1
|
Hernandez I, Botana L, Diez-Mata J, Tesoro L, Jimenez-Guirado B, Gonzalez-Cucharero C, Alcharani N, Zamorano JL, Saura M, Zaragoza C. CAP1: a novel extracellular vesicle marker linked to endothelial senescence in atherosclerosis. Biol Direct 2025; 20:46. [PMID: 40189560 PMCID: PMC11974053 DOI: 10.1186/s13062-025-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/29/2025] [Indexed: 04/09/2025] Open
Abstract
Endothelial senescence (ES) contributes to aging-related disorders and triggers a senescence-associated secretory-pattern (SASP), releasing Extracellular Vesicles (EVs), potentially impacting atherosclerosis. We used EVs from young (8 weeks) and aged (24 months) ApoE-knockout mice to detect ES in human aortic (HAEC) and coronary (CAEC) endothelial cells. Age-related atherosclerosis was confirmed by increased atheroma plaque formation in aged compared to young ApoE-knockout mice fed a high-fat diet, and the contribution of EVs from aged ApoE-knockout mice on ES was evidenced by a replicative senescence assay in cultured HAEC and CAEC, starting with the promotion of ES. A proteomic analysis depicted the recently PCSK9-associated CAP1 protein as a cargo component in EVs from aged animals and highly expressed in mouse and human endarterectomy plaques. Gene silencing of CAP1 inhibited HAEC and CAEC ES while overexpressing CAP1 in these cells restored the senescent-phenotype. The in vivo contribution of CAP1 was assessed by injecting CAP1-containing EVs isolated from aged ApoE-knockout mice into wild-type (WT) mice fed either a regular or high-fat diet. Compared to the EVs from young mice, the CAP1-containing EVs led to a pronounced ES along with the formation of intraluminal atheroma plaques. Similarly, young ApoE-knockout mice developed thickened and calcified atheroma plaques, along with increased ß-Gal-positive aortic staining when injected with EVs isolated from aged ApoE-knockout mice, like the atheroma plaques observed in aged ApoE-knockout animals. In conclusion, early molecular targets of ES may contribute to better management of atherosclerosis, in which here we unveiled CAP1 as a new molecular target.
Collapse
Affiliation(s)
- Ignacio Hernandez
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria Hospital Ramon y Cajal (IRYCIS), Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain
| | - Laura Botana
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Madrid, Spain
| | - Javier Diez-Mata
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria Hospital Ramon y Cajal (IRYCIS), Madrid, Spain
| | - Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria Hospital Ramon y Cajal (IRYCIS), Madrid, Spain
- Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain
| | - Beatriz Jimenez-Guirado
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria Hospital Ramon y Cajal (IRYCIS), Madrid, Spain
| | - Claudia Gonzalez-Cucharero
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria Hospital Ramon y Cajal (IRYCIS), Madrid, Spain
| | - Nunzio Alcharani
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria Hospital Ramon y Cajal (IRYCIS), Madrid, Spain
| | - Jose Luis Zamorano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Saura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Fisiología, Departamento de Biologia de Sistemas, Universidad de Alcalá (IRYCIS), Alcala de Henares, Madrid, Spain
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular Universidad Francisco de Vitoria Hospital Ramon y Cajal (IRYCIS), Madrid, Spain.
- Facultad de Medicina, Universidad Francisco de Vitoria, Madrid, Spain.
| |
Collapse
|
2
|
Luettel DM, Terluk MR, Roh J, Weinreb NJ, Kartha RV. Emerging biomarkers in Gaucher disease. Adv Clin Chem 2025; 124:1-56. [PMID: 39818434 DOI: 10.1016/bs.acc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe. Manifestations variably include hepatosplenomegaly, anemia, thrombocytopenia, easy bruising, inflammation, bone pain and other skeletal pathologies, abnormal eye movements and neuropathy. Although the molecular basis of GD is relatively well understood, currently used biomarkers are nonspecific and inadequate for making finer distinctions between subtypes and in evaluating changes in disease status and guiding therapy. Thus, there is continued effort to investigate and identify potential biomarkers to improve GD diagnosis, monitoring and potential identification of novel therapeutic targets. Here, we provide a comprehensive review of emerging biomarkers in GD that can enhance current understanding and improve quality of life through better testing, disease management and treatment.
Collapse
Affiliation(s)
- Danielle M Luettel
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Marcia R Terluk
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Jaehyeok Roh
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States
| | - Neal J Weinreb
- Department of Human Genetics, Leonard Miller School of Medicine of University of Miami, Miami, FL, United States
| | - Reena V Kartha
- Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
3
|
Olatona OA, Choudhury SR, Kresman R, Heckman CA. Candidate proteins interacting with cytoskeleton in cells from the basal airway epithelium in vitro. Front Mol Biosci 2024; 11:1423503. [PMID: 39139811 PMCID: PMC11319710 DOI: 10.3389/fmolb.2024.1423503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction: The cytoskeleton consists of actin, microtubules, septins, and intermediate filaments and, in most cells, is anchored to an extracellular matrix. Each cell has a unique arrangement of this network and readjusts it from time to time. To investigate the regulation of these reorganizations, we identified interactors from extracts of four cultured lines representing basal cells from the airway epithelium. Methods: After immunoprecipitation with an antibody against keratin 17, samples were processed by liquid chromatography and tandem mass spectrometry. Samples not undergoing antibody-mediated capture were processed in parallel. Results: The main keratins of basal cells, namely, Krt14 (type I) and Krt5 (type II), constituted 67% of the total keratin recovered. Several other intermediate filament proteins, nestin, lamin-B1, and prelamin A/C, were present but not enriched upon immunoprecipitation. Although the class of armadillo-repeat proteins was represented by beta-catenin1 and plakoglobin, other desmosome plaque constituents were absent. Large cytolinkers were represented by the spectraplakin, microtubule-actin cross-linking factor (Macf1), which was enriched by immunoprecipitation, and the plakin, plectin, which was not enriched. Subunits of actin filaments and microtubules, along with numerous proteins associated with them, were recovered in both immunoprecipitated samples and those lacking the capture step. Coefficients of determination were computed based on abundance. The actin-associated proteins, alpha-spectrin and brain-specific angiogenesis inhibitor (Baiaip2l), were modestly correlated with keratin abundance but highly correlated with one another and with the keratin-binding protein, annexin A2. This interaction network resembled the pedestal formed by pathogenic Escherichia coli. Microtubule-associated proteins, dynamin 1-like protein and cytoplasmic dynein 1 heavy chain (Dync1h1), were enriched by immunoprecipitation, suggesting association with keratins, whereas kinesin-1 heavy chain and microtubule-associated protein retinitis pigmentosa 1 (EB1), were not enriched. Dync1h1 abundance was negatively correlated with that of all the septins, suggesting resemblance to a known antagonistic septin-dynein 1 relationship on microtubules. Conclusion: The cell lines showed remarkable uniformity with respect to the candidates interacting with cytoskeleton. The alpha-spectrin-Baiap2l network may link actin filaments to keratin precursor particles. A smaller interaction network centered on Dync1h1 was negatively correlated with all spectrin-Baiap2l constituents, suggesting that it and its binding partners are excluded from the pedestal-like domain.
Collapse
Affiliation(s)
- Olusola A. Olatona
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Sayantan R. Choudhury
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Ray Kresman
- Department of Computer Science, Bowling Green State University, Bowling Green, OH, United States
| | - Carol A. Heckman
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| |
Collapse
|
4
|
Zhang J, Sehl ME, Shih R, Breen EC, Li F, Lu AT, Bream JH, Duggal P, Martinson J, Wolinsky SM, Martinez-Maza O, Ramirez CM, Horvath S, Jamieson BD. Effects of highly active antiretroviral therapy initiation on epigenomic DNA methylation in persons living with HIV. FRONTIERS IN BIOINFORMATICS 2024; 4:1357889. [PMID: 38855142 PMCID: PMC11157437 DOI: 10.3389/fbinf.2024.1357889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction: Highly active antiretroviral therapy (HAART) helps improve some measures of accelerated epigenetic aging in persons living with HIV (PLWH), but its overall impact on the epigenome is not fully understood. Methods: In this study, we analyzed the DNA methylation profiles of PLWH (n = 187) shortly before and approximately 2-3 years after they started HAART, as well as matched seronegative (SN) controls (n = 187), taken at two time intervals. Our aim was to identify specific CpGs and biologic pathways associated with HIV infection and initiation of HAART. Additionally, we attempted to identify epigenetic changes associated with HAART initiation that were independent of HIV-associated changes, using matched HIV seronegative (SN) controls (matched on age, hepatitis C status, and interval between visits) to identify CpGs that did not differ between PLWH and SN pre-HAART but were significantly associated with HAART initiation while being unrelated to HIV viral load. Epigenome-wide association studies (EWAS) on >850,000 CpG sites were performed using pre- and post-HAART samples from PLWH. The results were then annotated using the Genomic Regions Enrichment of Annotations Tool (GREAT). Results: When only pre- and post-HAART visits in PLWH were compared, gene ontologies related to immune function and diseases related to immune function were significant, though with less significance for PLWH with detectable HIV viral loads (>50 copies/mL) at the post-HAART visit. To specifically elucidate the effects of HAART separately from HIV-induced methylation changes, we performed EWAS of HAART while also controlling for HIV viral load, and found gene ontologies associated with transplant rejection, transplant-related diseases, and other immunologic signatures. Additionally, we performed a more focused analysis that examined CpGs reaching genome-wide significance (p < 1 × 10-7) from the viral load-controlled EWAS that did not differ between all PLWH and matched SN controls pre-HAART. These CpGs were found to be near genes that play a role in retroviral drug metabolism, diffuse large B cell lymphoma proliferation, and gastric cancer metastasis. Discussion: Overall, this study provides insight into potential biological functions associated with DNA methylation changes induced by HAART initiation in persons living with HIV.
Collapse
Affiliation(s)
- Joshua Zhang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
| | - Mary E. Sehl
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
| | - Roger Shih
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
| | - Elizabeth Crabb Breen
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
| | - Fengxue Li
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
- Altos Labs, San Diego Institute of Science, San Diego, CA, United States
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Immunology Training Program, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven M. Wolinsky
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Otoniel Martinez-Maza
- Departments of Obstetrics and Gynecology and Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, United States
| | - Christina M. Ramirez
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States
- Altos Labs, San Diego Institute of Science, San Diego, CA, United States
| | - Beth D. Jamieson
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Khudayberdiev S, Weiss K, Heinze A, Colombaretti D, Trausch N, Linne U, Rust MB. The actin-binding protein CAP1 represses MRTF-SRF-dependent gene expression in mouse cerebral cortex. Sci Signal 2024; 17:eadj0032. [PMID: 38713765 DOI: 10.1126/scisignal.adj0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Serum response factor (SRF) is an essential transcription factor for brain development and function. Here, we explored how an SRF cofactor, the actin monomer-sensing myocardin-related transcription factor MRTF, is regulated in mouse cortical neurons. We found that MRTF-dependent SRF activity in vitro and in vivo was repressed by cyclase-associated protein CAP1. Inactivation of the actin-binding protein CAP1 reduced the amount of actin monomers in the cytoplasm, which promoted nuclear MRTF translocation and MRTF-SRF activation. This function was independent of cofilin1 and actin-depolymerizing factor, and CAP1 loss of function in cortical neurons was not compensated by endogenous CAP2. Transcriptomic and proteomic analyses of cerebral cortex lysates from wild-type and Cap1 knockout mice supported the role of CAP1 in repressing MRTF-SRF-dependent signaling in vivo. Bioinformatic analysis identified likely MRTF-SRF target genes, which aligned with the transcriptomic and proteomic results. Together with our previous studies that implicated CAP1 in axonal growth cone function as well as the morphology and plasticity of excitatory synapses, our findings establish CAP1 as a crucial actin regulator in the brain relevant for formation of neuronal networks.
