hot isostatic pressure (HIP) (GB + AE, HIP). Next, nine constructs were created by using a M3D printer with three build parameters: (1) standard, (2) increased hatch spacing, and (3) no infill, and additional contour trace. Each build type was further processed by either GB + AE, or HIP, or a combination of HIP treatment followed by GB + AE (GB + AE, HIP). Resulting constructs were assessed by SEM, micro-CT, optical profilometry, XPS, and mechanical compression. Cellular response was determined by culturing human bone marrow stromal cells (MSCs) for 7 days. Surface topography differed depending on processing method; HIP created micro-/nano-ridge like structures and GB + AE created micro-pits and nano-scale texture. Micro-CT showed decreases in closed pore number and closed porosity after HIP treatment in the third build parameter constructs. Compressive moduli were similar for all constructs. All constructs exhibited ability to differentiate MSCs into osteoblasts. MSCs responded best to micro-/nano-structures created by final post-processing by GB + AE, increasing OCN, OPG, VEGFA, latent TGFβ1, IL4, and IL10. Collectively these data demonstrate that M3D-printed constructs can be readily manufactured with distinct architectures based on the print parameters and post-build modifications. MSCs are sensitive to discrete surface topographical differences that may not show up in qualitative assessments of surface properties and respond by altering local factor production. These factors are vital for osseointegration after implant insertion, especially in patients with compromised bone qualities.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kyle Snyder
- Commonwealth Center for Advanced Manufacturing, Virginia, USA
| | - John Sions
- Commonwealth Center for Advanced Manufacturing, Virginia, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Periodontology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
33
|
Berger MB, Cohen DJ, Bosh KB, Kapitanov M, Slosar PJ, Levit MM, Gallagher M, Rawlinson JJ, Schwartz Z, Boyan BD. Bone marrow stromal cells generate an osteoinductive microenvironment when cultured on titanium-aluminum-vanadium substrates with biomimetic multiscale surface roughness. Biomed Mater 2023; 18. [PMID: 36827708 PMCID: PMC9993812 DOI: 10.1088/1748-605x/acbf15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
Osseointegration of titanium-based implants possessing complex macroscale/microscale/mesoscale/nanoscale (multiscale) topographies support a direct and functional connection with native bone tissue by promoting recruitment, attachment and osteoblastic differentiation of bone marrow stromal cells (MSCs). Recent studies show that the MSCs on these surfaces produce factors, including bone morphogenetic protein 2 (BMP2) that can cause MSCs not on the surface to undergo osteoblast differentiation, suggesting they may produce an osteogenic environmentin vivo. This study examined if soluble factors produced by MSCs in contact with titanium-aluminum-vanadium (Ti6Al4V) implants possessing a complex multiscale biomimetic topography are able to induce osteogenesis ectopically. Ti6Al4V disks were grit-blasted and acid-etched to create surfaces possessing macroscale and microscale roughness (MM), micro/meso/nanoscale topography (MN), and macro/micro/meso/nanoscale topography (MMNTM). Polyether-ether-ketone (PEEK) disks were also fabricated by machining to medical-grade specifications. Surface properties were assessed by scanning electron microscopy, contact angle, optical profilometry, and x-ray photoelectron spectroscopy. MSCs were cultured in growth media (GM). Proteins and local factors in their conditioned media (CM) were measured on days 4, 8, 10 and 14: osteocalcin, osteopontin, osteoprotegerin, BMP2, BMP4, and cytokines interleukins 6, 4 and 10 (IL6, IL4, and IL10). CM was collected from D14 MSCs on MMNTMand tissue culture polystyrene (TCPS) and lyophilized. Gel capsules containing active demineralized bone matrix (DBM), heat-inactivated DBM (iDBM), and iDBM + MMN-GM were implanted bilaterally in the gastrocnemius of athymic nude mice (N= 8 capsules/group). Controls included iDBM + GM; iDBM + TCPS-CM from D5 to D10 MSCs; iDBM + MMN-CM from D5 to D10; and iDBM + rhBMP2 (R&D Systems) at a concentration similar to D5-D10 production of MSCs on MMNTMsurfaces. Legs were harvested at 35D. Bone formation was assessed by micro computed tomography and histomorphometry (hematoxylin and eosin staining) with the histology scored according to ASTM 2529-13. DNA was greatest on PEEK at all time points; DNA was lowest on MN at early time points, but increased with time. Cells on PEEK exhibited small changes in differentiation with reduced production of BMP2. Osteoblast differentiation was greatest on the MN and MMNTM, reflecting increased production of BMP2 and BMP4. Pro-regenerative cytokines IL4 and IL10 were increased on Ti-based surfaces; IL6 was reduced compared to PEEK. None of the media from TCPS cultures was osteoinductive. However, MMN-CM exhibited increased bone formation compared to iDBM and iDBM + rhBMP2. Furthermore, exogenous rhBMP2 alone, at the concentration found in MMN-CM collected from D5 to D10 cultures, failed to induce new bone, indicating that other factors in the CM play a critical role in that osteoinductive microenvironment. MSCs cultured on MMNTMTi6Al4V surfaces differentiate and produce an increase in local factors, including BMP2, and the CM from these cultures can induce ectopic bone formation compared to control groups, indicating that the increased bone formation arises from the local response by MSCs to a biomimetic, multiscale surface topography.
