1
|
Yilmaz S, Cizmecioglu O. PI3K Signaling at the Crossroads of Lipid Metabolism and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:139-164. [PMID: 39616584 DOI: 10.1007/5584_2024_832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The proto-oncogenic PI3K pathway is crucial for the integration of growth factor signaling and metabolic pathways to facilitate the coordination for cell growth. Since transformed cells have the ability to upregulate their anabolic pathways and selectively modulate a subset of metabolites functioning as anti- or pro-tumorigenic signal mediators, the question of how the levels of these metabolites are regulated has also become the center of attention for cancer researchers. Apart from its well-defined roles in glucose metabolism and peptide anabolism, the PI3K pathway appears to be a significant regulator of lipid metabolism and a potentiator of proto-oncogenic bioactive lipid metabolite signaling. In this review, we aim to describe the crosstalk between the PI3K pathway and bioactive lipid species of the three main lipid classes.
Collapse
Affiliation(s)
- Sevval Yilmaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
2
|
Liu C, Yuan W, Yang H, Ni J, Tang L, Zhao H, Neumann D, Ding X, Zhu L. Associating bovine herpesvirus 1 envelope glycoprotein gD with activated phospho-PLC-γ1(S1248). Microbiol Spectr 2023; 11:e0196323. [PMID: 37655900 PMCID: PMC10580943 DOI: 10.1128/spectrum.01963-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/23/2023] [Indexed: 09/02/2023] Open
Abstract
Phospholipase C gamma 1 (PLC-γ1) may locate at distinct subcellular locations, such as cytosol, plasma membrane, and nucleus for varied biological functions. Bovine herpesvirus 1 (BoHV-1) productive infection activates PLC-γ1 signaling, as demonstrated by increased protein levels of phosphorylated-PLC-γ1 at Ser1248 [p-PLC-γ1(S1248)], which benefits virus productive infection. Here, for the first time, we reported that Golgi apparatus also contains activated p-PLC-γ1(S1248). And BoHV-1 productive infection at later stages (24 hpi) increased the accumulation of p-PLC-γ1(S1248) in the Golgi apparatus, where p-PLC-γ1(S1248) forms highlighted puncta observed via a confocal microscope. Coimmunoprecipitation studies demonstrated that the Golgi p-PLC-γ1(S1248) is specifically associated with the viral protein gD but not gC. In addition, we found that p-PLC-γ1(S1248) is consistently associated with both the plasma membrane-associated virions and the released virions. When the virus-infected cells were treated with PLC-γ1-specific inhibitor, U73122, for a short duration of 4 hours prior to the endpoint of virus infection, we found that the viral protein gD was trapped in the Golgi apparatus, suggesting that the PLC-γ1 signaling may facilitate trafficking of progeny virions out of this organelle. These findings provide a novel insight into the interplay between PLC-γ1 signaling and BoHV-1 replication. IMPORTANCE Bovine herpesvirus 1 (BoHV-1) productive infection increases protein levels of phosphorylated-phospholipase C gamma 1 at Ser1248 [p-PLC-γ1(S1248)]. However, whether it causes any variations to p-PLC-γ1(S1248) localization is not well understood. Here, for the first time, we found that partial p-PLC-γ1(S1248) is residing in the Golgi apparatus, where the accumulation is enhanced by virus infection. p-PLC-γ1(S1248) is consistently associated with virions, partially via binding to gD, in both the Golgi apparatus and cytoplasm membranes. Surprisingly, it also associates with the released virions. Of note, this is the first evidenced BoHV-1 virion-bound host protein. It seems that p-PLC-γ1(S1248) works as an escort during trafficking of progeny virions out of Golgi apparatus to the plasma membranes as well as releasing outside of the cell membranes. Furthermore, we showed that the activated p-PLC-γ1(S1248) is potentially implicated in the transport of virions out of Golgi apparatus, which may represent a novel mechanism to regulate virus productive infection.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Yang
- College of Life Sciences, Hebei University, Baoding, China
| | - Junqing Ni
- Animal Husbandry and Improved Breeds Work Station of Hebei Province, Shijiazhuang, China
| | - Linke Tang
- College of Life Sciences, Hebei University, Baoding, China
| | - Heci Zhao
- College of Life Sciences, Hebei University, Baoding, China
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xiuyan Ding
- College of Life Sciences, Hebei University, Baoding, China
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
3
|
Cheshenko N, Bonanno JB, Hoffmann HH, Jangra RK, Chandran K, Rice CM, Almo SC, Herold BC. Cell-impermeable staurosporine analog targets extracellular kinases to inhibit HSV and SARS-CoV-2. Commun Biol 2022; 5:1096. [PMID: 36245045 PMCID: PMC9569420 DOI: 10.1038/s42003-022-04067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Herpes simplex virus (HSV) receptor engagement activates phospholipid scramblase triggering Akt translocation to the outer leaflet of the plasma membrane where its subsequent phosphorylation promotes viral entry. We hypothesize that this previously unrecognized outside-inside signaling pathway is employed by other viruses and that cell-impermeable kinase inhibitors could provide novel antivirals. We synthesized a cell-impermeable analog of staurosporine, CIMSS, which inhibited outer membrane HSV-induced Akt phosphorylation and blocked viral entry without inducing apoptosis. CIMSS also blocked the phosphorylation of 3-phosphoinositide dependent protein kinase 1 and phospholipase C gamma, which were both detected at the outer leaflet following HSV exposure. Moreover, vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein (VSV-S), but not native VSV or VSV pseudotyped with Ebola virus glycoprotein, triggered this scramblase-Akt outer membrane signaling pathway. VSV-S and native SARS-CoV-2 infection were inhibited by CIMSS. Thus, CIMSS uncovered unique extracellular kinase processes linked to HSV and SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Natalia Cheshenko
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, LA, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Betsy C Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Lemster AL, Sievers E, Pasternack H, Lazar-Karsten P, Klümper N, Sailer V, Offermann A, Brägelmann J, Perner S, Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers (Basel) 2022; 14:cancers14081894. [PMID: 35454801 PMCID: PMC9032772 DOI: 10.3390/cancers14081894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer is the most common cancer in men and is one of the leading causes of cancer-related deaths. During prostate cancer progression and metastasis, the epithelial cells can undergo epithelial–mesenchymal transition (EMT). Here, we show that the histone demethylase KDM5C is highly expressed in metastatic prostate cancer. We establish that stable clones silence KDM5C in prostate cancer cells. Knockdown of KDM5C leads to a reduced migratory and invasion capacity. This is associated with changes by multiple molecular mechanisms. This signaling subsequently modifies the expression of various transcription factors like Snail, Twist, and Zeb1/2, which are also known as master regulators of EMT. Taken together, our results indicate the potential to therapeutically target KDM5C either alone or in combination with Akt/mTOR-inhibitor in prostate cancer patients by targeting the EMT signaling pathways. Abstract Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Correspondence:
| |
Collapse
|
5
|
Griffith AA, Callahan KP, King NG, Xiao Q, Su X, Salomon AR. SILAC Phosphoproteomics Reveals Unique Signaling Circuits in CAR-T Cells and the Inhibition of B Cell-Activating Phosphorylation in Target Cells. J Proteome Res 2022; 21:395-409. [PMID: 35014847 PMCID: PMC8830406 DOI: 10.1021/acs.jproteome.1c00735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) is a single-pass transmembrane receptor designed to specifically target and eliminate cancers. While CARs prove highly efficacious against B cell malignancies, the intracellular signaling events which promote CAR T cell activity remain elusive. To gain further insight into both CAR T cell signaling and the potential signaling response of cells targeted by CAR, we analyzed phosphopeptides captured by two separate phosphoenrichment strategies from third generation CD19-CAR T cells cocultured with SILAC labeled Raji B cells by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Here, we report that CD19-CAR T cells upregulated several key phosphorylation events also observed in canonical T cell receptor (TCR) signaling, while Raji B cells exhibited a significant decrease in B cell receptor-signaling related phosphorylation events in response to coculture. Our data suggest that CD19-CAR stimulation activates a mixture of unique CD19-CAR-specific signaling pathways and canonical TCR signaling, while global phosphorylation in Raji B cells is reduced after association with the CD19-CAR T cells.
Collapse
Affiliation(s)
- Alijah A. Griffith
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Kenneth P. Callahan
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Nathan Gordo King
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912
| | - Qian Xiao
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06520
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, 06520
| | - Arthur R. Salomon
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912,
| |
Collapse
|
6
|
Huang L, Bichsel C, Norris A, Thorpe J, Pevsner J, Alexandrescu S, Pinto A, Zurakowski D, Kleiman RJ, Sahin M, Greene AK, Bischoff J. Endothelial GNAQ p.R183Q Increases ANGPT2 (Angiopoietin-2) and Drives Formation of Enlarged Blood Vessels. Arterioscler Thromb Vasc Biol 2022; 42:e27-e43. [PMID: 34670408 PMCID: PMC8702487 DOI: 10.1161/atvbaha.121.316651] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Capillary malformation (CM) occurs sporadically and is associated with Sturge-Weber syndrome. The somatic mosaic mutation in GNAQ (c.548G>A, p.R183Q) is enriched in endothelial cells (ECs) in skin CM and Sturge-Weber syndrome brain CM. Our goal was to investigate how the mutant Gαq (G-protein αq subunit) alters EC signaling and disrupts capillary morphogenesis. Approach and Results: We used lentiviral constructs to express p.R183Q or wild-type GNAQ in normal human endothelial colony forming cells (EC-R183Q and EC-WT, respectively). EC-R183Q constitutively activated PLC (phospholipase C) β3, a downstream effector of Gαq. Activated PLCβ3 was also detected in human CM tissue sections. Bulk RNA sequencing analyses of mutant versus wild-type EC indicated constitutive activation of PKC (protein kinase C), NF-κB (nuclear factor kappa B) and calcineurin signaling in EC-R183Q. Increased expression of downstream targets in these pathways, ANGPT2 (angiopoietin-2) and DSCR (Down syndrome critical region protein) 1.4 were confirmed by quantitative PCR and immunostaining of human CM tissue sections. The Gαq inhibitor YM-254890 as well as siRNA targeted to PLCβ3 reduced mRNA expression levels of these targets in EC-R183Q while the pan-PKC inhibitor AEB071 reduced ANGPT2 but not DSCR1.4. EC-R183Q formed enlarged blood vessels in mice, reminiscent of those found in human CM. shRNA knockdown of ANGPT2 in EC-R183Q normalized the enlarged vessels to sizes comparable those formed by EC-WT. CONCLUSIONS Gαq-R183Q, when expressed in ECs, establishes constitutively active PLCβ3 signaling that leads to increased ANGPT2 and a proangiogenic, proinflammatory phenotype. EC-R183Q are sufficient to form enlarged CM-like vessels in mice, and suppression of ANGPT2 prevents the enlargement. Our study provides the first evidence that endothelial Gαq-R183Q is causative for CM and identifies ANGPT2 as a contributor to CM vascular phenotype.