Collapse
Affiliation(s)
- Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Kerstin Weiss
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Anika Heinze
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Dalila Colombaretti
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Nathan Trausch
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Uwe Linne
- Department of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| |
Collapse
|
6
|
Kuhn TB, Minamide LS, Tahtamouni LH, Alderfer SA, Walsh KP, Shaw AE, Yanouri O, Haigler HJ, Ruff MR, Bamburg JR. Chemokine Receptor Antagonists Prevent and Reverse Cofilin-Actin Rod Pathology and Protect Synapses in Cultured Rodent and Human iPSC-Derived Neurons. Biomedicines 2024; 12:93. [PMID: 38255199 PMCID: PMC10813319 DOI: 10.3390/biomedicines12010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Synapse loss is the principal cause of cognitive decline in Alzheimer's disease (AD) and related disorders (ADRD). Synapse development depends on the intricate dynamics of the neuronal cytoskeleton. Cofilin, the major protein regulating actin dynamics, can be sequestered into cofilactin rods, intra-neurite bundles of cofilin-saturated actin filaments that can disrupt vesicular trafficking and cause synaptic loss. Rods are a brain pathology in human AD and mouse models of AD and ADRD. Eliminating rods is the focus of this paper. One pathway for rod formation is triggered in ~20% of rodent hippocampal neurons by disease-related factors (e.g., soluble oligomers of Amyloid-β (Aβ)) and requires cellular prion protein (PrPC), active NADPH oxidase (NOX), and cytokine/chemokine receptors (CCRs). FDA-approved antagonists of CXCR4 and CCR5 inhibit Aβ-induced rods in both rodent and human neurons with effective concentrations for 50% rod reduction (EC50) of 1-10 nM. Remarkably, two D-amino acid receptor-active peptides (RAP-103 and RAP-310) inhibit Aβ-induced rods with an EC50 of ~1 pM in mouse neurons and ~0.1 pM in human neurons. These peptides are analogs of D-Ala-Peptide T-Amide (DAPTA) and share a pentapeptide sequence (TTNYT) antagonistic to several CCR-dependent responses. RAP-103 does not inhibit neuritogenesis or outgrowth even at 1 µM, >106-fold above its EC50. N-terminal methylation, or D-Thr to D-Ser substitution, decreases the rod-inhibiting potency of RAP-103 by 103-fold, suggesting high target specificity. Neither RAP peptide inhibits neuronal rod formation induced by excitotoxic glutamate, but both inhibit rods induced in human neurons by several PrPC/NOX pathway activators (Aβ, HIV-gp120 protein, and IL-6). Significantly, RAP-103 completely protects against Aβ-induced loss of mature and developing synapses and, at 0.1 nM, reverses rods in both rodent and human neurons (T½ ~ 3 h) even in the continuous presence of Aβ. Thus, this orally available, brain-permeable peptide should be highly effective in reducing rod pathology in multifactorial neurological diseases with mixed proteinopathies acting through PrPC/NOX.
Collapse
Affiliation(s)
- Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Sydney A. Alderfer
- Department of Chemical and Biological Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
| | - Omar Yanouri
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| | - Henry J. Haigler
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - Michael R. Ruff
- Creative Bio-Peptides, Inc., 10319 Glen Road, Suite 100, Potomac, MD 20854, USA; (H.J.H.); (M.R.R.)
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (T.B.K.); (L.S.M.); (L.H.T.); (K.P.W.); (A.E.S.)
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
7
|
Jamwal S, Jena MK, Tyagi N, Kancharla S, Kolli P, Mandadapu G, Kumar S, Mohanty AK. Proteomic Approaches to Unravel the Molecular Dynamics of Early Pregnancy in Farm Animals: An In-Depth Review. J Dev Biol 2023; 12:2. [PMID: 38248867 PMCID: PMC10801625 DOI: 10.3390/jdb12010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Infertility is a major problem in farm animals, which has a negative economic effect on farm industries. Infertility can be defined as the inability of animals to achieve a successful pregnancy. Early pregnancy is crucial to establish a successful pregnancy, and it is reported that 70-80% and 20-30% of total embryonic loss occur in cattle and pigs, respectively, during the first month of pregnancy. The advanced high-throughput proteomics techniques provide valuable tools for in-depth understanding of the implantation process in farm animals. In the present review, our goal was to compile, assess, and integrate the latest proteomic research on farm animals, specifically focused on female reproduction, which involves endometrial tissues, uterine fluids, oviductal fluids, and microRNAs. The series of studies has provided in-depth insights into the events of the implantation process by unfolding the molecular landscape of the uterine tract. The discussed data are related to pregnant vs. non-pregnant animals, pregnancy vs. oestrous cycle, different days of the early pregnancy phase, and animals with uterine infections affecting reproduction health. Some of the studies have utilized non-invasive methods and in vitro models to decipher the molecular events of embryo-maternal interaction. The proteomics data are valuable sources for discovering biomarkers for infertility in ruminants and new regulatory pathways governing embryo-uterine interaction, endometrium receptivity, and embryonic development. Here, we envisage that the identified protein signatures can serve as potential therapeutic targets and biomarkers to develop new therapeutics against pregnancy diseases.
Collapse
Affiliation(s)
- Shradha Jamwal
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Nikunj Tyagi
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Sudhakar Kancharla
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Prachetha Kolli
- Microgen Health Inc., 14225 Sullyfield Cir Suite E, Chantilly, VA 20151, USA;
| | - Gowtham Mandadapu
- Devansh Lab Werks, 234 Aquarius Drive, Homewood, AL 35209, USA; (S.K.); (G.M.)
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India; (S.J.); (N.T.); (S.K.)
| | - Ashok Kumar Mohanty
- ICAR–Central Institute for Research on Cattle, Meerut Cantt 250001, Uttar Pradesh, India
| |
Collapse
|
8
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Negrutskii BS, Porubleva LV, Malinowska A, Novosylna OV, Dadlez M, Knudsen CR. Understanding functions of eEF1 translation elongation factors beyond translation. A proteomic approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:67-99. [PMID: 38220433 DOI: 10.1016/bs.apcsb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins. We used the identified sets of eEF1A1 or eEF1A2 partner proteins to identify cell complexes and/or processes specific to one particular isoform. As a result, we found isoform-specific interactions reflecting the involvement of different eEF1A isoforms in different cellular processes, including actin-related, chromatin-remodeling, ribonuclease H2, adenylyl cyclase, and Cul3-RING ubiquitin ligase complexes as well as initiation of mitochondrial transcription. An essential by-product of our analysis is the elucidation of a number of cellular processes beyond protein biosynthesis, where both isoforms appear to participate such as large ribosomal subunit biogenesis, mRNA splicing, DNA mismatch repair, 26S proteasome activity, P-body and exosomes formation, protein targeting to the membrane. This information suggests that a relatively high content of eEF1A in the cell may be necessary not only to maintain efficient translation, but also to ensure its participation in various cellular processes, where some roles of eEF1A have not yet been described. We believe that the data presented here will be useful for deciphering new auxiliary functions of eEF1A and its isoforms, and provide a new look at the known non-canonical functions of this main component of the human translation-elongation machinery.
Collapse
Affiliation(s)
- Boris S Negrutskii
- Institute of Molecular Biology and Genetics, Kyiv, Ukraine; Aarhus Institute of Advanced Sciences, Høegh-Guldbergs, Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark.
| | | | - Agata Malinowska
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, PAN, Pawinskiego, Warsaw, Poland
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen, Aarhus C, Denmark
| |
Collapse
|
10
|
Alimov N, Hoeprich GJ, Padrick SB, Goode BL. Cyclase-associated protein interacts with actin filament barbed ends to promote depolymerization and formin displacement. J Biol Chem 2023; 299:105367. [PMID: 37863260 PMCID: PMC10692737 DOI: 10.1016/j.jbc.2023.105367] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
Cyclase-associated protein (CAP) has emerged as a central player in cellular actin turnover, but its molecular mechanisms of action are not yet fully understood. Recent studies revealed that the N terminus of CAP interacts with the pointed ends of actin filaments to accelerate depolymerization in conjunction with cofilin. Here, we use in vitro microfluidics-assisted TIRF microscopy to show that the C terminus of CAP promotes depolymerization at the opposite (barbed) ends of actin filaments. In the absence of actin monomers, full-length mouse CAP1 and C-terminal halves of CAP1 (C-CAP1) and CAP2 (C-CAP2) accelerate barbed end depolymerization. Using mutagenesis and structural modeling, we show that these activities are mediated by the WH2 and CARP domains of CAP. In addition, we observe that CAP collaborates with profilin to accelerate barbed end depolymerization and that these effects depend on their direct interaction, providing the first known example of CAP-profilin collaborative effects in regulating actin. In the presence of actin monomers, CAP1 attenuates barbed end growth and promotes formin dissociation. Overall, these findings demonstrate that CAP uses distinct domains and mechanisms to interact with opposite ends of actin filaments and drive turnover. Further, they contribute to the emerging view of actin barbed ends as sites of dynamic molecular regulation, where numerous proteins compete and cooperate with each other to tune polymer dynamics, similar to the rich complexity seen at microtubule ends.
Collapse
Affiliation(s)
- Nikita Alimov
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Gregory J Hoeprich
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA.
| |
Collapse
|
11
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
12
|
Guo S, Hoeprich GJ, Magliozzi JO, Gelles J, Goode BL. Dynamic remodeling of actin networks by cyclase-associated protein and CAP-Abp1 complexes. Curr Biol 2023; 33:4484-4495.e5. [PMID: 37797614 PMCID: PMC10860761 DOI: 10.1016/j.cub.2023.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
How actin filaments are spatially organized and remodeled into diverse higher-order networks in vivo is still not well understood. Here, we report an unexpected F-actin "coalescence" activity driven by cyclase-associated protein (CAP) and enhanced by its interactions with actin-binding protein 1 (Abp1). We directly observe S. cerevisiae CAP and Abp1 rapidly transforming branched or linear actin networks by bundling and sliding filaments past each other, maximizing filament overlap, and promoting compaction into bundles. This activity does not require ATP and is conserved, as similar behaviors are observed for the mammalian homologs of CAP and Abp1. Coalescence depends on the CAP oligomerization domain but not the helical folded domain (HFD) that mediates its functions in F-actin severing and depolymerization. Coalescence by CAP-Abp1 further depends on interactions between CAP and Abp1 and interactions between Abp1 and F-actin. Our results are consistent with a mechanism in which the formation of energetically favorable sliding CAP and CAP-Abp1 crosslinks drives F-actin bundle compaction. Roles for CAP and CAP-Abp1 in actin remodeling in vivo are supported by strong phenotypes arising from deletion of the CAP oligomerization domain and by genetic interactions between sac6Δ and an srv2-301 mutant that does not bind Abp1. Together, these observations identify a new actin filament remodeling function for CAP, which is further enhanced by its direct interactions with Abp1.