Collapse
Affiliation(s)
- Michael B Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - D Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Kyla B Bosh
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Marina Kapitanov
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Paul J Slosar
- SpineCare Medical Group, 455 Hickey Blvd., Suite 310, Daly City, CA 94015, United States of America
| | - Michael M Levit
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America
| | - Michelle Gallagher
- Medtronic, Applied Research-Spine, Minneapolis, MN, United States of America
| | - Jeremy J Rawlinson
- Medtronic, Applied Research-Spine, Minneapolis, MN, United States of America
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America.,Department of Periodontology, University of Texas Health Science Center at San Antonio, 7703, Floyd Curl Drive, San Antonio, TX 78229, United States of America
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 W. Main Street, Richmond, VA 23284, United States of America.,Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332, United States of America
| |
Collapse
|
34
|
Klara J, Onak S, Kowalczyk A, Horak W, Wójcik K, Lewandowska-Łańcucka J. Towards Controlling the Local Bone Tissue Remodeling-Multifunctional Injectable Composites for Osteoporosis Treatment. Int J Mol Sci 2023; 24:ijms24054959. [PMID: 36902390 PMCID: PMC10002562 DOI: 10.3390/ijms24054959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alendronate (ALN) is the most commonly prescribed oral nitrogen-containing bisphosphonate for osteoporosis therapy. However, its administration is associated with serious side effects. Therefore, the drug delivery systems (DDS) enabling local administration and localized action of that drug are still of great importance. Herein, a novel multifunctional DDS system based on the hydroxyapatite-decorated mesoporous silica particles (MSP-NH2-HAp-ALN) embedded into collagen/chitosan/chondroitin sulfate hydrogel for simultaneous osteoporosis treatment and bone regeneration is proposed. In such a system, the hydrogel serves as a carrier for the controlled delivery of ALN at the site of implantation, thus limiting potential adverse effects. The involvement of MSP-NH2-HAp-ALN in the crosslinking process was established, as well as the ability of hybrids to be used as injectable systems. We have shown that the attachment of MSP-NH2-HAp-ALN to the polymeric matrix provides a prolonged ALN release (up to 20 days) and minimizes the initial burst effect. It was revealed that obtained composites are effective osteoconductive materials capable of supporting the osteoblast-like cell (MG-63) functions and inhibiting osteoclast-like cell (J7741.A) proliferation in vitro. The purposely selected biomimetic composition of these materials (biopolymer hydrogel enriched with the mineral phase) allows their biointegration (in vitro study in the simulated body fluid) and delivers the desired physicochemical features (mechanical, wettability, swellability). Furthermore, the antibacterial activity of the composites in in vitro experiments was also demonstrated.
