1
|
Trybus M, Hryniewicz-Jankowska A, Wójtowicz K, Trombik T, Czogalla A, Sikorski AF. EFR3A: a new raft domain organizing protein? Cell Mol Biol Lett 2023; 28:86. [PMID: 37880612 PMCID: PMC10601247 DOI: 10.1186/s11658-023-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Membrane rafts play a crucial role in the regulation of many important biological processes. Our previous data suggest that specific interactions of flotillins with MPP1 are responsible for membrane raft domain organization and regulation in erythroid cells. Interaction of the flotillin-based protein network with specific membrane components underlies the mechanism of raft domain formation and regulation, including in cells with low expression of MPP1. METHODS We sought to identify other flotillin partners via the immobilized recombinant flotillin-2-based affinity approach and mass spectrometry technique. The results were further confirmed via immunoblotting and via co-immunoprecipitation. In order to study the effect of the candidate protein on the physicochemical properties of the plasma membrane, the gene was knocked down via siRNA, and fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy was employed. RESULTS EFR3A was identified as a candidate protein that interacts with flotillin-2. Moreover, this newly discovered interaction was demonstrated via overlay assay using recombinant EFR3A and flotillin-2. EFR3A is a stable component of the detergent-resistant membrane fraction of HeLa cells, and its presence was sensitive to the removal of cholesterol. While silencing the EFR3A gene, we observed decreased order of the plasma membrane of living cells or giant plasma membrane vesicles derived from knocked down cells and altered mobility of the raft probe, as indicated via fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy. Moreover, silencing of EFR3A expression was found to disturb epidermal growth factor receptor and phospholipase C gamma phosphorylation and affect epidermal growth factor-dependent cytosolic Ca2+ concentration. CONCLUSIONS Altogether, our results suggest hitherto unreported flotillin-2-EFR3A interaction, which might be responsible for membrane raft organization and regulation. This implies participation of this interaction in the regulation of multiple cellular processes, including those connected with cell signaling which points to the possible role in human health, in particular human cancer biology.
Collapse
Affiliation(s)
- Magdalena Trybus
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Anita Hryniewicz-Jankowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Karolina Wójtowicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Tomasz Trombik
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| | - Aleksander F Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamienskiego73a, 51-154, Wroclaw, Poland.
| |
Collapse
|
2
|
Zhang Y, Chen R, Dong Y, Zhu J, Su K, Liu J, Xu J. Structural Studies Reveal Unique Non-canonical Regulators of G Protein Signaling Homology (RH) Domains in Sorting Nexins. J Mol Biol 2022; 434:167823. [PMID: 36103920 DOI: 10.1016/j.jmb.2022.167823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
As a subgroup of sorting nexins (SNXs) that contain regulator of G protein signaling homology (RH) domain, SNX-RH proteins, including SNX13, SNX14 and SNX25, were proposed to play bifunctional roles in protein sorting and GPCR signaling regulation. However, mechanistic details of SNX-RH proteins functioning via RH domain remain to be illustrated. Here, we delineate crystal structures of the RH domains of SNX13 and SNX25, revealing a homodimer of SNX13 RH domain mediated by unique extended α4 and α5 helices, and a thiol modulated homodimer of SNX25-RH triggered by a unique cysteine on α6 helix. Further studies showed that RH domains of SNX-RH do not possess binding capacity toward Gα subunits, owing to the lack of critical residues for interaction. Thus, this study identifies a group of novel non-canonical RH domains that can act as a dimerization module in sorting nexins, which provides structural basis for mechanism studies on SNX-RH protein functions.
Collapse
Affiliation(s)
- Yulong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yan Dong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiabin Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Kai Su
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
3
|
Laidlaw KME, Paine KM, Bisinski DD, Calder G, Hogg K, Ahmed S, James S, O’Toole PJ, MacDonald C. Endosomal cargo recycling mediated by Gpa1 and phosphatidylinositol 3-kinase is inhibited by glucose starvation. Mol Biol Cell 2022; 33:ar31. [PMID: 35080991 PMCID: PMC9250360 DOI: 10.1091/mbc.e21-04-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/29/2023] Open
Abstract
Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation.
Collapse
Affiliation(s)
| | | | | | - Grant Calder
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Karen Hogg
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sophia Ahmed
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sally James
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Chris MacDonald
- York Biomedical Research Institute and Department of Biology and
| |
Collapse
|
4
|
Vollert J, Wang R, Regis S, Yetman H, Lembo AJ, Kaptchuk TJ, Cheng V, Nee J, Iturrino J, Loscalzo J, Hall KT, Silvester JA. Genotypes of Pain and Analgesia in a Randomized Trial of Irritable Bowel Syndrome. Front Psychiatry 2022; 13:842030. [PMID: 35401282 PMCID: PMC8983929 DOI: 10.3389/fpsyt.2022.842030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a highly prevalent chronic pain disorder with multiple underlying mechanisms and few treatments that have been demonstrated to be effective in placebo controlled trials. One potential reason may be the use of composite outcomes, such as the IBS Symptom Severity Scale (IBS-SSS) which includes descriptive items related to pain frequency and pain intensity as well as bowel dysfunction and bloating. We investigated if different features of IBS pain have distinct genetic associations and if these may be moderated by sex hormones. PARTICIPANTS AND SETTING Adult outpatients with moderately severe IBS (>175 on IBS-SSS) enrolled in a clinical trial reported IBS-SSS at baseline and after 6 weeks of therapy. METHODS Fixed effects modeling was used to test the effect of COMT rs4680 genotype to change in pain severity (rated 0-100) and pain frequency (defined as number of days with pain in the past 10 days) from baseline to week 6 with IBS treatment. Parallel exploratory genome-wide association studies (GWAS) were also performed to identify single nucleotide polymorphisms (SNPs) associated with change in pain severity or pain frequency across all participants. RESULTS A total of 212 participants (74% female) were included. The COMT rs4680 met allele was associated with decreased pain severity over the course of the trial in gene dosage models [beta(SE) -5.9 (2.6), P = 0.028]. Exploratory GWAS for change in pain frequency identified 5 SNPs in close proximity on chromosome 18 near L3MBTL4 which reached genome-wide significance (all P < 5.0E-8). This effect was not mediated by changing estradiol levels. There was also a region of chromosome 7 with 24 SNPs of genome-wide suggestive significance for change in pain severity (all P < 1.0E-5). CONCLUSIONS Previously reported association between COMT rs4680 genotype and treatment response as measured by IBS-SSS is related to pain severity, but not pain frequency. We also identified new candidate genes associated with changes in IBS pain severity (SNX13) and pain frequency (L3MBTL4) in response to treatment. Further studies are needed to understand these associations and genetic determinants of different components of IBS-SSS. ClinicalTrials.gov, Identifier: NCT0280224.
Collapse
Affiliation(s)
- Jan Vollert
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom.,Department of Neurology, University Hospital of Schleswig-Holstein, Kiel, Germany.,Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany.,Mannheim Center of Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Ruisheng Wang
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Stephanie Regis
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, United States
| | - Hailey Yetman
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States
| | - Anthony J Lembo
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Ted J Kaptchuk
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Program in Placebo Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of General Medicine Primary Care, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Vivian Cheng
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Judy Nee
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Johanna Iturrino
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Joseph Loscalzo
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Kathryn T Hall
- Department of Medicine, Brigham Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Jocelyn A Silvester
- Department of Medicine, Harvard Medical School, Boston, MA, United States.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA, United States.,Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
5
|
Amatya B, Lee H, Asico LD, Konkalmatt P, Armando I, Felder RA, Jose PA. SNX-PXA-RGS-PXC Subfamily of SNXs in the Regulation of Receptor-Mediated Signaling and Membrane Trafficking. Int J Mol Sci 2021; 22:ijms22052319. [PMID: 33652569 PMCID: PMC7956473 DOI: 10.3390/ijms22052319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
The SNX-PXA-RGS-PXC subfamily of sorting nexins (SNXs) belongs to the superfamily of SNX proteins. SNXs are characterized by the presence of a common phox-homology (PX) domain, along with other functional domains that play versatile roles in cellular signaling and membrane trafficking. In addition to the PX domain, the SNX-PXA-RGS-PXC subfamily, except for SNX19, contains a unique RGS (regulators of G protein signaling) domain that serves as GTPase activating proteins (GAPs), which accelerates GTP hydrolysis on the G protein α subunit, resulting in termination of G protein-coupled receptor (GPCR) signaling. Moreover, the PX domain selectively interacts with phosphatidylinositol-3-phosphate and other phosphoinositides found in endosomal membranes, while also associating with various intracellular proteins. Although SNX19 lacks an RGS domain, all members of the SNX-PXA-RGS-PXC subfamily serve as dual regulators of receptor cargo signaling and endosomal trafficking. This review discusses the known and proposed functions of the SNX-PXA-RGS-PXC subfamily and how it participates in receptor signaling (both GPCR and non-GPCR) and endosomal-based membrane trafficking. Furthermore, we discuss the difference of this subfamily of SNXs from other subfamilies, such as SNX-BAR nexins (Bin-Amphiphysin-Rvs) that are associated with retromer or other retrieval complexes for the regulation of receptor signaling and membrane trafficking. Emerging evidence has shown that the dysregulation and malfunction of this subfamily of sorting nexins lead to various pathophysiological processes and disorders, including hypertension.