Collapse
Affiliation(s)
- Lan Huang
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Colette Bichsel
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Alexis Norris
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jeremy Thorpe
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Anna Pinto
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine Research, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Robin J. Kleiman
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Arin K. Greene
- Department of Plastic and Oral Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Vascular Anomalies Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
7
|
Ghosh S, Nataraj NB, Noronha A, Patkar S, Sekar A, Mukherjee S, Winograd-Katz S, Kramarski L, Verma A, Lindzen M, Garcia DD, Green J, Eisenberg G, Gil-Henn H, Basu A, Lender Y, Weiss S, Oren M, Lotem M, Geiger B, Ruppin E, Yarden Y. PD-L1 recruits phospholipase C and enhances tumorigenicity of lung tumors harboring mutant forms of EGFR. Cell Rep 2021; 35:109181. [PMID: 34038737 PMCID: PMC8170369 DOI: 10.1016/j.celrep.2021.109181] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/20/2020] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy focuses on inhibitors of checkpoint proteins, such as programmed death ligand 1 (PD-L1). Unlike RAS-mutated lung cancers, EGFR mutant tumors have a generally low response to immunotherapy. Because treatment outcomes vary by EGFR allele, intrinsic and microenvironmental factors may be involved. Among all non-immunological signaling pathways surveyed in patients’ datasets, EGFR signaling is best associated with high PD-L1. Correspondingly, active EGFRs stabilize PD-L1 transcripts and depletion of PD-L1 severely inhibits EGFR-driven tumorigenicity and metastasis in mice. The underlying mechanisms involve the recruitment of phospholipase C-γ1 (PLC-γ1) to a cytoplasmic motif of PD-L1, which enhances PLC-γ1 activation by EGFR. Once stimulated, PLC-γ1 activates calcium flux, Rho GTPases, and protein kinase C, collectively promoting an aggressive phenotype. Anti-PD-L1 antibodies can inhibit these intrinsic functions of PD-L1. Our results portray PD-L1 as a molecular amplifier of EGFR signaling and improve the understanding of the resistance of EGFR+ tumors to immunotherapy. Unlike promoter-mediated PD-L1 induction by IFN-γ, EGFR rapidly stabilizes PD-L1 mRNA Once induced, PD-L1 enhances metastasis in vivo and chemotaxis toward EGF PD-L1 physically binds with and enhances activation of phospholipase C-γ1 by EGFR PLC-γ1 binds a PD-L1’s cytoplasmic segment implicated in protection from cytotoxicity
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sushant Patkar
- Department of Computer Science, University of Maryland College Park, College Park, MD, USA; Cancer Data Science Laboratory, National Cancer Institute, NIH, Rockville, MD, USA
| | - Arunachalam Sekar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology Weizmann Institute of Science, Rehovot, Israel
| | - Sabina Winograd-Katz
- Department of Molecular Cell Biology Weizmann Institute of Science, Rehovot, Israel
| | - Lior Kramarski
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Aakanksha Verma
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Moshit Lindzen
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Diana Drago Garcia
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Joseph Green
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Galit Eisenberg
- Sharett Institute of Oncology, Hadassah Medical School, Jerusalem, Israel
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Arkaprabha Basu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan Lender
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology Weizmann Institute of Science, Rehovot, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology Weizmann Institute of Science, Rehovot, Israel
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, NIH, Rockville, MD, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Chen X, Wang Y, Chen R, Qu N, Zhang B, Xia C. Suppressing PLCγ1 enhances osteogenic and chondrogenic potential of BMSCs. Biochem Biophys Res Commun 2020; 532:292-299. [PMID: 32868075 DOI: 10.1016/j.bbrc.2020.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 11/28/2022]
Abstract
Phosphatidylcholine-specific phospholipase Cγ1 (PLCγ1) is involved in regulating cell metabolism. However, little is known how PLCγ1 directs BMSC differentiation. Here, we investigated the role of PLCγ1 in rat BMSC differentiation into osteoblasts and chondrocytes. The results of Alizarin red and Alcian blue staining showed that PLCγ1 inhibitor U73122 significantly enhanced the mineralization capacity and proteoglycan deposition of BMSCs. The results of qPCR technique and Western blot analysis showed that long-term treatment of U73122 enhanced COL1A1 and OPG mRNA levels and Collagen 1A1, BMP2, and p-Smad1/5/9 protein levels and that short-term treatment of U73122 enhanced COL2A1 and SOX9 mRNA levels and Collagen 2, SOX9, Aggrecan, TGF-β3, and p-Smad2/3 protein levels. Decreased p-mTOR and p-P38 contributed to enhanced osteogenic potentials of BMSCs and increased p-P38 contributed to enhanced chondrogenic potentials of BMSCs. The scaffold transplantation with U73122+BMSC was more efficacious than BMSC alone for osteochondral defect repair in a rat model. Therefore, suppressing PLCγ1 could improve the capacity to effectively use BMSCs for cell therapy of osteochondral defect.
Collapse
Affiliation(s)
- Xiaolei Chen
- Bone & Joint Research Institute, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, 361004, China
| | - Yue Wang
- Bone & Joint Research Institute, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, 361004, China
| | - Ri Chen
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ning Qu
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Bing Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Chun Xia
- Bone & Joint Research Institute, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, 361004, China.
| |
Collapse
|
9
|
Mittal S, Kamath A, Joseph AM, Rajala MS. PLCγ1‑dependent invasion and migration of cells expressing NSCLC‑associated EGFR mutants. Int J Oncol 2020; 57:989-1000. [PMID: 32945365 DOI: 10.3892/ijo.2020.5112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/11/2020] [Indexed: 11/06/2022] Open
Abstract
The increased tyrosine kinase activity of non‑small cell lung cancer (NSCLC)‑associated epidermal growth factor receptor (EGFR) mutants results in deregulated pathways that contribute to malignant cell survival, tumor progression and metastasis. Previous studies investigating lung cancer‑associated EGFR have focused on the prognostic implications of receptor kinase mutations in patients with NSCLC; however, the role of EGFR mutations in tumor cell invasion and migration remains undetermined. The present study was designed to investigate the role of NSCLC‑associated mutant EGFR‑driven signaling pathways in cell proliferation and invasion. Non‑endogenous EGFR‑expressing 293 cells stably expressing EGFR mutants that are sensitive or resistant to Food and Drug Administration (FDA)‑approved EGFR‑targeted tyrosine kinase inhibitors (TKIs) were used in the present study. The experiments demonstrated an increased phosphorylation of phospholipase (PLC)γ1, c‑Cbl, signal transducer and activator of transcription (Stat), extracellular regulated kinase (Erk)1/2, Akt, Shc and Gab1 proteins in cells expressing a mutant form, rather than the wild‑type receptor. As PLCγ1 is a known regulator of metastatic development, mutant receptor‑mediated PLCγ1 activation was further evaluated. To examine the effects of EGFR and PLCγ1 phosphorylation, the metastatic potential of cells expressing mutants was investigated using wound healing, Transwell cell migration and invasion assays. The inhibition of receptor phosphorylation with the 1st, 2nd and 3rd generation TKIs, gefitinib, afatinib, osimertinib, respectively, reduced PLCγ1 phosphorylation, and reduced the invasive and migratory potential of 293 cells, confirming PLCγ1 as one of the probable downstream effectors of mutant EGFR signaling. However, the PLC inhibitor, U73122, inhibited cell migration and invasion without affecting EGFR signaling and PLCγ1 phosphorylation. Notably, U73122 reduced Akt and Erk1/2 phosphorylation within 25 min of its application; however, 100% cell viability was recorded even after 48 h. Upon further investigation, proliferative signaling pathways remained active at 48 h, in accordance with cell viability. Therefore, the present study concludes that mutant receptor‑mediated PLCγ1 activation may play a significant role in the migration and invasion of NSCLC tumors; however, its regulatory role in tumor cell proliferation warrants further investigation and validation in lung tumor cell lines harboring EGFR mutations.