Collapse
Affiliation(s)
- Joanna Klara
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Sylwia Onak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Andrzej Kowalczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Wojciech Horak
- Department of Machine Design and Technology, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Kinga Wójcik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
35
|
Deng J, Cohen DJ, Berger MB, Sabalewski EL, McClure MJ, Boyan BD, Schwartz Z. Osseointegration of Titanium Implants in a Botox-Induced Muscle Paralysis Rat Model Is Sensitive to Surface Topography and Semaphorin 3A Treatment. Biomimetics (Basel) 2023; 8:biomimetics8010093. [PMID: 36975323 PMCID: PMC10046785 DOI: 10.3390/biomimetics8010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Reduced skeletal loading associated with many conditions, such as neuromuscular injuries, can lead to bone fragility and may threaten the success of implant therapy. Our group has developed a botulinum toxin A (botox) injection model to imitate disease-reduced skeletal loading and reported that botox dramatically impaired the bone formation and osseointegration of titanium implants. Semaphorin 3A (sema3A) is an osteoprotective factor that increases bone formation and inhibits bone resorption, indicating its potential therapeutic role in improving osseointegration in vivo. We first evaluated the sema3A effect on whole bone morphology following botox injections by delivering sema3A via injection. We then evaluated the sema3A effect on the osseointegration of titanium implants with two different surface topographies by delivering sema3A to cortical bone defect sites prepared for implant insertion and above the implants after insertion using a copper-free click hydrogel that polymerizes rapidly in situ. Implants had hydrophobic smooth surfaces (PT) or multiscale biomimetic micro/nano topography (SLAnano). Sema3A rescued the botox-impaired bone formation. Furthermore, biomimetic Ti implants improved the bone-to-implant contact (BIC) and mechanical properties of the integrated bone in the botox-treated rats, which sema3A enhanced. This study demonstrated the value of biomimetic approaches combining multiscale topography and biologics in improving the clinical outcomes of implant therapy.
Collapse
Affiliation(s)
- Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- VCU DaVinci Center for Innovation, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - D. Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael B. Berger
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Eleanor L. Sabalewski
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael J. McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: ; Fax: +1-804-828-9866
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
36
|
Deng J, Cohen DJ, Sabalewski EL, Van Duyn C, Wilson DS, Schwartz Z, Boyan BD. Semaphorin 3A delivered by a rapidly polymerizing click hydrogel overcomes impaired implant osseointegration in a rat type 2 diabetes model. Acta Biomater 2023; 157:236-251. [PMID: 36435442 PMCID: PMC10007856 DOI: 10.1016/j.actbio.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Semaphorin 3A (sema3A) is an osteoprotective factor that enhances bone formation while inhibiting osteoclast bone resorption. It is produced by rat calvarial osteoblasts cultured on grit-blasted/acid-etched microtextured (SLA) titanium surfaces at higher levels than on tissue culture polystyrene, suggesting that it may improve performance of titanium implants in vivo, particularly in conditions characterized by compromised bone quality. To test this, we established a clinically relevant type 2 diabetes mellitus (T2DM) rat model and used a non-toxic click hydrogel that rapidly polymerizes in situ (GEL) to provide localized controlled delivery of sema3A. In vitro studies confirmed that sema3A released from GEL was biologically active, increasing osteoblast differentiation of a pre-osteoblast cell-line. Whereas increased sema3A production was not observed in T2DM calvarial osteoblasts cultured on SLA, exogenous sema3A enhanced surface-induced osteoblast differentiation, indicating that it would be a viable candidate for in vivo use. Delivery of sema3A either by GEL or by local injection to bone defects enhanced osseointegration of SLA implants in the T2DM rats. Trabecular bone mass and bone-to-implant contact were decreased in T2DM rats compared to normal rats; sema3A delivered locally improved both parameters. These findings suggest that reduced trabecular bone contributes to poor osseointegration in T2DM patients and support GEL as a promising treatment option for sustained release of therapeutic doses of sema3A. Moreover, using this clinically translatable T2DM model and developing a biocompatible, Cu-free click chemistry hydrogel platform for the non-invasive delivery of therapeutics has major implications for regenerative medicine as a whole. STATEMENT OF SIGNIFICANCE: Osseointegration is compromised in patients with poor bone quality due to conditions like type 2 diabetes mellitus (T2DM). Previously, we showed that semaphorin 3A (sema3A) production is increased when human bone marrow stromal cells are cultured on titanium substrates that support osseointegration in vivo, suggesting it may enhance peri-implant osteogenesis in diabetes. Here we established a spontaneously developing T2DM rat model with clinical translatability and used it to assess sema3A effectiveness. Sema3A was delivered to the implant site via a novel copper-free click hydrogel, which has minimal swelling behavior and superior rheological properties. Osseointegration was successfully restored, and enhanced compared to burst release through injections. This study provides scientific evidence for using sema3A to treat impaired osseointegration in T2DM patients.