Collapse
Affiliation(s)
- Bibhas Amatya
- The George Washington University, Washington, DC 20052, USA;
| | - Hewang Lee
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Laureano D. Asico
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Prasad Konkalmatt
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Ines Armando
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
- Department of Pharmacology/Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
6
|
Yu H, Lu S, Gasior K, Singh D, Vazquez-Sanchez S, Tapia O, Toprani D, Beccari MS, Yates JR, Da Cruz S, Newby JM, Lafarga M, Gladfelter AS, Villa E, Cleveland DW. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells. Science 2021; 371:science.abb4309. [PMID: 33335017 PMCID: PMC8286096 DOI: 10.1126/science.abb4309] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/05/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The RNA binding protein TDP-43 forms intranuclear or cytoplasmic aggregates in age-related neurodegenerative diseases. In this study, we found that RNA binding-deficient TDP-43 (produced by neurodegeneration-causing mutations or posttranslational acetylation in its RNA recognition motifs) drove TDP-43 demixing into intranuclear liquid spherical shells with liquid cores. These droplets, which we named "anisosomes", have shells that exhibit birefringence, thus indicating liquid crystal formation. Guided by mathematical modeling, we identified the primary components of the liquid core to be HSP70 family chaperones, whose adenosine triphosphate (ATP)-dependent activity maintained the liquidity of shells and cores. In vivo proteasome inhibition within neurons, to mimic aging-related reduction of proteasome activity, induced TDP-43-containing anisosomes. These structures converted to aggregates when ATP levels were reduced. Thus, acetylation, HSP70, and proteasome activities regulate TDP-43 phase separation and conversion into a gel or solid phase.
Collapse
Affiliation(s)
- Haiyang Yu
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA.
| | - Shan Lu
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, USA
| | - Kelsey Gasior
- University of North Carolina Chapel Hill, Department of Biology, Chapel Hill, North Carolina, USA, University of North Carolina Chapel Hill, Department of Mathematics, Chapel Hill, North Carolina, USA
| | - Digvijay Singh
- Division of Biological Sciences, University of California, San Diego, San Diego, California, USA
| | - Sonia Vazquez-Sanchez
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, USA
| | - Olga Tapia
- “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas” (CIBERNED), Madrid, Spain., “Instituto de Investigación Sanitaria Valdecilla” (IDIVAL), Santander, Spain
| | - Divek Toprani
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, USA
| | - Melinda S. Beccari
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, USA, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA
| | - John R. Yates
- Departments of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, USA
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, USA, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jay M. Newby
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
| | - Miguel Lafarga
- “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas” (CIBERNED), Madrid, Spain., “Instituto de Investigación Sanitaria Valdecilla” (IDIVAL), Santander, Spain, Department of Anatomy and Cell Biology, University of Cantabria, Santander, Spain
| | - Amy S. Gladfelter
- University of North Carolina Chapel Hill, Department of Biology, Chapel Hill, North Carolina, USA, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Elizabeth Villa
- Division of Biological Sciences, University of California, San Diego, San Diego, California, USA
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, California, USA, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California, USA,Corresponding authors: ,
| |
Collapse
|
7
|
Bastin G, Dissanayake K, Langburt D, Tam ALC, Lee SH, Lachhar K, Heximer SP. RGS4 controls Gαi3-mediated regulation of Bcl-2 phosphorylation on TGN38-containing intracellular membranes. J Cell Sci 2020; 133:jcs241034. [PMID: 32501280 DOI: 10.1242/jcs.241034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/05/2020] [Indexed: 08/31/2023] Open
Abstract
Intracellular pools of the heterotrimeric G-protein α-subunit Gαi3 (encoded by GNAI3) have been shown to promote growth factor signaling, while at the same time inhibiting the activation of JNK and autophagic signaling following nutrient starvation. The precise molecular mechanisms linking Gαi3 to both stress and growth factor signaling remain poorly understood. Importantly, JNK-mediated phosphorylation of Bcl-2 was previously found to activate autophagic signaling following nutrient deprivation. Our data shows that activated Gαi3 decreases Bcl-2 phosphorylation, whereas inhibitors of Gαi3, such as RGS4 and AGS3 (also known as GPSM1), markedly increase the levels of phosphorylated Bcl-2. Manipulation of the palmitoylation status and intracellular localization of RGS4 suggests that Gαi3 modulates phosphorylated Bcl-2 levels and autophagic signaling from discreet TGN38 (also known as TGOLN2)-labeled vesicle pools. Consistent with an important role for these molecules in normal tissue responses to nutrient deprivation, increased Gαi signaling within nutrient-starved adrenal glands from RGS4-knockout mice resulted in a dramatic abrogation of autophagic flux, compared to wild-type tissues. Together, these data suggest that the activity of Gαi3 and RGS4 from discreet TGN38-labeled vesicle pools are critical regulators of autophagic signaling that act via their ability to modulate phosphorylation of Bcl-2.
Collapse
Affiliation(s)
- Guillaume Bastin
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, 661 University Ave. 14th Floor, Toronto, ON, M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Room 303, C. David Naylor Building, 6 Queen's Park Crescent West, Toronto, ON, M5S 3H2, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Kaveesh Dissanayake
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Dylan Langburt
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, 661 University Ave. 14th Floor, Toronto, ON, M5G 1M1, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Alex L C Tam
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Shin-Haw Lee
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, 661 University Ave. 14th Floor, Toronto, ON, M5G 1M1, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Karanjit Lachhar
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| | - Scott P Heximer
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, 661 University Ave. 14th Floor, Toronto, ON, M5G 1M1, Canada
- Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Room 303, C. David Naylor Building, 6 Queen's Park Crescent West, Toronto, ON, M5S 3H2, Canada
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S1A8, Canada
| |
Collapse
|
8
|
Li X, Rosciglione S, Laniel A, Lavoie C. Combining RNAi and Immunofluorescence Approaches to Investigate Post-endocytic Sorting of GPCRs into Multivesicular Bodies. Methods Mol Biol 2019; 1947:303-322. [PMID: 30969424 DOI: 10.1007/978-1-4939-9121-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Following stimulation, G protein-coupled receptors (GPCRs) are internalized and transported to early endosomes where they are either recycled back to the plasma membrane for another round of activation or targeted to the lysosomes for degradation and long-term signal termination. This latter requires internalization of receptors into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs) for complete degradation following fusion with lysosomes. This endosomal sorting step is highly regulated and has profound functional consequences. This chapter describes how RNAi and confocal microscopy methods can be combined to evaluate whether a protein of interest (herein Gαs) is involved in GPCR sorting into ILVs of MVBs.
Collapse
Affiliation(s)
- Xuezhi Li
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stéphanie Rosciglione
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Andréanne Laniel
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
9
|
Gα s protein binds ubiquitin to regulate epidermal growth factor receptor endosomal sorting. Proc Natl Acad Sci U S A 2017; 114:13477-13482. [PMID: 29192023 DOI: 10.1073/pnas.1708215114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Gαs subunit is classically involved in the signal transduction of G protein-coupled receptors (GPCRs) at the plasma membrane. Recent evidence has revealed noncanonical roles for Gαs in endosomal sorting of receptors to lysosomes. However, the mechanism of action of Gαs in this sorting step is still poorly characterized. Here, we report that Gαs interacts with ubiquitin to regulate the endosomal sorting of receptors for lysosomal degradation. We reveal that the N-terminal extremity of Gαs contains a ubiquitin-interacting motif (UIM), a sorting element usually found in the endosomal sorting complex required for transport (ESCRT) machinery responsible for sorting ubiquitinated receptors into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs). Mutation of the UIM in Gαs confirmed the importance of ubiquitin interaction for the sorting of epidermal growth factor receptor (EGFR) into ILVs for lysosomal degradation. These findings demonstrate a role for Gαs as an integral component of the ubiquitin-dependent endosomal sorting machinery and highlight the dual role of Gαs in receptor trafficking and signaling for the fine-tuning of the cellular response.
Collapse
|
10
|
Girada SB, Kuna RS, Bele S, Zhu Z, Chakravarthi NR, DiMarchi RD, Mitra P. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment. Mol Metab 2017; 6:1173-1185. [PMID: 29031718 PMCID: PMC5641683 DOI: 10.1016/j.molmet.2017.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 07/30/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Upon activation, G protein coupled receptors (GPCRs) associate with heterotrimeric G proteins at the plasma membrane to initiate second messenger signaling. Subsequently, the activated receptor experiences desensitization, internalization, and recycling back to the plasma membrane, or it undergoes lysosomal degradation. Recent reports highlight specific cases of persistent cyclic AMP generation by internalized GPCRs, although the functional significance and mechanistic details remain to be defined. Cyclic AMP generation from internalized Glucagon-Like Peptide-1 Receptor (GLP-1R) has previously been reported from our laboratory. This study aimed at deciphering the molecular mechanism by which internalized GLP-R supports sustained cyclic AMP generation upon receptor activation in pancreatic beta cells. METHODS We studied the time course of cyclic AMP generation following GLP-1R activation with particular emphasis on defining the location where cyclic AMP is generated. Detection involved a novel GLP-1 conjugate coupled with immunofluorescence using specific endosomal markers. Finally, we employed co-immunoprecipitation as well as immunofluorescence to assess the protein-protein interactions that regulate GLP-1R mediated cyclic AMP generation at endosomes. RESULTS Our data reveal that prolonged association of G protein α subunit Gαs with activated GLP-1R contributed to sustained cyclic AMP generation at Rab 5 endosomal compartment. CONCLUSIONS The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex.