Collapse
Affiliation(s)
- Siyang Guo
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Gregory J Hoeprich
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Joseph O Magliozzi
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Bruce L Goode
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
13
|
Pelucchi S, Macchi C, D'Andrea L, Rossi PD, Speciani MC, Stringhi R, Ruscica M, Arosio B, Di Luca M, Cesari M, Edefonti V, Marcello E. An association study of cyclase-associated protein 2 and frailty. Aging Cell 2023; 22:e13918. [PMID: 37537790 PMCID: PMC10497846 DOI: 10.1111/acel.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 08/05/2023] Open
Abstract
Frailty is a geriatric syndrome that results from multisystem impairment caused by age-associated accumulation of deficits. The frailty index is used to define the level of frailty. Several studies have searched for molecular biomarkers associated with frailty, to meet the needs for personalized care. Cyclase-associated protein 2 (CAP2) is a multifunctional actin-binding protein involved in various physiological and pathological processes, that might reflect frailty's intrinsic complexity. This study aimed to investigate the association between frailty index and circulating CAP2 concentration in 467 community-dwelling older adults (median age: 79; range: 65-92 years) from Milan, Italy. The selected robust regression model showed that circulating CAP2 concentration was not associated with chronological age, as well as sex and education. However, circulating CAP2 concentration was significantly and inversely associated with the frailty index: a 0.1-unit increase in frailty index leads to ~0.5-point mean decrease in CAP2 concentration. Furthermore, mean CAP2 concentration was significantly lower in frail participants (i.e., frailty index ≥0.25) than in non-frail participants. This study shows the association between serum CAP2 concentration and frailty status for the first time, highlighting the potential of CAP2 as a biomarker for age-associated accumulation of deficits.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Laura D'Andrea
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Paolo Dionigi Rossi
- Geriatric UnitFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- General MedicineHospital San Leopoldo MandicMerateItaly
| | - Michela Carola Speciani
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro"Università degli Studi di MilanoMilanItaly
| | - Ramona Stringhi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFondazione IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Beatrice Arosio
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| | - Matteo Cesari
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Valeria Edefonti
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry and Epidemiology "G.A. Maccacaro"Università degli Studi di MilanoMilanItaly
- Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti"Università degli Studi di MilanoMilanItaly
| |
Collapse
|
14
|
Reis LR, Souza Junior DR, Tomasin R, Bruni-Cardoso A, Di Mascio P, Ronsein GE. Citrullination of actin-ligand and nuclear structural proteins, cytoskeleton reorganization and protein redistribution across cellular fractions are early events in ionomycin-induced NETosis. Redox Biol 2023; 64:102784. [PMID: 37356135 DOI: 10.1016/j.redox.2023.102784] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures of DNA coated with cytotoxic proteins and histones released by activated neutrophils through a process called NETosis. NETs release occurs through a sequence of highly organized events leading to chromatin expansion and rupture of nuclear and cellular membranes. In calcium ionophore-induced NETosis, the enzyme peptidylargine deiminase 4 (PAD4) mediates chromatin decondensation through histone citrullination, but the biochemical pathways involved in this process are not fully understood. Here we use live-imaging microscopy and proteomic studies of the neutrophil cellular fractions to investigate the early events in ionomycin-triggered NETosis. We found that before ionomycin-stimulated neutrophils release NETs, profound biochemical changes occur in and around their nucleus, such as, cytoskeleton reorganization, nuclear redistribution of actin-remodeling related proteins, and citrullination of actin-ligand and nuclear structural proteins. Ionomycin-stimulated neutrophils rapidly lose their characteristic polymorphic nucleus, and these changes are promptly communicated to the extracellular environment through the secretion of proteins related to immune response. Therefore, our findings revealed key biochemical mediators in the early process that subsequently culminates with nuclear and cell membranes rupture, and extracellular DNA release.
Collapse
Affiliation(s)
- Lorenna Rocha Reis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Rebeka Tomasin
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Graziella Eliza Ronsein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
15
|
Zhang Q, Wang B, Kong X, Li K, Huang Y, Peng L, Chen L, Liu J, Yu Q, He J, Yang Y, Li X, Wang J. Knockout of cyclase-associated protein CAP1 confers tolerance towards salt and osmotic stress in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153978. [PMID: 37087999 DOI: 10.1016/j.jplph.2023.153978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
As a regulator of actin filament turnover, Arabidopsis thaliana CAP1 plays an important role in plant growth and development. Here, we analyzed the phenotypes of two Arabidopsis cap1 mutants: cap1-1 (a T-DNA insertion mutant) and Cas9-CAP1 (generated by CRISPR-Cas9 gene editing). Phenotypic analysis demonstrated that loss of CAP1 results in defects in seed germination and seedling morphology, with some seedlings exhibiting one or three cotyledons. The cap1-1 mutant took longer than the wild type to complete its life cycle, but its flowering time was normal, indicating that loss of CAP1 prolongs reproductive but not vegetative growth. Moreover, loss of CAP1 severely reduces seed production in self-pollinated plants, due to disruption of pollen tube elongation. RNA-seq and qRT-PCR analyses demonstrated that CAP1 may be involved in osmotic stress responses. Indeed, the cap1-1 mutant showed increased tolerance of salt and mannitol treatment, indicating that CAP1 plays a negative role in osmotic stress tolerance in Arabidopsis. Taken together, our results demonstrate that CAP1 functions not only in plant growth and development, but also in Arabidopsis responses to osmotic stress.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Boya Wang
- Southwest University of Science and Technology, School of Life Science and Engineering, Mianyang, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Li Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jiajia Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Juan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Wang Q, Xu Y, Zhao S, Jiang Y, Yi R, Guo Y, Huang S. Activation of actin-depolymerizing factor by CDPK16-mediated phosphorylation promotes actin turnover in Arabidopsis pollen tubes. PLoS Biol 2023; 21:e3002073. [PMID: 37011088 PMCID: PMC10101649 DOI: 10.1371/journal.pbio.3002073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/13/2023] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
As the stimulus-responsive mediator of actin dynamics, actin-depolymerizing factor (ADF)/cofilin is subject to tight regulation. It is well known that kinase-mediated phosphorylation inactivates ADF/cofilin. Here, however, we found that the activity of Arabidopsis ADF7 is enhanced by CDPK16-mediated phosphorylation. We found that CDPK16 interacts with ADF7 both in vitro and in vivo, and it enhances ADF7-mediated actin depolymerization and severing in vitro in a calcium-dependent manner. Accordingly, the rate of actin turnover is reduced in cdpk16 pollen and the amount of actin filaments increases significantly at the tip of cdpk16 pollen tubes. CDPK16 phosphorylates ADF7 at Serine128 both in vitro and in vivo, and the phospho-mimetic mutant ADF7S128D has enhanced actin-depolymerizing activity compared to ADF7. Strikingly, we found that failure in the phosphorylation of ADF7 at Ser128 impairs its function in promoting actin turnover in vivo, which suggests that this phospho-regulation mechanism is biologically significant. Thus, we reveal that CDPK16-mediated phosphorylation up-regulates ADF7 to promote actin turnover in pollen.
Collapse
Affiliation(s)
- Qiannan Wang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanan Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuangshuang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, China
| | - Yuxiang Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ran Yi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Colin A, Kotila T, Guérin C, Orhant-Prioux M, Vianay B, Mogilner A, Lappalainen P, Théry M, Blanchoin L. Recycling of the actin monomer pool limits the lifetime of network turnover. EMBO J 2023; 42:e112717. [PMID: 36912152 PMCID: PMC10152149 DOI: 10.15252/embj.2022112717] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.
Collapse
Affiliation(s)
- Alexandra Colin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Christophe Guérin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Magali Orhant-Prioux
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Benoit Vianay
- CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.,Department of Biology, New York University, New York, NY, USA
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Manuel Théry
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire & Végétale, Interdisciplinary Research Institute of Grenoble, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,CytoMorpho Lab, Institut de Recherche Saint Louis, U976 Human Immunology Pathophysiology Immunotherapy (HIPI), University of Paris, INSERM, CEA, Paris, France
| |
Collapse
|
18
|
Lappalainen P, Kotila T, Jégou A, Romet-Lemonne G. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol 2022; 23:836-852. [PMID: 35918536 DOI: 10.1038/s41580-022-00508-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Polymerization of actin filaments against membranes produces force for numerous cellular processes, such as migration, morphogenesis, endocytosis, phagocytosis and organelle dynamics. Consequently, aberrant actin cytoskeleton dynamics are linked to various diseases, including cancer, as well as immunological and neurological disorders. Understanding how actin filaments generate forces in cells, how force production is regulated by the interplay between actin-binding proteins and how the actin-regulatory machinery responds to mechanical load are at the heart of many cellular, developmental and pathological processes. During the past few years, our understanding of the mechanisms controlling actin filament assembly and disassembly has evolved substantially. It has also become evident that the activities of key actin-binding proteins are not regulated solely by biochemical signalling pathways, as mechanical regulation is critical for these proteins. Indeed, the architecture and dynamics of the actin cytoskeleton are directly tuned by mechanical load. Here we discuss the general mechanisms by which key actin regulators, often in synergy with each other, control actin filament assembly, disassembly, and monomer recycling. By using an updated view of actin dynamics as a framework, we discuss how the mechanics and geometry of actin networks control actin-binding proteins, and how this translates into force production in endocytosis and mesenchymal cell migration.