Collapse
Affiliation(s)
- Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; VCU DaVinci Center for Innovation, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David J Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| | - Eleanor L Sabalewski
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| | - Christine Van Duyn
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| | - D Scott Wilson
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MA 21231, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
37
|
Nascimento MD, Souza BMD, Posch AT. peri-implant ligament. BRAZILIAN JOURNAL OF ORAL SCIENCES 2023. [DOI: 10.20396/bjos.v22i00.8671269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The peri-implant ligament is formed from the interface of bone tissue, through the anchoring of proteins and the surface of the dental implant. In this sense, it is relevant to understand the extent to which this ligament is structured and biomimics the periodontal ligament functions. Aim: The goal of this scoping review is to present and analyze the peri-implant ligament composition and compare the extent to which this ligament is structured and biomimics the periodontal ligament functions. Methods: This scoping review was performed according to the Joanna Briggs Institute methodology for scoping reviews and following the Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for scoping review. Two independent researchers searched Pubmed, Cochrane, Embase, Virtual Health Library, Scielo, Scopus, Web of Science, Brazilian Bibliography of Dentistry, Latin American and Caribbean Literature in Health Sciences, Digital Library of Theses and Dissertations from the University of São Paulo and Portal Capes. Studies published in English, Portuguese and Spanish, over the last 21 years (2000-2021). Results: A total of 330 titles were identified and after applying inclusion and exclusion factors, 27 studies were included in this review. All proteins were identified regarding their tissue function and classified into 6 major protein groups. After that this new protein ligament was compared with the periodontal ligament regarding its function and composition. The main proteins associated with osseointegration, and thus, with the peri-implant ligament are recognized as belonging to the periodontal ligament. Conclusion: This scoping review results suggest evidence of the composition and function of the periimplant ligament. However, variations may still exist due to the existence of several modulants of the osseointegration process.
Collapse
|
38
|
Protistan epibionts affect prey selectivity patterns and vulnerability to predation in a cyclopoid copepod. Sci Rep 2022; 12:22631. [PMID: 36587046 PMCID: PMC9805443 DOI: 10.1038/s41598-022-26004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/07/2022] [Indexed: 01/01/2023] Open
Abstract
Colonisation of crustacean zooplankton with ciliate epibionts is widespread in freshwater and marine environments. However, the ecology of such association are little studied as yet. The occurrence of ciliate epibionts on copepods and the preference towards this association with different life stages of Mesocyclops were studied from winter to spring. Relative susceptibility of zooplankton species was evaluated by analysing the epibiont colonies and zooids and relate this to the surface area of the host. The maximum epibiont infestation per unit body surface area was recorded on copepodites followed by copepod nauplii rather than other zooplankton species, whereas the rotifer Asplanchna was never affected. Influence of climatic factors such as temperature on the colonisation of epibionts on basibionts was found significant. In winter (November to February) samples, copepods were infested by autotrophic epibionts whereas in late spring and early summer (March-April) heterotrophic protists (peritrichian ciliates) were the sole epibionts on copepods. We conducted experiments in the laboratory on prey selection pattern of predators by direct visual and video-graphic observations of various events (encounter, attack, capture, ingestion, prey escape) during predation by infested and uninfested copepodites and adults of Mesocyclops. Postencounter the attack probability was significantly lower in infested than in uninfested copepods. The present paper reports on substrate preference by epibionts and their impacts in food rich and food scarce environments. Furthermore, major environmental interactions were studied with the reproductive phenology of copepods with respect to epibionts and the cause and effect of long term association of epibionts with copepods need to be addressed.