Collapse
Affiliation(s)
- Shravan Babu Girada
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Ramya S Kuna
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Shilpak Bele
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Zhimeng Zhu
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - N R Chakravarthi
- Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, India
| | | | - Prasenjit Mitra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
11
|
Yoo JH, Shi DS, Grossmann AH, Sorensen LK, Tong Z, Mleynek TM, Rogers A, Zhu W, Richards JR, Winter JM, Zhu J, Dunn C, Bajji A, Shenderovich M, Mueller AL, Woodman SE, Harbour JW, Thomas KR, Odelberg SJ, Ostanin K, Li DY. ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma. Cancer Cell 2016; 29:889-904. [PMID: 27265506 PMCID: PMC5027844 DOI: 10.1016/j.ccell.2016.04.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 10/16/2015] [Accepted: 04/29/2016] [Indexed: 12/12/2022]
Abstract
Activating mutations in Gαq proteins, which form the α subunit of certain heterotrimeric G proteins, drive uveal melanoma oncogenesis by triggering multiple downstream signaling pathways, including PLC/PKC, Rho/Rac, and YAP. Here we show that the small GTPase ARF6 acts as a proximal node of oncogenic Gαq signaling to induce all of these downstream pathways as well as β-catenin signaling. ARF6 activates these diverse pathways through a common mechanism: the trafficking of GNAQ and β-catenin from the plasma membrane to cytoplasmic vesicles and the nucleus, respectively. Blocking ARF6 with a small-molecule inhibitor reduces uveal melanoma cell proliferation and tumorigenesis in a mouse model, confirming the functional relevance of this pathway and suggesting a therapeutic strategy for Gα-mediated diseases.
Collapse
Affiliation(s)
- Jae Hyuk Yoo
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Dallas S Shi
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Allie H Grossmann
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA
| | - Lise K Sorensen
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - ZongZhong Tong
- Navigen Inc., 383 Colorow Drive, Salt Lake City, UT 84108, USA; Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Tara M Mleynek
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Aaron Rogers
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Weiquan Zhu
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Jackson R Richards
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob M Winter
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Jie Zhu
- Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christine Dunn
- Navigen Inc., 383 Colorow Drive, Salt Lake City, UT 84108, USA
| | - Ashok Bajji
- Navigen Inc., 383 Colorow Drive, Salt Lake City, UT 84108, USA; VioGen Biosciences LLC, Salt Lake City, UT 84119, USA
| | - Mark Shenderovich
- Navigen Inc., 383 Colorow Drive, Salt Lake City, UT 84108, USA; Mol3D Research LLC, Salt Lake City, UT 84124, USA
| | - Alan L Mueller
- Navigen Inc., 383 Colorow Drive, Salt Lake City, UT 84108, USA
| | - Scott E Woodman
- Department of Melanoma Medical Oncology, Department of Systems Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - J William Harbour
- Ocular Oncology Service, Bascom Palmer Eye Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kirk R Thomas
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA; Division of Hematology, Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Shannon J Odelberg
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Kirill Ostanin
- Navigen Inc., 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Dean Y Li
- Department of Medicine, Program in Molecular Medicine, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; ARUP Laboratories, University of Utah, Salt Lake City, UT 84112, USA; Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu 610072, China; Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Cardiology, VA Salt Lake City Health Care System, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Thomas AC, Williams H, Setó-Salvia N, Bacchelli C, Jenkins D, O'Sullivan M, Mengrelis K, Ishida M, Ocaka L, Chanudet E, James C, Lescai F, Anderson G, Morrogh D, Ryten M, Duncan AJ, Pai YJ, Saraiva JM, Ramos F, Farren B, Saunders D, Vernay B, Gissen P, Straatmaan-Iwanowska A, Baas F, Wood NW, Hersheson J, Houlden H, Hurst J, Scott R, Bitner-Glindzicz M, Moore GE, Sousa SB, Stanier P. Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am J Hum Genet 2014; 95:611-21. [PMID: 25439728 DOI: 10.1016/j.ajhg.2014.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022] Open
Abstract
Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.
Collapse
Affiliation(s)
- Anna C Thomas
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Hywel Williams
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Núria Setó-Salvia
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Chiara Bacchelli
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Dagan Jenkins
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Mary O'Sullivan
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Miho Ishida
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Louise Ocaka
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Estelle Chanudet
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Chela James
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Francesco Lescai
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Centre for Translational Omics-GOSgene, UCL Institute of Child Health, London WC1N 1EH, UK; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Glenn Anderson
- Histopathology Department, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Deborah Morrogh
- NE Thames Regional Genetics Laboratory Service, London WC1N 3BH, UK
| | - Mina Ryten
- UCL Institute of Neurology, London WC1N 3BG, UK; Department of Clinical Genetics, Guy's Hospital, London SE1 9RT, UK
| | - Andrew J Duncan
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Yun Jin Pai
- Developmental Biology and Cancer, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Jorge M Saraiva
- Serviço de Genética Médica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
| | - Fabiana Ramos
- Serviço de Genética Médica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal
| | - Bernadette Farren
- Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Dawn Saunders
- Radiology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Bertrand Vernay
- Developmental Biology and Cancer, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Paul Gissen
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, the Netherlands
| | | | | | | | - Jane Hurst
- Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Richard Scott
- Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Maria Bitner-Glindzicz
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Gudrun E Moore
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Sérgio B Sousa
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK; Serviço de Genética Médica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-602 Coimbra, Portugal.
| | - Philip Stanier
- Genetics and Genomic Medicine, UCL Institute of Child Health, London WC1N 1EH, UK.
| |
Collapse
|
13
|
Mas C, Norwood SJ, Bugarcic A, Kinna G, Leneva N, Kovtun O, Ghai R, Ona Yanez LE, Davis JL, Teasdale RD, Collins BM. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling. J Biol Chem 2014; 289:28554-68. [PMID: 25148684 DOI: 10.1074/jbc.m114.595959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking.
Collapse
Affiliation(s)
- Caroline Mas
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Suzanne J Norwood
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Andrea Bugarcic
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Genevieve Kinna
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Oleksiy Kovtun
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajesh Ghai
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lorena E Ona Yanez
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jasmine L Davis
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- From the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
14
|
Rosciglione S, Thériault C, Boily MO, Paquette M, Lavoie C. Gαs regulates the post-endocytic sorting of G protein-coupled receptors. Nat Commun 2014; 5:4556. [PMID: 25089012 PMCID: PMC4846350 DOI: 10.1038/ncomms5556] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/30/2014] [Indexed: 12/31/2022] Open
Abstract
The role of Gαs in G protein-coupled receptor (GPCR) signalling at the cell surface is well established. Recent evidence has revealed the presence of Gαs on endosomes and its capacity to elicit GPCR-promoted signalling from this intracellular compartment. Here, we report an unconventional role for Gαs in the endocytic sorting of GPCRs to lysosomes. Cellular depletion of Gαs specifically delays the lysosomal degradation of GPCRs by disrupting the transfer of GPCRs into the intraluminal vesicles (ILVs) of multivesicular bodies. We show that Gαs interacts with GPCR-associated binding protein-1 (GASP1) and dysbindin, two key proteins that serve as linkers between GPCRs and the endosomal-sorting complex required for transport (ESCRT) machinery involved in receptor sorting into ILVs. Our findings reveal that Gαs plays a role in both GPCR signalling and trafficking pathways, providing another piece in the intertwining molecular network between these processes.
Collapse
Affiliation(s)
- Stéphanie Rosciglione
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Caroline Thériault
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-Olivier Boily
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marilène Paquette
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christine Lavoie
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
15
|
Gαs protein expression is an independent predictor of recurrence in prostate cancer. J Immunol Res 2014; 2014:301376. [PMID: 24741584 PMCID: PMC3988704 DOI: 10.1155/2014/301376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
Background. T393C polymorphism in the gene GNAS1, which encodes the G-protein alpha s subunit (Gαs) of heterotrimeric G protein, is significantly associated with the clinical outcome of patients suffering from several cancers. However, studies on the role and protein expression of Gαs subunit in prostate cancer were still unavailable. Methods. The immunohistochemical staining was used to assess Gαs expression through tissue microarray procedure of 56 metastatic PCas, 291 localized PCas, and 67 benign hyperplasia (BPH). Gαs expression was semiquantitatively scored and evaluated the correlation with pathologic parameters and biochemical recurrence of prostate-specific antigen (PSA). Results. Gαs expression was localized in nuclear and cytoplasm in prostate cancer cells and downregulated in metastatic PCa compared to localized PCa and BPH (P < 0.001). Gαs was inversely associated with PSA level and Gleason scores; patients with low expression of Gαs had adverse clincopathological features. In multivariable Cox regression analysis, high Gαs expression and Gleason scores were independent predictors of both PSA progression-free and overall survival. Conclusions. Gαs down-expression is associated with adverse pathologic features and clinical PSA biochemical recurrence of prostate cancer. Gαs is an independent predictor to help determine the risk of PSA progression and death.
Collapse
|
16
|
Khan SM, Sleno R, Gora S, Zylbergold P, Laverdure JP, Labbé JC, Miller GJ, Hébert TE. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action. Pharmacol Rev 2013; 65:545-77. [PMID: 23406670 DOI: 10.1124/pr.111.005603] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gβγ subunits from heterotrimeric G proteins perform a vast array of functions in cells with respect to signaling, often independently as well as in concert with Gα subunits. However, the eponymous term "Gβγ" does not do justice to the fact that 5 Gβ and 12 Gγ isoforms have evolved in mammals to serve much broader roles beyond their canonical roles in cellular signaling. We explore the phylogenetic diversity of Gβγ subunits with a view toward understanding these expanded roles in different cellular organelles. We suggest that the particular content of distinct Gβγ subunits regulates cellular activity, and that the granularity of individual Gβ and Gγ action is only beginning to be understood. Given the therapeutic potential of targeting Gβγ action, this larger view serves as a prelude to more specific development of drugs aimed at individual isoforms.
