1
|
Wei W, Zhang Y, Li Y, Huang J, Kang F, Tan S, Lin L, Lu X, Wei H, Wang N. Hypoxia-induced PRPF19 modulates TPT1 alternative splicing to facilitate cisplatin resistance in high-grade serous ovarian cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167721. [PMID: 39983558 DOI: 10.1016/j.bbadis.2025.167721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/11/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
High-grade Serous Ovarian Cancer (HGSOC) is the most common and lethal subtype of ovarian cancer, and chemoresistance is a significant obstacle to its prognosis. The DNA damage response is one of the important mechanisms contributing to chemoresistance. Pre-mRNA processing factor 19 (PRPF19) is essential in DNA damage repair as it can recruit DNA repair proteins. However, the functional role of PRPF19 in HGSOC, especially in chemoresistance, has not been investigated. Herein, we demonstrated that PRPF19 was highly expressed in HGSOC and was associated with poor prognosis. Knockdown of PRPF19 inhibited HGSOC cell proliferation and tumor growth in vivo. In cisplatin-resistant HGSOC cell lines, we observed that knockdown of PRPF19 enhanced cell sensitivity to cisplatin. Mechanistically, PRPF19 silencing induced DNA damage in HGSOC cells, leading to DNA double-strand breaks and ɣH2AX nuclear lesion formation. In addition, mRNA-seq analysis revealed that overexpression of PRPF19 modulates alternative splicing of TPT1, thereby upregulating its expression. Notably, we found that PRPF19 was upregulated under hypoxia. Further examination revealed that hypoxia-inducible factor (HIF)-1α bound to PRPF19 and upregulated PRPF19 expression. In conclusion, these findings suggest that PRPF19 exerts a tumor-promoting effect in HGSOC and may be a novel target for overcoming chemoresistance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yang Zhang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yibing Li
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Jiazhen Huang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Fuli Kang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Lin Lin
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Xiaohang Lu
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Ning Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
2
|
Choudhary C, Jain B, Saran S. Analyzing the functions of Translationally controlled tumor protein2 during growth, development and autophagy of Dictyostelium discoideum. Exp Cell Res 2025; 445:114400. [PMID: 39753197 DOI: 10.1016/j.yexcr.2024.114400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1. Here, we analyzed the role of TPT2 in this organism. tpt2 transcript was present throughout growth and development and is localized in the prestalk/stalk regions of multicellular structures developed. tpt2 gene was disrupted with a BSR cassette using a double homologous recombination method. Disruption of tpt2 gene (tpt2‾) exhibit reduced cell proliferation and nutrient-uptake. Additionally, development in tpt2‾ was delayed by 2 h, formed small-sized aggregates that developed into stalky fruiting bodies with reduced spore viability. In contrast, overexpressed tpt2 (tpt2OE) showed increased cell proliferation and development, formed large-size aggregates that developed into spory fruiting bodies with increased spore viability. TPT2 regulates prestalk/prespore ratio and cell-type differentiation as abrogation of tpt2 gene resulted in altered localization of cell-type markers and an inclination towards the prestalk/stalk pathway while tpt2OE showed a prespore/spore biasness when mixed with wild-type cells. Deletion of either tpt1 or tpt2 gene showed increased autophagic flux indicating their involvement in negative regulation of autophagy. This study provides insights into the intricate involvement of TCTP in cellular dynamics and development of D. discoideum.
Collapse
Affiliation(s)
- Chanchal Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Bhavya Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shweta Saran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Rho SB, Kim BR, Lee SH, Lee CH. Translationally Controlled Tumor Protein Enhances Angiogenesis in Ovarian Tumors by Activating Vascular Endothelial Growth Factor Receptor 2 Signaling. Biomol Ther (Seoul) 2025; 33:193-202. [PMID: 39664017 PMCID: PMC11704413 DOI: 10.4062/biomolther.2024.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Translationally controlled tumor protein (TCTP) is a regulatory protein that plays pivotal roles in cellular processes including the cell cycle, apoptosis, microtubule stabilization, embryo development, stress responses, and cancer. However, the molecular mechanism by which it promotes tumor angiogenesis is still unclear. In this study, we explored the mechanisms underlying stimulation of angiogenesis by a novel TCTP. Recombinant TCTP enhanced vascular endothelial growth factor (VEGF)-induced endothelial cell migration, capillary-like tubular structure formation, and cell proliferation by interacting with VEGF receptor 2 (VEGFR-2) in vitro. In contrast, we showed that TCTP knockdown (using short interfering [si]TCTP) led to a decrease in ovarian tumor cells. We also examined the expression of VEGF and hypoxia inducible factor 1 (HIF-1α), an important angiogenic factor. The expression of VEGF as well as HIF-1α was dramatically decreased by siTCTP. Mechanistically, siTCTP inhibited VEGFR-2 tyrosine phosphorylation and phosphorylation of its downstream targets PI3K, Akt, and mTOR. Collectively, these findings indicate that TCTP can promote proliferation and angiogenesis via the VEGFR-2/PI3K and mTOR signaling pathways in ovarian tumor cells, providing new insight into the mechanism behind the involvement of TCTP in tumor angiogenesis.
Collapse
Affiliation(s)
- Seung Bae Rho
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Boh-Ram Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Seung-Hoon Lee
- Department of Life Science, Yong In University, Yongin 17092, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| |
Collapse
|
4
|
Miao G, Yang Y, Yang X, Chen D, Liu L, Lei X. The multifaceted potential of TPT1 as biomarker and therapeutic target. Heliyon 2024; 10:e38819. [PMID: 39397949 PMCID: PMC11471257 DOI: 10.1016/j.heliyon.2024.e38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Protein Translationally-Controlled 1 (TPT1) is a highly conserved gene found across eukaryotic species. The protein encoded by TPT1 is ubiquitously expressed both intracellularly and extracellularly across various tissues, and its levels are influenced by various external factors. TPT1 interacts with several key proteins, including p53, MCL1, and immunoglobulins, highlighting its crucial role in cellular processes. The dysregulation of TPT1 expression has been documented in a wide range of diseases, indicating its potential as a valuable biomarker. Additionally, targeting TPT1 presents a promising approach for treating and preventing various conditions. This review will assess the potential of TPT1 as a biomarker and evaluate the effectiveness of current strategies designed to inhibit TPT1 in disease contexts.
Collapse
Affiliation(s)
- Gelan Miao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yulian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xuelian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Dexiu Chen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
5
|
Liu AB, Liu J, Wang S, Ma L, Zhang JF. Biological role and expression of translationally controlled tumor protein (TCTP) in tumorigenesis and development and its potential for targeted tumor therapy. Cancer Cell Int 2024; 24:198. [PMID: 38835077 DOI: 10.1186/s12935-024-03355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Translationally controlled tumor protein (TCTP), also known as histamine-releasing factor (HRF) or fortilin, is a highly conserved protein found in various species. To date, multiple studies have demonstrated the crucial role of TCTP in a wide range of cellular pathophysiological processes, including cell proliferation and survival, cell cycle regulation, cell death, as well as cell migration and movement, all of which are major pathogenic mechanisms of tumorigenesis and development. This review aims to provide an in-depth analysis of the functional role of TCTP in tumor initiation and progression, with a particular focus on cell proliferation, cell death, and cell migration. It will highlight the expression and pathological implications of TCTP in various tumor types, summarizing the current prevailing therapeutic strategies that target TCTP.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Sheng Wang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
6
|
Santamaria G, Cioce M, Rizzuto A, Fazio VM, Viglietto G, Lucibello M. Harnessing the value of TCTP in breast cancer treatment resistance: an opportunity for personalized therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:447-467. [PMID: 37842235 PMCID: PMC10571059 DOI: 10.20517/cdr.2023.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 10/17/2023]
Abstract
Early identification of breast cancer (BC) patients at a high risk of progression may aid in therapeutic and prognostic aims. This is especially true for metastatic disease, which is responsible for most cancer-related deaths. Growing evidence indicates that the translationally controlled tumor protein (TCTP) may be a clinically relevant marker for identifying poorly differentiated aggressive BC tumors. TCTP is an intriguing protein with pleiotropic functions, which is involved in multiple signaling pathways. TCTP may also be involved in stress response, cell growth and proliferation-related processes, underlying its potential role in the initiation of metastatic growth. Thus, TCTP marks specific cancer cell sub-populations with pronounced stress adaptation, stem-like and immune-evasive properties. Therefore, we have shown that in vivo phospho-TCTP levels correlate with the response of BC cells to anti-HER2 agents. In this review, we discuss the clinical relevance of TCTP for personalized therapy, specific TCTP-targeting strategies, and currently available therapeutic agents. We propose TCTP as an actionable clinically relevant target that could potentially improve patient outcomes.