Collapse
|
39
|
Qiu P, Feng L, Fu Q, Dai T, Liu M, Wang P, Lan Y. Dual-Functional Polyetheretherketone Surface with an Enhanced Osteogenic Capability and an Antibacterial Adhesion Property In Vitro by Chitosan Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14712-14724. [PMID: 36420594 DOI: 10.1021/acs.langmuir.2c02267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A chitosan layer was covalently bonded to a polyetheretherketone (PEEK) surface using a simple facile self-assembly method to address inadequate biological activity and infection around the implant. The surface characterization, layer degradation, biological activity, and antibacterial adhesion properties of chitosan-modified PEEK (PEEK-CS) were studied. Through chitosan grafting, the surface morphology changed, the surface roughness increased, and the contact angle decreased significantly. PEEK-CS boosted cell adhesion, proliferation, increased alkaline phosphate activity, extracellular matrix mineralization, and expression of osteogenic genes. PEEK-CS demonstrated less adhesion to Porphyromonas gingivalis as well as less bacterial adhesion to P. gingivalis and Streptococcus mutans. According to our findings, chitosan modification significantly improved the osteogenic ability and antibacterial adhesion of PEEK in vitro.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Le Feng
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Qilin Fu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Tao Dai
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Min Liu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Pin Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| | - Yuyan Lan
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou646000, China
| |
Collapse
|
40
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
41
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
42
|
Nan J, Liu W, Zhang K, Sun Y, Hu Y, Lei P. Tantalum and magnesium nanoparticles enhance the biomimetic properties and osteo-angiogenic effects of PCL membranes. Front Bioeng Biotechnol 2022; 10:1038250. [PMID: 36507273 PMCID: PMC9730409 DOI: 10.3389/fbioe.2022.1038250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Segmental bone defects, accompanied by periosteum stripping or injury, usually lead to delayed bone union or nonunion, which have challenged orthopedic surgeons. The periosteum, which provides essential blood supply and initial stem cells for bone tissue, plays an important role in the repair of bone defects. The reconstruction of the destroyed periosteum has attracted the attention of researchers exploring more satisfactory therapies to repair bone defects. However, periosteum-like biomaterials have yet to meet the clinical requirements and resolve this challenging problem. In this study, we manufactured a nanofiber periosteum replacement based on poly-ε-caprolactone (PCL), in which tantalum nanoparticles (TaNPs) and nanoscale magnesium oxide (MgO) were introduced to enhance its osteogenic and angiogenic ability. The results of in vitro experiments indicated that the PCL/Ta/MgO periosteum replacement, with excellent cytocompatibility, promoted the proliferation of both bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs). Furthermore, the incorporation of TaNPs and nano-MgO synergistically enhanced the osteogenic differentiation of BMSCs and the angiogenic properties of EPCs. Similarly, the results of in vivo experiments from subcutaneous implantation and critical-sized calvarial defect models showed that the PCL/Ta/MgO periosteum replacement combined the osteogenesis and angiogenesis abilities, promoting vascularized bone formation to repair critical-sized calvarial defects. The results of our study suggest that the strategy of stimulating repairing bone defects can be achieved with the periosteum repaired in situ and that the proposed periosteum replacement can act as a bioactive medium to accelerate bone healing.
Collapse
Affiliation(s)
- Jiangyu Nan
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Wenbin Liu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Kai Zhang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yan Sun
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yihe Hu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Pengfei Lei
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| |
Collapse
|
43
|
Kandil H, Ekram B, Abo-Zeid MAM. Cytocompatibility of MG-63 osteosarcoma cells on chitosan/hydroxyapatite/lignin hybrid composite scaffold in vitro. Biomed Mater 2022; 18. [PMID: 36322972 DOI: 10.1088/1748-605x/ac9f92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
This study aims at fabricating promising cytocompatible hybrid biocomposite scaffolds from chitosan (CS), hydroxyapatite (HAP) and lignin (L) for bone tissue engineering by using freeze-drying technique. Different ratios of HAP to L (50:0, 37.5:12.5, 25:25 and 12.5:37.5) were taken to determine the optimum ratio for obtaining a composite with superior properties. The mechanical and biological properties of the resulting composites were investigated. The mechanical results showed that the prepared composite with a ratio of 25:25 of HAP/L exhibited a remarkable enhancement in the mechanical properties compared to the others. Additionally, it was found from thein vitroresults that the addition of L enhanced the water uptake value of the resulting scaffolds indicating their increased hydrophilicity. As a result, a significant increase in the attachment and proliferation of MG-63 cell line (osteoblast like cells) was observed in composite scaffolds with L over the scaffold without L (CS/HAP). From these results, it could be suggested that the prepared composite scaffold with 25:25 of HAP/L is very promising biomaterials in bone tissue-engineering as it exhibited a better mechanical and biological properties than the other prepared composites.