Collapse
Affiliation(s)
- Shahriar M Khan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1303, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Raiborg C, Schink KO, Stenmark H. Class III phosphatidylinositol 3-kinase and its catalytic product PtdIns3P in regulation of endocytic membrane traffic. FEBS J 2013; 280:2730-42. [PMID: 23289851 DOI: 10.1111/febs.12116] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 01/01/2023]
Abstract
Endocytosis and subsequent membrane traffic through endosomes are cellular processes that are integral to eukaryotic evolution, and numerous human diseases are associated with their dysfunction. Consequently, it is important to untangle the molecular machineries that regulate membrane dynamics and protein flow in the endocytic pathway. Central in this context is class III phosphatidylinositol 3-kinase, an evolutionarily conserved enzyme complex that phosphorylates phosphatidylinositol into phosphatidylinositol 3-phosphate. Phosphatidylinositol 3-phosphate recruits specific effector proteins, most of which contain FYVE or PX domains, to promote endocytosis, endosome fusion, endosome motility and endosome maturation, as well as cargo sorting to lysosomes, the biosynthetic pathway or the plasma membrane. Here we review the functions of key phosphatidylinositol 3-phosphate effectors in regulation of endocytic membrane dynamics and protein sorting.
Collapse
Affiliation(s)
- Camilla Raiborg
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Norway
| | | | | |
Collapse
|
18
|
WANG LIJUAN, HAN SUXIA, BAI E, ZHOU XIA, LI MENG, JING GUIHUA, ZHAO JING, YANG ANGANG, ZHU QING. Dose-dependent effect of tamoxifen in tamoxifen-resistant breast cancer cells via stimulation by the ERK1/2 and AKT signaling pathways. Oncol Rep 2013; 29:1563-9. [DOI: 10.3892/or.2013.2245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/20/2012] [Indexed: 11/06/2022] Open
|
19
|
A novel regulatory function of sweet taste-sensing receptor in adipogenic differentiation of 3T3-L1 cells. PLoS One 2013; 8:e54500. [PMID: 23336004 PMCID: PMC3545961 DOI: 10.1371/journal.pone.0054500] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. METHODOLOGY/PRINCIPAL FINDINGS In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. CONCLUSIONS 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism.
Collapse
|
20
|
Beas AO, Taupin V, Teodorof C, Nguyen LT, Garcia-Marcos M, Farquhar MG. Gαs promotes EEA1 endosome maturation and shuts down proliferative signaling through interaction with GIV (Girdin). Mol Biol Cell 2012; 23:4623-34. [PMID: 23051738 PMCID: PMC3510023 DOI: 10.1091/mbc.e12-02-0133] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
EEA1 endosomes are believed to function mainly in down-regulating EGFR signaling, and APPL endosomes are regarded as signaling endosomes. Evidence is given that EGF-induced, proliferative signaling occurs from EEA1 endosomes and is regulated by interaction between the signal-transducing protein GIV and the trimeric G protein Gαs. The organization of the endocytic system into biochemically distinct subcompartments allows for spatial and temporal control of the strength and duration of signaling. Recent work has established that Akt cell survival signaling via the epidermal growth factor receptor (EGFR) occurs from APPL early endosomes that mature into early EEA1 endosomes. Less is known about receptor signaling from EEA1 endosomes. We show here that EGF-induced, proliferative signaling occurs from EEA1 endosomes and is regulated by the heterotrimeric G protein Gαs through interaction with the signal transducing protein GIV (also known as Girdin). When Gαs or GIV is depleted, activated EGFR and its adaptors accumulate in EEA1 endosomes, and EGFR signaling is prolonged, EGFR down-regulation is delayed, and cell proliferation is greatly enhanced. Our findings define EEA1 endosomes as major sites for proliferative signaling and establish that Gαs and GIV regulate EEA1 but not APPL endosome maturation and determine the duration and strength of proliferative signaling from this compartment.
Collapse
Affiliation(s)
- Anthony O Beas
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
21
|
Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons. J Neurosci 2012; 32:8501-8. [PMID: 22723690 DOI: 10.1523/jneurosci.1081-12.2012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peripherin, a neuronal intermediate filament protein implicated in neurodegenerative disease, coexists with the neurofilament triplet proteins [neurofilament light (NFL), medium (NFM), and heavy (NFH) chain] but has an unknown function. The earlier peak expression of peripherin than the triplet during brain development and its ability to form homopolymers, unlike the triplet, which are obligate heteropolymers, have supported a widely held view that peripherin and neurofilament triplets form separate filament systems. However, here, we demonstrate that, despite a postnatal decline in expression, peripherin is as abundant as the triplet in the adult PNS and exists in a relatively fixed stoichiometry with these subunits. Peripherin exhibits a distribution pattern identical to those of triplet proteins in sciatic axons and colocalizes with NFL on single neurofilaments by immunogold electron microscopy. Peripherin also coassembles into a single network of filaments containing NFL, NFM, and NFH with and without α-internexin in quadruple- or quintuple-transfected SW13vim(-) cells. Genetically deleting NFL in mice dramatically reduces peripherin content in sciatic axons. Moreover, peripherin mutations has been shown to disrupt the neurofilament network in transfected SW13vim(-) cells. These data show that peripherin and the neurofilament proteins are functionally interdependent. The results strongly support the view that, rather than forming an independent structure, peripherin is a subunit of neurofilaments in the adult PNS. Our findings provide a basis for its close relationship with neurofilaments in PNS diseases associated with neurofilament accumulation.
Collapse
|
22
|
Pedersen NM, Raiborg C, Brech A, Skarpen E, Roxrud I, Platta HW, Liestøl K, Stenmark H. The PtdIns3P-binding protein Phafin 2 mediates epidermal growth factor receptor degradation by promoting endosome fusion. Traffic 2012; 13:1547-63. [PMID: 22816767 DOI: 10.1111/j.1600-0854.2012.01400.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 12/16/2022]
Abstract
Phosphatidylinositol 3-phosphate (PtdIns3P) orchestrates endosomal cargo transport, fusion and motility by recruiting FYVE or PX domain-containing effector proteins to endosomal membranes. In an attempt to discover novel PtdIns3P effectors involved in the termination of growth factor receptor signalling, we performed an siRNA screen for epidermal growth factor (EGF) degradation, targeting FYVE and PX domain proteins in the human proteome. This screen identified several potential regulators of EGF degradation, including HRS (used as positive control), PX kinase, MTMR4 and Phafin2/PLEKHF2. As Phafin2 has not previously been shown to be required for EGF receptor (EGFR) degradation, we performed further functional studies on this protein. Loss of Phafin2 was found to decrease early endosome size, whereas overexpression of Phafin2 resulted in enlarged endosomes. Moreover, both the EGFR and the fluid-phase marker dextran were retained in abnormally small endosomes in Phafin2-depleted cells. In yeast two-hybrid analysis we identified Phafin2 as a novel interactor of the endosomal-tethering protein EEA1, and Phafin2 colocalized strongly with EEA1 in microdomains of the endosome membrane. Our results suggest that Phafin2 controls receptor trafficking and fluid-phase transport through early endosomes by facilitating endosome fusion in concert with EEA1.
Collapse
Affiliation(s)
- Nina Marie Pedersen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yuan A, Sasaki T, Kumar A, Peterhoff CM, Rao MV, Liem RK, Julien JP, Nixon RA. Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons. J Neurosci 2012. [PMID: 22723690 DOI: 10.1523/jneurosci.1081-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Peripherin, a neuronal intermediate filament protein implicated in neurodegenerative disease, coexists with the neurofilament triplet proteins [neurofilament light (NFL), medium (NFM), and heavy (NFH) chain] but has an unknown function. The earlier peak expression of peripherin than the triplet during brain development and its ability to form homopolymers, unlike the triplet, which are obligate heteropolymers, have supported a widely held view that peripherin and neurofilament triplets form separate filament systems. However, here, we demonstrate that, despite a postnatal decline in expression, peripherin is as abundant as the triplet in the adult PNS and exists in a relatively fixed stoichiometry with these subunits. Peripherin exhibits a distribution pattern identical to those of triplet proteins in sciatic axons and colocalizes with NFL on single neurofilaments by immunogold electron microscopy. Peripherin also coassembles into a single network of filaments containing NFL, NFM, and NFH with and without α-internexin in quadruple- or quintuple-transfected SW13vim(-) cells. Genetically deleting NFL in mice dramatically reduces peripherin content in sciatic axons. Moreover, peripherin mutations has been shown to disrupt the neurofilament network in transfected SW13vim(-) cells. These data show that peripherin and the neurofilament proteins are functionally interdependent. The results strongly support the view that, rather than forming an independent structure, peripherin is a subunit of neurofilaments in the adult PNS. Our findings provide a basis for its close relationship with neurofilaments in PNS diseases associated with neurofilament accumulation.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin C, Ear J, Pavlova Y, Mittal Y, Kufareva I, Ghassemian M, Abagyan R, Garcia-Marcos M, Ghosh P. Tyrosine phosphorylation of the Gα-interacting protein GIV promotes activation of phosphoinositide 3-kinase during cell migration. Sci Signal 2012; 4:ra64. [PMID: 21954290 DOI: 10.1126/scisignal.2002049] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GIV (Gα-interacting vesicle-associated protein; also known as Girdin) enhances Akt activation downstream of multiple growth factor- and G protein (heterotrimeric guanosine 5'-triphosphate-binding protein)-coupled receptors to trigger cell migration and cancer invasion. We demonstrate that GIV is a tyrosine phosphoprotein that directly binds to and activates phosphoinositide 3-kinase (PI3K). Upon ligand stimulation of various receptors, GIV was phosphorylated at tyrosine-1764 and tyrosine-1798 by both receptor and non-receptor tyrosine kinases. These phosphorylation events enabled direct binding of GIV to the amino- and carboxyl-terminal Src homology 2 domains of p85α, a regulatory subunit of PI3K; stabilized receptor association with PI3K; and enhanced PI3K activity at the plasma membrane to trigger cell migration. Tyrosine phosphorylation of GIV and its association with p85α increased during metastatic progression of a breast carcinoma. These results suggest a mechanism by which multiple receptors activate PI3K through tyrosine phosphorylation of GIV, thereby making the GIV-PI3K interaction a potential therapeutic target within the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Changsheng Lin
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The classical view of heterotrimeric G protein signaling places G -proteins at the cytoplasmic surface of the cell's plasma membrane where they are activated by an appropriate G protein-coupled receptor. Once activated, the GTP-bound Gα and the free Gβγ are able to regulate plasma membrane-localized effectors, such as adenylyl cyclase, phospholipase C-β, RhoGEFs and ion channels. Hydrolysis of GTP by the Gα subunit returns the G protein to the inactive Gαβγ heterotrimer. Although all of these events in the G protein cycle can be restricted to the cytoplasmic surface of the plasma membrane, G protein localization is dynamic. Thus, it has become increasingly clear that G proteins are able to move to diverse subcellular locations where they perform non-canonical signaling functions. This chapter will highlight our current understanding of trafficking pathways that target newly synthesized G proteins to the plasma membrane, activation-induced and reversible translocation of G proteins from the plasma membrane to intracellular locations, and constitutive trafficking of G proteins.