Collapse
Affiliation(s)
- Gianluca Santamaria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- These authors contributed equally
| | - Mario Cioce
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
- These authors contributed equally
| | - Antonia Rizzuto
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Vito Michele Fazio
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome 00128, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome 00133, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | - Maria Lucibello
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
- Department of Biomedical Sciences, Institute for Biomedical Research and Innovation, National Research Council of Italy (CNR), Catanzaro 88100, Italy
| |
Collapse
|
7
|
Marshall K, Twum Y, Gao W. Proteome derangement in malignant epithelial cells and its stroma following exposure to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Arch Toxicol 2023; 97:711-720. [PMID: 36434399 PMCID: PMC10071504 DOI: 10.1007/s00204-022-03426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Discovering novel changes in the proteome of malignant lung epithelial cells and/or the tumor-microenvironment is paramount for diagnostic, prognostic, and/or therapy development. A time-dependent 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced mouse lung tumor model was used to screen the proteome of lung tumors. NNK-transformed human lung epithelial BEAS-2B cells were then established to evaluate the epithelial cell-specific protein changes. A duration-dependent increase of tumor burden was observed in NNK-treated mice, 2/12 (17%), 8/12 (67%), 9/12 (75%), and 10/10 (100%) at weeks 8, 12, 16, and 20 after the NNK exposure, respectively. A total of 25 differentially expressed proteins (≥ twofold change), predominantly structural, signaling, and metabolic proteins, were detected by two-dimensional difference gel electrophoresis and identified by mass spectrometry. Calregulin, ezrin, histamine releasing factor (HRF), and inorganic pyrophosphatase 1 (PPA1) exhibited changes and were further confirmed via immunoblotting. In addition, immunohistochemistry (IHC) analysis indicated upregulated E-cadherin and decreased vimentin expression in epithelial cells of tumor tissues. Acquisition of a neoplastic phenotype in NNK-transformed BEAS-2B cells was demonstrated by enhanced wound closure and increased anchorage independent colony formation. In transformed BEAS-2B cells, protein expression of E-cadherin, ezrin, and PPA1 (but not calregulin and HRF) was upregulated, as was observed in tumor tissues IHC staining using mouse lung tumor tissues further revealed that HRF upregulation was not lung epithelial cell specific. Altogether, tumorigenesis after NNK exposure may be initiated by protein dysregulation in lung epithelial cells together with proteome derangement derived from other cell types existing in the tumor-microenvironment.
Collapse
Affiliation(s)
- Kent Marshall
- Department of Occupational and Environmental Health Sciences, West Virginia University, School of Public Health, 64 Medical Center Drive, Morgantown, WV, 26506, USA
- West Virginia University, School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26505, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA
| | - Yaw Twum
- Department of Occupational and Environmental Health Sciences, West Virginia University, School of Public Health, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, West Virginia University, School of Public Health, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA.
| |
Collapse
|
8
|
Morimoto Y, Tokumitsu A, Sone T, Hirota Y, Tamura R, Sakamoto A, Nakajima K, Toda M, Kawakami Y, Okano H, Ohta S. TPT1 Supports Proliferation of Neural Stem/Progenitor Cells and Brain Tumor Initiating Cells Regulated by Macrophage Migration Inhibitory Factor (MIF). Neurochem Res 2022; 47:2741-2756. [PMID: 35622214 DOI: 10.1007/s11064-022-03629-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
One of the key areas in stem cell research is the identification of factors capable of promoting the expansion of Neural Stem Cell/Progenitor Cells (NSPCs) and understanding their molecular mechanisms for future use in clinical settings. We previously identified Macrophage Migration Inhibitory Factor (MIF) as a novel factor that can support the proliferation and/or survival of NSPCs based on in vitro functional cloning strategy and revealed that MIF can support the proliferation of human brain tumor-initiating cells (BTICs). However, the detailed downstream signaling for the functions has largely remained unknown. Thus, in the present study, we newly identified translationally-controlled tumor protein-1 (TPT1), which is expressed in the ventricular zone of mouse embryonic brain, as a downstream target of MIF signaling in mouse and human NSPCs and human BTICs. Using gene manipulation (over or downregulation of TPT1) techniques including CRISPR/Cas9-mediated heterozygous gene disruption showed that TPT1 contributed to the regulation of cell proliferation/survival in mouse NSPCs, human embryonic stem cell (hESC) derived-NSPCs, human-induced pluripotent stem cells (hiPSCs) derived-NSPCs and BTICs. Furthermore, gene silencing of TPT1 caused defects in neuronal differentiation in the NSPCs in vitro. We also identified the MIF-CHD7-TPT1-SMO signaling axis in regulating hESC-NSPCs and BTICs proliferation. Intriguingly, TPT1suppressed the miR-338 gene, which targets SMO in hESC-NSPCs and BTICs. Finally, mice with implanted BTICs infected with lentivirus-TPT1 shRNA showed a longer overall survival than control. These results also open up new avenues for the development of glioma therapies based on the TPT1 signaling pathway.
Collapse
Affiliation(s)
- Yukina Morimoto
- Department of Neurosurgery, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ayako Tokumitsu
- Division of Translational Research, Keio University Hospital Clinical and Translational Research Center, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Hirota
- Department of Anatomy, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ayuna Sakamoto
- Division of Translational Research, Keio University Hospital Clinical and Translational Research Center, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yutaka Kawakami
- Cellular Signaling, Institute for Advanced Medical Research, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.,Department of Immunology, School of Medicine, International University of Health and Welfare 4-3, Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shigeki Ohta
- Cellular Signaling, Institute for Advanced Medical Research, Keio University of School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Immunology, School of Medicine, International University of Health and Welfare 4-3, Kozunomori, Narita, Chiba, 286-8686, Japan.
| |
Collapse
|
9
|
Schistosoma japonicum translationally controlled tumor protein, which is associated with the development of female worms, as a target for control of schistosomiasis. Int J Parasitol 2022; 52:569-579. [DOI: 10.1016/j.ijpara.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022]
|
10
|
Jeong M, Jeong MH, Kim JE, Cho S, Lee KJ, Park S, Sohn J, Park YG. TCTP protein degradation by targeting mTORC1 and signaling through S6K, Akt, and Plk1 sensitizes lung cancer cells to DNA-damaging drugs. Sci Rep 2021; 11:20812. [PMID: 34675258 PMCID: PMC8531033 DOI: 10.1038/s41598-021-00247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is expressed in many tissues, particularly in human tumors. It plays a role in malignant transformation, apoptosis prevention, and DNA damage repair. The signaling mechanisms underlying TCTP regulation in cancer are only partially understood. Here, we investigated the role of mTORC1 in regulating TCTP protein levels, thereby modulating chemosensitivity, in human lung cancer cells and an A549 lung cancer xenograft model. The inhibition of mTORC1, but not mTORC2, induced ubiquitin/proteasome-dependent TCTP degradation without a decrease in the mRNA level. PLK1 activity was required for TCTP ubiquitination and degradation and for its phosphorylation at Ser46 upon mTORC1 inhibition. Akt phosphorylation and activation was indispensable for rapamycin-induced TCTP degradation and PLK1 activation, and depended on S6K inhibition, but not mTORC2 activation. Furthermore, the minimal dose of rapamycin required to induce TCTP proteolysis enhanced the efficacy of DNA-damaging drugs, such as cisplatin and doxorubicin, through the induction of apoptotic cell death in vitro and in vivo. This synergistic cytotoxicity of these drugs was induced irrespective of the functional status of p53. These results demonstrate a new mechanism of TCTP regulation in which the mTORC1/S6K pathway inhibits a novel Akt/PLK1 signaling axis and thereby induces TCTP protein stabilization and confers resistance to DNA-damaging agents. The results of this study suggest a new therapeutic strategy for enhancing chemosensitivity in lung cancers regardless of the functional status of p53.
Collapse
Affiliation(s)
- Mini Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Hyeon Jeong
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jung Eun Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serin Cho
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Serkin Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeongwon Sohn
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yun Gyu Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, 73 Koryodae-ro, Sungbuk-gu, Seoul, 02841, Republic of Korea.
- Korean Institute of Molecular Medicine and Nutrition, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
11
|
The involvement of translationally controlled tumor protein during lamb rumen epithelium development. Acta Histochem 2021; 123:151737. [PMID: 34116359 DOI: 10.1016/j.acthis.2021.151737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Early weaning is usually applied to improve the reproductive efficiency of sheep in mutton production, while the development of rumen is of vital importance for sheep weaning age. Translationally controlled tumor protein (TCTP) is a highly conserved protein which participates in multiple tissue and organ development. Thus, we hypothesized that TCTP was involved in sheep rumen development. Histological analyses of sheep rumen epithelium showed that the epithelium formed tough shaped papillae without growing from birth to day 15 of age, after which it rapidly developed to functional epithelia on day 45 of age. We then found TCTP expressed in stratum basale, stratum spinosum and stratum granulosum of rumen epithelium. TCTP protein expression remained at a relative low level from day 0 to day 15 of age, it then significantly increased on day 30 (p < 0.05) and gradually decreased until day 60. Furthermore, to explore the role of TCTP in sheep rumen and its regulation, we found the ratio of Ki67 positive cell in stratum basale cells followed the similar pattern as the expression of TCTP. We also found the ratio of acetate:propionate in rumen fluid decreased from day 30 to day 60 of age (p < 0.05). To conclude, our data indicated that TCTP participated in rumen papillae growth by promoting rumen stratum basale cell proliferation.
Collapse
|
12
|
Kumar R, Saran S. Comparative modelling unravels the structural features of eukaryotic TCTP implicated in its multifunctional properties: an in silico approach. J Mol Model 2021; 27:20. [PMID: 33410974 DOI: 10.1007/s00894-020-04630-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
Comparative modelling helps compare the structure and functions of a given protein, to track the path of its origin and evolution and also guide in structure-based drug discovery. Presently, this has been applied for modelling the tertiary structure of highly conserved eukaryotic TCTP (translationally controlled tumour protein) which is involved in a plethora of functions during growth and development and also acts as a biomarker for many cancers like lung, breast, and prostate cancer. The modelled TCTP structures of different organisms belonging to the eukaryotic group showed similar spatial arrangement of structural units except loops and similar patterns of root mean square deviation (RMSD), root mean square fluctuation, and radius of gyration (Rg) inspected through molecular dynamics simulations. Essential dynamics (ED) analyses revealed different domains that exhibited different motions for the assistance in its multifunctional properties. Construction of a free-energy landscape (FEL) based on Rg versus RMSD was employed to characterize the folding behaviours of structures and observe that all proteins had nearly similar conformation and topologies, indicating common thermodynamic/kinetic pathways. A physico-chemical interaction study demonstrated the helices and sheets were well stabilized with ample amounts of bonding compared to turns or loops and charged residues were more accessible to solvent molecules. Hence, the current study reveals the important structural features of TCTP that aid in diverse functions in a wide range of organisms, thus extending our knowledge of TCTP and also providing a venue for designing the potent inhibitors against it.