Collapse
Affiliation(s)
- Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arpana Kamath
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ann M Joseph
- Department of Biochemistry, Amala Cancer Research Centre, Thrisuur, Kerala 680555, India
| | - Maitreyi S Rajala
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Mechanisms of the Regulation and Dysregulation of Glucagon Secretion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3089139. [PMID: 32774668 PMCID: PMC7396046 DOI: 10.1155/2020/3089139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
Glucagon, a hormone secreted by pancreatic alpha cells, contributes to the maintenance of normal blood glucose concentration by inducing hepatic glucose production in response to declining blood glucose. However, glucagon hypersecretion contributes to the pathogenesis of type 2 diabetes. Moreover, diabetes is associated with relative glucagon undersecretion at low blood glucose and oversecretion at normal and high blood glucose. The mechanisms of such alpha cell dysfunctions are not well understood. This article reviews the genesis of alpha cell dysfunctions during the pathogenesis of type 2 diabetes and after the onset of type 1 and type 2 diabetes. It unravels a signaling pathway that contributes to glucose- or hydrogen peroxide-induced glucagon secretion, whose overstimulation contributes to glucagon dysregulation, partly through oxidative stress and reduced ATP synthesis. The signaling pathway involves phosphatidylinositol-3-kinase, protein kinase B, protein kinase C delta, non-receptor tyrosine kinase Src, and phospholipase C gamma-1. This knowledge will be useful in the design of new antidiabetic agents or regimens.
Collapse
|
11
|
Epidermal Growth Factor Stimulates Fatty Acid Synthesis Mainly via PLC-γ1/Akt Signaling Pathway in Dairy Goat Mammary Epithelial Cells. Animals (Basel) 2020; 10:ani10060930. [PMID: 32481546 PMCID: PMC7341511 DOI: 10.3390/ani10060930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Goat milk contains an abundance of fatty acids which are benefit to human health. Epidermal growth factor (EGF) is a small peptide which could positively regulate the growth, development and differentiation of the mammary gland during lactation. However, little information is available about EGF in regulating lipid metabolism in the mammary gland. This study investigated the effects of EGF on the triglyceride (TG) synthesis, lipogenic genes expression and the downstream signal protein levels in goat mammary epithelial cells (GMECs). Our findings indicated EGF might be beneficial to improve milk fat synthesis of dairy goats. Abstract EGF acts as a ligand of the EGF receptor (EGFR) to activate the EGFR-mediated signaling pathways and is involved in the regulation of cell physiology. However, the roles of EGFR mediated signaling pathways in the regulation of lipid metabolism in goat mammary epithelial cells (GMECs) are poorly understood. To evaluate the impact of EGF on GMECs, the triglyceride (TG) content and lipid droplet were detected, using TG assay and immunofluorescence. Further, expression of lipogenic genes, the protein kinase B (Akt), phospholipase C-γ1 (PLC-γ1) and extracellular signal-regulated kinases (ERK)1/2 signaling pathways were measured by real-time polymerase chain reaction and Western blot, respectively. The results showed that the mRNA expression of EGFR gene was significantly upregulated in lactating goat mammary gland tissues compared to non-lactation period (p < 0.05). TG contents in EGF-treated GMECs were significantly increased (p < 0.05), and an increase of lipid droplets was also detected. In vitro studies demonstrated that the mRNA levels of lipogenesis-related FASN, ACC, SCD1, LXRa, LXRb and SP1 genes were positively correlated to the mRNA level of EGFR gene shown by gene overexpression and silencing (p < 0.05). The phosphorylations of Akt, ERK1/2 and PLC-γ1 in GMECs were greatly upregulated in the presence of EGF, and specific inhibitors were capable of blocking the phosphorylation of Akt, ERK1/2 and PLC-γ1. Compared with EGF-treated GMECs, the mRNA levels of FASN, ACC and SCD1 were significantly decreased in GMECs co-treated with PLC-γ1 and Akt inhibitor and EGF (p < 0.05), and TG content was also dropped significantly. These observations implied that EGFR plays an important role in regulating de novo fatty acid synthesis in GMECs, mainly mediated by Akt and PLC-γ1 signaling pathways.
Collapse
|
12
|
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5:22. [PMID: 32296018 PMCID: PMC7082344 DOI: 10.1038/s41392-020-0116-z] [Citation(s) in RCA: 997] [Impact Index Per Article: 199.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Collapse
Affiliation(s)
- Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
13
|
Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells 2020; 9:cells9030697. [PMID: 32178280 PMCID: PMC7140618 DOI: 10.3390/cells9030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
Collapse
|
14
|
Richards S, Walker J, Nakanishi M, Belghasem M, Lyle C, Arinze N, Napoleon MA, Ravid JD, Crossland N, Zhao Q, Rosenberg D, Rahimi N, Chitalia VC. Haploinsufficiency of Casitas B-Lineage Lymphoma Augments the Progression of Colon Cancer in the Background of Adenomatous Polyposis Coli Inactivation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:602-613. [PMID: 32113662 DOI: 10.1016/j.ajpath.2019.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Casitas B-lineage lymphoma (c-Cbl) is a recently identified ubiquitin ligase of nuclear β-catenin and a suppressor of colorectal cancer (CRC) growth in cell culture and mouse tumor xenografts. We hypothesized that reduction in c-Cbl in colonic epithelium is likely to increase the levels of nuclear β-catenin in the intestinal crypt, augmenting CRC tumorigenesis in an adenomatous polyposis coli (APCΔ14/+) mouse model. Haploinsufficient c-Cbl mice (APCΔ14/+ c-Cbl+/-) displayed a significant (threefold) increase in atypical hyperplasia and adenocarcinomas in the small and large intestines; however, no differences were noted in the adenoma frequency. In contrast to the APCΔ14/+ c-Cbl+/+ mice, APCΔ14/+ c-Cbl+/- crypts showed nuclear β-catenin throughout the length of the crypts and up-regulation of Axin2, a canonical Wnt target gene, and SRY-box transcription factor 9, a marker of intestinal stem cells. In contrast, haploinsufficiency of c-Cbl+/- alone was insufficient to induce tumorigenesis regardless of an increase in the number of intestinal epithelial cells with nuclear β-catenin and SRY-box transcription factor 9 in APC+/+ c-Cbl+/- mice. This study demonstrates that haploinsufficiency of c-Cbl results in Wnt hyperactivation in intestinal crypts and accelerates CRC progression to adenocarcinoma in the milieu of APCΔ14/+, a phenomenon not found with wild-type APC. While emphasizing the role of APC as a gatekeeper in CRC, this study also demonstrates that combined partial loss of c-Cbl and inactivation of APC significantly contribute to CRC tumorigenesis.
Collapse
Affiliation(s)
- Sean Richards
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joshua Walker
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Masako Nakanishi
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, Connecticut
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Chimera Lyle
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nkiruka Arinze
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Marc A Napoleon
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | | | - Nicholas Crossland
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Qing Zhao
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel Rosenberg
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, Connecticut
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Vipul C Chitalia
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Veterans Affairs Boston Healthcare System, Boston, Massachusetts; Global Co-Creation Labs, Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
15
|
Rujanapun N, Heebkaew N, Promjantuek W, Sotthibundhu A, Kunhorm P, Chaicharoenaudomrung N, Noisa P. Small molecules re-establish neural cell fate of human fibroblasts via autophagy activation. In Vitro Cell Dev Biol Anim 2019; 55:622-632. [PMID: 31321620 DOI: 10.1007/s11626-019-00381-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022]
Abstract
The generation of neural cells is of great interest in medical research because of its promising in neurodegenerative diseases. Small chemical molecules have been used for inducing specific cell types across lineage boundaries. Therefore, to direct neural cell fate, small molecule is a feasible approach for generating clinically relevant cell types without genetic alterations. Human fibroblasts have been directly induced into neural cells with different combinations of small molecules; however, the mechanism underlying neural induction is still not fully understood. In this study, human fibroblasts were induced into neural cells by using only 4 small molecules in a short time period, 5 d. Small molecules used in this study included WNT activator, DNMT inhibitor, Notch inhibitor, and retinoic acid. Neural-specific genes, including NESTIN, TUJ1, and SOX2, were upregulated upon the induction for 5 d. Noteworthy, this neural induction process by small molecules coincided with the activation of autophagy. Autophagy-related genes, such as LC3, ATG12, and LAMP1, were enhanced upon neural induction, and the number of induced-neural cells decreased when autophagy was suppressed by chloroquine. The activation of autophagy was found to reduce ROS generation within the induced-neural cells, and the inhibition of autophagy by chloroquine suppressed the expression of antioxidant genes, CATALASE, SOD, and GPX. This implied that autophagy maintained the optimal level of ROS for neural induction of human fibroblasts. Altogether, this study presented the effective and convenient condition to induce neural cells from human fibroblasts and revealed the positive roles of autophagy in controlling neural cell induction.
Collapse
Affiliation(s)
- Narawadee Rujanapun
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Nudjanad Heebkaew
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Wilasinee Promjantuek
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Areechun Sotthibundhu
- Chulabhorn International College of Medicine, Thammasat University, Rungsit Campus, Rungsit, Patumthani, 12120, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
16
|
Lyle CL, Belghasem M, Chitalia VC. c-Cbl: An Important Regulator and a Target in Angiogenesis and Tumorigenesis. Cells 2019; 8:cells8050498. [PMID: 31126146 PMCID: PMC6563115 DOI: 10.3390/cells8050498] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
Casitas B lineage lymphoma (c-Cbl) is a multifunctional protein with a ubiquitin E3 ligase activity capable of degrading diverse sets of proteins. Although previous work had focused mainly on c-Cbl mutations in humans with hematological malignancies, recent emerging evidence suggests a critical role of c-Cbl in angiogenesis and human solid organ tumors. The combination of its unique structure, modular function, and ability to channelize cues from a rich network of signaling cascades, empowers c-Cbl to assume a central role in these disease models. This review consolidates the structural and functional insights based on recent studies that highlight c-Cbl as a target with tantalizing therapeutic potential in various models of angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Chimera L Lyle
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA.
| | - Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, MA 02118, USA.
| | - Vipul C Chitalia
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA.