Collapse
|
26
|
Hewavitharana T, Wedegaertner PB. Non-canonical signaling and localizations of heterotrimeric G proteins. Cell Signal 2012; 24:25-34. [PMID: 21907280 PMCID: PMC3205251 DOI: 10.1016/j.cellsig.2011.08.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Heterotrimeric G proteins typically transduce signals from G protein-coupled receptors (GPCRs) to effector proteins. In the conventional G protein signaling paradigm, the G protein is located at the cytoplasmic surface of the plasma membrane, where, after activation by an agonist-bound GPCR, the GTP-bound Gα and free Gβγ bind to and regulate a number of well-studied effectors, including adenylyl cyclase, phospholipase Cβ, RhoGEFs and ion channels. However, research over the past decade or more has established that G proteins serve non-canonical roles in the cell, whereby they regulate novel effectors, undergo activation independently of a GPCR, and/or function at subcellular locations other than the plasma membrane. This review will highlight some of these non-canonical aspects of G protein signaling, focusing on direct interactions of G protein subunits with cytoskeletal and cell adhesion proteins, the role of G proteins in cell division, and G protein signaling at diverse organelles.
Collapse
Affiliation(s)
- Thamara Hewavitharana
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | | |
Collapse
|
27
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
28
|
Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc Natl Acad Sci U S A 2011; 108:7763-8. [PMID: 21512128 DOI: 10.1073/pnas.1017110108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Following endocytosis, the fates of receptors, channels, and other transmembrane proteins are decided via specific endosomal sorting pathways, including recycling to the cell surface for continued activity. Two distinct phox-homology (PX)-domain-containing proteins, sorting nexin (SNX) 17 and SNX27, are critical regulators of recycling from endosomes to the cell surface. In this study we demonstrate that SNX17, SNX27, and SNX31 all possess a novel 4.1/ezrin/radixin/moesin (FERM)-like domain. SNX17 has been shown to bind to Asn-Pro-Xaa-Tyr (NPxY) sequences in the cytoplasmic tails of cargo such as LDL receptors and the amyloid precursor protein, and we find that both SNX17 and SNX27 display similar affinities for NPxY sorting motifs, suggesting conserved functions in endosomal recycling. Furthermore, we show for the first time that all three proteins are able to bind the Ras GTPase through their FERM-like domains. These interactions place the PX-FERM-like proteins at a hub of endosomal sorting and signaling processes. Studies of the SNX17 PX domain coupled with cellular localization experiments reveal the mechanistic basis for endosomal localization of the PX-FERM-like proteins, and structures of SNX17 and SNX27 determined by small angle X-ray scattering show that they adopt non-self-assembling, modular structures in solution. In summary, this work defines a novel family of proteins that participate in a network of interactions that will impact on both endosomal protein trafficking and compartment specific Ras signaling cascades.
Collapse
|
29
|
Weng L, Enomoto A, Ishida-Takagishi M, Asai N, Takahashi M. Girding for migratory cues: roles of the Akt substrate Girdin in cancer progression and angiogenesis. Cancer Sci 2010; 101:836-42. [PMID: 20132219 PMCID: PMC11159251 DOI: 10.1111/j.1349-7006.2009.01487.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration is a fundamental aspect of a multitude of physiological and pathological processes, including embryonic development, inflammation, angiogenesis, and cancer progression. A variety of proteins are essential for cell migration, but context-specific signaling pathways and promigratory proteins must now be identified for our understanding of cancer biology to continue to advance. In this review, we focus on the emerging roles of Girdin (also designated KIAA1212, APE, GIV, and HkRP1), a novel component of the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway that is a core-signaling transduction pathway in cancer progression. Girdin is expressed in some types of cancer cells and immature endothelial cells, and is therefore at the crossroads of multiple intracellular processes, including reorganization of the actin cytoskeleton, endocytosis, and modulation of Akt activity, which ultimately lead to cancer invasion and angiogenesis. It also acts as a nonreceptor guanine nucleotide exchange factor (GEF) for Galphai proteins. A significant observation is that Girdin, although vital for cancer progression and postnatal vascular remodelling, is dispensable for cell migratory events during embryonic development. These findings suggest that Girdin and its interacting proteins are potential pharmaceutical targets for cancer therapies and pathological anigiogenesis, including tumor angiogenesis.
Collapse
Affiliation(s)
- Liang Weng
- Department of Pathology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
30
|
Abstract
Components of the ESCRT (endosomal sorting complex required for transport) machinery mediate endosomal sorting of ubiquitinated membrane proteins. They are key regulators of biological processes important for cell growth and survival, such as growth-factor-mediated signalling and cytokinesis. In addition, enveloped viruses, such as HIV-1, hijack and utilize the ESCRTs for budding during virus release and infection. Obviously, the ESCRT-facilitated pathways require tight regulation, which is partly mediated by a group of interacting proteins, for which our knowledge is growing. In this review we discuss the different ESCRT-modulating proteins and how they influence ESCRT-dependent processes, for example, by acting as positive or negative regulators or by providing temporal and spatial control. A number of the interactors influence the classical ESCRT-mediated process of endosomal cargo sorting, for example, by modulating the interaction between ubiquitinated cargo and the ESCRTs. Certain accessory proteins have been implicated in regulating the activity or steady-state expression levels of the ESCRT components, whereas other interactors control the cellular localization of the ESCRTs, for example, by inducing shuttling between cytosol and nucleus or endosomes. In conclusion, the discovery of novel interactors has and will extend our knowledge of the biological roles of ESCRTs.
Collapse
|
31
|
Characterization of PXK as a protein involved in epidermal growth factor receptor trafficking. Mol Cell Biol 2010; 30:1689-702. [PMID: 20086096 DOI: 10.1128/mcb.01105-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The phox homology (PX) domain is a phosphoinositide-binding module that typically binds phosphatidylinositol 3-phosphate. Out of 47 mammalian proteins containing PX domains, more than 30 are denoted sorting nexins and several of these have been implicated in internalization of cell surface proteins to the endosome, where phosphatidylinositol-3-phosphate is concentrated. Here we investigated a multimodular protein termed PXK, composed of a PX domain, a protein kinase-like domain, and a WASP homology 2 domain. We show that the PX domain of PXK localizes this protein to the endosomal membrane via binding to phosphatidylinositol 3-phosphate. PXK expression in COS7 cells accelerated the ligand-induced internalization and degradation of epidermal growth factor receptors by a mechanism requiring phosphatidylinositol 3-phosphate binding but not involving the WASP homology 2 domain. Conversely, depletion of PXK using RNA interference decreased the rate of epidermal growth factor receptor internalization and degradation. Ubiquitination of epidermal growth factor receptor by the ligand stimulation was enhanced in PXK-expressing cells. These results indicate that PXK plays a critical role in epidermal growth factor receptor trafficking through modulating ligand-induced ubiquitination of the receptor.
Collapse
|
32
|
Alenghat FJ, Tytell JD, Thodeti CK, Derrien A, Ingber DE. Mechanical control of cAMP signaling through integrins is mediated by the heterotrimeric Galphas protein. J Cell Biochem 2009; 106:529-38. [PMID: 19170051 PMCID: PMC2739599 DOI: 10.1002/jcb.22001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mechanical stresses that are preferentially transmitted across the cell surface via transmembrane integrin receptors activate gene transcription by triggering production of intracellular chemical second messengers, such as cAMP. Here we show that the sensitivity of the cAMP signaling pathway to mechanical stresses transferred across beta1 integrins is mediated by force-dependent activation of the heterotrimeric G protein subunit Galphas within focal adhesions at the site of stress application. Galphas is recruited to focal adhesions that form within minutes following clustering of beta1 integrins induced by cell binding to magnetic microbeads coated with activating integrin ligands, and beta1 integrin and Galphas co-precipitate when analyzed biochemically. Stress application to activated beta1 integrins using magnetic twisting cytometry increases Galphas recruitment and activates these large G proteins within focal adhesions, as measured by binding of biotinylated azido-anilido-GTP, whereas application of similar stresses to inactivated integrins or control histocompatibility antigens has little effect. This response is relevant physiologically as application of mechanical strain to cells bound to flexible extracellular matrix-coated substrates induce translocation of phospho-CREB to the nucleus, which can be attenuated by inhibiting Galphas activity, either using the inhibitor melittin or suppressing its expression using siRNA. Although integrins are not typical G protein-coupled receptors, these results show that integrins focus mechanical stresses locally on heterotrimeric G proteins within focal adhesions at the site of force application, and transduce mechanical stimuli into an intracellular cAMP signaling response by activating Galphas at these membrane signaling sites.