Collapse
Affiliation(s)
- Heba Kandil
- Polymers and Pigments department, Chemical Industries Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Basma Ekram
- Polymers and Pigments department, Chemical Industries Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mona A M Abo-Zeid
- Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, 12622 Cairo, Egypt
| |
Collapse
|
44
|
In Vitro and In Vivo Studies of Hydrogenated Titanium Dioxide Nanotubes with Superhydrophilic Surfaces during Early Osseointegration. Cells 2022; 11:cells11213417. [DOI: 10.3390/cells11213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titanium-based implants are often utilized in oral implantology and craniofacial reconstructions. However, the biological inertness of machined titanium commonly results in unsatisfactory osseointegration. To improve the osseointegration properties, we modified the titanium implants with nanotubular/superhydrophilic surfaces through anodic oxidation and thermal hydrogenation and evaluated the effects of the machined surfaces (M), nanotubular surfaces (Nano), and hydrogenated nanotubes (H-Nano) on osteogenesis and osseointegration in vitro and in vivo. After incubation of mouse bone marrow mesenchymal stem cells on the samples, we observed improved cell adhesion, alkaline phosphatase activity, osteogenesis-related gene expression, and extracellular matrix mineralization in the H-Nano group compared to the other groups. Subsequent in vivo studies indicated that H-Nano implants promoted rapid new bone regeneration and osseointegration at 4 weeks, which may be attributed to the active osteoblasts adhering to the nanotubular/superhydrophilic surfaces. Additionally, the Nano group displayed enhanced osteogenesis in vitro and in vivo at later stages, especially at 8 weeks. Therefore, we report that hydrogenated superhydrophilic nanotubes can significantly accelerate osteogenesis and osseointegration at an early stage, revealing the considerable potential of this implant modification for clinical applications.
Collapse
|
45
|
Changoor A, Suderman RP, Alshaygy I, Fuhrmann A, Akens MK, Safir O, Grynpas MD, Kuzyk PRT. Irregular porous titanium enhances implant stability and bone ingrowth in an intra-articular ovine model. J Orthop Res 2022; 40:2294-2307. [PMID: 35146795 DOI: 10.1002/jor.25272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/02/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
Two commercially available porous coatings, Gription and Porocoat, were compared for the first time in a challenging intra-articular, weight-bearing, ovine model. Gription has evolved from Porocoat and has higher porosity, coefficient of friction, and microtextured topography, which are expected to enhance bone ingrowth. Cylindrical implants were press-fit into the weight-bearing regions of ovine femoral condyles and bone ingrowth and fixation strength evaluated 4, 8, and 16 weeks postoperatively. Biomechanical push-out tests were performed on lateral femoral condyles (LFCs) to evaluate the strength of the bone-implant interface. Bone ingrowth was assessed in medial femoral condyles (MFCs) as well as implants retrieved from LFCs following biomechanical testing using backscattered electron microscopy and histology. By 16 weeks, Gription-coated implants exhibited higher force (2455 ± 1362 vs. 1002 ± 1466 N; p = 0.046) and stress (12.60 ± 6.99 vs. 5.14 ± 7.53 MPa; p = 0.046) at failure, and trended towards higher stiffness (11,510 ± 7645 vs. 5010 ± 8374 N/mm; p = 0.061) and modulus of elasticity (591 ± 392 vs. 256 ± 431 MPa; p = 0.061). A strong, positive correlation was detected between bone ingrowth in LFC implants and failure force (r = 0.93, p < 10-13 ). By 16 weeks, bone ingrowth in Gription-coated implants in MFCs was 10.50 ± 6.31% compared to 5.88 ± 2.77% in Porocoat (p = 0.095). Observations of the bone-implant interface, made following push-out testing, showed more bony material consistently adhered to Gription compared to Porocoat at all three time points. Gription provided superior fixation strength and bone ingrowth by 16 weeks.