- Boston Veterans Affairs Healthcare System, Boston, MA 02118, USA.
| |
Collapse
|
17
|
Combined Targeting of Estrogen Receptor Alpha and XPO1 Prevent Akt Activation, Remodel Metabolic Pathways and Induce Autophagy to Overcome Tamoxifen Resistance. Cancers (Basel) 2019; 11:cancers11040479. [PMID: 30987380 PMCID: PMC6520695 DOI: 10.3390/cancers11040479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 01/21/2023] Open
Abstract
A majority of breast cancer specific deaths in women with ERα (+) tumors occur due to metastases that are resistant to endocrine therapy. There is a critical need for novel therapeutic approaches to resensitize recurrent ERα (+) tumors to endocrine therapies. The objective of this study was to elucidate mechanisms of improved effectiveness of combined targeting of ERα and the nuclear transport protein XPO1 in overcoming endocrine resistance. Selinexor (SEL), an XPO1 antagonist, has been evaluated in multiple late stage clinical trials in patients with relapsed and /or refractory hematological and solid tumor malignancies. Our transcriptomics analysis showed that 4-Hydroxytamoxifen (4-OHT), SEL alone or their combination induced differential Akt signaling- and metabolism-associated gene expression profiles. Western blot analysis in endocrine resistant cell lines and xenograft models validated differential Akt phosphorylation. Using the Seahorse metabolic profiler, we showed that ERα-XPO1 targeting changed the metabolic phenotype of TAM-resistant breast cancer cells from an energetic to a quiescent profile. This finding demonstrated that combined targeting of XPO1 and ERα rewired the metabolic pathways and shut down both glycolytic and mitochondrial pathways that would eventually lead to autophagy. Remodeling metabolic pathways to regenerate new vulnerabilities in endocrine resistant breast tumors is novel, and given the need for better strategies to improve therapy response in relapsed ERα (+) tumors, our findings show great promise for uncovering the role that ERα-XPO1 crosstalk plays in reducing cancer recurrences.
Collapse
|
18
|
Role of protein kinase N2 (PKN2) in cigarette smoke-mediated oncogenic transformation of oral cells. J Cell Commun Signal 2018; 12:709-721. [PMID: 29480433 DOI: 10.1007/s12079-017-0442-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/10/2017] [Indexed: 02/06/2023] Open
Abstract
Smoking is the leading cause of preventable death worldwide. Though cigarette smoke is an established cause of head and neck cancer (including oral cancer), molecular alterations associated with chronic cigarette smoke exposure are poorly studied. To understand the signaling alterations induced by chronic exposure to cigarette smoke, we developed a cell line model by exposing normal oral keratinocytes to cigarette smoke for a period of 12 months. Chronic exposure to cigarette smoke resulted in increased cellular proliferation and invasive ability of oral keratinocytes. Proteomic and phosphoproteomic analyses showed dysregulation of several proteins involved in cellular movement and cytoskeletal reorganization in smoke exposed cells. We observed overexpression and hyperphosphorylation of protein kinase N2 (PKN2) in smoke exposed cells as well as in a panel of head and neck cancer cell lines established from smokers. Silencing of PKN2 resulted in decreased colony formation, invasion and migration in both smoke exposed cells and head and neck cancer cell lines. Our results indicate that PKN2 plays an important role in oncogenic transformation of oral keratinocytes in response to cigarette smoke. The current study provides evidence that PKN2 can act as a potential therapeutic target in head and neck squamous cell carcinoma, especially in patients with a history of smoking.
Collapse
|
19
|
Receptors That Inhibit Macrophage Activation: Mechanisms and Signals of Regulation and Tolerance. J Immunol Res 2018; 2018:8695157. [PMID: 29607331 PMCID: PMC5828319 DOI: 10.1155/2018/8695157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
A variety of receptors perform the function of attenuating or inhibiting activation of cells in which they are expressed. Examples of these kinds of receptors include TIM-3 and PD-1, among others that have been widely studied in cells of lymphoid origin and, though to a lesser degree, in other cell lines. Today, several studies describe the function of these molecules as part of the diverse mechanisms of immune tolerance that exist in the immune system. This review analyzes the function of some of these proteins in monocytes and macrophages and as well as their participation as inhibitory molecules or elements of immunological tolerance that also act in innate defense mechanisms. We chose the receptors TIM-3, PD-1, CD32b, and CD200R because these molecules have distinct functional characteristics that provide examples of the different regulating mechanisms in monocytes and macrophages.
Collapse
|
20
|
Jang HJ, Suh PG, Lee YJ, Shin KJ, Cocco L, Chae YC. PLCγ1: Potential arbitrator of cancer progression. Adv Biol Regul 2018; 67:179-189. [PMID: 29174396 DOI: 10.1016/j.jbior.2017.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Phospholipase C (PLC) is an essential mediator of cellular signaling. PLC regulates multiple cellular processes by generating bioactive molecules such as inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). These products propagate and regulate cellular signaling via calcium (Ca2+) mobilization and activation of protein kinase C (PKC), other kinases, and ion channels. PLCγ1, one of the primary subtypes of PLC, is directly activated by membrane receptors, including receptor tyrosine kinases (RTKs), and adhesion receptors such as integrin. PLCγ1 mediates signaling through direct interactions with other signaling molecules via SH domains, as well as its lipase activity. PLCγ1 is frequently enriched and mutated in various cancers, and is involved in the processes of tumorigenesis, including proliferation, migration, and invasion. Although many studies have suggested that PLCγ functions in cell mobility rather than proliferation in cancer, questions remain as to whether PLCγ regulates mitogenesis and whether PLCγ promotes or inhibits proliferation. Moreover, how PLCγ regulates cancer-associated cellular processes and the interplay among other proteins involved in cancer progression have yet to be fully elucidated. In this review, we discuss the current understanding of the role of PLCγ1 in cancer mobility and proliferation.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yu Jin Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Young Chan Chae
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
21
|
Cai H, Qu N, Chen X, Zhou Y, Zheng X, Zhang B, Xia C. The inhibition of PLCγ1 protects chondrocytes against osteoarthritis, implicating its binding to Akt. Oncotarget 2017; 9:4461-4474. [PMID: 29435116 PMCID: PMC5796987 DOI: 10.18632/oncotarget.23286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022] Open
Abstract
Previous studies have addressed the involvement of phosphoinositide-specifc phospholipase γ1 (PLCγ1) and protein kinase B (PKB/Akt) in osteoarthritis (OA) pathogenesis, but it is not ascertained the possibility of them to be potential targets for OA therapy. Here, through local intra-articular injection of PLCγ or Akt inhibitor in a rat OA model induced by anterior cruciate ligament transaction plus medial meniscus resection, the architecture of chondrocyte and matrix organization of articular cartilage were observed using histopathological assays and Aggrecan, Col2, PLCγ1, and Akt levels were detected using immunohistochemistry assays. By treatment of Akt or PLCγ inhibitor and transfection of different PLCγ1- or Akt-expressing vectors in rat OA model chondrocytes, Aggrecan, Col2, PLCγ1, p-PLCγ1, Akt, and p-Akt levels were detected using western blotting analysis. The binding between PLCγ1 and Akt was assessed with co-immunoprecipitation assays in human OA chondrocytes. These results showed that PLCγ inhibition protected chondrocytes against OA, but Akt inhibition did not dramatically aggravate OA progression. There were mutual antagonism and binding between PLCγ1 and Akt that could be regulated by their phosphorylation levels. Consequently, the data reveal that the inhibition of PLCγ1 may provide an attractive therapeutic target for OA therapy, implicating its binding to Akt.
Collapse
Affiliation(s)
- Heguo Cai
- Zhongshan Hospital, Xiamen University, Fujian 361004, China.,The Third Hospital of Xiamen, Fujian, China, Fujian 361000, China
| | - Ning Qu
- School of Medicine, Xiamen University, Fujian 361102, China
| | - Xiaolei Chen
- Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Yang Zhou
- Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Xinpeng Zheng
- Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Bing Zhang
- School of Medicine, Xiamen University, Fujian 361102, China
| | - Chun Xia
- Zhongshan Hospital, Xiamen University, Fujian 361004, China
| |
Collapse
|
22
|
Jiang D, Zhuang J, Peng W, Lu Y, Liu H, Zhao Q, Chi C, Li X, Zhu G, Xu X, Yan C, Xu Y, Ge J, Pang J. Phospholipase Cγ1 Mediates Intima Formation Through Akt-Notch1 Signaling Independent of the Phospholipase Activity. J Am Heart Assoc 2017; 6:JAHA.117.005537. [PMID: 28698260 PMCID: PMC5586285 DOI: 10.1161/jaha.117.005537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Vascular smooth muscle cell proliferation, migration, and dedifferentiation are critical for vascular diseases. Recently, it was demonstrated that Notch receptors have opposing effects on intima formation after vessel injury. Therefore, it is important to investigate the specific regulatory pathways that activate the different Notch receptors. Methods and Results There was a time‐ and dose‐dependent activation of Notch1 by angiotensin II and platelet‐derived growth factor in vascular smooth muscle cells. When phospholipase Cγ1 (PLCγ1) expression was reduced by small interfering RNA, Notch1 activation and Hey2 expression (Notch target gene) induced by angiotensin II or platelet‐derived growth factor were remarkably inhibited, while Notch2 degradation was not affected. Mechanistically, we observed an association of PLCγ1 and Akt, which increased after angiotensin II or platelet‐derived growth factor stimulation. PLCγ1 knockdown significantly inhibited Akt activation. Importantly, PLCγ1 phospholipase site mutation (no phospholipase activity) did not affect Akt activation. Furthermore, PLCγ1 depletion inhibited platelet‐derived growth factor–induced vascular smooth muscle cell proliferation, migration, and dedifferentiation, while it increased apoptosis. In vivo, PLCγ1 and control small interfering RNA were delivered periadventitially in pluronic gel and complete carotid artery ligation was performed. Morphometric analysis 21 days after ligation demonstrated that PLCγ1 small interfering RNA robustly attenuated intima area and intima/media ratio compared with the control group. Conclusions PLCγ1‐Akt–mediated Notch1 signaling is crucial for intima formation. This effect is attributable to PLCγ1‐Akt interaction but not PLCγ1 phospholipase activity. Specific inhibition of the PLCγ1 and Akt interaction will be a promising therapeutic strategy for preventing vascular remodeling.