Collapse
Affiliation(s)
- Francis J. Alenghat
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Jessica D. Tytell
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Charles K. Thodeti
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Alexandrine Derrien
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115
| | - Donald E. Ingber
- Vascular Biology Program, Departments of Pathology and Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139
| |
Collapse
|
33
|
Akita K, Takahashi Y, Kataoka M, Saito K, Kaneko H. Subcellular localization of a novel G protein XLGalpha(olf). Biochem Biophys Res Commun 2009; 381:582-6. [PMID: 19245791 DOI: 10.1016/j.bbrc.2009.02.093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
XLGalpha(olf) was identified as a transcriptional variant of the heterotrimeric G protein, Galpha(olf). Previous work showed that XLGalpha(olf) couples with adenosine A2a receptor and dopamine D1 receptor in vitro. However, physiological functions of XLGalpha(olf) remain to be elucidated. In this study, we performed indirect immunofluorescence confocal analyses to examine the subcellular localization of XLGalpha(olf). With overexpression, surprisingly, many large endosomes resulted. We also observed that XLGalpha(olf) localizes at the Golgi apparatus. The N-terminal region of XLGalpha(olf) appears necessary for both endosome formation and the Golgi localization. The results indicate that XLGalpha(olf) and Galpha(olf) play distinctly separate roles. Moreover, XLGalpha(olf) colocalized with Rab3A and Rab8A, as well as partially with Rab11A, but not with other endocytotic endosomes. We could confirm the interaction between XLGalpha(olf) and Rab3A/Rab8A by co-immunoprecipitation experiments. Our study provides important clues toward understanding physiological functions of XLGalpha(olf).
Collapse
Affiliation(s)
- Kazumasa Akita
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Konohana-ku, Osaka, Japan.
| | | | | | | | | |
Collapse
|
34
|
Tang T, Zheng B, Chen SH, Murphy AN, Kudlicka K, Zhou H, Farquhar MG. hNOA1 interacts with complex I and DAP3 and regulates mitochondrial respiration and apoptosis. J Biol Chem 2009; 284:5414-24. [PMID: 19103604 PMCID: PMC2643507 DOI: 10.1074/jbc.m807797200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/15/2008] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are dynamic organelles that play key roles in metabolism, energy production, and apoptosis. Coordination of these processes is essential to maintain normal cellular functions. Here we characterized hNOA1, the human homologue of AtNOA1 (Arabidopsis thaliana nitric oxide-associated protein 1), a large mitochondrial GTPase. By immunofluorescence, immunoelectron microscopy, and mitochondrial subfractionation, endogenous hNOA1 is localized within mitochondria where it is peripherally associated with the inner mitochondrial membrane facing the mitochondrial matrix. Overexpression and knockdown of hNOA1 led to changes in mitochondrial shape implying effects on mitochondrial dynamics. To identify the interaction partners of hNOA1 and to further understand its cellular functions, we performed immunoprecipitation-mass spectrometry analysis of endogenous hNOA1 from enriched mitochondrial fractions and found that hNOA1 interacts with both Complex I of the electron transport chain and DAP3 (death-associated protein 3), a positive regulator of apoptosis. Knockdown of hNOA1 reduces mitochondrial O(2) consumption approximately 20% in a Complex I-dependent manner, supporting a functional link between hNOA1 and Complex I. Moreover, knockdown of hNOA1 renders cells more resistant to apoptotic stimuli such as gamma-interferon and staurosporine, supporting a role for hNOA1 in regulating apoptosis. Thus, based on its interactions with both Complex I and DAP3, hNOA1 may play a role in mitochondrial respiration and apoptosis.
Collapse
Affiliation(s)
- Tingdong Tang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093-0651, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ghosh P, Garcia-Marcos M, Bornheimer SJ, Farquhar MG. Activation of Galphai3 triggers cell migration via regulation of GIV. ACTA ACUST UNITED AC 2008; 182:381-93. [PMID: 18663145 PMCID: PMC2483528 DOI: 10.1083/jcb.200712066] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During migration, cells must couple direction sensing to signal transduction and actin remodeling. We previously identified GIV/Girdin as a Galphai3 binding partner. We demonstrate that in mammalian cells Galphai3 controls the functions of GIV during cell migration. We find that Galphai3 preferentially localizes to the leading edge and that cells lacking Galphai3 fail to polarize or migrate. A conformational change induced by association of GIV with Galphai3 promotes Akt-mediated phosphorylation of GIV, resulting in its redistribution to the plasma membrane. Activation of Galphai3 serves as a molecular switch that triggers dissociation of Gbetagamma and GIV from the Gi3-GIV complex, thereby promoting cell migration by enhancing Akt signaling and actin remodeling. Galphai3-GIV coupling is essential for cell migration during wound healing, macrophage chemotaxis, and tumor cell migration, indicating that the Galphai3-GIV switch serves to link direction sensing from different families of chemotactic receptors to formation of the leading edge during cell migration.
Collapse
Affiliation(s)
- Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
36
|
Cullen PJ. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 2008; 9:574-82. [DOI: 10.1038/nrm2427] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
PXA domain-containing protein Pxa1 is required for normal vacuole function and morphology in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2008; 72:548-56. [PMID: 18256467 DOI: 10.1271/bbb.70666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PhoX homology (PX) domain-containing proteins play critical roles in vesicular trafficking, protein sorting, and lipid modification in eukaryotic cells. Several proteins with PX domains contain an associated domain termed PXA (PX-associated). Although PXA domain-containing proteins are required for some important cellular processes, the function of the PXA domain is unknown. We identified three PXA domain-containing proteins in Schizosaccharomyces pombe. S. pombe Pxa1p (SPAC5D6.07c) contained only the PXA domain, not the PX domain. To elucidate the role of the PXA domain in eukaryotic cells, we constructed and characterized a disruption mutant, pxa1. The pxa1 disruptant contained enlarged vacuoles and exhibited mislocalization of vacuolar carboxypeptidase Y (CPY). The conversion rate from pro- to mature-CPY was greatly impaired in pxa1 cells, and fluorescence microscopy indicated that a sorting receptor for CPY, Vps10p, mislocalized to the vacuolar membrane. The mutants were also deficient in vacuolar sorting of a multivesicular body (MVB) marker, a ubiquitin-GFP-carboxypeptidase S (Ub-GFP-CPS) fusion protein. Taken together, these results indicate that Pxa1 protein is required for normal vacuole function and morphology in S. pombe.
Collapse
|
38
|
Peres CM, Aronoff DM, Serezani CH, Flamand N, Faccioli LH, Peters-Golden M. Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:5454-61. [PMID: 17911632 DOI: 10.4049/jimmunol.179.8.5454] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leukotrienes (LTs) are lipid mediators implicated in asthma and other inflammatory diseases. LTB(4) and LTD(4) also participate in antimicrobial defense by stimulating phagocyte functions via ligation of B leukotriene type 1 (BLT1) receptor and cysteinyl LT type 1 (cysLT1) receptor, respectively. Although both Galpha(i) and Galpha(q) proteins have been shown to be coupled to both BLT1 and cysLT1 receptors in transfected cell systems, there is little known about specific G protein subunit coupling to LT receptors, or to other G protein-coupled receptors, in primary cells. In this study we sought to define the role of specific G proteins in pulmonary alveolar macrophage (AM) innate immune responses to LTB(4) and LTD(4). LTB(4) but not LTD(4) reduced cAMP levels in rat AM by a pertussis toxin (PTX)-sensitive mechanism. Enhancement of FcgammaR-mediated phagocytosis and bacterial killing by LTB(4) was also PTX-sensitive, whereas that induced by LTD(4) was not. LTD(4) and LTB(4) induced Ca(2+) and intracellular inositol monophosphate accumulation, respectively, highlighting the role of Galpha(q) protein in mediating PTX-insensitive LTD(4) enhancement of phagocytosis and microbicidal activity. Studies with liposome-delivered G protein blocking Abs indicated a dependency on specific Galpha(q/11) and Galpha(i3) subunits, but not Galpha(i2) or G(beta)gamma, in LTB(4)-enhanced phagocytosis. The selective importance of Galpha(q/11) protein was also demonstrated in LTD(4)-enhanced phagocytosis. The present investigation identifies differences in specific G protein subunit coupling to LT receptors in antimicrobial responses and highlights the importance of defining the specific G proteins coupled to heptahelical receptors in primary cells, rather than simply using heterologous expression systems.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cyclic AMP/antagonists & inhibitors
- Cyclic AMP/metabolism
- Down-Regulation/immunology
- Female
- GTP-Binding Protein alpha Subunit, Gi2/biosynthesis
- GTP-Binding Protein alpha Subunit, Gi2/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/biosynthesis
- GTP-Binding Protein alpha Subunits, Gq-G11/genetics
- GTP-Binding Proteins/biosynthesis
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/physiology
- Intracellular Fluid/metabolism
- Leukotriene B4/antagonists & inhibitors
- Leukotriene B4/physiology
- Leukotriene D4/antagonists & inhibitors
- Leukotriene D4/physiology
- Macrophage Activation/immunology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Rats
- Rats, Wistar
- Receptors, Leukotriene/metabolism
- Receptors, Leukotriene/physiology
- Toxoids/pharmacology
Collapse
Affiliation(s)
- Camila M Peres
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kong C, Su X, Chen PI, Stahl PD. Rin1 interacts with signal-transducing adaptor molecule (STAM) and mediates epidermal growth factor receptor trafficking and degradation. J Biol Chem 2007; 282:15294-301. [PMID: 17403676 DOI: 10.1074/jbc.m611538200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rin1, the prototype of a new family of multidomain Rab5 exchange factors, has been shown to play an important role in the endocytosis of the epidermal growth factor receptor (EGFR). Herein, we examined the role of Rin1 in the down-regulation of EGFR following EGF stimulation. We observed that overexpression of Rin1 accelerates EGFR degradation in EGF-stimulated cells. In concordance, depletion of endogenous Rin1 by RNA interference resulted in a substantial reduction of EGFR degradation. We showed that Rin1 interacts with signal-transducing adaptor molecule 2 (STAM2), a protein that associates with hepatocyte growth factor-regulated substrate and plays a key role in the endosomal sorting machinery. Green fluorescent protein (GFP)-Rin1 co-localizes with hemagglutinin (HA)-STAM2 and with endogenous hepatocyte growth factor-regulated substrate. Furthermore, wild type STAM2, but not a deletion mutant lacking the SH3 domain, co-immunoprecipitates with endogenous Rin1. This interaction is dependent on the proline-rich domain (PRD) of Rin1 as Rin1DeltaPRD, a mutant lacking the PRD, does not interact with STAM2. Moreover, EGFR degradation was not accelerated by expression of the Rin1DeltaPRD mutant. Together these results suggest that Rin1 regulates EGFR degradation in cooperation with STAM, defining a novel role for Rin1 in regulating endosomal trafficking.