Collapse
Affiliation(s)
- Adele Changoor
- Department of Surgery and Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - R Peter Suderman
- Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Ibrahim Alshaygy
- Division of Orthopaedic Surgery, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Fuhrmann
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Department of Orthopedic Surgery, Barzilai Medical Centre, Ashkelon, Israel
| | - Margarete K Akens
- Department of Surgery and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Oleg Safir
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology and Department of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Paul R T Kuzyk
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Zhang Y, Fan Z, Xing Y, Jia S, Mo Z, Gong H. Effect of microtopography on osseointegration of implantable biomaterials and its modification strategies. Front Bioeng Biotechnol 2022; 10:981062. [PMID: 36225600 PMCID: PMC9548570 DOI: 10.3389/fbioe.2022.981062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic implants are widely used for the treatment of bone defects caused by injury, infection, tumor and congenital diseases. However, poor osseointegration and implant failures still occur frequently due to the lack of direct contact between the implant and the bone. In order to improve the biointegration of implants with the host bone, surface modification is of particular interest and requirement in the development of implant materials. Implant surfaces that mimic the inherent surface roughness and hydrophilicity of native bone have been shown to provide osteogenic cells with topographic cues to promote tissue regeneration and new bone formation. A growing number of studies have shown that cell attachment, proliferation and differentiation are sensitive to these implant surface microtopography. This review is to provide a summary of the latest science of surface modified bone implants, focusing on how surface microtopography modulates osteoblast differentiation in vitro and osseointegration in vivo, signaling pathways in the process and types of surface modifications. The aim is to systematically provide comprehensive reference information for better fabrication of orthopedic implants.
Collapse
Affiliation(s)
- Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yanghui Xing
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Shaowei Jia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhongjun Mo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| | - He Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| |
Collapse
|
47
|
Wang X, Liu W, Yu X, Wang B, Xu Y, Yan X, Zhang X. Advances in surface modification of tantalum and porous tantalum for rapid osseointegration: A thematic review. Front Bioeng Biotechnol 2022; 10:983695. [PMID: 36177183 PMCID: PMC9513364 DOI: 10.3389/fbioe.2022.983695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
After bone defects reach a certain size, the body can no longer repair them. Tantalum, including its porous form, has attracted increasing attention due to good bioactivity, biocompatibility, and biomechanical properties. After a metal material is implanted into the body as a medical intervention, a series of interactions occurs between the material’s surface and the microenvironment. The interaction between cells and the surface of the implant mainly depends on the surface morphology and chemical composition of the implant’s surface. In this context, appropriate modification of the surface of tantalum can guide the biological behavior of cells, promote the potential of materials, and facilitate bone integration. Substantial progress has been made in tantalum surface modification technologies, especially nano-modification technology. This paper systematically reviews the progress in research on tantalum surface modification for the first time, including physicochemical properties, biological performance, and surface modification technologies of tantalum and porous tantalum.
Collapse
Affiliation(s)
- Xi Wang
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wentao Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Xinding Yu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Xu
- The Comprehensive Department of Shenyang Stomatological Hospital, Shenyang, China
| | - Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Xu Yan, ; Xinwen Zhang,
| |
Collapse
|
48
|
Yoon JY, Mandakhbayar N, Hyun J, Yoon DS, Patel KD, Kang K, Shim HS, Lee HH, Lee JH, Leong KW, Kim HW. Chemically-induced osteogenic cells for bone tissue engineering and disease modeling. Biomaterials 2022; 289:121792. [PMID: 36116170 DOI: 10.1016/j.biomaterials.2022.121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Cell reprogramming can satisfy the demands of obtaining specific cell types for applications such as tissue regeneration and disease modeling. Here we report the reprogramming of human fibroblasts to produce chemically-induced osteogenic cells (ciOG), and explore the potential uses of ciOG in bone repair and disease treatment. A chemical cocktail of RepSox, forskolin, and phenamil was used for osteogenic induction of fibroblasts by activation of RUNX2 expression. Following a maturation, the cells differentiated toward an osteoblast phenotype that produced mineralized nodules. Bulk and single-cell RNA sequencing identified a distinct ciOG population. ciOG formed mineralized tissue in an ectopic site of immunodeficiency mice, unlike the original fibroblasts. Osteogenic reprogramming was modulated under engineered culture substrates. When generated on a nanofiber substrate ciOG accelerated bone matrix formation in a calvarial defect, indicating that the engineered biomaterial promotes the osteogenic capacity of ciOG in vivo. Furthermore, the ciOG platform recapitulated the genetic bone diseases Proteus syndrome and osteogenesis imperfecta, allowing candidate drug testing. The reprogramming of human fibroblasts into osteogenic cells with a chemical cocktail thus provides a source of specialized cells for use in bone tissue engineering and disease modeling.