Collapse
Affiliation(s)
- Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shweta Saran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Kim M, Choe Y, Lee H, Jeon MG, Park JH, Noh HS, Cheon YH, Park HJ, Park J, Shin SJ, Lee K, Lee SI. Blockade of translationally controlled tumor protein attenuated the aggressiveness of fibroblast-like synoviocytes and ameliorated collagen-induced arthritis. Exp Mol Med 2021; 53:67-80. [PMID: 33408335 PMCID: PMC8080778 DOI: 10.1038/s12276-020-00546-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 01/29/2023] Open
Abstract
Histamine releasing factor/translationally controlled tumor protein (HRF/TCTP) stimulates cancer progression and allergic responses, but the role of HRF/TCTP in rheumatoid arthritis (RA) remains undefined. In this study, we explored the pathogenic significance of HRF/TCTP and evaluated the therapeutic effects of HRF/TCTP blockade in RA. HRF/TCTP transgenic (TG) and knockdown (KD) mice with collagen-induced arthritis (CIA) were used to determine the experimental phenotypes of RA. HRF/TCTP levels in the sera of RA patients were measured and compared to those from patients with osteoarthritis (OA), ankylosing spondylitis, Behçet's disease, and healthy controls. HRF/TCTP expression was also assessed in the synovium and fibroblast-like synoviocytes (FLSs) obtained from RA or OA patients. Finally, we assessed the effects of HRF/TCTP and dimerized HRF/TCTP-binding peptide-2 (dTBP2), an HRF/TCTP inhibitor, in RA-FLSs and CIA mice. Our clinical, radiological, histological, and biochemical analyses indicate that inflammatory responses and joint destruction were increased in HRF/TCTP TG mice and decreased in KD mice compared to wild-type littermates. HRF/TCTP levels in the sera, synovial fluid, synovium, and FLSs were higher in patients with RA than in control groups. Serum levels of HRF/TCTP correlated well with RA disease activity. The tumor-like aggressiveness of RA-FLSs was exacerbated by HRF/TCTP stimulation and ameliorated by dTBP2 treatment. dTBP2 exerted protective and therapeutic effects in CIA mice and had no detrimental effects in a murine tuberculosis model. Our results indicate that HRF/TCTP is a novel biomarker and therapeutic target for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Mingyo Kim
- grid.256681.e0000 0001 0661 1492Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727 Republic of Korea
| | - Yongho Choe
- grid.256681.e0000 0001 0661 1492Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727 Republic of Korea
| | - Heewon Lee
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Min-Gyu Jeon
- grid.256681.e0000 0001 0661 1492Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727 Republic of Korea
| | - Jin-Ho Park
- grid.256681.e0000 0001 0661 1492Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727 Republic of Korea
| | - Hae Sook Noh
- grid.256681.e0000 0001 0661 1492Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727 Republic of Korea
| | - Yun-Hong Cheon
- grid.256681.e0000 0001 0661 1492Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727 Republic of Korea
| | - Hee Jin Park
- grid.256681.e0000 0001 0661 1492Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727 Republic of Korea
| | - Jaehun Park
- grid.15444.300000 0004 0470 5454Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Sung Jae Shin
- grid.15444.300000 0004 0470 5454Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Kyunglim Lee
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Sang-Il Lee
- grid.256681.e0000 0001 0661 1492Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, 52727 Republic of Korea
| |
Collapse
|
14
|
The transcriptome of anterior regeneration in earthworm Eudrilus eugeniae. Mol Biol Rep 2020; 48:259-283. [PMID: 33306150 DOI: 10.1007/s11033-020-06044-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/28/2020] [Indexed: 12/25/2022]
Abstract
The oligochaete earthworm, Eudrilus eugeniae is capable of regenerating both anterior and posterior segments. The present study focuses on the transcriptome analysis of earthworm E. eugeniae to identify and functionally annotate the key genes supporting the anterior blastema formation and regulating the anterior regeneration of the worm. The Illumina sequencing generated a total of 91,593,182 raw reads which were assembled into 105,193 contigs using CLC genomics workbench. In total, 40,946 contigs were annotated against the NCBI nr and SwissProt database and among them, 15,702 contigs were assigned to 14,575 GO terms. Besides a total of 9389 contigs were mapped to 416 KEGG biological pathways. The RNA-Seq comparison study identified 10,868 differentially expressed genes (DEGs) and of them, 3986 genes were significantly upregulated in the anterior regenerated blastema tissue samples of the worm. The GO enrichment analysis showed angiogenesis and unfolded protein binding as the top enriched functions and the pathway enrichment analysis denoted TCA cycle as the most significantly enriched pathway associated with the upregulated gene dataset of the worm. The identified DEGs and their function and pathway information can be effectively utilized further to interpret the key cellular, genetic and molecular events associated with the regeneration of the worm.
Collapse
|
15
|
Liu W, Liu Q, Zhang B, Lin Z, Li X, Yang X, Pu M, Zou R, He Z, Wang F, Dou K. The mRNA of TCTP functions as a sponge to maintain homeostasis of TCTP protein levels in hepatocellular carcinoma. Cell Death Dis 2020; 11:974. [PMID: 33184257 PMCID: PMC7665032 DOI: 10.1038/s41419-020-03149-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved protein that accumulated in the tumorigenesis of various malignancies. Despite the important role of TCTP protein in tumor progression, the precise function and underlying mechanistic regulation of TCTP mRNA in hepatocellular carcinoma (HCC) remain unclear. In this study, we found that TCTP protein was overexpressed in HCC patients but TCTP mRNA expression levels were reversed. TCTP knockout HCC cells exhibited attenuated abilities of proliferation, migration, and invasion. The knockdown of TCTP by siRNA effectively reduced TCTP mRNA levels but not protein levels in HCC cells. Moreover, although the constitutive knockdown of TCTP inhibited almost 80% of TCTP protein expression levels in tumors of wildtype transgenic mice (TCTP KD/WT), partial restoration of TCTP protein expression was observed in the tumors of heterozygous TCTP mice (TCTP KD/TCTP±). The blockage of mRNA synthesis with ActD stimulated TCTP protein expression in HCC cells. In contrast, combined treatment with ActD and CHX or MG132 treatment alone did not lead to the TCTP protein accumulation in cells. Furthermore, following the introduction of exogenous TCTP in cells and orthotopic HCC tumor models, the endogenous TCTP protein did not change with the recombinational TCTP expression and kept a rather stable level. Dual-luciferase assays revealed that the coding sequence of TCTP mRNA functions as a sponge to regulate the TCTP protein expression. Collectively, our results indicated that the TCTP mRNA and protein formed a closed regulatory circuit and works as a buffering system to keep the homeostasis of TCTP protein levels in HCC.
Collapse
Affiliation(s)
- Wei Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China.,Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Qi Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Beilei Zhang
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Xia Li
- Institute of Biophysics, Chinese Academy of Science, Beijing, 100101, China
| | - Xisheng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Meng Pu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Rongzhi Zou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200123, China. .,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, 710032, China.
| |
Collapse
|
16
|
Kumar R, Maurya R, Saran S. Investigating the Role of Translationally Control Tumor Protein in Growth, Development and Differentiation of Dictyostelium discoideum. Front Cell Dev Biol 2020; 8:742. [PMID: 32850852 PMCID: PMC7426469 DOI: 10.3389/fcell.2020.00742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a multifunctional protein implicated in various types of cellular processes involving growth and development of an organism. Here, we identified tctp gene in Dictyostelium discoideum and unraveled its function. The sequence analysis of D. discoideum TCTP (DdTCTP) showed its conservation among eukaryotes. Transcript of DdTCTP was highly expressed at the initial time points of development and protein is localized both in the cytoplasm and nucleus. Disruption of tctp was achieved by BSR cassette using double homologous recombination method. Abrogation of tctp resulted in reduced cell proliferation but increased cell size. Additionally, development was delayed by 4 h wherein small-sized aggregates and fruiting bodies were produced by tctp– cells while larger aggregates and fruiting bodies were produced by tctpOE cells concordant with the fact that TCTP regulates prestalk/prespore ratio and cell-type differentiation. tctp– cells produced round spores with reduced viability and stalk cells are arranged in septate pattern as compared to polyhedral manner of wild type. Abrogation of tctp resulted in aberrant localization of cell type specific markers and show low proclivity toward prespore/spore region, in presence of wild type cells.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cell and Developmental Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ranjana Maurya
- Cell and Developmental Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Saran
- Cell and Developmental Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
D’Amico S, Krasnowska EK, Manni I, Toietta G, Baldari S, Piaggio G, Ranalli M, Gambacurta A, Vernieri C, Di Giacinto F, Bernassola F, de Braud F, Lucibello M. DHA Affects Microtubule Dynamics Through Reduction of Phospho-TCTP Levels and Enhances the Antiproliferative Effect of T-DM1 in Trastuzumab-Resistant HER2-Positive Breast Cancer Cell Lines. Cells 2020; 9:1260. [PMID: 32438775 PMCID: PMC7290969 DOI: 10.3390/cells9051260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trastuzumab emtansine (T-DM1) is an anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugated to the microtubule-targeting agent emtansine (DM1). T-DM1 is an effective agent in the treatment of patients with HER2-positive breast cancer whose disease has progressed on the first-line trastuzumab containing chemotherapy. However, both primary and acquired tumour resistance limit its efficacy. Increased levels of the phosphorylated form of Translationally Controlled Tumour Protein (phospho-TCTP) have been shown to be associated with a poor clinical response to trastuzumab therapy in HER2-positive breast cancer. Here we show that phospho-TCTP is essential for correct mitosis in human mammary epithelial cells. Reduction of phospho-TCTP levels by dihydroartemisinin (DHA) causes mitotic aberration and increases microtubule density in the trastuzumab-resistant breast cancer cells HCC1954 and HCC1569. Combinatorial studies show that T-DM1 when combined with DHA is more effective in killing breast cells compared to the effect induced by any single agent. In an orthotopic breast cancer xenograft model (HCC1954), the growth of the tumour cells resumes after having achieved a complete response to T-DM1 treatment. Conversely, DHA and T-DM1 treatment induces a severe and irreversible cytotoxic effect, even after treatment interruption, thus, improving the long-term efficacy of T-DM1. These results suggest that DHA increases the effect of T-DM1 as poison for microtubules and supports the clinical development of the combination of DHA and T-DM1 for the treatment of aggressive HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Silvia D’Amico
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Ewa Krystyna Krasnowska
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| | - Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (G.T.); (S.B.)