Collapse
Affiliation(s)
- Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Chi
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiankai Li
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofu Zhu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangbin Xu
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Chen Yan
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Yawei Xu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China .,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
23
|
Norris DM, Yang P, Krycer JR, Fazakerley DJ, James DE, Burchfield JG. An improved Akt reporter reveals intra- and inter-cellular heterogeneity and oscillations in signal transduction. J Cell Sci 2017; 130:2757-2766. [PMID: 28663386 DOI: 10.1242/jcs.205369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/26/2017] [Indexed: 11/20/2022] Open
Abstract
Akt is a key node in a range of signal transduction cascades and play a critical role in diseases such as cancer and diabetes. Fluorescently-tagged Akt reporters have been used to discern Akt localisation, yet it has not been clear how well these tools recapitulate the behaviour of endogenous Akt proteins. Here, we observed that fusion of eGFP to Akt2 impaired both its insulin-stimulated plasma membrane recruitment and its phosphorylation. Endogenous-like responses were restored by replacing eGFP with TagRFP-T. The improved response magnitude and sensitivity afforded by TagRFP-T-Akt2 over eGFP-Akt2 enabled monitoring of signalling outcomes in single cells at physiological doses of insulin with subcellular resolution and revealed two previously unreported features of Akt biology. In 3T3-L1 adipocytes, stimulation with insulin resulted in recruitment of Akt2 to the plasma membrane in a polarised fashion. Additionally, we observed oscillations in plasma membrane localised Akt2 in the presence of insulin with a consistent periodicity of 2 min. Our studies highlight the importance of fluorophore choice when generating reporter constructs and shed light on new Akt signalling responses that may encode complex signalling information.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dougall M Norris
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
24
|
Romano A, Giallongo C, La Cava P, Parrinello NL, Chiechi A, Vetro C, Tibullo D, Di Raimondo F, Liotta LA, Espina V, Palumbo GA. Proteomic Analysis Reveals Autophagy as Pro-Survival Pathway Elicited by Long-Term Exposure with 5-Azacitidine in High-Risk Myelodysplasia. Front Pharmacol 2017; 8:204. [PMID: 28491035 PMCID: PMC5405131 DOI: 10.3389/fphar.2017.00204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/31/2017] [Indexed: 01/04/2023] Open
Abstract
Azacytidine (5-AZA) is the standard first-choice treatment for high-risk myelodysplasia (MDS) patients. However, the clinical outcome for those patients who interrupt treatment or whose disease failed to respond is very poor. In order to identify the cellular pathways that are modified by long-term exposure to 5-AZA, we evaluated key proteins associated with the autophagy pathway by reverse-phase microarray (RPPA). Comparing bone marrow mononucleated cells (BMMCs) obtained from 20 newly-diagnosed patients and after four 5-AZA cycles we found an increased autophagy signaling. We then evaluated ex-vivo the effect of the combination of 5-AZA with autophagy inhibitors chloroquine (CQ) and leupeptin. Since 5-AZA and CQ showed synergism due to an increase of basal autophagy after 5-AZA exposure, we adopted a sequential treatment treating BMMCs with 5 μM 5-AZA for 72 h followed by 10 μM CQ for 24 h and found increased apoptosis, associated to a reduction of G2M phase and increase in G0-G1 phase. Long-term exposure to 5-AZA induced the reduction of the autophagic marker SQSTM1/p62, reversible by CQ or leupeptin exposure. In conclusion, we identified autophagy as a compensatory pathway occurring in MDS-BM after long-term exposure to 5-AZA and we provided evidences that a sequential treatment of 5-AZA followed by CQ could improve 5-AZA efficacy, providing novel insight for tailored therapy in MDS patients progressing after 5-AZA therapy.
Collapse
Affiliation(s)
- Alessandra Romano
- Divisione di Ematologia, Azienda Ospedaliera Policlinico UniversitariaCatania, Italy.,Scuola Superiore di CataniaCatania, Italy.,Center for Applied Proteomics and Molecular Medicine, George Mason UniversityManassas, VA, USA
| | - Cesarina Giallongo
- Divisione di Ematologia, Azienda Ospedaliera Policlinico UniversitariaCatania, Italy
| | | | | | - Antonella Chiechi
- Center for Applied Proteomics and Molecular Medicine, George Mason UniversityManassas, VA, USA
| | - Calogero Vetro
- Divisione di Ematologia, Azienda Ospedaliera Policlinico UniversitariaCatania, Italy.,Scuola Superiore di CataniaCatania, Italy
| | - Daniele Tibullo
- Divisione di Ematologia, Azienda Ospedaliera Policlinico UniversitariaCatania, Italy
| | - Francesco Di Raimondo
- Divisione di Ematologia, Azienda Ospedaliera Policlinico UniversitariaCatania, Italy.,Scuola Superiore di CataniaCatania, Italy
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason UniversityManassas, VA, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason UniversityManassas, VA, USA
| | - Giuseppe A Palumbo
- Divisione di Ematologia, Azienda Ospedaliera Policlinico UniversitariaCatania, Italy
| |
Collapse
|
25
|
Abstract
The ErbB receptor family, also known as the EGF receptor family or type I receptor family, includes the epidermal growth factor (EGF) receptor (EGFR) or ErbB1/Her1, ErbB2/Her2, ErbB3/Her3, and ErbB4/Her4. Among all RTKs, EGFR was the first RTK identified and the first one linked to cancer. Thus, EGFR has also been the most intensively studied among all RTKs. ErbB receptors are activated after homodimerization or heterodimerization. The ErbB family is unique among the various groups of receptor tyrosine kinases (RTKs) in that ErbB3 has impaired kinase activity, while ErbB2 does not have a direct ligand. Therefore, heterodimerization is an important mechanism that allows the activation of all ErbB receptors in response to ligand stimulation. The activated ErbB receptors bind to many signaling proteins and stimulate the activation of many signaling pathways. The specificity and potency of intracellular signaling pathways are determined by positive and negative regulators, the specific composition of activating ligand(s), receptor dimer components, and the diverse range of proteins that associate with the tyrosine phosphorylated C-terminal domain of the ErbB receptors. ErbB receptors are overexpressed or mutated in many cancers, especially in breast cancer, ovarian cancer, and non-small cell lung cancer. The overexpression and overactivation of ErbB receptors are correlated with poor prognosis, drug resistance, cancer metastasis, and lower survival rate. ErbB receptors, especially EGFR and ErbB2 have been the primary choices as targets for developing cancer therapies.
Collapse
Affiliation(s)
- Zhixiang Wang
- Signal Transduction Research Group, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 835 MSB, 114 St NW, Edmonton, AB, Canada, T6G 2H7.
| |
Collapse
|
26
|
Radin DP, Patel P. Delineating the molecular mechanisms of tamoxifen’s oncolytic actions in estrogen receptor-negative cancers. Eur J Pharmacol 2016; 781:173-80. [DOI: 10.1016/j.ejphar.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/15/2022]
|
27
|
Wang Z. Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research. Int J Mol Sci 2016; 17:ijms17010095. [PMID: 26771606 PMCID: PMC4730337 DOI: 10.3390/ijms17010095] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges.
Collapse
Affiliation(s)
- Zhixiang Wang
- The Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
28
|
EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis. Cell Signal 2015; 27:638-51. [DOI: 10.1016/j.cellsig.2014.11.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022]
|
29
|
Dual oxidase 2 generated reactive oxygen species selectively mediate the induction of mucins by epidermal growth factor in enterocytes. Int J Biochem Cell Biol 2015; 60:8-18. [DOI: 10.1016/j.biocel.2014.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/01/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
|
30
|
Stock AM, Powe DG, Hahn SA, Troost G, Niggemann B, Zänker KS, Entschladen F. Norepinephrine inhibits the migratory activity of pancreatic cancer cells. Exp Cell Res 2013; 319:1744-1758. [PMID: 23639786 DOI: 10.1016/j.yexcr.2013.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/25/2022]
Abstract
We have shown previously that norepinephrine induces migratory activity of tumour cells from breast, colon and prostate tissue via activation of beta-2 adrenergic receptors. Consequently, this effect can be inhibited pharmacologically by clinically established beta-blockers. Tumour cell migration is a prerequisite for metastasis formation, and accordingly we and others have shown that breast cancer patients, which take beta-blockers due to hypertension, have reduced metastasis formation and increased survival probability as compared to patients without hypertension or using other anti-hypertensive medication. Unlike the aforementioned tumour cells, pancreatic cancer cells show a reduced migratory activity upon norepinephrine treatment. By means of our three-dimensional, collagen-based cell migration assay, we have investigated the signal transduction pathways involved in this phenomenon. We have found that this conflicting effect of norepinephrine on pancreatic cancer cells is due to an imbalanced activation of the two pathways that usually mediate a pro-migratory effect of norepinephrine in other tumour cell types. Firstly, the inhibitory effect results from activation of a pathway which causes a strong increase of the secondary cell signalling molecule, cAMP. In addition, activation of phospholipase C gamma and the downstream protein kinase C alpha were shown to be already activated in pancreatic cancer cells and cannot be further activated by norepinephrine. We hypothesize that this constitutive activation of the phospholipase C gamma pathway is due to a cross-talk with receptor tyrosine kinase signalling, and this might also deliver an explanation for the unusual high spontaneous migratory activity of pancreatic cancer cells.