Collapse
Affiliation(s)
- Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kapil D Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, South Korea
| | - Ho-Shup Shim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kam W Leong
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Systems Biology, Columbia University, New York, NY, 10027, USA
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
49
|
Chi M, Li N, Cui J, Karlin S, Rohr N, Sharma N, Thieringer FM. Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering. Front Bioeng Biotechnol 2022; 10:989729. [PMID: 36159699 PMCID: PMC9493000 DOI: 10.3389/fbioe.2022.989729] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Polylactic acid (PLA) has been widely used as filaments for material extrusion additive manufacturing (AM) to develop patient-specific scaffolds in bone tissue engineering. Hydroxyapatite (HA), a major component of natural bone, has been extensively recognized as an osteoconductive biomolecule. Here, inspired by the mussel-adhesive phenomenon, in this study, polydopamine (PDA) coating was applied to the surface of 3D printed PLA scaffolds (PLA@PDA), acting as a versatile adhesive platform for immobilizing HA nanoparticles (nHA). Comprehensive analyses were performed to understand the physicochemical properties of the 3D-printed PLA scaffold functionalized with nHA and PDA for their potent clinical application as a bone regenerative substitute. Scanning electron microscopy (SEM) and element dispersive X-ray (EDX) confirmed a successful loading of nHA particles on the surface of PLA@PDA after 3 and 7 days of coating (PLA@PDA-HA3 and PLA@PDA-HA7), while the surface micromorphology and porosity remain unchanged after surface modification. The thermogravimetric analysis (TGA) showed that 7.7 % and 12.3% mass ratio of nHA were loaded on the PLA scaffold surface, respectively. The wettability test indicated that the hydrophilicity of nHA-coated scaffolds was greatly enhanced, while the mechanical properties remained uncompromised. The 3D laser scanning confocal microscope (3DLS) images revealed that the surface roughness was significantly increased, reaching Sa (arithmetic mean height) of 0.402 μm in PLA@PDA-HA7. Twenty-eight days of in-vitro degradation results showed that the introduction of nHA to the PLA surface enhances its degradation properties, as evidenced by the SEM images and weight loss test. Furthermore, a sustainable release of Ca2+ from PLA@PDA-HA3 and PLA@PDA-HA7 was recorded, during the degradation process. In contrast, the released hydroxyl group of nHA tends to neutralize the local acidic environments, which was more conducive to osteoblastic differentiation and extracellular mineralization. Taken together, this facile surface modification provides 3D printed PLA scaffolds with effective bone regenerative properties by depositing Ca2+ contents, improving surface hydrophilicity, and enhancing the in-vitro degradation rate.
Collapse
Affiliation(s)
- Minghan Chi
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Na Li
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Junkui Cui
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, United States
| | - Sabrina Karlin
- Biomaterials and Technology, Department of Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
| | - Nadja Rohr
- Biomaterials and Technology, Department of Research, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
- Biomaterials and Technology, Department of Reconstructive Dentistry, University Center for Dental Medicine Basel UZB, University of Basel, Basel, Switzerland
- *Correspondence: Nadja Rohr, ; Neha Sharma,
| | - Neha Sharma
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
- *Correspondence: Nadja Rohr, ; Neha Sharma,
| | - Florian M. Thieringer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
50
|
Osman MA, Alamoush RA, Kushnerev E, Seymour KG, Watts DC, Yates JM. Biological response of epithelial and connective tissue cells to titanium surfaces with different ranges of roughness: An in-vitro study. Dent Mater 2022; 38:1777-1788. [DOI: 10.1016/j.dental.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
|