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Marco Ranalli
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Alessandra Gambacurta
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Flavio Di Giacinto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Roma, Italy;
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy; (M.R.); (A.G.); (F.B.)
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.V.); (F.d.B.)
- Oncology and Hemato-Oncology Department, University of Milan, 20122 Milan, Italy
| | - Maria Lucibello
- National Research Council of Italy, Institute of Translational Pharmacology (IFT-CNR), 00133 Rome, Italy; (S.D.); (E.K.K.)
| |
Collapse
|
18
|
Koo N, Shin AY, Oh S, Kim H, Hong S, Park SJ, Sim YM, Byeon I, Kim KY, Lim YP, Kwon SY, Kim YM. Comprehensive analysis of Translationally Controlled Tumor Protein (TCTP) provides insights for lineage-specific evolution and functional divergence. PLoS One 2020; 15:e0232029. [PMID: 32374732 PMCID: PMC7202613 DOI: 10.1371/journal.pone.0232029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Translationally controlled tumor protein (TCTP) is a conserved, multifunctional protein involved in numerous cellular processes in eukaryotes. Although the functions of TCTP have been investigated sporadically in animals, invertebrates, and plants, few lineage-specific activities of this molecule, have been reported. An exception is in Arabidopsis thaliana, in which TCTP (AtTCTP1) functions in stomatal closuer by regulating microtubule stability. Further, although the development of next-generation sequencing technologies has facilitated the analysis of many eukaryotic genomes in public databases, inter-kingdom comparative analyses using available genome information are comparatively scarce. METHODOLOGY To carry out inter-kingdom comparative analysis of TCTP, TCTP genes were identified from 377 species. Then phylogenetic analysis, prediction of protein structure, molecular docking simulation and molecular dynamics analysis were performed to investigate the evolution of TCTP genes and their binding proteins. RESULTS A total of 533 TCTP genes were identified from 377 eukaryotic species, including protozoa, fungi, invertebrates, vertebrates, and plants. Phylogenetic and secondary structure analyses reveal lineage-specific evolution of TCTP, and inter-kingdom comparisons highlight the lineage-specific emergence of, or changes in, secondary structure elements in TCTP proteins from different kingdoms. Furthermore, secondary structure comparisons between TCTP proteins within each kingdom, combined with measurements of the degree of sequence conservation, suggest that TCTP genes have evolved to conserve protein secondary structures in a lineage-specific manner. Additional tertiary structure analysis of TCTP-binding proteins and their interacting partners and docking simulations between these proteins further imply that TCTP gene variation may influence the tertiary structures of TCTP-binding proteins in a lineage-specific manner. CONCLUSIONS Our analysis suggests that TCTP has undergone lineage-specific evolution and that structural changes in TCTP proteins may correlate with the tertiary structure of TCTP-binding proteins and their binding partners in a lineage-specific manner.
Collapse
Affiliation(s)
- Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sangho Oh
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyeongmin Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Choongchung-Buk-do, Republic of Korea
| | - Seongmin Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Korea
| | - Seong-Jin Park
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Mi Sim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Iksu Byeon
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kye Young Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
19
|
Pokharel K, Peippo J, Weldenegodguad M, Honkatukia M, Li MH, Kantanen J. Gene Expression Profiling of Corpus luteum Reveals Important Insights about Early Pregnancy in Domestic Sheep. Genes (Basel) 2020; 11:genes11040415. [PMID: 32290341 PMCID: PMC7231023 DOI: 10.3390/genes11040415] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/10/2023] Open
Abstract
The majority of pregnancy loss in ruminants occurs during the preimplantation stage, which is thus the most critical period determining reproductive success. Here, we performed a comparative transcriptome study by sequencing total mRNA from corpus luteum (CL) collected during the preimplantation stage of pregnancy in Finnsheep, Texel and F1 crosses. A total of 21,287 genes were expressed in our data. Highly expressed autosomal genes in the CL were associated with biological processes such as progesterone formation (STAR, CYP11A1, and HSD3B1) and embryo implantation (e.g., TIMP1, TIMP2 and TCTP). Among the list of differentially expressed genes, sialic acid-binding immunoglobulin (Ig)-like lectins (SIGLEC3, SIGLEC14, SIGLEC8), ribosomal proteins (RPL17, RPL34, RPS3A, MRPS33) and chemokines (CCL5, CCL24, CXCL13, CXCL9) were upregulated in Finnsheep, while four multidrug resistance-associated proteins (MRPs) were upregulated in Texel ewes. A total of 17 known genes and two uncharacterized non-coding RNAs (ncRNAs) were differentially expressed in breed-wise comparisons owing to the flushing diet effect. The significantly upregulated TXNL1 gene indicated potential for embryonic diapause in Finnsheep and F1. Moreover, we report, for the first time in any species, several genes that are active in the CL during early pregnancy (including TXNL1, SIGLEC14, SIGLEC8, MRP4, and CA5A).
Collapse
Affiliation(s)
- Kisun Pokharel
- Natural Resources, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland; (K.P.); (M.W.)
| | - Jaana Peippo
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland;
| | - Melak Weldenegodguad
- Natural Resources, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland; (K.P.); (M.W.)
| | | | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (M.-H.L.); (J.K.); Tel.: +358-295-326-210 (J.K.)
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland;
- Correspondence: (M.-H.L.); (J.K.); Tel.: +358-295-326-210 (J.K.)
| |
Collapse
|
20
|
Liu LZ, Wang M, Xin Q, Wang B, Chen GG, Li MY. The permissive role of TCTP in PM 2.5/NNK-induced epithelial-mesenchymal transition in lung cells. J Transl Med 2020; 18:66. [PMID: 32046740 PMCID: PMC7011287 DOI: 10.1186/s12967-020-02256-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/01/2020] [Indexed: 12/28/2022] Open
Abstract
Background Translationally controlled tumor protein (TCTP) is linked to lung cancer. However, upon lung cancer carcinogens stimulation, there were no reports on the relationship between TCTP and lung cell carcinogenic epithelial–mesenchymal transition (EMT). This study was designed to investigate the molecular mechanism of regulation of TCTP expression and its role in lung carcinogens-induced EMT. Methods To study the role of TCTP in lung carcinogens [particulate matter 2.5 (PM2.5) or 4-methylnitrosamino-l-3-pyridyl-butanone (NNK)]-induced EMT, PM2.5/NNK-treated lung epithelial and non-small cell lung cancer (NSCLC) cells were tested. Cell derived xenografts, human lung cancer samples and online survival analysis were used to confirm the results. MassArray assay, Real-time PCR and Reporter assays were performed to elucidate the mechanism of regulation of TCTP expression. All statistical analyses were performed using GraphPad Prism version 6.0 or SPSS version 20.0. Results Translationally controlled tumor protein and vimentin expression were up-regulated in PM2.5/NNK-treated lung cells and orthotopic implantation tumors. TCTP expression was positively correlated with vimentin in human NSCLC samples. Patients with high expression of TCTP displayed reduced overall and disease-free survival. TCTP overexpression could increase vimentin expression and promote cell metastasis. Furthermore, PM2.5/NNK stimulation brought a synergistic effect on EMT in TCTP-transfected cells. TCTP knockdown blocked PM2.5/NNK carcinogenic effect. Mechanically, PM2.5/NNK-induced TCTP expression was regulated by one microRNA, namely miR-125a-3p, but not by methylation on TCTP gene promoter. The level of TCTP was regulated by its specific microRNA during the process of PM2.5/NNK stimulation, which in turn enhanced vimentin expression and played a permissive role in carcinogenic EMT. Conclusions Our results provided new insights into the mechanisms of TCTP regulatory expression in lung carcinogens-induced EMT. TCTP and miR-125a-3p might act as potential prognostic biomarkers and therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Li-Zhong Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China.