Collapse
Affiliation(s)
- Chen Kong
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
40
|
Stasyk T, Schiefermeier N, Skvortsov S, Zwierzina H, Peränen J, Bonn GK, Huber LA. Identification of endosomal epidermal growth factor receptor signaling targets by functional organelle proteomics. Mol Cell Proteomics 2007; 6:908-22. [PMID: 17293594 DOI: 10.1074/mcp.m600463-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor (EGF) receptor (EGFR) signal transduction is organized by scaffold and adaptor proteins, which have specific subcellular distribution. On a way from the plasma membrane to the lysosome EGFRs are still in their active state and can signal from distinct subcellular locations. To identify organelle-specific targets of EGF receptor signaling on endosomes a combination of subcellular fractionation, two-dimensional DIGE, fluorescence labeling of phosphoproteins, and MALDI-TOF/TOF mass spectrometry was applied. All together 23 EGF-regulated (phospho)proteins were identified as being differentially associated with endosomal fractions by functional organelle proteomics; among them were proteins known to be involved in endosomal trafficking and cytoskeleton rearrangement (Alix, myosin-9, myosin regulatory light chain, Trap1, moesin, cytokeratin 8, septins 2 and 11, and CapZbeta). Interestingly R-Ras, a small GTPase of the Ras family that regulates cell survival and integrin activity, was associated with endosomes in a ligand-dependent manner. EGF-dependent association of R-Ras with late endosomes was confirmed by confocal laser scanning immunofluorescence microscopy and Western blotting of endosomal fractions. EGFR tyrosine kinase inhibitor gefitinib was used to confirm EGF-dependent regulation of all identified proteins. EGF-dependent association of signaling molecules, such as R-Ras, with late endosomes suggests signaling specification through intracellular organelles.
Collapse
Affiliation(s)
- Taras Stasyk
- Biocenter, Division of Cell Biology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
41
|
Ren J, Kee Y, Huibregtse JM, Piper RC. Hse1, a component of the yeast Hrs-STAM ubiquitin-sorting complex, associates with ubiquitin peptidases and a ligase to control sorting efficiency into multivesicular bodies. Mol Biol Cell 2007; 18:324-35. [PMID: 17079730 PMCID: PMC1751313 DOI: 10.1091/mbc.e06-06-0557] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 10/16/2006] [Accepted: 10/19/2006] [Indexed: 11/11/2022] Open
Abstract
Ubiquitinated integral membrane proteins are delivered to the interior of the lysosome/vacuole for degradation. This process relies on specific ubiquitination of potential cargo and recognition of that Ub-cargo by sorting receptors at multiple compartments. We show that the endosomal Hse1-Vps27 sorting receptor binds to ubiquitin peptidases and the ubiquitin ligase Rsp5. Hse1 is linked to Rsp5 directly via a PY element within its C-terminus and through a novel protein Hua1, which recruits a complex of Rsp5, Rup1, and Ubp2. The SH3 domain of Hse1 also binds to the deubiquitinating protein Ubp7. Functional analysis shows that when both modes of Rsp5 association with Hse1 are altered, sorting of cargo that requires efficient ubiquitination for entry into the MVB is blocked, whereas sorting of cargo containing an in-frame addition of ubiquitin is normal. Further deletion of Ubp7 restores sorting of cargo when the Rsp5:Hse1 interaction is compromised suggesting that both ubiquitin ligases and peptidases associate with the Hse1-Vps27 sorting complex to control the ubiquitination status and sorting efficiency of cargo proteins. Additionally, we find that disruption of UBP2 and RUP1 inhibits MVB sorting of some cargos suggesting that Rsp5 requires association with Ubp2 to properly ubiquitinate cargo for efficient MVB sorting.
Collapse
Affiliation(s)
- Jihui Ren
- *Department of Physiology and Biophysics, University of Iowa, Iowa City, IA 52242; and
| | - Younghoon Kee
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Jon M. Huibregtse
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
| | - Robert C. Piper
- *Department of Physiology and Biophysics, University of Iowa, Iowa City, IA 52242; and
| |
Collapse
|
42
|
Xie GX, Palmer PP. How regulators of G protein signaling achieve selective regulation. J Mol Biol 2006; 366:349-65. [PMID: 17173929 PMCID: PMC1805491 DOI: 10.1016/j.jmb.2006.11.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/02/2006] [Accepted: 11/10/2006] [Indexed: 11/30/2022]
Abstract
The regulators of G protein signaling (RGS) are a family of cellular proteins that play an essential regulatory role in G protein-mediated signal transduction. There are multiple RGS subfamilies consisting of over 20 different RGS proteins. They are basically the guanosine triphosphatase (GTPase)-accelerating proteins that specifically interact with G protein alpha subunits. RGS proteins display remarkable selectivity and specificity in their regulation of receptors, ion channels, and other G protein-mediated physiological events. The molecular and cellular mechanisms underlying such selectivity are complex and cooperate at many different levels. Recent research data have provided strong evidence that the spatiotemporal-specific expression of RGS proteins and their target components, as well as the specific protein-protein recognition and interaction through their characteristic structural domains and functional motifs, are determinants for RGS selectivity and specificity. Other molecular mechanisms, such as alternative splicing and scaffold proteins, also significantly contribute to RGS selectivity. To pursue a thorough understanding of the mechanisms of RGS selective regulation will be of great significance for the advancement of our knowledge of molecular and cellular signal transduction.
Collapse
Affiliation(s)
| | - Pamela Pierce Palmer
- *Corresponding author: Pamela Pierce Palmer, M.D., Ph.D., University of California, San Francisco, Department of Anesthesia and Perioperative Care, 513 Parnassus Avenue, Box 0464, Room S-455, San Francisco, California 94143, USA, Telephone: (415)476-6783, FAX: (415)502-5375, E-mail:
| |
Collapse
|
43
|
Zheng B, Tang T, Tang N, Kudlicka K, Ohtsubo K, Ma P, Marth JD, Farquhar MG, Lehtonen E. Essential role of RGS-PX1/sorting nexin 13 in mouse development and regulation of endocytosis dynamics. Proc Natl Acad Sci U S A 2006; 103:16776-81. [PMID: 17077144 PMCID: PMC1636531 DOI: 10.1073/pnas.0607974103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RGS-PX1 (also known as sorting nexin 13) is a member of both the regulator of G protein signaling (RGS) and sorting nexin (SNX) protein families. Biochemical and cell culture studies have shown that RGS-PX1/SNX13 attenuates Galphas-mediated signaling through its RGS domain and regulates endocytic trafficking and degradation of the epidermal growth factor receptor. To understand the functions of RGS-PX1/SNX13 in vivo, we generated mice carrying targeted mutations of Snx13 and found that systemic Snx13-null mice were embryonic lethal around midgestation. Snx13-null embryos had significant overall growth retardation and defects in neural tube closure, blood vessel formation, and the formation of the placental labyrinthine layer. Moreover, the Snx13-null visceral yolk sac endoderm cells showed dramatic changes in the organization of endocytic compartments, abundant autophagic vacuoles, and abnormal localization of several endocytic markers, including megalin, a receptor for nutrients and proteins; ARH, a coat protein that binds megalin; LAMP2; and LC3. These changes suggest that Snx13-null embryos are defective in nutrient uptake and transport, which may contribute to the other developmental abnormalities observed. Taken together, our findings demonstrate an essential role for RGS-PX1/SNX13 in mouse development and provide previously undescribed insights into its cellular function in the regulation of endocytosis dynamics.