Collapse
Affiliation(s)
- Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
| | - Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
19
|
Heinze A, Schuldt C, Khudayberdiev S, van Bommel B, Hacker D, Schulz TG, Stringhi R, Marcello E, Mikhaylova M, Rust MB. Functional interdependence of the actin regulators CAP1 and cofilin1 in control of dendritic spine morphology. Cell Mol Life Sci 2022; 79:558. [PMID: 36264429 PMCID: PMC9585016 DOI: 10.1007/s00018-022-04593-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
Abstract
The vast majority of excitatory synapses are formed on small dendritic protrusions termed dendritic spines. Dendritic spines vary in size and density that are crucial determinants of excitatory synaptic transmission. Aberrations in spine morphogenesis can compromise brain function and have been associated with neuropsychiatric disorders. Actin filaments (F-actin) are the major structural component of dendritic spines, and therefore, actin-binding proteins (ABP) that control F-actin dis-/assembly moved into the focus as critical regulators of brain function. Studies of the past decade identified the ABP cofilin1 as a key regulator of spine morphology, synaptic transmission, and behavior, and they emphasized the necessity for a tight control of cofilin1 to ensure proper brain function. Here, we report spine enrichment of cyclase-associated protein 1 (CAP1), a conserved multidomain protein with largely unknown physiological functions. Super-resolution microscopy and live cell imaging of CAP1-deficient hippocampal neurons revealed impaired synaptic F-actin organization and dynamics associated with alterations in spine morphology. Mechanistically, we found that CAP1 cooperates with cofilin1 in spines and that its helical folded domain is relevant for this interaction. Moreover, our data proved functional interdependence of CAP1 and cofilin1 in control of spine morphology. In summary, we identified CAP1 as a novel regulator of the postsynaptic actin cytoskeleton that is essential for synaptic cofilin1 activity.
Collapse
Affiliation(s)
- Anika Heinze
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Cara Schuldt
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Bas van Bommel
- AG Optobiology, Institute of Biology, Humboldt-University, 10115, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniela Hacker
- AG Optobiology, Institute of Biology, Humboldt-University, 10115, Berlin, Germany
- Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Toni G Schulz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Ramona Stringhi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt-University, 10115, Berlin, Germany
- Guest Group 'Neuronal Protein Transport', Institute for Molecular Neurogenetics, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany.
- DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.
| |
Collapse
|
20
|
Singh AK, Rai A, Weber A, Posern G. miRNA mediated downregulation of cyclase-associated protein 1 (CAP1) is required for myoblast fusion. Front Cell Dev Biol 2022; 10:899917. [PMID: 36246999 PMCID: PMC9562714 DOI: 10.3389/fcell.2022.899917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Myoblast fusion is essential for the formation, growth, and regeneration of skeletal muscle, but the molecular mechanisms that govern fusion and myofiber formation remain poorly understood. Past studies have shown an important role of the actin cytoskeleton and actin regulators in myoblast fusion. The Cyclase-Associated Proteins (CAP) 1 and 2 recently emerged as critical regulators of actin treadmilling in higher eukaryotes including mammals. Whilst the role of CAP2 in skeletal muscle development and function is well characterized, involvement of CAP1 in this process remains elusive. Here we report that CAP1, plays a critical role in cytoskeletal remodeling during myoblast fusion and formation of myotubes. Cap1 mRNA and protein are expressed in both murine C2C12 and human LHCN-M2 myoblasts, but their abundance decreases during myogenic differentiation. Perturbing the temporally controlled expression of CAP1 by overexpression or CRISPR-Cas9 mediated knockout impaired actin rearrangement, myoblast alignment, expression of profusion molecules, differentiation into multinucleated myotubes, and myosin heavy chain expression. Endogenous Cap1 expression is post-transcriptionally downregulated during differentiation by canonical myomiRs miR-1, miR-133, and miR-206, which have conserved binding sites at the 3′ UTR of the Cap1 mRNA. Deletion of the endogenous 3′ UTR by CRISPR-Cas9 in C2C12 cells phenocopies overexpression of CAP1 by inhibiting myotube formation. Our findings implicates Cap1 and its myomiR-mediated downregulation in the myoblast fusion process and the generation of skeletal muscle.
Collapse
Affiliation(s)
- Anurag Kumar Singh
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Internal Medicine I, University Hospital Halle, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- *Correspondence: Anurag Kumar Singh, ; Guido Posern,
| | - Amrita Rai
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Anja Weber
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- *Correspondence: Anurag Kumar Singh, ; Guido Posern,
| |
Collapse
|
21
|
Kotila T, Wioland H, Selvaraj M, Kogan K, Antenucci L, Jégou A, Huiskonen JT, Romet-Lemonne G, Lappalainen P. Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite. Nat Commun 2022; 13:3442. [PMID: 35705539 PMCID: PMC9200798 DOI: 10.1038/s41467-022-31068-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/01/2022] [Indexed: 11/08/2022] Open
Abstract
Actin polymerization generates forces for cellular processes throughout the eukaryotic kingdom, but our understanding of the 'ancient' actin turnover machineries is limited. We show that, despite > 1 billion years of evolution, pathogenic Leishmania major parasite and mammalian actins share the same overall fold and co-polymerize with each other. Interestingly, Leishmania harbors a simple actin-regulatory machinery that lacks cofilin 'cofactors', which accelerate filament disassembly in higher eukaryotes. By applying single-filament biochemistry we discovered that, compared to mammalian proteins, Leishmania actin filaments depolymerize more rapidly from both ends, and are severed > 100-fold more efficiently by cofilin. Our high-resolution cryo-EM structures of Leishmania ADP-, ADP-Pi- and cofilin-actin filaments identify specific features at actin subunit interfaces and cofilin-actin interactions that explain the unusually rapid dynamics of parasite actin filaments. Our findings reveal how divergent parasites achieve rapid actin dynamics using a remarkably simple set of actin-binding proteins, and elucidate evolution of the actin cytoskeleton.
Collapse
Affiliation(s)
- Tommi Kotila
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Hugo Wioland
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Muniyandi Selvaraj
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Lina Antenucci
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Juha T Huiskonen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | | | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Science, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
22
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
23
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
24
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
25
|
Rust MB, Marcello E. Disease association of cyclase-associated protein (CAP): Lessons from gene-targeted mice and human genetic studies. Eur J Cell Biol 2022; 101:151207. [PMID: 35150966 DOI: 10.1016/j.ejcb.2022.151207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/03/2022] Open
Abstract
Cyclase-associated protein (CAP) is an actin binding protein that has been initially described as partner of the adenylyl cyclase in yeast. In all vertebrates and some invertebrate species, two orthologs, named CAP1 and CAP2, have been described. CAP1 and CAP2 are characterized by a similar multidomain structure, but different expression patterns. Several molecular studies clarified the biological function of the different CAP domains, and they shed light onto the mechanisms underlying CAP-dependent regulation of actin treadmilling. However, CAPs are crucial elements not only for the regulation of actin dynamics, but also for signal transduction pathways. During recent years, human genetic studies and the analysis of gene-targeted mice provided important novel insights into the physiological roles of CAPs and their involvement in the pathogenesis of several diseases. In the present review, we summarize and discuss recent progress in our understanding of CAPs' physiological functions, focusing on heart, skeletal muscle and central nervous system as well as their involvement in the mechanisms controlling metabolism. Remarkably, loss of CAPs or impairment of CAPs-dependent pathways can contribute to the pathogenesis of different diseases. Overall, these studies unraveled CAPs complexity highlighting their capability to orchestrate structural and signaling pathways in the cells.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany.
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
26
|
Expression of ovine CTNNA3 and CAP2 genes and their association with growth traits. Gene 2022; 807:145949. [PMID: 34481004 DOI: 10.1016/j.gene.2021.145949] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
Growth traits is a critical economic trait for animal husbandry. In this study, the SNPs of CTNNA3 and CAP2 genes were investigated to check whether they are associated with growth traits (body weight, body height, body length and chest circumference) in Hu sheep. The result of the association analysis indicated that the mutation in CTNNA3 (g.2018018 A > G) were associated significantly with body weight, body height, body length and chest circumference (P < 0.05), the mutation in CAP2 (g.8588 T > C) were associated significantly with body height at 140, 160, 180 days (P < 0.05), AA and CC of CTNNA3 and CAP2 were the dominant genotypes associated with growth traits in Hu sheep. Moreover, combined effect analyses indicated that the growth traits with combined genotypes AACTNNA3-CCCAP2 and AACTNNA3-CTCAP2 were higher than those with genotype GGCTNNA3-CTCAP2. RT-qPCR indicated that CTNNA3 expression levels were significantly higher in liver and lung than in other nine tissues (P < 0.05), CAP2 expression levels were significantly higher in bone, heart, liver, lung and duodenum than in other six tissues (P < 0.05). In conclusion, CTNNA3 and CAP2 polymorphisms could be used as genetic markers for improving growth traits in Hu sheep husbandry.
Collapse
|
27
|
Iwanski J, Gregorio CC, Colpan M. Redefining actin dynamics of the pointed-end complex in striated muscle. Trends Cell Biol 2021; 31:708-711. [PMID: 34266732 DOI: 10.1016/j.tcb.2021.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/15/2022]
Abstract
Striated muscle is intricately designed to provide efficient and powerful muscle contractions. Recently, a long sought-after missing component of the thin filament pointed-end machinery was discovered: cyclase-associated protein 2 (CAP2). CAP2 was identified as a crucial contributor to actin polymerization, striated muscle development, and severe muscle disease when mutated.
Collapse
Affiliation(s)
- Jessika Iwanski
- Department of Cellular and Molecular Medicine, and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA.
| | - Mert Colpan
- Department of Cellular and Molecular Medicine, and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
28
|
Ullo MF, Logue JS. ADF and cofilin-1 collaborate to promote cortical actin flow and the leader bleb-based migration of confined cells. eLife 2021; 10:67856. [PMID: 34169836 PMCID: PMC8253594 DOI: 10.7554/elife.67856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
Melanoma cells have been shown to undergo fast amoeboid (leader bleb-based) migration, requiring a single large bleb for migration. In leader blebs, is a rapid flow of cortical actin that drives the cell forward. Using RNAi, we find that co-depleting cofilin-1 and actin depolymerizing factor (ADF) led to a large increase in cortical actin, suggesting that both proteins regulate cortical actin. Furthermore, severing factors can promote contractility through the regulation of actin architecture. However, RNAi of cofilin-1 but not ADF led to a significant decrease in cell stiffness. We found cofilin-1 to be enriched at leader bleb necks, whereas RNAi of cofilin-1 and ADF reduced bleb sizes and the frequency of motile cells. Strikingly, cells without cofilin-1 and ADF had blebs with abnormally long necks. Many of these blebs failed to retract and displayed slow actin turnover. Collectively, our data identifies cofilin-1 and ADF as actin remodeling factors required for fast amoeboid migration.