| | - Menghuan Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Qihang Xin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Bowen Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Ming-Yue Li
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
21
|
Jasinska AJ, Rostamian D, Davis AT, Kavanagh K. Transcriptomic Analysis of Cell-free Fetal RNA in the Amniotic Fluid of Vervet Monkeys ( Chlorocebus sabaeus). Comp Med 2020; 70:67-74. [PMID: 31969210 PMCID: PMC7024774 DOI: 10.30802/aalas-cm-19-000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
NHP are important translational models for understanding the genomic underpinnings of growth, development, fetal programming, and predisposition to disease, with potential for the development of early health biomarkers. Understanding how prenatal gene expression is linked to pre- and postnatal health and development requires methods for assessing the fetal transcriptome. Here we used RNAseq methodology to analyze the expression of cell-free fetal RNA in the amniotic fluid supernatant (AFS) of vervet monkeys. Despite the naturally high level of degradation of free-floating RNA, we detected more than 10,000 gene transcripts in vervet AFS. The most highly expressed genes were H19, IGF2, and TPT1, which are involved in embryonic growth and glycemic health. We noted global similarities in expression profiles between vervets and humans, with genes involved in embryonic growth and glycemic health among the genes most highly expressed in AFS. Our study demonstrates both the feasibility and usefulness of prenatal transcriptomic profiles, by using amniocentesis procedures to obtain AFS and cell-free fetal RNA from pregnant vervets.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland;,
| | - Dalar Rostamian
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California
| | - Ashley T Davis
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biomedicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
22
|
Mmi1, the Yeast Ortholog of Mammalian Translationally Controlled Tumor Protein (TCTP), Negatively Affects Rapamycin-Induced Autophagy in Post-Diauxic Growth Phase. Cells 2020; 9:cells9010138. [PMID: 31936125 PMCID: PMC7017036 DOI: 10.3390/cells9010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is a multifunctional and highly conserved protein from yeast to humans. Recently, its role in non-selective autophagy has been reported with controversial results in mammalian and human cells. Herein we examine the effect of Mmi1, the yeast ortholog of TCTP, on non-selective autophagy in budding yeast Saccharomyces cerevisiae, a well-established model system to monitor autophagy. We induced autophagy by nitrogen starvation or rapamycin addition and measured autophagy by using the Pho8Δ60 and GFP-Atg8 processing assays in WT, mmi1Δ, and in autophagy-deficient strains atg8Δ or atg1Δ. Our results demonstrate that Mmi1 does not affect basal or nitrogen starvation-induced autophagy. However, an increased rapamycin-induced autophagy is detected in mmi1Δ strain when the cells enter the post-diauxic growth phase, and this phenotype can be rescued by inserted wild-type MMI1 gene. Further, the mmi1Δ cells exhibit significantly lower amounts of reactive oxygen species (ROS) in the post-diauxic growth phase compared to WT cells. In summary, our study suggests that Mmi1 negatively affects rapamycin-induced autophagy in the post-diauxic growth phase and supports the role of Mmi1/TCTP as a negative autophagy regulator in eukaryotic cells.
Collapse
|
23
|
Chen SH, Lu CH, Tsai MJ. TCTP is Essential for Cell Proliferation and Survival during CNS Development. Cells 2020; 9:cells9010133. [PMID: 31935927 PMCID: PMC7017002 DOI: 10.3390/cells9010133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Translationally controlled tumor-associated protein (TCTP) has been implicated in cell growth, proliferation, and apoptosis through interacting proteins. Although TCTP is expressed abundantly in the mouse brain, little is known regarding its role in the neurogenesis of the nervous system. We used Nestin-cre-driven gene-mutated mice to investigate the function of TCTP in the nervous system. The mice carrying disrupted TCTP in neuronal and glial progenitor cells died at the perinatal stage. The NestinCre/+; TCTPf/f pups displayed reduced body size at postnatal day 0.5 (P0.5) and a lack of milk in the stomach compared with littermate controls. In addition to decreased cell proliferation, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and caspase assay revealed that apoptosis was increased in newly committed TCTP-disrupted cells as they migrated away from the ventricular zone. The mechanism may be that the phenotype from specific deletion of TCTP in neural progenitor cells is correlated with the decreased expression of cyclins D2, E2, Mcl-1, Bcl-xL, hax-1, and Octamer-binding transcription factor 4 (Oct4) in conditional knockout mice. Our results demonstrate that TCTP is a critical protein for cell survival during early neuronal and glial differentiation. Thus, enhanced neuronal loss and functional defect in Tuj1 and doublecortin-positive neurons mediated through increased apoptosis and decreased proliferation during central nervous system (CNS) development may contribute to the perinatal death of TCTP mutant mice.
Collapse
Affiliation(s)
- Sung-Ho Chen
- Department of Pharmacology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Master Program in Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2452); Fax: +886-3-8561465
| | - Chin-Hung Lu
- Master Program in Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Ming-Jen Tsai
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600, Taiwan;
| |
Collapse
|
24
|
Liu Z, Xu J, Ling L, Zhang R, Shang P, Huang Y. CRISPR disruption of TCTP gene impaired normal development in the silkworm Bombyx mori. INSECT SCIENCE 2019; 26:973-982. [PMID: 29316276 PMCID: PMC7380024 DOI: 10.1111/1744-7917.12567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 06/07/2023]
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved and multifunctional protein with activities ranging from cytoskeletal regulation to transcription regulation in numerous organisms. In insects, TCTP is essential for cell growth and proliferation. Recently, TCTP has been reported to affect the innate intestinal immune pathway in the Bombyx mori silkworm, a lepidopteran model insect. However, the comprehensive physiological roles of TCTP in the silkworm remain poorly understood. Here, we performed functional analysis of BmTCTP by using a binary transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/RNA-guided CRISPER-associated protein 9 nucleases) system. Disruption of BmTCTP led to developmental arrestment and subsequent lethality in third instar larvae. Histological analysis revealed that growth impairment originated from decreased cell size, and the proliferation and differentiation of intestinal epithelial cells were also affected. RNA-seq analysis revealed that genes involved in carbohydrate metabolism, lipid metabolism and digestive system pathways were significantly affected by BmTCTP depletion. Together, the results demonstrated that BmTCTP plays a key role in controlling larval growth and development.
Collapse
Affiliation(s)
- Zu‐Lian Liu
- Faculty of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Lin Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Ru Zhang
- Faculty of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Peng Shang
- Faculty of Life SciencesNorthwestern Polytechnical UniversityXi'anChina
| | - Yong‐Ping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
25
|
Kawakami Y, Kasakura K, Kawakami T. Histamine-Releasing Factor, a New Therapeutic Target in Allergic Diseases. Cells 2019; 8:cells8121515. [PMID: 31779161 PMCID: PMC6952944 DOI: 10.3390/cells8121515] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Histamine-releasing activities on human basophils have been studied as potential allergy-causing agents for four decades. An IgE-dependent histamine-releasing factor (HRF) was recently shown to interact with a subset of immunoglobulins. Peptides or recombinant proteins that block the interactions between HRF and IgE have emerged as promising anti-allergic therapeutics, as administration of them prevented or ameliorated type 2 inflammation in animal models of allergic diseases such as asthma and food allergy. Basic and clinical studies support the notion that HRF amplifies IgE-mediated activation of mast cells and basophils. We discuss how secreted HRF promotes allergic inflammation in vitro and in vivo complex disease settings.
Collapse
Affiliation(s)
- Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology; La Jolla, CA 92037, USA; (Y.K.); (K.K.)
| | - Kazumi Kasakura
- Division of Cell Biology, La Jolla Institute for Immunology; La Jolla, CA 92037, USA; (Y.K.); (K.K.)
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology; La Jolla, CA 92037, USA; (Y.K.); (K.K.)
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Correspondence: ; Tel.: +85-8-752-6814
| |
Collapse
|
26
|
Ying X, Liu Y, Chen L, Bo Q, Xu Q, Li F, Zhou C, Cheng L. Analysis of translation control tumor protein related to deltamethrin stress in Drosophila kc cells. CHEMOSPHERE 2019; 231:450-456. [PMID: 31146137 DOI: 10.1016/j.chemosphere.2019.05.141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The translation control tumor protein (TCTP) is a kind of conservative, common and important molecule, several functions (such as regulating cell cycle, apoptosis and calcium binding) have been reported. However, few academic researches for role of TCTP in insecticides stress were made so far. In this research, Drosophila kc cells treated with different doses of deltamethrin at different times, indicated that the expression of TCTP reached the highest level when the cells were treated with 20 ppm of deltamethrin at 24 h. The results showed that TCTP expression is associated with deltamethrin stress. To investigate the functional relationship between this gene and deltamethrin resistance, RNA interference (RNAi) and cell transfection were utilized. TCTP knockdown significantly reduced the level of resistance of RNAi-treated cells, and the overexpressions of TCTP in Drosophila kc cells conferred a degree of protection against deltamethrin. Flow cytometry data showed increased apoptosis rate of RNAi-treated cells and decreased apoptosis following cell transfection. These results represent the first evidence that TCTP plays an important role in the regulation of deltamethrin resistance. Therefore, this study could help us to elucidate the environmental toxicity of deltamethrin and new target genes associated with resistance.
Collapse
Affiliation(s)
- Xiaoli Ying
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yahui Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lu Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qian Bo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qin Xu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210042, PR China
| | - Fengliang Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550009, China.
| | - Changfa Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Luogen Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
27
|
Branco R, Masle J. Systemic signalling through translationally controlled tumour protein controls lateral root formation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3927-3940. [PMID: 31037291 PMCID: PMC6685649 DOI: 10.1093/jxb/erz204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/06/2019] [Indexed: 05/05/2023]
Abstract
The plant body plan and primary organs are established during embryogenesis. However, in contrast to animals, plants have the ability to generate new organs throughout their whole life. These give them an extraordinary developmental plasticity to modulate their size and architecture according to environmental constraints and opportunities. How this plasticity is regulated at the whole-organism level is elusive. Here we provide evidence for a role for translationally controlled tumour protein (TCTP) in regulating the iterative formation of lateral roots in Arabidopsis. AtTCTP1 modulates root system architecture through a dual function: as a general constitutive growth promoter enhancing root elongation and as a systemic signalling agent via mobility in the vasculature. AtTCTP1 encodes mRNAs with long-distance mobility between the shoot and roots. Mobile shoot-derived TCTP1 gene products act specifically to enhance the frequency of lateral root initiation and emergence sites along the primary root pericycle, while root elongation is controlled by local constitutive TCTP1 expression and scion size. These findings uncover a novel type for an integrative signal in the control of lateral root initiation and the compromise for roots between branching more profusely or elongating further. They also provide the first evidence in plants of an extracellular function of the vital, highly expressed ubiquitous TCTP1.