Collapse
Affiliation(s)
- Bin Zheng
- Departments of *Cellular and Molecular Medicine and
| | | | - Nan Tang
- Biology, University of California at San Diego, La Jolla, CA 92093-0651
| | | | | | - Phuong Ma
- Departments of *Cellular and Molecular Medicine and
| | | | - Marilyn G. Farquhar
- Departments of *Cellular and Molecular Medicine and
- To whom correspondence should be addressed. E-mail:
| | | |
Collapse
|
44
|
Kügler S, Böcker K, Heusipp G, Greune L, Kim KS, Schmidt MA. Pertussis toxin transiently affects barrier integrity, organelle organization and transmigration of monocytes in a human brain microvascular endothelial cell barrier model. Cell Microbiol 2006; 9:619-32. [PMID: 17002784 DOI: 10.1111/j.1462-5822.2006.00813.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Encephalopathies and neurological disorders are sometimes associated with respiratory tract infections caused by Bordetella pertussis. For these complications to occur cerebral barriers have to be compromised. Therefore, the influence of pertussis toxin (PT), a decisive virulence determinant of B. pertussis, on endothelial barrier integrity was investigated. Human brain microvascular endothelial cells cultured on Transwell filter devices were used as model for the blood brain barrier. PT, but not its B-oligomer, induced a reduction of the transendothelial resistance and enhanced the permeability for the protein marker horseradish peroxidase. Moreover, transmigration of human monocytes was also elevated suggesting a PT-associated enhancement of the diapedesis of blood leucocytes. Uptake and trafficking of PT was followed by electron microscopy via clathrin-coated pits and accumulation in lysosomes and microvesicular bodies. The breach in barrier integrity was accompanied by a transient disintegration of Golgi structures. Interestingly, PT-induced effects were only transient and restoration of barrier function was observed after 24 h. In summary, intoxication by PT causes a transient destruction of the cellular organization in human brain-derived endothelial cells resulting in a transient disruption of barrier functions. We suggest that these findings reflect early steps in the development of neurological disorders associated with pertussis disease.
Collapse
Affiliation(s)
- Silke Kügler
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität/Universitätsklinikum Münster, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Nethery DE, Ghosh S, Erzurum SC, Kern JA. Inactivation of neuregulin-1 by nitration. Am J Physiol Lung Cell Mol Physiol 2006; 292:L287-93. [PMID: 16980377 DOI: 10.1152/ajplung.00058.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nitration is a posttranslational modification that can compromise protein function. We hypothesized that nitration of growth factors secreted in the lung may alter their interaction with their respective receptors and modulate the normal growth and differentiation program induced by ligand-receptor interaction. We tested this hypothesis in vitro by nitration of neuregulin-1's (NRG-1) EGF-like domain and studying the effect on NRG-1's activity. Nitration of NRG-1's (nNRG-1) EGF-like domain resulted in an inability to activate its receptor, the human epidermal growth factor receptors 2 and 3 (HER2/HER3) heterodimer, as defined by loss of HER2 tyrosine phosphorylation induced by nNRG-1 in MCF-7 cells. Receptor activation was not restored with increasing nNRG-1 concentration or exposure times. nNRG-1 did not compete with NRG-1 for HER2/HER3 binding in competition assays. In addition, nNRG-1 no longer induced proliferation of the MCF-7 cell line, as MCF-7 cells exposed to nNRG-1 and NRG-1 concurrently had the same proliferation rate as that induced by NRG-1 alone. Thus nitration of NRG-1's EGF-like domain caused it to lose its ability to bind and activate its receptor with loss of ligand-induced proliferation. Posttranslational nitration of growth factors in states where reactive nitrogen species are increased may be an important means of regulating growth factor receptor effects in the lung.
Collapse
Affiliation(s)
- David E Nethery
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University Hospitals of Cleveland, Wearn 610, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
46
|
Jin C, Ding P, Wang Y, Ma D. Regulation of EGF receptor signaling by the MARVEL domain-containing protein CKLFSF8. FEBS Lett 2005; 579:6375-82. [PMID: 16263120 DOI: 10.1016/j.febslet.2005.10.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/11/2005] [Accepted: 10/13/2005] [Indexed: 11/24/2022]
Abstract
It is known that chemokine-like factor superfamily 8 (CKLFSF8), a member of the CKLF superfamily, has four putative transmembrane regions and a MARVEL domain. Its structure is similar to TM4SF11 (plasmolipin) and widely distributed in normal tissue. However, its function is not yet known. We show here that CKLFSF8 is associated with the epidermal growth factor receptor (EGFR) and that ectopic expression of CKLFSF8 in several cell lines suppresses EGF-induced cell proliferation, whereas knockdown of CKLFSF8 by siRNA promotes cell proliferation. In cells overexpressing CKLFSF8, the initial activation of EGFR was not affected, but subsequent desensitization of EGF-induced signaling occurred rapidly. This attenuation was correlated with an increased rate of receptor endocytosis. In contrast, knockdown of CKLFSF8 by siCKLFSF8 delayed EGFR endocytosis. These results identify CKLFSF8 as a novel regulator of EGF-induced signaling and indicate that the association of EGFR with four transmembrane proteins is critical for EGFR desensitization.
Collapse
Affiliation(s)
- Caining Jin
- Lab of Medical Immunology, School of Basic Medical Science, Peking University Health Science Center, Peking University, No. 38 Xueyuan Road, Beijing 100083, China
| | | | | | | |
Collapse
|
47
|
Le-Niculescu H, Niesman I, Fischer T, DeVries L, Farquhar MG. Identification and Characterization of GIV, a Novel Gαi/s -interacting Protein Found on COPI, Endoplasmic Reticulum-Golgi Transport Vesicles. J Biol Chem 2005; 280:22012-20. [PMID: 15749703 DOI: 10.1074/jbc.m501833200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we characterize GIV (Galpha-interacting vesicle-associated protein), a novel protein that binds members of the Galpha(i) and Galpha subfamilies of heterotrimeric G proteins. The Galpha(s) interaction site was mapped to an 83-amino acid region of GIV that is enriched in highly charged amino acids. BLAST searches revealed two additional mammalian family members, Daple and an uncharacterized protein, FLJ00354. These family members share the highest homology at the Galpha binding domain, are homologous at the N terminus and central coiled coil domain but diverge at the C terminus. Using affinity-purified IgG made against two different regions of the protein, we localized GIV to COPI, endoplasmic reticulum (ER)-Golgi transport vesicles concentrated in the Golgi region in GH3 pituitary cells and COS7 cells. Identification as COPI vesicles was based on colocalization with beta-COP, a marker for these vesicles. GIV also codistributes in the Golgi region with endogenous calnuc and the KDEL receptor, which are cis Golgi markers and with Galpha(i3)-yellow fluorescent protein expressed in COS7 cells. By immunoelectron microscopy, GIV colocalizes with beta-COP and Galpha(i3) on vesicles found in close proximity to ER exit sites and to cis Golgi cisternae. In cell fractions prepared from rat liver, GIV is concentrated in a carrier vesicle fraction (CV2) enriched in ER-Golgi transport vesicles. beta-COP and several Galpha subunits (Galpha(i1-3), Galpha(s)) are also most enriched in CV2. Our results demonstrate the existence of a novel Galpha-interacting protein associated with COPI transport vesicles that may play a role in Galpha-mediated effects on vesicle trafficking within the Golgi and/or between the ER and the Golgi.
Collapse
Affiliation(s)
- Helen Le-Niculescu
- Department of Cellular and Molecular Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
48
|
Allen JA, Yu JZ, Donati RJ, Rasenick MM. Beta-adrenergic receptor stimulation promotes G alpha s internalization through lipid rafts: a study in living cells. Mol Pharmacol 2005; 67:1493-504. [PMID: 15703379 DOI: 10.1124/mol.104.008342] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Upon binding hormones or drugs, many G protein-coupled receptors are internalized, leading to receptor recycling, receptor desensitization, and down-regulation. Much less understood is whether heterotrimeric G proteins also undergo agonist-induced endocytosis. To investigate the intracellular trafficking of G alpha s, we developed a functional G alpha s-green fluorescent protein (GFP) fusion protein that can be visualized in living cells during signal transduction. C6 and MCF-7 cells expressing G alpha s-GFP were treated with 10 microM isoproterenol, and trafficking was assessed with fluorescence microscopy. Upon isoproterenol stimulation, G alpha s-GFP was removed from the plasma membrane and internalized into vesicles. Vesicles containing G alpha s-GFP did not colocalize with markers for early endosomes or late endosomes/lysosomes, revealing that G alpha s does not traffic through common endocytic pathways. Furthermore, G alpha s-GFP did not colocalize with internalized beta2-adrenergic receptors, suggesting that G alpha s and receptors are removed from the plasma membrane by distinct endocytic pathways. Nonetheless, activated G alpha s-GFP did colocalize in vesicles labeled with fluorescent cholera toxin B, a lipid raft marker. Agonist significantly increased G alpha s protein in Triton X-100 -insoluble membrane fractions, suggesting that G alpha s moves into lipid rafts/caveolae after activation. Disruption of rafts/caveolae by treatment with cyclodextrin prevented agonist-induced internalization of G alpha s-GFP, as did overexpression of a dominant-negative dynamin. Taken together, these results suggest that receptor-activated G alpha s moves into lipid rafts and is internalized from these membrane microdomains. It is suggested that agonist-induced internalization of G alpha s plays a specific role in G protein-coupled receptor-mediated signaling and could enable G alpha s to traffic into the cellular interior to regulate effectors at multiple cellular sites.
Collapse
Affiliation(s)
- John A Allen
- Department of Physiology and Biophysics, University of Illinois at Chicago (UIC), 60612-7342, USA
| | | | | | | |
Collapse
|
49
|
Abstract
The sorting nexins (SNXs) are a family of PX domain-containing proteins found in yeast and mammalian cells that have been proposed to regulate intracellular trafficking. Mammalian SNXs have been suggested to function variously in pro-degradative sorting, internalization, endosomal recycling, or simply in endosomal sorting. In yeast, the defining function for these proteins is a regulation of cargo retrieval. Here we examine recent data on the SNX family of proteins and attempt to draw out unifying themes between the work performed in yeast and mammalian systems.
Collapse
Affiliation(s)
- Jez Carlton
- Department of Biochemistry, School of Medical Sciences, University Walk, Clifton, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|