Collapse
Affiliation(s)
- Maria F Ullo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| |
Collapse
|
29
|
Functional Redundancy of Cyclase-Associated Proteins CAP1 and CAP2 in Differentiating Neurons. Cells 2021; 10:cells10061525. [PMID: 34204261 PMCID: PMC8234816 DOI: 10.3390/cells10061525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023] Open
Abstract
Cyclase-associated proteins (CAPs) are evolutionary-conserved actin-binding proteins with crucial functions in regulating actin dynamics, the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). Mammals possess two family members (CAP1 and CAP2) with different expression patterns. Unlike most other tissues, both CAPs are expressed in the brain and present in hippocampal neurons. We recently reported crucial roles for CAP1 in growth cone function, neuron differentiation, and neuron connectivity in the mouse brain. Instead, CAP2 controls dendritic spine morphology and synaptic plasticity, and its dysregulation contributes to Alzheimer's disease pathology. These findings are in line with a model in which CAP1 controls important aspects during neuron differentiation, while CAP2 is relevant in differentiated neurons. We here report CAP2 expression during neuron differentiation and its enrichment in growth cones. We therefore hypothesized that CAP2 is relevant not only in excitatory synapses, but also in differentiating neurons. However, CAP2 inactivation neither impaired growth cone morphology and motility nor neuron differentiation. Moreover, CAP2 mutant mice did not display any obvious changes in brain anatomy. Hence, differently from CAP1, CAP2 was dispensable for neuron differentiation and brain development. Interestingly, overexpression of CAP2 rescued not only growth cone size in CAP1-deficient neurons, but also their morphology and differentiation. Our data provide evidence for functional redundancy of CAP1 and CAP2 in differentiating neurons, and they suggest compensatory mechanisms in single mutant neurons.
Collapse
|
30
|
Wang WH, Chen SK, Huang HC, Juan HF. Proteomic Analysis Reveals That Metformin Suppresses PSMD2, STIP1, and CAP1 for Preventing Gastric Cancer AGS Cell Proliferation and Migration. ACS OMEGA 2021; 6:14208-14219. [PMID: 34124444 PMCID: PMC8190800 DOI: 10.1021/acsomega.1c00894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 05/04/2023]
Abstract
Metformin is one of the most widely used anti-diabetic drugs in type-II diabetes treatment. The mechanism of decreasing blood glucose is believed to suppress hepatic gluconeogenesis by increasing muscular glucose uptake and insulin sensitivity. Recent studies suggest that metformin may reduce cancer risk; however, its anticancer mechanism in gastric cancers remains unclear. Here, we aim to evaluate the anticancer effects of metformin on human gastric adenocarcinoma (AGS) cells. Our results showed that metformin inhibited AGS cell proliferation in a dose-dependent manner. Using small-scale quantitative proteomics, we identified 177 differentially expressed proteins upon metformin treatment; among these, nine proteins such as 26S proteasome non-ATPase regulatory subunit 2 (PSMD2), stress-induced phosphoprotein 1 (STIP1), and adenylyl cyclase-associated protein 1 (CAP1) were significantly altered. We found that metformin induced cell cycle arrest at the G0/G1 phase, suppressed cell migration, and affected cytoskeleton distribution. Additionally, patients with highly expressed PSMD2, STIP1, and CAP1 have a poor clinical outcome. Our study provides a novel view of developing therapies for gastric cancer.
Collapse
Affiliation(s)
- Wei-Hsuan Wang
- Genome
and Systems Biology Degree Program, Academia
Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Szu-Kai Chen
- Department
of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Cheng Huang
- Institute
of Biomedical Informatics, National Yang
Ming Chiao Tung University, Taipei 11221, Taiwan
- . Phone: +886-2-2826-7357
| | - Hsueh-Fen Juan
- Genome
and Systems Biology Degree Program, Academia
Sinica and National Taiwan University, Taipei 10617, Taiwan
- Department
of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Graduate
Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
- . Phone: +886-2-3366-4536
| |
Collapse
|
31
|
Novel role of CAP1 in regulation RNA polymerase II-mediated transcription elongation depends on its actin-depolymerization activity in nucleoplasm. Oncogene 2021; 40:3492-3509. [PMID: 33911205 DOI: 10.1038/s41388-021-01789-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Lung cancer is one of the most intractable diseases with high incidence and mortality worldwide. Adenylate cyclase-associated protein 1 (CAP1), a well-known actin depolymerization factor, is recently reported to be an oncogene accelerating cancer cell proliferation. However, the physiological significance of CAP1 in lung cancer is incompletely understood and the novel functions of CAP1 in transcriptional regulation remain unknown. Here we found that CAP1 was highly expressed in lung cancer tissues and cells, which was also negatively associated with prognosis in lung cancer patients. Moreover, CAP1 promoted A549 cells proliferation by promoting protein synthesis to accelerate cell cycle progression. Mechanistically, we revealed that CAP1 facilitated cyclin-dependent kinase 9 (CDK9)-mediated RNA polymerases (Pol) II-Ser2 phosphorylation and subsequent transcription elongation, and CAP1 performed its function in this progress depending on its actin-depolymerization activity in nucleoplasm. Furthermore, our in vivo findings confirmed that CAP1-promoted A549 xenograft tumor growth was associated with CDK9-mediated Pol II-Ser2 phosphorylation. Our study elucidates a novel role of CAP1 in modulating transcription by promoting polymerase II phosphorylation and suggests that CAP1 is a newly identified biomarker for lung cancer treatment and prognosis prediction.
Collapse
|
32
|
Schneider F, Duong TA, Metz I, Winkelmeier J, Hübner CA, Endesfelder U, Rust MB. Mutual functional dependence of cyclase-associated protein 1 (CAP1) and cofilin1 in neuronal actin dynamics and growth cone function. Prog Neurobiol 2021; 202:102050. [PMID: 33845164 DOI: 10.1016/j.pneurobio.2021.102050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/14/2021] [Accepted: 04/07/2021] [Indexed: 01/20/2023]
Abstract
Neuron connectivity depends on growth cones that navigate axons through the developing brain. Growth cones protrude and retract actin-rich structures to sense guidance cues. These cues control local actin dynamics and steer growth cones towards attractants and away from repellents, thereby directing axon outgrowth. Hence, actin binding proteins (ABPs) moved into the focus as critical regulators of neuron connectivity. We found cyclase-associated protein 1 (CAP1), an ABP with unknown brain function, abundant in growth cones. Super-resolution microscopy and live cell imaging combined with pharmacological approaches on hippocampal neurons from gene-targeted mice revealed a crucial role for CAP1 in actin dynamics that is critical for growth cone morphology and function. Growth cone defects in CAP1 knockout (KO) neurons compromised neuron differentiation and was associated with impaired neuron connectivity in CAP1-KO brains. Mechanistically, by rescue experiments in double KO neurons lacking CAP1 and the key actin regulator cofilin1, we demonstrated that CAP1 was essential for cofilin1 function in growth cone actin dynamics and morphology and vice versa. Together, we identified CAP1 as a novel actin regulator in growth cones that was relevant for neuron connectivity, and we demonstrated functional interdependence of CAP1 and cofilin1 in neuronal actin dynamics and growth cone function.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, 35032, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Thuy-An Duong
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, 35032, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany
| | - Jannik Winkelmeier
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043, Marburg, Germany; Department of Physics, Mellon College of Science, Carnegie-Mellon University, Pittsburgh, PA, USA
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, 07743, Jena, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043, Marburg, Germany; Department of Physics, Mellon College of Science, Carnegie-Mellon University, Pittsburgh, PA, USA
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, 35032, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032, Marburg, Germany; DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.
| |
Collapse
|
33
|
Colpan M, Iwanski J, Gregorio CC. CAP2 is a regulator of actin pointed end dynamics and myofibrillogenesis in cardiac muscle. Commun Biol 2021; 4:365. [PMID: 33742108 PMCID: PMC7979805 DOI: 10.1038/s42003-021-01893-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2's function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2's multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.
Collapse
Affiliation(s)
- Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Jessika Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
34
|
Bergqvist M, Elebro K, Borgquist S, Rosendahl AH. Adipocytes Under Obese-Like Conditions Change Cell Cycle Distribution and Phosphorylation Profiles of Breast Cancer Cells: The Adipokine Receptor CAP1 Matters. Front Oncol 2021; 11:628653. [PMID: 33738261 PMCID: PMC7962603 DOI: 10.3389/fonc.2021.628653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Obesity and associated metabolic conditions impact adipocyte functionality with potential consequences for breast cancer risk and prognosis, but contributing mechanisms remain to be understood. The adipokine receptor adenylyl cyclase-associated protein-1 (CAP1) has been implicated in the progression of breast cancer, but results are conflicting and the underlying molecular mechanisms are still unknown. In this study, molecular and cellular effects in breast cancer cells by stimulation of adipocytes under normal or obese-like conditions, and potential involvement of CAP1, were assessed. MATERIAL AND METHODS Estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cells were exposed to adipocyte-secretome from adipocytes placed under pressures mimicking normal and obese-like metabolic conditions. Changes in phosphorylated kinase proteins and related biological pathways were assessed by phospho-antibody array and PANTHER analysis, cell proliferation were investigated through sulforhodamine B, cell cycle distribution by flow cytometry. Functional effects of CAP1 were subsequently examined following small interfering (si)RNA-mediated knockdown. RESULTS Protein phosphorylations involved in important biological processes were enriched in T47D breast cancer cells in response to adipocyte secretome from obese-like compared with normal conditions. The obesity-associated adipocyte secretome further stimulated cell proliferation and a shift from cell cycle G1-phase to S- and G2/M-phase was observed. Silencing of CAP1 decreased cell proliferation in both T47D and MDA-MB-231 cells, and reduced the obesity-associated secretome-induction of phosphoproteins involved in cell proliferation pathways. CONCLUSIONS These results indicate that the adipocyte secretome and CAP1 are mechanistically important for the proliferation of both ER-positive and ER-negative breast cancer cells, and potential signaling mediators were identified. These studies provide biological insight into how obesity-associated factors could affect breast cancer.
Collapse
Affiliation(s)
- Malin Bergqvist
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Karin Elebro
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Malmö, Surgery, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Ann H. Rosendahl
- Department of Clinical Sciences Lund, Oncology, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
35
|
Huang X, Chao R, Zhang Y, Wang P, Gong X, Liang D, Wang Y. CAP1, a target of miR-144/451, negatively regulates erythroid differentiation and enucleation. J Cell Mol Med 2021; 25:2377-2389. [PMID: 33496386 PMCID: PMC7933962 DOI: 10.1111/jcmm.16067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The exact molecular mechanism underlying erythroblast enucleation has been a fundamental biological question for decades. In this study, we found that miR-144/451 critically regulated erythroid differentiation and enucleation. We further identified CAP1, a G-actin-binding protein, as a direct target of miR-144/451 in these processes. During terminal erythropoiesis, CAP1 expression declines along with gradually increased miR-144/451 levels. Enforced CAP1 up-regulation inhibits the formation of contractile actin rings in erythroblasts and prevents their terminal differentiation and enucleation. Our findings reveal a negative regulatory role of CAP1 in miR-144/451-mediated erythropoiesis and thus shed light on how microRNAs fine-tune terminal erythroid development through regulating actin dynamics.