Collapse
Affiliation(s)
- Anna-Maria Stock
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Desmond G Powe
- Department of Cellular Pathology, Queen's Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - Stephan A Hahn
- Department of Molecular Gastroenterological Oncology, Centre of Clinical Research, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Gabriele Troost
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Bernd Niggemann
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Kurt S Zänker
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany
| | - Frank Entschladen
- Institute of Immunology and Experimental Oncology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany.
| |
Collapse
|
31
|
Bähr I, Mühlbauer E, Albrecht E, Peschke E. Evidence of the receptor-mediated influence of melatonin on pancreatic glucagon secretion via the Gαq protein-coupled and PI3K signaling pathways. J Pineal Res 2012; 53:390-8. [PMID: 22672634 DOI: 10.1111/j.1600-079x.2012.01009.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Melatonin has been shown to modulate glucose metabolism by influencing insulin secretion. Recent investigations have also indicated a regulatory function of melatonin on the pancreatic α-cells. The present in vitro and in vivo studies evaluated whether melatonin mediates its effects via melatonin receptors and which signaling cascade is involved. Incubation experiments using the glucagon-producing mouse pancreatic α-cell line αTC1 clone 9 (αTC1.9) as well as isolated pancreatic islets of rats and mice revealed that melatonin increases glucagon secretion. Preincubation of αTC1.9 cells with the melatonin receptor antagonists luzindole and 4P-PDOT abolished the glucagon-stimulatory effect of melatonin. In addition, glucagon secretion was lower in the pancreatic islets of melatonin receptor knockout mice than in the islets of the wild-type (WT) control animals. Investigations of melatonin receptor knockout mice revealed decreased plasma glucagon concentrations and elevated mRNA expression levels of the hepatic glucagon receptor when compared to WT mice. Furthermore, studies using pertussis toxin, as well as measurements of cAMP concentrations, ruled out the involvement of Gαi- and Gαs-coupled signaling cascades in mediating the glucagon increase induced by melatonin. In contrast, inhibition of phospholipase C in αTC1.9 cells prevented the melatonin-induced effect, indicating the physiological relevance of the Gαq-coupled pathway. Our data point to the involvement of the phosphatidylinositol 3-kinase signaling cascade in mediating melatonin effects in pancreatic α-cells. In conclusion, these findings provide evidence that the glucagon-stimulatory effect of melatonin in pancreatic α-cells is melatonin receptor mediated, thus supporting the concept of melatonin-modulated and diurnal glucagon release.
Collapse
MESH Headings
- Animals
- Cell Line
- Cyclic AMP/metabolism
- Diabetes Mellitus, Type 2/enzymology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Gene Expression Regulation
- Glucagon/blood
- Glucagon/metabolism
- Glucagon-Secreting Cells/drug effects
- Glucagon-Secreting Cells/enzymology
- Glucagon-Secreting Cells/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Melanins/pharmacology
- Mice
- Mice, Knockout
- Pertussis Toxin/pharmacology
- Phosphatidylinositol 3-Kinase/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Melatonin, MT1/deficiency
- Receptor, Melatonin, MT1/drug effects
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT2/deficiency
- Receptor, Melatonin, MT2/drug effects
- Receptor, Melatonin, MT2/genetics
- Receptors, Glucagon/drug effects
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Signal Transduction/drug effects
- Tetrahydronaphthalenes/pharmacology
- Tissue Culture Techniques
- Tryptamines/pharmacology
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | | | | | | |
Collapse
|
32
|
Follo MY, Marmiroli S, Faenza I, Fiume R, Ramazzotti G, Martelli AM, Gobbi P, McCubrey JA, Finelli C, Manzoli FA, Cocco L. Nuclear phospholipase C β1 signaling, epigenetics and treatments in MDS. Adv Biol Regul 2012; 53:2-7. [PMID: 23058275 DOI: 10.1016/j.jbior.2012.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022]
Abstract
Myelodysplastic syndromes (MDS), clonal hematopoietic stem-cell disorders mainly affecting older adult patients, show ineffective hematopoiesis in one or more of the lineages of the bone marrow. Most MDS are characterized by anemia, and a number of cases progresses to acute myeloid leukemia (AML). Indeed, the molecular mechanisms underlying the MDS evolution to AML are still unclear, even though the nuclear signaling elicited by PI-PLCβ1 has been demonstrated to play an important role in the control of the balance between cell cycle progression and apoptosis in MDS cells. Here we review both the role of epigenetic therapy on PI-PLCβ1 promoter and the changes in PI-PLCβ1 expression in MDS patients treated for anemia.
Collapse
MESH Headings
- Apoptosis/drug effects
- Bone Marrow/drug effects
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Cell Cycle/drug effects
- Cell Nucleus/drug effects
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Epigenesis, Genetic/drug effects
- Erythropoietin/therapeutic use
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Myelodysplastic Syndromes/complications
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Phosphatidylinositols/metabolism
- Phospholipase C beta/genetics
- Phospholipase C beta/metabolism
- Promoter Regions, Genetic
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Matilde Y Follo
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Activation of nuclear inositide signalling pathways during erythropoietin therapy in low-risk MDS patients. Leukemia 2012; 26:2474-82. [PMID: 22596089 DOI: 10.1038/leu.2012.133] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inositide signaling pathways can have a role in the Myelodysplastic Syndromes (MDS) progression to acute myeloid leukemia. Erythropoietin (EPO) is currently used in low-risk MDS, where it successfully corrects anemia in 50-70% of patients. However, some MDS patients are refractory to this treatment and little is known about the exact molecular mechanisms underlying the effect of EPO in these subjects. Here, we investigated the role of inositide pathways in low-risk MDS treated with EPO, mainly focusing on the Akt/PI-PLC (Phosphoinositide-Phospholipase C) gamma1 axis, which is activated by the EPO receptor, and PI-PLCbeta1/Cyclin D3 signaling, as Cyclin D3 is associated with hematopoietic proliferation and differentiation. Interestingly, EPO responder patients showed a specific activation of both the Akt/PI-PLCgamma1 pathway and beta-Globin gene expression, while nonresponders displayed an increase in PI-PLCbeta1 signaling. Moreover, in normal CD34+ cells induced to erythroid differentiation, PI-PLCbeta1 overexpression abrogated both EPO-induced Akt phosphorylation and beta-Globin expression. Overall, these findings suggest that PI-PLCbeta1 can act as a negative regulator of erythroid differentiation and confirm the involvement of Akt/PI-PLCgamma1 pathway in EPO signaling, therefore contributing to the comprehension of the effect of EPO in low-risk MDS and possibly paving the way to the identification of MDS patients at higher risk of refractoriness to EPO treatment.
Collapse
|
34
|
Kuba-Miyara M, Agarie K, Sakima R, Imamura S, Tsuha K, Yasumoto T, Gima S, Matsuzaki G, Ikehara T. Inhibitory effects of an ellagic acid glucoside, okicamelliaside, on antigen-mediated degranulation in rat basophilic leukemia RBL-2H3 cells and passive cutaneous anaphylaxis reaction in mice. Int Immunopharmacol 2012; 12:675-81. [DOI: 10.1016/j.intimp.2012.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 01/25/2012] [Accepted: 01/29/2012] [Indexed: 12/14/2022]
|
35
|
Zhang D, Jiang H, Wang Y, Ma J. Pentoxifylline inhibits hepatic stellate cells proliferation via the Raf/ERK pathway. APMIS 2012; 120:572-81. [PMID: 22716212 DOI: 10.1111/j.1600-0463.2011.02868.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/19/2011] [Indexed: 12/31/2022]
Abstract
Pentoxifylline (PTX), which is a xanthine derivative, is a well-known suppressor of tumor necrosis factor-alpha (TNF-alpha) production in inflammatory cells and has also been shown to inhibit collagen synthesis in hepatic stellate cells (HSCs) in vitro. The present study aimed to evaluate the effects of PTX on proliferation in HSCs as mediated by the Raf/MEK/extracellular-signal-regulated kinase (ERK) signaling pathway. The rat hepatic stellate cell line T6 and activated primary rat HSCs were used in this study. The proliferation rate of the cells treated with 1 mM PTX significantly decreased compared with that of the control in T6 cells (78.3 ± 6.03% at 12 h, 61.0 ± 7.55% at 24 h, and 44.7 ± 2.08% at 48 h, p < 0.05). PTX (1 mM) also decreased the fraction of the HSC population in the S and G2/M-phases of the cell cycle in primary activated rat HSCs. The Raf-1 inhibitor GW5074 and the ERK inhibitor U0126 had inhibitory effects that were similar to those of PTX on HSC proliferation. In addition, PTX inhibited the phosphorylation of Raf-1 (p-Raf-1) and ERK (p-ERK) in a dose- and time-dependent manner in HSCs. These data provide evidence that PTX suppresses HSC proliferation via the Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, China
| | | | | | | |
Collapse
|
36
|
Tomlinson DC, Knowles MA, Speirs V. Mechanisms of FGFR3 actions in endocrine resistant breast cancer. Int J Cancer 2011; 130:2857-66. [PMID: 21792889 DOI: 10.1002/ijc.26304] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/01/2011] [Indexed: 11/05/2022]
Abstract
Although endocrine therapy has dramatically improved the treatment of breast cancer therapeutic resistance and tumour recurrence occurs, even in estrogen receptor (ER) positive cases. Identifying and understanding the molecular mechanisms which underpin endocrine resistance is therefore important if future therapeutic strategies are to be developed. Members of the fibroblast growth factor (FGF) and fibroblast growth factor receptor (FGFR) families have been implicated in breast cancer development and progression. Our results demonstrate that culture of michigan cancer foundation - 1 (MCF)7 cells with FGF1 results in reduced sensitivity to tamoxifen in vitro. Furthermore, our tissue microarray expression data demonstrates that FGFR3 expression is increased in tamoxifen resistant breast tumours. To confirm that activation of FGFR3 reduced sensitivity to tamoxifen we used an inducible activation system and a constitutively active mutant of FGFR3 expressed in MCF7 cells. Activation of FGFR3 reduced sensitivity to tamoxifen and Fulvestrant but did not lead to phosphorylation of ER demonstrating that FGFR3 does not feedback to modulate ER activity. FGFR3 activation in MCF7 cells stimulated activation of the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signalling pathways, both of which have been implicated in tamoxifen resistance in breast cancer. Furthermore, our data indicates that activation of phospholipase C gamma is a key-signalling event regulating MAPK and PI3K activation and that its activation reduces sensitivity to tamoxifen. Therefore, we hypothesise that FGFRs could play an integral part, not only in breast cancer development but also in resistance to endocrine-therapy.