Collapse
Affiliation(s)
- Rémi Branco
- The Australian National University, College of Science, Research School of Biology, Canberra ACT, Australia
| | - Josette Masle
- The Australian National University, College of Science, Research School of Biology, Canberra ACT, Australia
- Correspondence:
| |
Collapse
|
28
|
Abstract
This chapter focuses on published studies specifically concerning TCTP and its involvement in degradation or stabilization of various proteins, and also in its own degradation in different ways. The first part relates to the inhibition of proteasomal degradation of proteins. This can be achieved by masking ubiquitination sites of specific partners, by favoring ubiquitin E3 ligase degradation, or by regulating proteasome activity. The second part addresses the ability of TCTP to favor degradation of specific proteins through proteasome or macroautophagic pathways. The third part discusses about the different ways by which TCTP has been shown to be degraded.
Collapse
|
29
|
MacDonald SM. History of Histamine-Releasing Factor (HRF)/Translationally Controlled Tumor Protein (TCTP) Including a Potential Therapeutic Target in Asthma and Allergy. Results Probl Cell Differ 2019; 64:291-308. [PMID: 29149416 DOI: 10.1007/978-3-319-67591-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histamine-releasing factor (HRF) also known as translationally controlled tumor protein (TCTP) is a highly conserved, ubiquitous protein that has both intracellular and extracellular functions. Here we will highlight the subcloning of the molecule, its clinical implications, as well as an inducible-transgenic mouse. Particular attention will be paid to its extracellular functioning and its potential role as a therapeutic target in asthma and allergy. The cells and the cytokines that are produced when stimulated or primed by HRF/TCTP will be detailed as well as the downstream signaling pathway that HRF/TCTP elicits. While it was originally thought that HRF/TCTP interacted with IgE, the finding that cells not binding IgE also respond to HRF/TCTP called this interaction into question. HRF/TCTP or at least its mouse counterpart appears to interact with some, but not all IgE and IgG molecules. HRF/TCTP has been shown to activate multiple human cells including basophils, eosinophils, T cells, and B cells. Since many of the cells that are activated by HRF/TCTP participate in the allergic response, the extracellular functions of HRF/TCTP could exacerbate the allergic, inflammatory cascade. Particularly exciting is that small molecule agonists of the phosphatase SHIP-1 have been shown to modulate the P13 kinase/AKT pathway and may control inflammatory disorders. This review discusses this possibility in light of HRF/TCTP.
Collapse
Affiliation(s)
- Susan M MacDonald
- The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 3B.69, Baltimore, MD, 21224, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Translationally controlled tumor protein (TCTP) plays a pivotal role in cardiomyocyte survival through a Bnip3-dependent mechanism. Cell Death Dis 2019; 10:549. [PMID: 31320615 PMCID: PMC6639386 DOI: 10.1038/s41419-019-1787-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Prevention of cardiomyocyte death is an important therapeutic strategy for heart failure. In this study, we focused on translationally controlled tumor protein (TCTP), a highly conserved protein that is expressed ubiquitously in mammalian tissues, including heart. TCTP plays pivotal roles in survival of certain cell types, but its function in cardiomyocytes has not been examined. We aimed to clarify the role of TCTP in cardiomyocyte survival and the underlying mechanism. Here, we demonstrated that downregulation of TCTP with siRNA induced cell death of cardiomyocytes with apoptotic and autophagic features, accompanied with mitochondrial permeability transition pore (mPTP) opening. TCTP loss did not induce cell death of cardiac fibroblasts. Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) was found to mediate the TCTP-loss-induced cardiomyocyte death. In exploring the clinical significance of the TCTP expression in the heart, we found that DOX treatment markedly downregulated the protein expression of TCTP in cultured cardiomyocytes and in mouse heart tissue. Exogenous rescue of TCTP expression attenuated DOX-induced cardiomyocyte death. In mice, cardiomyocyte-specific overexpression of TCTP resulted in decreased susceptibility to DOX-induced cardiac dysfunction, accompanied with attenuated induction of Bnip3. Dihydroartemisinin, a pharmacological TCTP inhibitor, induced development of heart failure and cardiomyocyte death in control mice, but not in mice with cardiomyocyte-specific TCTP overexpression. Our findings revealed TCTP has a pivotal role in cardiomyocyte survival, at least in part through a Bnip3-dependent mechanism. TCTP could be considered as a candidate therapeutic target to prevent DOX-induced heart failure.
Collapse
|
31
|
Verleih M, Borchel A, Rebl A, Brenmoehl J, Kühn C, Goldammer T. A molecular survey of programmed cell death in rainbow trout: Structural and functional specifications of apoptotic key molecules. Comp Biochem Physiol B Biochem Mol Biol 2019; 230:57-69. [DOI: 10.1016/j.cbpb.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 12/24/2022]
|
32
|
Kim AR, Sung JY, Rho SB, Kim YN, Yoon K. Suppressor of Variegation 3-9 Homolog 2, a Novel Binding Protein of Translationally Controlled Tumor Protein, Regulates Cancer Cell Proliferation. Biomol Ther (Seoul) 2019; 27:231-239. [PMID: 30763986 PMCID: PMC6430221 DOI: 10.4062/biomolther.2019.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Suppressor of Variegation 3-9 Homolog 2 (SUV39H2) methylates the lysine 9 residue of histone H3 and induces heterochromatin formation, resulting in transcriptional repression or silencing of target genes. SUV39H1 and SUV39H2 have a role in embryonic development, and SUV39H1 was shown to suppress cell cycle progression associated with Rb. However, the function of human SUV39H2 has not been extensively studied. We observed that forced expression of SUV39H2 decreased cell proliferation by inducing G1 cell cycle arrest. In addition, SUV39H2 was degraded through the ubiquitin-proteasomal pathway. Using yeast two-hybrid screening to address the degradation mechanism and function of SUV39H2, we identified translationally controlled tumor protein (TCTP) as an SUV39H2-interacting molecule. Mapping of the interacting regions indicated that the N-terminal 60 amino acids (aa) of full-length SUV39H2 and the C-terminus of TCTP (120-172 aa) were critical for binding. The interaction of SUV39H2 and TCTP was further confirmed by co-immunoprecipitation and immunofluorescence staining for colocalization. Moreover, depletion of TCTP by RNAi led to up-regulation of SUV39H2 protein, while TCTP overexpression reduced SUV39H2 protein level. The half-life of SUV39H2 protein was significantly extended upon TCTP depletion. These results clearly indicate that TCTP negatively regulates the expression of SUV39H2 post-translationally. Furthermore, SUV39H2 induced apoptotic cell death in TCTP-knockdown cells. Taken together, we identified SUV39H2, as a novel target protein of TCTP and demonstrated that SUV39H2 regulates cell proliferation of lung cancer cells.
Collapse
Affiliation(s)
- A-Reum Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jee Young Sung
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Seung Bae Rho
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yong-Nyun Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyungsil Yoon
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| |
Collapse
|
33
|
Betsch L, Boltz V, Brioudes F, Pontier G, Girard V, Savarin J, Wipperman B, Chambrier P, Tissot N, Benhamed M, Mollereau B, Raynaud C, Bendahmane M, Szécsi J. TCTP and CSN4 control cell cycle progression and development by regulating CULLIN1 neddylation in plants and animals. PLoS Genet 2019; 15:e1007899. [PMID: 30695029 PMCID: PMC6368322 DOI: 10.1371/journal.pgen.1007899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 02/08/2019] [Accepted: 12/15/2018] [Indexed: 11/30/2022] Open
Abstract
Translationally Controlled Tumor Protein (TCTP) controls growth by regulating the G1/S transition during cell cycle progression. Our genetic interaction studies show that TCTP fulfills this role by interacting with CSN4, a subunit of the COP9 Signalosome complex, known to influence CULLIN-RING ubiquitin ligases activity by controlling CULLIN (CUL) neddylation status. In agreement with these data, downregulation of CSN4 in Arabidopsis and in tobacco cells leads to delayed G1/S transition comparable to that observed when TCTP is downregulated. Loss-of-function of AtTCTP leads to increased fraction of deneddylated CUL1, suggesting that AtTCTP interferes negatively with COP9 function. Similar defects in cell proliferation and CUL1 neddylation status were observed in Drosophila knockdown for dCSN4 or dTCTP, respectively, demonstrating a conserved mechanism between plants and animals. Together, our data show that CSN4 is the missing factor linking TCTP to the control of cell cycle progression and cell proliferation during organ development and open perspectives towards understanding TCTP's role in organ development and disorders associated with TCTP miss-expression.