Collapse
Affiliation(s)
- Xiaoli Huang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Ruihua Chao
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yanyang Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xueping Gong
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Dongli Liang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yuan Wang
- Department of Animal SciencesCollege of Agriculture and Natural ResourcesMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
36
|
Kepser LJ, Khudayberdiev S, Hinojosa LS, Macchi C, Ruscica M, Marcello E, Culmsee C, Grosse R, Rust MB. Cyclase-associated protein 2 (CAP2) controls MRTF-A localization and SRF activity in mouse embryonic fibroblasts. Sci Rep 2021; 11:4789. [PMID: 33637797 PMCID: PMC7910472 DOI: 10.1038/s41598-021-84213-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Recent studies identified cyclase-associated proteins (CAPs) as important regulators of actin dynamics that control assembly and disassembly of actin filaments (F-actin). While these studies significantly advanced our knowledge of their molecular functions, the physiological relevance of CAPs largely remained elusive. Gene targeting in mice implicated CAP2 in heart physiology and skeletal muscle development. Heart defects in CAP2 mutant mice were associated with altered activity of serum response factor (SRF), a transcription factor involved in multiple biological processes including heart function, but also skeletal muscle development. By exploiting mouse embryonic fibroblasts (MEFs) from CAP2 mutant mice, we aimed at deciphering the CAP2-dependent mechanism relevant for SRF activity. Reporter assays and mRNA quantification by qPCR revealed reduced SRF-dependent gene expression in mutant MEFs. Reduced SRF activity in CAP2 mutant MEFs was associated with altered actin turnover, a shift in the actin equilibrium towards monomeric actin (G-actin) as well as and reduced nuclear levels of myocardin-related transcription factor A (MRTF-A), a transcriptional SRF coactivator that is shuttled out of the nucleus and, hence, inhibited upon G-actin binding. Moreover, pharmacological actin manipulation with jasplakinolide restored MRTF-A distribution in mutant MEFs. Our data are in line with a model in which CAP2 controls the MRTF-SRF pathway in an actin-dependent manner. While MRTF-A localization and SRF activity was impaired under basal conditions, serum stimulation induced nuclear MRTF-A translocation and SRF activity in mutant MEFs similar to controls. In summary, our data revealed that in MEFs CAP2 controls basal MRTF-A localization and SRF activity, while it was dispensable for serum-induced nuclear MRTF-A translocation and SRF stimulation.
Collapse
Affiliation(s)
- Lara-Jane Kepser
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Sharof Khudayberdiev
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Laura Soto Hinojosa
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
- Institute of Pharmacology, University of Marburg, 35032, Marburg, Germany
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35032, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Robert Grosse
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany
- Institute of Pharmacology, University of Marburg, 35032, Marburg, Germany
| | - Marco B Rust
- Institute of Physiological Chemistry, Philipps-University of Marburg, 35032, Marburg, Germany.
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany.
| |
Collapse
|
37
|
Jang HD, Lee SE, Yang J, Lee HC, Shin D, Lee H, Lee J, Jin S, Kim S, Lee SJ, You J, Park HW, Nam KY, Lee SH, Park SW, Kim JS, Kim SY, Kwon YW, Kwak SH, Yang HM, Kim HS. Cyclase-associated protein 1 is a binding partner of proprotein convertase subtilisin/kexin type-9 and is required for the degradation of low-density lipoprotein receptors by proprotein convertase subtilisin/kexin type-9. Eur Heart J 2021; 41:239-252. [PMID: 31419281 PMCID: PMC6945527 DOI: 10.1093/eurheartj/ehz566] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
Aims Proprotein convertase subtilisin/kexin type-9 (PCSK9), a molecular determinant of low-density lipoprotein (LDL) receptor (LDLR) fate, has emerged as a promising therapeutic target for atherosclerotic cardiovascular diseases. However, the precise mechanism by which PCSK9 regulates the internalization and lysosomal degradation of LDLR is unknown. Recently, we identified adenylyl cyclase-associated protein 1 (CAP1) as a receptor for human resistin whose globular C-terminus is structurally similar to the C-terminal cysteine-rich domain (CRD) of PCSK9. Herein, we investigated the role of CAP1 in PCSK9-mediated lysosomal degradation of LDLR and plasma LDL cholesterol (LDL-C) levels. Methods and results The direct binding between PCSK9 and CAP1 was confirmed by immunoprecipitation assay, far-western blot, biomolecular fluorescence complementation, and surface plasmon resonance assay. Fine mapping revealed that the CRD of PCSK9 binds with the Src homology 3 binding domain (SH3BD) of CAP1. Two loss-of-function polymorphisms found in human PCSK9 (S668R and G670E in CRD) were attributed to a defective interaction with CAP1. siRNA against CAP1 reduced the PCSK9-mediated degradation of LDLR in vitro. We generated CAP1 knock-out mice and found that the viable heterozygous CAP1 knock-out mice had higher protein levels of LDLR and lower LDL-C levels in the liver and plasma, respectively, than the control mice. Mechanistic analysis revealed that PCSK9-induced endocytosis and lysosomal degradation of LDLR were mediated by caveolin but not by clathrin, and they were dependent on binding between CAP1 and caveolin-1. Conclusion We identified CAP1 as a new binding partner of PCSK9 and a key mediator of caveolae-dependent endocytosis and lysosomal degradation of LDLR. ![]()
Collapse
Affiliation(s)
- Hyun-Duk Jang
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Sang Eun Lee
- Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
| | - Jimin Yang
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Hyun-Chae Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Dasom Shin
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Hwan Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Jaewon Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Sooryeonhwa Jin
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Soungchan Kim
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Seung Ji Lee
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Jihye You
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea
| | - Hyun-Woo Park
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Ky-Youb Nam
- Bio AI Research Center, Pharos I&BT Co., Ltd., Anyang-si, Gyeonggi-do 14059, Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120752, Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120752, Korea
| | - Jin-Soo Kim
- Department of Chemistry, Seoul National University, Seoul 120752, Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea
| | - Yoo-Wook Kwon
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro Jongno-Gu, Seoul 03080, Korea
| | - Han-Mo Yang
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro Jongno-Gu, Seoul 03080, Korea
| | - Hyo-Soo Kim
- National Leading Laboratory for Stem Cell Research, Seoul National University College of Medicine, 71, Daehak-Ro, Jongno-Gu, Seoul 03082, Korea.,Korea Research-Driven Hospital, Biomedical Research Institute, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, 71, Daehak-ro, Jongro-gu, Seoul 03082, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, World Class University Program, Seoul National University, Seoul 03082, Korea.,Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-Ro Jongno-Gu, Seoul 03080, Korea
| |
Collapse
|
38
|
Ben Zablah Y, Merovitch N, Jia Z. The Role of ADF/Cofilin in Synaptic Physiology and Alzheimer's Disease. Front Cell Dev Biol 2020; 8:594998. [PMID: 33282872 PMCID: PMC7688896 DOI: 10.3389/fcell.2020.594998] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Actin-depolymerization factor (ADF)/cofilin, a family of actin-binding proteins, are critical for the regulation of actin reorganization in response to various signals. Accumulating evidence indicates that ADF/cofilin also play important roles in neuronal structure and function, including long-term potentiation and depression. These are the most extensively studied forms of long-lasting synaptic plasticity and are widely regarded as cellular mechanisms underlying learning and memory. ADF/cofilin regulate synaptic function through their effects on dendritic spines and the trafficking of glutamate receptors, the principal mediator of excitatory synaptic transmission in vertebrates. Regulation of ADF/cofilin involves various signaling pathways converging on LIM domain kinases and slingshot phosphatases, which phosphorylate/inactivate and dephosphorylate/activate ADF/cofilin, respectively. Actin-depolymerization factor/cofilin activity is also regulated by other actin-binding proteins, activity-dependent subcellular distribution and protein translation. Abnormalities in ADF/cofilin have been associated with several neurodegenerative disorders such as Alzheimer’s disease. Therefore, investigating the roles of ADF/cofilin in the brain is not only important for understanding the fundamental processes governing neuronal structure and function, but also may provide potential therapeutic strategies to treat brain disorders.
Collapse
Affiliation(s)
- Youssif Ben Zablah
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Neil Merovitch
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Rust MB, Khudayberdiev S, Pelucchi S, Marcello E. CAPt'n of Actin Dynamics: Recent Advances in the Molecular, Developmental and Physiological Functions of Cyclase-Associated Protein (CAP). Front Cell Dev Biol 2020; 8:586631. [PMID: 33072768 PMCID: PMC7543520 DOI: 10.3389/fcell.2020.586631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclase-associated protein (CAP) has been discovered three decades ago in budding yeast as a protein that associates with the cyclic adenosine monophosphate (cAMP)-producing adenylyl cyclase and that suppresses a hyperactive RAS2 variant. Since that time, CAP has been identified in all eukaryotic species examined and it became evident that the activity in RAS-cAMP signaling is restricted to a limited number of species. Instead, its actin binding activity is conserved among eukaryotes and actin cytoskeleton regulation emerged as its primary function. However, for many years, the molecular functions as well as the developmental and physiological relevance of CAP remained unknown. In the present article, we will compile important recent progress on its molecular functions that identified CAP as a novel key regulator of actin dynamics, i.e., the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). These studies unraveled a cooperation with ADF/Cofilin and Twinfilin in F-actin disassembly, a nucleotide exchange activity on globular actin monomers (G-actin) that is required for F-actin assembly and an inhibitory function towards the F-actin assembly factor INF2. Moreover, by focusing on selected model organisms, we will review current literature on its developmental and physiological functions, and we will present studies implicating CAP in human pathologies. Together, this review article summarizes and discusses recent achievements in understanding the molecular, developmental and physiological functions of CAP, which led this protein emerge as a novel CAPt'n of actin dynamics.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg and Justus-Liebig-University Giessen, Giessen, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
40
|
Tang VW, Nadkarni AV, Brieher WM. Catastrophic actin filament bursting by cofilin, Aip1, and coronin. J Biol Chem 2020; 295:13299-13313. [PMID: 32723865 DOI: 10.1074/jbc.ra120.015018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/24/2020] [Indexed: 11/06/2022] Open
Abstract
Cofilin is an actin filament severing protein necessary for fast actin turnover dynamics. Coronin and Aip1 promote cofilin-mediated actin filament disassembly, but the mechanism is somewhat controversial. An early model proposed that the combination of cofilin, coronin, and Aip1 disassembled filaments in bursts. A subsequent study only reported severing. Here, we used EM to show that actin filaments convert directly into globular material. A monomer trap assay also shows that the combination of all three factors produces actin monomers faster than any two factors alone. We show that coronin accelerates the release of Pi from actin filaments and promotes highly cooperative cofilin binding to actin to create long stretches of polymer with a hypertwisted morphology. Aip1 attacks these hypertwisted regions along their sides, disintegrating them into monomers or short oligomers. The results are consistent with a catastrophic mode of disassembly, not enhanced severing alone.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ambika V Nadkarni
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
41
|
Adachi M, Masugi Y, Yamazaki K, Emoto K, Kobayashi Y, Tominaga E, Banno K, Aoki D, Sakamoto M. Upregulation of cyclase-associated actin cytoskeleton regulatory protein 2 in epithelial ovarian cancer correlates with aggressive histologic types and worse outcomes. Jpn J Clin Oncol 2020; 50:643-652. [PMID: 32211793 DOI: 10.1093/jjco/hyaa026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Cyclase-associated actin cytoskeleton regulatory protein 2 (CAP2) regulates actin dynamics to control cell cycles and cell migration. CAP2 overexpression contributes to cancer progression in several tumor types; however, the role of CAP2 expression in ovarian cancer remains unclear. This study aimed to clarify the significance of CAP2 expression in epithelial ovarian tumor. METHODS We evaluated CAP2 expression in ovarian cancer cell lines using quantitative real-time polymerase chain reaction, western blotting and immunocytochemistry and examined the effect of CAP2 silencing in migration and proliferation assays. CAP2 immunohistochemistry was conducted using tissue specimens from 432 ovarian carcinoma patients; a further 55 borderline and benign 65 lesions were analyzed. CAP2 expression levels were defined as low, intermediate or high, for correlation analysis with clinicopathological factors. RESULTS CAP2 expression was significantly higher in cell lines from Type II ovarian cancer than in those in Type I, and knockdown of CAP2 showed decreased migration and proliferation. Higher levels of CAP2 expression in human tissues were associated with Type II histology, residual lesion, lymph node metastasis, ascites cytology and higher clinical stage. High CAP2 expression levels were observed in 26 (23.4%) of 111 Type II ovarian cancers and in 16 (5.0%) of 321 Type I cancers but not in any borderline or benign lesions. Multivariate analyses showed that CAP2 expression in ovarian cancer is an independent prognostic factor for recurrence-free survival (P = 0.019). CONCLUSION CAP2 expression is upregulated in aggressive histologic types of epithelial ovarian cancer and serves as a novel prognostic biomarker for patient survival.