Collapse
Affiliation(s)
- D C Tomlinson
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, LS9 7TF, United Kingdom.
| | | | | |
Collapse
|
37
|
Maraldi T, Prata C, Vieceli Dalla Sega F, Caliceti C, Zambonin L, Fiorentini D, Hakim G. NAD(P)H oxidase isoform Nox2 plays a prosurvival role in human leukaemia cells. Free Radic Res 2010; 43:1111-21. [PMID: 19707918 DOI: 10.1080/10715760903186132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanism involved in the prosurvival effect of interleukin-3 on the human acute myeloid leukaemia cell line M07e is investigated. A decrease in intracellular reactive oxygen species (ROS) content, glucose transport activity and cell survival was observed in the presence of inhibitors of plasma membrane ROS sources, such as diphenylene iodonium and apocynin, and by small interference RNA for Nox2. Moreover, IL-3 incubation stimulated the synthesis of Nox2 cytosolic sub-unit p47phox and glucose transporter Glut1. Thus, the inhibition of ROS generation by Nox inhibitors stimulated apoptosis showing that ROS production, induced by IL-3 via Nox2, protects leukaemic cells from cell death. Also incubation with receptor tyrosine kinase inhibitors, such as anti-leukaemic drugs blocking the stem cell factor receptor (c-kit), showed similar effects, hinting that IL-3 transmodulates c-kit phosphorylation. These mechanisms may play an important role in acute myeloid leukaemia treatment, representing a novel therapeutic target.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Anatomy and Histology, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Semaphorin 4D signaling requires the recruitment of phospholipase C gamma into the plexin-B1 receptor complex. Mol Cell Biol 2009; 29:6321-34. [PMID: 19805522 DOI: 10.1128/mcb.00103-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The semaphorin 4D (Sema4D) receptor plexin-B1 constitutively interacts with particular Rho guanine nucleotide exchange factors (RhoGEFs) and thereby mediates Sema4D-induced RhoA activation, a process which involves the tyrosine phosphorylation of plexin-B1 by ErbB-2. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGEF activity. We show here that activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation creates docking sites for the SH2 domains of phospholipase Cgamma (PLCgamma). PLCgamma is thereby recruited into the plexin-B1 receptor complex and via its SH3 domain activates the Rho guanine nucleotide exchange factor PDZ-RhoGEF. PLCgamma-dependent RhoGEF activation is independent of its lipase activity. The recruitment of PLCgamma has no effect on the R-Ras GTPase-activating protein activity of plexin-B1 but is required for Sema4D-induced axonal growth cone collapse as well as for the promigratory effects of Sema4D on cancer cells. These data demonstrate a novel nonenzymatic function of PLCgamma as an important mechanism of plexin-mediated signaling which links tyrosine phosphorylation of plexin-B1 to the regulation of a RhoGEF protein and downstream cellular processes.
Collapse
|
39
|
Chun J, Prince A. Ca2+ signaling in airway epithelial cells facilitates leukocyte recruitment and transepithelial migration. J Leukoc Biol 2009; 86:1135-44. [PMID: 19605699 DOI: 10.1189/jlb.0209072] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In airway cells, TLR2 stimulation by bacterial products activates Ca2+ fluxes that signal leukocyte recruitment to the lung and facilitates transepithelial migration into the airway lumen. TLR2 is apically displayed on airway cells, where it senses bacterial stimuli. Biochemical and genetic approaches demonstrate that TLR2 ligands stimulate release of Ca2+ from intracellular stores by activating TLR2 phosphorylation by c-Src and recruiting PI3K and PLCgamma to affect Ca2+ release through IP3Rs. This Ca2+ release plays a pivotal role in signaling TLR2-dependent NF-kappaB activation and chemokine expression to recruit PMNs to the lung. In addition, TLR2-initiated Ca2+ release activates Ca2+-dependent proteases, calpains, which cleave the transmembrane proteins occludin and E-cadherin to promote PMN transmigration. This review highlights recent findings that demonstrate a central role for Ca2+ signaling in airway epithelial cells to induce proinflammatory gene transcription and to initiate junctional changes that accommodate transmigration of recruited PMNs.
Collapse
Affiliation(s)
- Jarin Chun
- Department of Pharmacology and Pediatrics, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
40
|
Maraldi T, Prata C, Fiorentini D, Zambonin L, Landi L, Hakim G. Signal processes and ROS production in glucose transport regulation by thrombopoietin and granulocyte macrophage-colony stimulation factor in a human leukaemic cell line. Free Radic Res 2009; 41:1348-57. [DOI: 10.1080/10715760701730347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Li S, Wang Q, Wang Y, Chen X, Wang Z. PLC-gamma1 and Rac1 coregulate EGF-induced cytoskeleton remodeling and cell migration. Mol Endocrinol 2009; 23:901-13. [PMID: 19264842 DOI: 10.1210/me.2008-0368] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is well established that epidermal growth factor (EGF) induces the cytoskeleton reorganization and cell migration through two major signaling cascades: phospholipase C-gamma1 (PLC-gamma1) and Rho GTPases. However, little is known about the cross talk between PLC-gamma1 and Rho GTPases. Here we showed that PLC-gamma1 forms a complex with Rac1 in response to EGF. This interaction is direct and mediated by PLC-gamma1 Src homology 3 (SH3) domain and Rac1 (106)PNTP(109) motif. This interaction is critical for EGF-induced Rac1 activation in vivo, and PLC-gamma1 SH3 domain is actually a potent and specific Rac1 guanine nucleotide exchange factor in vitro. We have also demonstrated that the interaction between PLC-gamma1 SH3 domain and Rac1 play a significant role in EGF-induced F-actin formation and cell migration. We conclude that PLC-gamma1 and Rac1 coregulate EGF-induced cell cytoskeleton remodeling and cell migration by a direct functional interaction.
Collapse
Affiliation(s)
- Siwei Li
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
42
|
Rodríguez-Fragoso L, Melendez K, Hudson LG, Lauer FT, Burchiel SW. EGF-receptor phosphorylation and downstream signaling are activated by benzo[a]pyrene 3,6-quinone and benzo[a]pyrene 1,6-quinone in human mammary epithelial cells. Toxicol Appl Pharmacol 2009; 235:321-8. [PMID: 19166869 DOI: 10.1016/j.taap.2008.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 11/18/2022]
Abstract
Benzo[a]pyrene (BaP) is activated by xenobiotic-metabolizing enzymes to highly mutagenic and carcinogenic metabolites. Previous studies in this laboratory have shown that benzo[a]pyrene quinones (BPQs), 1,6-BPQ and 3,6-BPQ, are able to induce epidermal growth factor receptor (EGFR) cell signaling through the production of reactive oxygen species. Recently, we have reported that BPQs have the potential to induce the expression of genes involved in numerous pathways associated with cell proliferation and survival in human mammary epithelial cells. In the present study we demonstrated that BPQs not only induced EGFR tyrosine autophosphorylation, but also induced EGFR-dependent tyrosine phosphorylation of phospholipase C-gamma1 and several signal transducers and activators of transcription (STATs). The effects of BPQs were evaluated in a model of EGF withdrawal in MCF10-A cells. We found that BPQs (1 muM), induced EGFR tyrosine phosphorylation at positions Y845, Y992, Y1068, and Y1086. PLC-gamma1 phosphorylation correlated with the phosphorylation of tyrosine-Y992, a proposed docking site for PLC-gamma1 on the EGFR. Additionally, we found that BPQs induced the activation of STAT-1, STAT-3, STAT-5a and STAT-5b. STAT5 was shown to translocate to the nucleus following 3,6-BPQ and 1,6-BPQ exposures. Although the patterns of phosphorylation at EGFR, PLC-gamma1 and STATs were quite similar to those induced by EGF, an important difference between BPQ-mediated signaling of the EGFR was observed. Signaling produced by EGF ligand produced a rapid disappearance of EGFR from the cell surface, whereas BPQ signaling maintained EGFR receptors on the cell membrane. Thus, the results of these studies show that 1,6-BPQ and 3,6-BPQ can produce early events as evidenced by EGFR expression, and a prolonged transactivation of EGFR leading to downstream cell signaling pathways.