Collapse
Affiliation(s)
- Léo Betsch
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Véronique Boltz
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Florian Brioudes
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Garance Pontier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Victor Girard
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Univ Lyon, Lyon, France
| | - Julie Savarin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Barbara Wipperman
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Pierre Chambrier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Nicolas Tissot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Orsay, France
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Univ Lyon, Lyon, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Orsay, France
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| | - Judit Szécsi
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, UMS 3444 Biosciences Lyon Gerland, Ecole Normale Supérieure, Lyon, France
| |
Collapse
|
34
|
Even İ, Akiva İ, İyison NB. An in vivo RNAi mini-screen in Drosophila cancer models reveals novel potential Wnt targets in liver cancer. TURKISH JOURNAL OF GASTROENTEROLOGY 2018; 30:198-207. [PMID: 30541713 DOI: 10.5152/tjg.2018.18241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Aberrant activation of the Wnt/β-catenin signaling, which arises from the accumulation of mutant β-catenin in the cell, is one of the most common driving forces in hepatocellular carcinoma (HCC). We previously identified several genes that are regulated on the overexpression of β-catenin in the HCC cell line that are suggested to be novel Wnt/β-catenin targets playing effective roles in cancer. The aim of the present study was to elucidate the roles of these putative target genes in tumorigenesis with an in vivo analysis in Drosophila. MATERIALS AND METHODS We selected 15 genes downregulated in two Drosophila cancer models. RESULTS The results from the RNAi mini-screen revealed novel roles for the analyzed putative Wnt/β-catenin target genes in tumorigenesis. The downregulation of the analyzed nine genes led to tumor formation as well as metastasis in Drosophila, suggesting a tumor suppressor function. On the other hand, the knockdown of the other two genes suppressed tumor and metastasis formations and disturbed the development of the analyzed eye tissues, indicating an oncogenic or developmental role for these genes. CONCLUSION These findings could serve to identify novel subjects for cancer research in order to provide insight into the diagnostic and therapeutic processes of several cancer types.
Collapse
Affiliation(s)
- İpek Even
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - İzzet Akiva
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - Necla Birgül İyison
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey;Center for Life Sciences and Technologies, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|
35
|
Zhang L, Wang Q, Wang F, Zhang X, Zhang L, Tang Y, Wang S. LncRNA LINC01446 promotes glioblastoma progression by modulating miR-489-3p/TPT1 axis. Biochem Biophys Res Commun 2018; 503:1484-1490. [PMID: 30029885 DOI: 10.1016/j.bbrc.2018.07.067] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates that long noncoding RNA (lncRNA) is implicated in human diseases, including cancers. However, how lncRNA regulates glioblastoma (GBM) progression is poorly understood. Our study revealed a novel lncRNA LINC01446 whose expression was elevated in GBM tissues. Besides, high expression of LINC01446 indicated a poor prognosis in GBM patients. Functionally, LINC01446 knockdown dramatically inhibited GBM cell proliferation, arrested cell-cycle progression and attenuated invasion in vitro. Furthermore, the xenograft mouse model showed that LINC01446 silence led to impaired tumor growth in vivo. Mechanistically, bioinformatics analysis showed that LINC01446 acted as a sponge for miR-489-3p which targeted TPT1. Though inhibiting miR-489-3p availability, LINC01446 promoted TPT1 expression in GBM cells. Rescue experiments demonstrated that restoration of TPT1 could significantly rescued the effects of LINC01446 silence or miR-489-3p overexpression. Taken together, this study demonstrates a novel singling pathway of LINC01446/miR-489-3p/TPT1 cascade that regulates GBM progression.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/metabolism
- Disease Progression
- Female
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/metabolism
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/pharmacology
- Tumor Cells, Cultured
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Li Zhang
- Experiment Center of Basic Medical Sciences of Kunming Medical University, Kunming, 650500, China
| | - Qin Wang
- Geriatrics Hospital of Yunnan, Kunming, 650033, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiang Zhang
- Experiment Center of Basic Medical Sciences of Kunming Medical University, Kunming, 650500, China
| | - Li Zhang
- Editorial Department of Journal of Kunming Medical University, Kunming, 650500, China
| | - Ying Tang
- The Electron Microscopy Laboratory, Experiment Center for Medical Science Research of Kunming Medical University, Kunming, 650500, China
| | - Shaoyun Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650106, China.
| |
Collapse
|
36
|
Jojic B, Amodeo S, Ochsenreiter T. The translationally controlled tumor protein TCTP is involved in cell cycle progression and heat stress response in the bloodstream form of Trypanosoma brucei. MICROBIAL CELL 2018; 5:460-468. [PMID: 30386790 PMCID: PMC6206406 DOI: 10.15698/mic2018.10.652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The translationally controlled tumor protein TCTP, is a universally conserved protein that seems to be of essential function in all systems tested so far. TCTP is involved in a multitude of cellular functions including cell cycle control, cell division, apoptosis and many more. The mechanism of how TCTP is involved in most of these functions remains elusive. Here we describe that TCTP is a cytoplasmic protein involved in cell cycle regulation and heat stress response in the bloodstream form of Trypanosoma brucei.
Collapse
Affiliation(s)
- Borka Jojic
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | |
Collapse
|
37
|
Some Biological Consequences of the Inhibition of Na,K-ATPase by Translationally Controlled Tumor Protein (TCTP). Int J Mol Sci 2018; 19:ijms19061657. [PMID: 29867020 PMCID: PMC6032315 DOI: 10.3390/ijms19061657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Na,K-ATPase is an ionic pump that regulates the osmotic equilibrium and membrane potential of cells and also functions as a signal transducer. The interaction of Na,K-ATPase with translationally controlled tumor protein (TCTP) results, among others, in the inhibition of the former's pump activity and in the initiation of manifold biological and pathological phenomena. These phenomena include hypertension and cataract development in TCTP-overexpressing transgenic mice, as well as the induction of tumorigenesis signaling pathways and the activation of Src that ultimately leads to cell proliferation and migration. This review attempts to collate the biological effects of Na,K-ATPase and TCTP interaction and suggests that this interaction has the potential to serve as a possible therapeutic target for selected diseases.
Collapse
|
38
|
Jojic B, Amodeo S, Bregy I, Ochsenreiter T. Distinct 3' UTRs regulate the life-cycle-specific expression of two TCTP paralogs in Trypanosoma brucei. J Cell Sci 2018; 131:jcs.206417. [PMID: 29661850 PMCID: PMC5992589 DOI: 10.1242/jcs.206417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/28/2018] [Indexed: 12/02/2022] Open
Abstract
The translationally controlled tumor protein (TCTP; also known as TPT1 in mammals) is highly conserved and ubiquitously expressed in eukaryotes. It is involved in growth and development, cell cycle progression, protection against cellular stresses and apoptosis, indicating the multifunctional role of the protein. Here, for the first time, we characterize the expression and function of TCTP in the human and animal pathogen, Trypanosoma brucei. We identified two paralogs (TCTP1 and TCTP2) that are differentially expressed in the life cycle of the parasite. The genes have identical 5′ untranslated regions (UTRs) and almost identical open-reading frames. The 3′UTRs differ substantially in sequence and length, and are sufficient for the exclusive expression of TCTP1 in procyclic- and TCTP2 in bloodstream-form parasites. Furthermore, we characterize which parts of the 3′UTR are needed for TCTP2 mRNA stability. RNAi experiments demonstrate that TCTP1 and TCTP2 expression is essential for normal cell growth in procyclic- and bloodstream-form parasites, respectively. Depletion of TCTP1 in the procyclic form cells leads to aberrant cell and mitochondrial organelle morphology, as well as enlarged, and a reduced number of, acidocalcisomes. Summary:T. brucei has two TCTP genes that are differentially expressed during the parasite life cycle owing to their different 3′UTRs. TCTP also has a role in regulating cell growth and morphology.
Collapse
Affiliation(s)
- Borka Jojic
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Irina Bregy
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | |
Collapse
|
39
|
Zheng J, Chen Y, Li Z, Cao S, Zhang Z, Jia H. Translationally controlled tumor protein is required for the fast growth of
Toxoplasma gondii
and maintenance of its intracellular development. FASEB J 2018; 32:906-919. [DOI: 10.1096/fj.201700994r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jun Zheng
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Yaping Chen
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhaoran Li
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Shinuo Cao
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Zhaoxia Zhang
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| | - Honglin Jia
- State Key Laboratory of Veterinary BiotechnologyHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
| |
Collapse
|
40
|
Zhu Y, Gong Y, Li A, Chen M, Kang D, Liu J, Yuan Y. Differential Proteomic Analysis Reveals Protein Networks and Pathways that May Contribute to Helicobacter pylori FKBP-Type PPIase-Associated Gastric Diseases. Proteomics Clin Appl 2017; 12:e1700127. [PMID: 29148176 DOI: 10.1002/prca.201700127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/21/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Though Helicobacter pylori (H. pylori) has been classified as class I carcinogen, key virulence factor generated by H. pylori that causes gastric cancer remains to be fully determined. Recently, we identified a gastric cancer-associated H. pylori gene, peptidylprolyl isomerase-FK506 binding protein (PPIase-FKBP), and showed that PPIase-FKBP was capable of inducing oncogenic transformation of gastric epithelial cells. But its mechanism was unclear. EXPERIMENTAL DESIGN We carried out a comparative proteomic analysis of human gastric epithelial cells that either express PPIase-FKBP or green fluorescent protein using 2-DE and then MALDI-TOF-MS/MS. RESULTS Our results identified 28 differentially expressed proteins induced by PPIase-FKBP. These proteins participate in some cellular biological processes, such as cell proliferation, cell apoptosis and DNA replication, mRNA splicing, and protein biosynthesis. Ingenuity Pathway Analysis categorized the 28 proteins into two molecular interaction networks, involved primarily in cancer and gastrointestinal diseases. CONCLUSIONS AND CLINICAL RELEVANCE Our results provided insight on the protein interaction networks and signaling pathways that may contribute to PPIase-FKBP-associated gastric diseases and may lead to a better understanding of the mechanisms indicating the oncogenic effects of H. pylori PPIase-FKBP.