Collapse
Affiliation(s)
- Masataka Adachi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Pelucchi S, Vandermeulen L, Pizzamiglio L, Aksan B, Yan J, Konietzny A, Bonomi E, Borroni B, Padovani A, Rust MB, Di Marino D, Mikhaylova M, Mauceri D, Antonucci F, Edefonti V, Gardoni F, Di Luca M, Marcello E. Cyclase-associated protein 2 dimerization regulates cofilin in synaptic plasticity and Alzheimer's disease. Brain Commun 2020; 2:fcaa086. [PMID: 33094279 PMCID: PMC7566557 DOI: 10.1093/braincomms/fcaa086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Regulation of actin cytoskeleton dynamics in dendritic spines is crucial for learning and memory formation. Hence, defects in the actin cytoskeleton pathways are a biological trait of several brain diseases, including Alzheimer's disease. Here, we describe a novel synaptic mechanism governed by the cyclase-associated protein 2, which is required for structural plasticity phenomena and completely disrupted in Alzheimer's disease. We report that the formation of cyclase-associated protein 2 dimers through its Cys32 is important for cyclase-associated protein 2 binding to cofilin and for actin turnover. The Cys32-dependent cyclase-associated protein 2 homodimerization and association to cofilin are triggered by long-term potentiation and are required for long-term potentiation-induced cofilin translocation into spines, spine remodelling and the potentiation of synaptic transmission. This mechanism is specifically affected in the hippocampus, but not in the superior frontal gyrus, of both Alzheimer's disease patients and APP/PS1 mice, where cyclase-associated protein 2 is down-regulated and cyclase-associated protein 2 dimer synaptic levels are reduced. Notably, cyclase-associated protein 2 levels in the cerebrospinal fluid are significantly increased in Alzheimer's disease patients but not in subjects affected by frontotemporal dementia. In Alzheimer's disease hippocampi, cofilin association to cyclase-associated protein 2 dimer/monomer is altered and cofilin is aberrantly localized in spines. Taken together, these results provide novel insights into structural plasticity mechanisms that are defective in Alzheimer's disease.
Collapse
Affiliation(s)
- Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Lina Vandermeulen
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lara Pizzamiglio
- Department of Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366 69120, Heidelberg, Germany
| | - Jing Yan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366 69120, Heidelberg, Germany
| | - Anja Konietzny
- Emmy-Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Elisa Bonomi
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Marco B Rust
- Faculty of Medicine, Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Marina Mikhaylova
- Emmy-Noether Group "Neuronal Protein Transport", Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany.,Research Group "Optobiology", Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366 69120, Heidelberg, Germany
| | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Valeria Edefonti
- Department of Clinical Sciences and Community Health, Branch of Medical Statistics, Biometry, and Epidemiology "G.A. Maccacaro", Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
43
|
Bergqvist M, Elebro K, Sandsveden M, Borgquist S, Rosendahl AH. Effects of tumor-specific CAP1 expression and body constitution on clinical outcomes in patients with early breast cancer. Breast Cancer Res 2020; 22:67. [PMID: 32560703 PMCID: PMC7304201 DOI: 10.1186/s13058-020-01307-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Background Obesity induces molecular changes that may favor tumor progression and metastatic spread, leading to impaired survival outcomes in breast cancer. Adenylate cyclase-associated protein 1 (CAP1), an actin regulatory protein and functional receptor for the obesity-associated adipokine resistin, has been implicated with inferior cancer prognosis. Here, the objective was to investigate the interplay between body composition and CAP1 tumor expression regarding breast cancer outcome through long-term survival analyses. Methods Among 718 women with primary invasive breast cancer within the large population-based prospective Malmö Diet and Cancer Study, tumor-specific CAP1 levels were assessed following thorough antibody validation and immunohistochemical staining of tumor tissue microarrays. Antibody specificity and functional application validity were determined by CAP1 gene silencing, qRT-PCR, Western immunoblotting, and cell microarray immunostaining. Kaplan-Meier and multivariable Cox proportional hazard models were used to assess survival differences in terms of breast cancer-specific survival (BCSS) and overall survival (OS) according to body composition and CAP1 expression. Results Study participants were followed for up to 25 years (median 10.9 years), during which 239 deaths were observed. Patients with low CAP1 tumor expression were older at diagnosis, displayed anthropometric measurements indicating a higher adiposity status (wider waist and hip, higher body mass index and body fat percentage), and were more prone to have unfavorable tumor characteristics (higher histological grade, higher Ki67, and estrogen receptor (ER) negativity). Overall, patients with CAP1-low tumors had impaired BCSS (adjusted hazard ratio: HRadj = 0.52, 95% CI 0.31–0.88) and OS (HRadj = 0.64, 95% CI 0.44–0.92) compared with patients having high CAP1 tumor expression. Further, analyses stratified according to different anthropometric measures or ER status showed that the CAP1-associated survival outcomes were most pronounced among patients with low adiposity status or ER-positive disease. Conclusions Low CAP1 tumor expression was associated with higher body fatness and worse survival outcomes in breast cancer patients with effect modification by adiposity and ER status. CAP1 could be a novel marker for poorer survival outcome in leaner or ER-positive breast cancer patients, highlighting the need for considering body constitution in clinical decision making.
Collapse
Affiliation(s)
- Malin Bergqvist
- Department of Clinical Sciences Lund, Oncology, Skåne University Hospital, Lund University, Lund, Sweden.
| | - Karin Elebro
- Department of Clinical Sciences Lund, Oncology, Skåne University Hospital, Lund University, Lund, Sweden.,Department of Clinical Sciences Malmö, Surgery, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Malte Sandsveden
- Department of Clinical Sciences Malmö, Surgery, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences Lund, Oncology, Skåne University Hospital, Lund University, Lund, Sweden.,Department of Oncology, Clinical Medicine, Aarhus University Hospital, Aarhus University, Aarhus, Denmark
| | - Ann H Rosendahl
- Department of Clinical Sciences Lund, Oncology, Skåne University Hospital, Lund University, Lund, Sweden.
| |
Collapse
|
44
|
Dynamic Phosphorylation and Dephosphorylation of Cyclase-Associated Protein 1 by Antagonistic Signaling through Cyclin-Dependent Kinase 5 and cAMP Are Critical for the Protein Functions in Actin Filament Disassembly and Cell Adhesion. Mol Cell Biol 2020; 40:MCB.00282-19. [PMID: 31791978 DOI: 10.1128/mcb.00282-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022] Open
Abstract
Cyclase-associated protein 1 (CAP1) is a conserved actin-regulating protein that enhances actin filament dynamics and also regulates adhesion in mammalian cells. We previously found that phosphorylation at the Ser307/Ser309 tandem site controls its association with cofilin and actin and is important for CAP1 to regulate the actin cytoskeleton. Here, we report that transient Ser307/Ser309 phosphorylation is required for CAP1 function in both actin filament disassembly and cell adhesion. Both the phosphomimetic and the nonphosphorylatable CAP1 mutant, which resist transition between phosphorylated and dephosphorylated forms, had defects in rescuing the reduced rate of actin filament disassembly in the CAP1 knockdown HeLa cells. The phosphorylation mutants also had defects in alleviating the elevated focal adhesion kinase (FAK) activity and the enhanced focal adhesions in the knockdown cells. In dissecting further phosphoregulatory cell signals for CAP1, we found that cyclin-dependent kinase 5 (CDK5) phosphorylates both Ser307 and Ser309 residues, whereas cAMP signaling induces dephosphorylation at the tandem site, through its effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). No evidence supports an involvement of activated protein phosphatase in executing the dephosphorylation downstream from cAMP, whereas preventing CAP1 from accessing its kinase CDK5 appears to underlie CAP1 dephosphorylation induced by cAMP. Therefore, this study provides direct cellular evidence that transient phosphorylation is required for CAP1 functions in both actin filament turnover and adhesion, and the novel mechanistic insights substantially extend our knowledge of the cell signals that function in concert to regulate CAP1 by facilitating its transient phosphorylation.
Collapse
|
45
|
Hashimoto-Gotoh A, Kitao K, Miyazawa T. Persistent Infection of Simian Foamy Virus Derived from the Japanese Macaque Leads to the High-Level Expression of microRNA that Resembles the miR-1 microRNA Precursor Family. Microbes Environ 2020; 35:ME19130. [PMID: 31969530 PMCID: PMC7104284 DOI: 10.1264/jsme2.me19130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that suppress the expression of target mRNAs. The seed sequence of miRNA plays a crucial role in recognizing the 3'-untranslated region of the target mRNA. Cells infected with a simian foamy virus (SFV) isolated from an African green monkey (Chlorocebus aethiops) (SFVcae) showed high expression levels of viral miRNAs encoded in the long terminal repeat of SFVcae. In the present study, we investigated the roles and expression of miRNAs derived from an SFV isolated from a Japanese macaque (Macaca fuscata) (SFVmfu) using next-generation sequencing technologies. The results obtained showed that SFVmfu also expressed viral miRNAs; however, the seed sequences of most miRNAs derived from SFVmfu differed from those reported previously from SFVcae. Cells persistently infected with SFVmfu strongly expressed an miRNA with the same seed sequence as the miR-1 microRNA precursor family. Luciferase reporter assays indicated that this miRNA down-regulates the expression of adenylyl cyclase-associated protein 1, which is up-regulated in several solid tumors. The present results suggest that SFVmfu utilizes viral miRNAs to establish long-term co-existence with the Japanese macaque.