Collapse
Affiliation(s)
- Lourdes Rodríguez-Fragoso
- Facultad de Farmacia, Universidad Autonoma del Estado de Morelos, Avenida Universidad 1001 Col. Chamilpa, Cuernavaca 62210, Morelos, México
| | | | | | | | | |
Collapse
|
43
|
Dehvari N, Sandebring A, Flores-Morales A, Mateos L, Chuan YC, Goldberg MS, Cookson MR, Cowburn RF, Cedazo-Mínguez A. Parkin-mediated ubiquitination regulates phospholipase C-gamma1. J Cell Mol Med 2008; 13:3061-8. [PMID: 18671761 PMCID: PMC2832102 DOI: 10.1111/j.1582-4934.2008.00443.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mutations in parkin cause autosomal recessive forms of Parkinson’s disease (PD), with an early age of onset and similar pathological phenotype to the idiopathic disease. Parkin has been identified as an E3 ubiquitin ligase that mediates different types of ubiquitination, which has made the search for substrates an intriguing possibility to identify pathological mechanisms linked to PD. In this study, we present PLCγ1 as a novel substrate for parkin. This association was found in non-transfected human neuroblastoma SH-SY5Y cells as well as in stable cell lines expressing parkin WT and familial mutants R42P and G328E. Analysis of cortical, striatal and nigral human brain homogenates revealed that the interaction between parkin and PLCγ1 is consistent throughout these regions, suggesting that the interaction is likely to have a physiological relevance for humans. Unlike many of the previously identified substrates, we could also show that the steady-state levels of PLCγ1 is significantly higher in parkin KO mice and lower in parkin WT human neuroblastoma cells, suggesting that parkin ubiquitination of PLCγ1 is required for proteasomal degradation. In line with this idea, we show that the ability to ubiquitinate PLCγ1 in vitro differs significantly between WT and familial mutant parkin. In this study, we demonstrate that parkin interacts with PLCγ1, affecting PLCγ1 steady state protein levels in human and murine models with manipulated parkin function and expression levels. This finding could be of relevance for finding novel pathogenic mechanisms leading to PD.
Collapse
Affiliation(s)
- Nodi Dehvari
- Department of NVS, Karolinska Institutet, KI-Alzheimer's Disease Research Center, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gul R, Kim SY, Park KH, Kim BJ, Kim SJ, Im MJ, Kim UH. A novel signaling pathway of ADP-ribosyl cyclase activation by angiotensin II in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2008; 295:H77-88. [PMID: 18456728 DOI: 10.1152/ajpheart.01355.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid transient Ca(2+) elevation via inositol trisphosphate (IP(3)) receptor and sustained Ca(2+) rise via the activation of L-type Ca(2+) channel and opening of ryanodine receptor. ANG II-induced sustained Ca(2+) rise was blocked by a cADPR antagonistic analog, 8-bromo-cADPR, indicating that sustained Ca(2+) rise is mediated by cADPR. Supporting the notion, ADPR-cyclase activity and cADPR production by ANG II were increased in a time-dependent manner. Application of pharmacological inhibitors and immunological analyses revealed that cADPR formation was activated by sequential activation of Src, phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt), phospholipase C (PLC)-gamma1, and IP(3)-mediated Ca(2+) signal. Inhibitors of these signaling molecules not only completely abolished the ANG II-induced Ca(2+) signals but also inhibited cADPR formation. Application of the cADPR antagonist and inhibitors of upstream signaling molecules of ADPR-cyclase inhibited ANG II-stimulated hypertrophic responses, which include nuclear translocation of Ca(2+)/calcineurin-dependent nuclear factor of activated T cells 3, protein expression of transforming growth factor-beta1, and incorporation of [(3)H]leucine in cardiomyocytes. Taken together, these findings suggest that activation of ADPR-cyclase by ANG II entails a novel signaling pathway involving sequential activation of Src, PI 3-kinase/Akt, and PLC-gamma1/IP(3) and that the activation of ADPR-cyclase can lead to cardiac hypertrophy.
Collapse
Affiliation(s)
- Rukhsana Gul
- Dept. of Biochemistry, Chonbuk National Univ. Medical School, Keum-am dong, Jeonju, 561-182, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Aki D, Minoda Y, Yoshida H, Watanabe S, Yoshida R, Takaesu G, Chinen T, Inaba T, Hikida M, Kurosaki T, Saeki K, Yoshimura A. Peptidoglycan and lipopolysaccharide activate PLCgamma2, leading to enhanced cytokine production in macrophages and dendritic cells. Genes Cells 2008; 13:199-208. [PMID: 18233961 DOI: 10.1111/j.1365-2443.2007.01159.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In macrophages and monocytes, microbial components trigger the production of pro-inflammatory cytokine through Toll-like receptors (TLRs). Although major TLR signaling pathways are mediated by serine/threonine kinases, including TAK1, IKK and MAP kinases, tyrosine phosphorylation of intracellular proteins by TLR ligands has been suggested in a number of reports. Here, we demonstrated that peptidoglycan (PGN) of a Gram-positive bacterial cell wall component, a TLR2 ligand and lipopoysaccharide (LPS) of a Gram-positive bacterial component, a TLR4 ligand induced tyrosine phosphorylation of phospholipase Cgamma-2 (PLCgamma2), leading to intracellular free Ca2+ mobilization in bone marrow-derived macrophages (BMMphi) and bone marrow-derived dendritic cells (BMDC). PGN- and LPS-induced Ca2+ mobilization was not observed in BMDC from PLCgamma2 knockout mice. Thus, PLCgamma2 is essential for TLR2 and TLR4-mediated Ca2+ flux. In PLCgamma2-knockdown cells, PGN-induced IkappaB-alpha phosphorylation and p38 activation were reduced. Moreover, PLCgamma2 was necessary for the full production of TNF-alpha and IL-6. These data indicate that the PLCgamma2 pathway plays an important role in bacterial ligands-induced activation of macrophages and dendritic cells.
Collapse
Affiliation(s)
- Daisuke Aki
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Heo SK, Yoon MA, Lee SC, Ju SA, Choi JH, Suh PG, Kwon BS, Kim BS. HVEM Signaling in Monocytes Is Mediated by Intracellular Calcium Mobilization. THE JOURNAL OF IMMUNOLOGY 2007; 179:6305-10. [DOI: 10.4049/jimmunol.179.9.6305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Jossin Y, Goffinet AM. Reelin signals through phosphatidylinositol 3-kinase and Akt to control cortical development and through mTor to regulate dendritic growth. Mol Cell Biol 2007; 27:7113-24. [PMID: 17698586 PMCID: PMC2168915 DOI: 10.1128/mcb.00928-07] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reelin is an extracellular matrix protein with various functions during development and in the mature brain. It activates different signaling cascades in target cells, one of which is the phosphatidylinositol 3-kinase (PI3K) pathway, which we investigated further using pathway inhibitors and in vitro brain slice and neuronal cultures. We show that the mTor (mammalian target of rapamycin)-S6K1 (S6 kinase 1) pathway is activated by Reelin and that this depends on Dab1 (Disabled-1) phosphorylation and activation of PI3K and Akt (protein kinase B). PI3K and Akt are required for the effects of Reelin on the organization of the cortical plate, but their downstream partners mTor and glycogen synthase kinase 3beta (GSK3beta) are not. On the other hand, mTor, but not GSK3beta, mediates the effects of Reelin on the growth and branching of dendrites of hippocampal neurons. In addition, PI3K fosters radial migration of cortical neurons through the intermediate zone, an effect that is independent of Reelin and Akt.
Collapse
Affiliation(s)
- Yves Jossin
- Université Catholique de Louvain, Center for Neurosciences, Avenue E. Mounier, 73, DENE 7382, B1200 Brussels, Belgium
| | | |
Collapse
|
48
|
Sanborn BM. Hormonal signaling and signal pathway crosstalk in the control of myometrial calcium dynamics. Semin Cell Dev Biol 2007; 18:305-14. [PMID: 17627855 PMCID: PMC2000447 DOI: 10.1016/j.semcdb.2007.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
Understanding the basis for the control of myometrial contractant and relaxant signaling pathways is important to understanding how to manage myometrial contractions. Signaling pathways are influenced by the level of expression of the signals and signal pathway components, the location of these components in the appropriate subcellular environment, and covalent modification. Crosstalk between these pathways regulates the effectiveness of signal transduction and represents an important way by which hormones can regulate phenotype. This review deals primarily with signaling pathways that control Ca2+ entry and intracellular release, as well as the interplay between these pathways.
Collapse
Affiliation(s)
- Barbara M Sanborn
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1680, USA.
| |
Collapse
|
49
|
Maraldi T, Fiorentini D, Prata C, Landi L, Hakim G. Glucose-transport regulation in leukemic cells: how can H2O2 mimic stem cell factor effects? Antioxid Redox Signal 2007; 9:271-9. [PMID: 17115933 DOI: 10.1089/ars.2007.9.271] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In leukemic cells, glucose transport is activated by SCF and H2O2 through a common signal cascade involving Akt, PLCgamma, Syk, and the Src family, in this order. An explanation can be provided by the phosphorylation of c-kit, the SCF receptor, elicited by either SCF or H2O2. Moreover, antioxidants prevent the SCF effect on glucose transport, confirming the involvement of H2O2 in the pathway leading to glucose-transport activation and suggesting a potential role for reactive oxygen species in leukemia proliferation.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biochemistry "G. Moruzzi," University of Bologna, Italy.
| | | | | | | | | |
Collapse
|