Collapse
Affiliation(s)
- Akira Hashimoto-Gotoh
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Koichi Kitao
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606–8507, Japan
- International Research Unit of Advanced Future Studies, Kyoto University, Kyoto 606–8502, Japan
| |
Collapse
|
46
|
Mechanism of synergistic actin filament pointed end depolymerization by cyclase-associated protein and cofilin. Nat Commun 2019; 10:5320. [PMID: 31757941 PMCID: PMC6876575 DOI: 10.1038/s41467-019-13213-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/25/2019] [Indexed: 12/02/2022] Open
Abstract
The ability of cells to generate forces through actin filament turnover was an early adaptation in evolution. While much is known about how actin filaments grow, mechanisms of their disassembly are incompletely understood. The best-characterized actin disassembly factors are the cofilin family proteins, which increase cytoskeletal dynamics by severing actin filaments. However, the mechanism by which severed actin filaments are recycled back to monomeric form has remained enigmatic. We report that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold. Structural work uncovers the molecular mechanism by which CAP interacts with actin filament pointed end to destabilize the interface between terminal actin subunits, and subsequently recycles the newly-depolymerized actin monomer for the next round of filament assembly. These findings establish CAP as a molecular machine promoting rapid actin filament depolymerization and monomer recycling, and explain why CAP is critical for actin-dependent processes in all eukaryotes. The cofilin family proteins are actin disassembly factors but the disassembly mechanism is poorly understood. Here authors show that cyclase-associated-protein (CAP) works in synergy with cofilin to accelerate actin filament depolymerization by nearly 100-fold and reveal how CAP destabilizes the interface between terminal actin subunits.
Collapse
|
47
|
Hunt A, Russell MRG, Wagener J, Kent R, Carmeille R, Peddie CJ, Collinson L, Heaslip A, Ward GE, Treeck M. Differential requirements for cyclase-associated protein (CAP) in actin-dependent processes of Toxoplasma gondii. eLife 2019; 8:e50598. [PMID: 31577230 PMCID: PMC6785269 DOI: 10.7554/elife.50598] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022] Open
Abstract
Toxoplasma gondii contains a limited subset of actin binding proteins. Here we show that the putative actin regulator cyclase-associated protein (CAP) is present in two different isoforms and its deletion leads to significant defects in some but not all actin dependent processes. We observe defects in cell-cell communication, daughter cell orientation and the juxtanuclear accumulation of actin, but only modest defects in synchronicity of division and no defect in the replication of the apicoplast. 3D electron microscopy reveals that loss of CAP results in a defect in formation of a normal central residual body, but parasites remain connected within the vacuole. This dissociates synchronicity of division and parasite rosetting and reveals that establishment and maintenance of the residual body may be more complex than previously thought. These results highlight the different spatial requirements for F-actin regulation in Toxoplasma which appear to be achieved by partially overlapping functions of actin regulators.
Collapse
Affiliation(s)
- Alex Hunt
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | | | - Jeanette Wagener
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Robyn Kent
- Department of Microbiology and Molecular GeneticsUniversity of Vermont Larner College of MedicineBurlingtonUnited States
| | - Romain Carmeille
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Aoife Heaslip
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Gary E Ward
- Department of Microbiology and Molecular GeneticsUniversity of Vermont Larner College of MedicineBurlingtonUnited States
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
48
|
Avtanski D, Garcia A, Caraballo B, Thangeswaran P, Marin S, Bianco J, Lavi A, Poretsky L. Resistin induces breast cancer cells epithelial to mesenchymal transition (EMT) and stemness through both adenylyl cyclase-associated protein 1 (CAP1)-dependent and CAP1-independent mechanisms. Cytokine 2019; 120:155-164. [PMID: 31085453 DOI: 10.1016/j.cyto.2019.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/21/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023]
Abstract
Breast cancer incidence and metastasis in postmenopausal women are known to associate with obesity, but the molecular mechanisms behind this association are largely unknown. We investigated the effect of adipokine resistin on epithelial to mesenchymal transition (EMT) and stemness in breast cancer cells in vitro. Previous reports demonstrated that the inflammatory actions of resistin are mediated by the adenylyl cyclase-associated protein 1 (CAP1), which serves as its receptor. As a model for our study, we used MCF-7 and MDA-MB-231 breast cancer and MCF-10A breast epithelial cells. We showed that in MCF-7 cells resistin increases the migration of MCF-7 and MDA-MB-231 cells and induces the formation of cellular protrusions through reorganization of F-actin filaments. Resistin upregulated the expression of mesenchymal markers involved in EMT (SNAIL, SLUG, ZEB1, TWIST1, fibronectin, and vimentin), and downregulated those of epithelial markers (E-cadherin and claudin-1). Resistin also potentiated the nuclear translocation of SNAIL protein, indicating initiation of EMT reprogramming. We further induced EMT in non-carcinogenic breast epithelial MCF-10A cells demonstrating that the effects of resistin on EMT were not breast cancer cell specific. In order to assess whether resistin-induced EMT depends on CAP1, we used siRNA approach to silence CAP1 gene in MCF-7 cells. Results demonstrated that when CAP1 was silenced, the induction of SNAIL, ZEB1 and vimentin expression by resistin as well as SNAIL and ZEB1 nuclear translocation, were abolished. Additionally, CAP1 silencing resulted in a suppression of MCF-7 cells migration. We performed quantitative PCR array profiling the expression of 84 genes related to cancer stem cells (CSC), pluripotency and metastasis and selected a set of genes (ALDH1A1, ITGA4, LIN28B, SMO, KLF17, PTPRC, PROM1, SIRT1, and PECAM1) that were modulated by resistin. Further experiments demonstrated that the effect of resistin on the expression of some of these genes (PROM1, PTPRC, KLF17, SIRT1, and PECAM1) was also dependent on CAP1. Our results demonstrate that resistin promotes the metastatic potential of breast cancer cells by inducing EMT and stemness and some of these effects are mediated by CAP1.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA; The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Anabel Garcia
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Beatriz Caraballo
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | | | - Sela Marin
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Julianna Bianco
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Aaron Lavi
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA
| | - Leonid Poretsky
- Friedman Diabetes Institute at Lenox Hill Hospital, Northwell Health, New York, NY, USA; The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
49
|
Zhu W, Xu X, Peng F, Yan DZ, Zhang S, Xu R, Wu J, Li X, Wei W, Chen W. The cyclase-associated protein ChCAP is important for regulation of hyphal growth, appressorial development, penetration, pathogenicity, conidiation, intracellular cAMP level, and stress tolerance in Colletotrichum higginsianum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:1-10. [PMID: 31128679 DOI: 10.1016/j.plantsci.2019.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Colletotrichum higginsianum causes anthracnose disease in a wide range of cruciferous crops and has been used as a model system to study plant-pathogen interactions and pathogenicity of hemibiotrophic plant pathogens. Conidiation, hyphae growth, appressorial development and appressorial penetration are significant steps during the infection process of C. higginsianum. However, the mechanisms of these important steps during infection remain incompletely understood. To further investigate the mechanisms of the plant-C. higginsianum interactions during infection progress, we characterized Cyclase-Associated Protein (ChCAP) gene. Deletion of the ChCAP gene resulted in reduction in conidiation and hyphal growth rate. The pathogenicity of ΔChCAP mutants was significantly reduced with much smaller lesion on the infected leaves compared to that of wild type strain with typically water-soaked and dark necrotic lesions on Arabidopsis leaves. Further study demonstrated that the appressorial formation rate, turgor pressure, penetration ability and switch from biotrophic to necrotrophic phases decreased obviously in ΔChCAP mutants, indicating that the attenuated pathogenicity of ΔChCAP mutants was due to these defective phenotypes. In addition, the ΔChCAP mutants sectored on PDA with abnormal, dark color, vesicle-like colony morphology and hyphae tip. Moreover, the ΔChCAP mutants had a reduced intracellular cAMP levels and exogenous cAMP can partially rescue the defects of ΔChCAP mutants in appressorial formation and penetration rate, but not in colony morphology, conidial shape and virulence, indicating that ChCAP is a key component in cAMP signaling pathway and likely play other roles in biology of C. higginsianum. In summary, our findings support the role of ChCAP in regulating conidiation, intracellular cAMP level, hyphal growth, appressorial formation, penetration ability and pathogenicity of this hemibiotrophic fungus.
Collapse
Affiliation(s)
- Wenjun Zhu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Xiaowen Xu
- Hubei Academy of Forestry, Wuhan 430075, People's Republic of China
| | - Fang Peng
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Da-Zhong Yan
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Shaopeng Zhang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Ran Xu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Jing Wu
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Xin Li
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Wei Wei
- Department of Plant Pathology, Washington State University, United States Department of Agriculture-Agricultural Research Service, Washington State University, Pullman 99164, USA.
| | - Weidong Chen
- Department of Plant Pathology, Washington State University, United States Department of Agriculture-Agricultural Research Service, Washington State University, Pullman 99164, USA.
| |
Collapse
|
50
|
Hasan R, Zhou GL. The Cytoskeletal Protein Cyclase-Associated Protein 1 (CAP1) in Breast Cancer: Context-Dependent Roles in Both the Invasiveness and Proliferation of Cancer Cells and Underlying Cell Signals. Int J Mol Sci 2019; 20:E2653. [PMID: 31151140 PMCID: PMC6600220 DOI: 10.3390/ijms20112653] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
As a conserved actin-regulating protein, CAP (adenylyl Cyclase-Associated Protein) functions to facilitate the rearrangement of the actin cytoskeleton. The ubiquitously expressed isoform CAP1 drives mammalian cell migration, and accordingly, most studies on the involvement of CAP1 in human cancers have largely been based on the rationale that up-regulated CAP1 will stimulate cancer cell migration and invasiveness. While findings from some studies reported so far support this case, lines of evidence largely from our recent studies point to a more complex and profound role for CAP1 in the invasiveness of cancer cells, where the potential activation of cell adhesion signaling is believed to play a key role. Moreover, CAP1 was also found to control proliferation in breast cancer cells, through the regulation of ERK (External signal-Regulated Kinase). Alterations in the activities of FAK (Focal Adhesion Kinase) and ERK from CAP1 depletion that are consistent to the opposite adhesion and proliferation phenotypes were detected in the metastatic and non-metastatic breast cancer cells. In this review, we begin with the overview of the literature on CAP, by highlighting the molecular functions of mammalian CAP1 in regulating the actin cytoskeleton and cell adhesion. We will next discuss the role of the FAK/ERK axis, and possibly Rap1, in mediating CAP1 signals to control breast cancer cell adhesion, invasiveness, and proliferation, largely based on our latest findings. Finally, we will discuss the relevance of these novel mechanistic insights to ultimately realizing the translational potential of CAP1 in targeted therapeutics for breast cancer.
Collapse
Affiliation(s)
- Rokib Hasan
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA.
| | - Guo-Lei Zhou
- Molecular Biosciences Graduate Program, Arkansas State University, State University, AR 72467, USA.
- Department of Biological Sciences, Arkansas State University, State University, AR 72467, USA.
| |
Collapse
|