Collapse
Affiliation(s)
- Yanmei Zhu
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.,Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China.,West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| | - Aodi Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| | - Moye Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| | - Dan Kang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| | - Jun Liu
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang, China
| |
Collapse
|
41
|
Ando T, Kashiwakura JI, Itoh-Nagato N, Yamashita H, Baba M, Kawakami Y, Tsai SH, Inagaki N, Takeda K, Iwata T, Shimojo N, Fujisawa T, Nagao M, Matsumoto K, Kawakami Y, Kawakami T. Histamine-releasing factor enhances food allergy. J Clin Invest 2017; 127:4541-4553. [PMID: 29130935 PMCID: PMC5707161 DOI: 10.1172/jci96525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
Food allergy occurs due to IgE- and mast cell-dependent intestinal inflammation. Previously, we showed that histamine-releasing factor (HRF), a multifunctional protein secreted during allergy, interacts with a subset of IgE molecules and that the HRF dimer activates mast cells in an HRF-reactive IgE-dependent manner. In this study, we investigated whether HRF plays any role in food allergy. Specifically, we determined that prophylactic and therapeutic administration of HRF inhibitors that block HRF-IgE interactions reduces the incidence of diarrhea and mastocytosis in a murine model of food allergy. Food allergy-associated intestinal inflammation was accompanied by increased secretion of the HRF dimer into the intestine in response to proinflammatory, Th2, and epithelial-derived cytokines and HRF-reactive IgE levels at the elicitation phase. Consistent with these data, patients with egg allergy had higher blood levels of HRF-reactive IgE compared with individuals that were not hypersensitive. Successful oral immunotherapy in egg-allergy patients and food-allergic mice reduced HRF-reactive IgE levels, thereby suggesting a pathological role for HRF in food allergy. Together, these results suggest that antigen and HRF dimer amplify intestinal inflammation by synergistically activating mast cells and indicate that HRF has potential as a therapeutic target in food allergy.
Collapse
Affiliation(s)
- Tomoaki Ando
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences (RIKEN IMS), Yokohama, Japan
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Jun-ichi Kashiwakura
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences (RIKEN IMS), Yokohama, Japan
| | | | - Hirotaka Yamashita
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Minato Baba
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Shih Han Tsai
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Naoki Inagaki
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Tsutomu Iwata
- Department of Education for Childcare, Faculty of Child Studies, Tokyo Kasei University, Tokyo, Japan
| | - Naoki Shimojo
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Mizuho Nagao
- Institute for Clinical Research, Mie National Hospital, Tsu, Mie, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
- Department of Dermatology, UCSD, School of Medicine, La Jolla, California, USA
| |
Collapse
|
42
|
Goodman CA, Coenen AM, Frey JW, You JS, Barker RG, Frankish BP, Murphy RM, Hornberger TA. Insights into the role and regulation of TCTP in skeletal muscle. Oncotarget 2017; 8:18754-18772. [PMID: 27813490 PMCID: PMC5386645 DOI: 10.18632/oncotarget.13009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/28/2016] [Indexed: 01/07/2023] Open
Abstract
The translationally controlled tumor protein (TCTP) is upregulated in a range of cancer cell types, in part, by the activation of the mechanistic target of rapamycin (mTOR). Recently, TCTP has also been proposed to act as an indirect activator of mTOR. While it is known that mTOR plays a major role in the regulation of skeletal muscle mass, very little is known about the role and regulation of TCTP in this post-mitotic tissue. This study shows that muscle TCTP and mTOR signaling are upregulated in a range of mouse models (mdx mouse, mechanical load-induced hypertrophy, and denervation- and immobilization-induced atrophy). Furthermore, the increase in TCTP observed in the hypertrophic and atrophic conditions occurred, in part, via a rapamycin-sensitive mTOR-dependent mechanism. However, the overexpression of TCTP was not sufficient to activate mTOR signaling (or increase protein synthesis) and is thus unlikely to take part in a recently proposed positive feedback loop with mTOR. Nonetheless, TCTP overexpression was sufficient to induce muscle fiber hypertrophy. Finally, TCTP overexpression inhibited the promoter activity of the muscle-specific ubiquitin proteasome E3-ligase, MuRF1, suggesting that TCTP may play a role in inhibiting protein degradation. These findings provide novel data on the role and regulation of TCTP in skeletal muscle in vivo.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.,Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, Melbourne, Victoria, 8001, Australia.,Institute for Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, Victoria, 8001, Australia
| | - Allison M Coenen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - John W Frey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Jae-Sung You
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Robert G Barker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Barnaby P Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Troy A Hornberger
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
43
|
Wang L, Tang Y, Zhao M, Mao S, Wu L, Liu S, Liu D, Zhao G, Wang X. Knockdown of translationally controlled tumor protein inhibits growth, migration and invasion of lung cancer cells. Life Sci 2017; 193:292-299. [PMID: 28970113 DOI: 10.1016/j.lfs.2017.09.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/10/2017] [Accepted: 09/27/2017] [Indexed: 01/10/2023]
Abstract
AIM To investigate the role of translationally controlled tumor protein (TCTP) in lung cancer development. MAIN METHODS A549 and HCC827 cells were transfected with shRNA specifically targeting TCTP mRNA. Cell growth was assessed by colony formation assay and cell counting kit-8. Cell cycle and apoptosis were analyzed by flow cytometry. Cell migration and invasion was measured by scratch and transwell assays. In vivo tumorigenicity was evaluated by tumor xenografts in nude mice. KEY FINDINGS TCTP-silenced cells displayed a reduced ability of colony formation and a lower rate of proliferation in vitro. Knockdown of TCTP arrested cell cycle at G1 phase and led to downregulated expression of cyclins B1, D1 and E. Moreover, silencing of TCTP induced apoptosis and altered the levels of apoptosis-regulatory proteins such as cleaved caspase-3, Bcl-2, Bax and p53. Silencing of TCTP also inhibited migration and invasion of lung cancer cells. In addition, TCTP-silenced A549 cells, when subcutaneously inoculated in nude mice, formed tumors at a significantly slower rate. SIGNIFICANCE Our in vitro and in vivo data indicate that silencing of TCTP inhibits growth, migration and invasion of lung cancer cells. Thus, TCTP may be a potential target for lung cancer therapy.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China
| | - Yufu Tang
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang 110016, People's Republic of China
| | - Mingjing Zhao
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China
| | - Shitao Mao
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang 110016, People's Republic of China
| | - Lijian Wu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China
| | - Dan Liu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China
| | - Guangdan Zhao
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China
| | - Xiaoge Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China.
| |
Collapse
|
44
|
Mishra DK, Srivastava P, Sharma A, Prasad R, Bhuyan SK, Malage R, Kumar P, Yadava PK. Translationally controlled tumor protein (TCTP) is required for TGF-β1 induced epithelial to mesenchymal transition and influences cytoskeletal reorganization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:67-75. [PMID: 28958626 DOI: 10.1016/j.bbamcr.2017.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/27/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a programed course of developmental changes resulting in the acquisition of invasiveness and mobility in cells. In cancer, this course is used by epithelial cells to attain movability. Translationally controlled tumor protein (TCTP) has been extensively characterized following the observation on tumor reversion ensuing its depletion. However, the role of TCTP in cancer progression is still elusive. Here, we demonstrate for the first time that TCTP is a target of transforming growth factor-β1 (TGF-β1), a key regulator of EMT in A549 cells. We here present changes in expression patterns of intermediate filament markers (vimentin and cytokeratin 18a) of EMT following TCTP knockdown or over expression. The TCTP over-expression in cancer cells is associated with mesenchymal characters, while downregulation promotes the epithelial markers in the cells. Interaction of TCTP with β-catenin seems to stabilize β-catenin, preparative to its nuclear localization highlighting a role for β-catenin signaling in EMT. Moreover, the induction of urokinase plasminogen activator (uPA) following ectopic expression of TCTP leads to destabilization of ECM. The cells knocked down for TCTP show diminished invasiveness and migration under TGF-β1 treatment. The present results for the first time demonstrate that TGF-β1 dependent TCTP expression is required for EMT in cells.
Collapse
Affiliation(s)
- Deepak Kumar Mishra
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pratibha Srivastava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amod Sharma
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ramraj Prasad
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Soubhagya Kumar Bhuyan
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahuldev Malage
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
45
|
Pinkaew D, Fujise K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv Clin Chem 2017; 82:265-300. [PMID: 28939212 DOI: 10.1016/bs.acc.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fortilin is a highly conserved 172-amino-acid polypeptide found in the cytosol, nucleus, mitochondria, extracellular space, and circulating blood. It is a multifunctional protein that protects cells against apoptosis, promotes cell growth and cell cycle progression, binds calcium (Ca2+) and has antipathogen activities. Its role in the pathogenesis of human and animal diseases is also diverse. Fortilin facilitates the development of atherosclerosis, contributes to both systemic and pulmonary arterial hypertension, participates in the development of cancers, and worsens diabetic nephropathy. It is important for the adaptive expansion of pancreatic β-cells in response to obesity and increased insulin requirement, for the regeneration of liver after hepatectomy, and for protection of the liver against alcohol- and ER stress-induced injury. Fortilin is a viable surrogate marker for in vivo apoptosis, and it plays a key role in embryo and organ development in vertebrates. In fish and shrimp, fortilin participates in host defense against bacterial and viral pathogens. Further translational research could prove fortilin to be a viable molecular target for treatment of various human diseases including and not limited to atherosclerosis, hypertension, certain tumors, diabetes mellitus, diabetic nephropathy, hepatic injury, and aberrant immunity and host defense.
Collapse
Affiliation(s)
- Decha Pinkaew
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ken Fujise
- University of Texas Medical Branch at Galveston, Galveston, TX, United States; The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
46
|
Jeon HJ, Cui XS, Guo J, Lee JM, Kim JS, Oh JS. TCTP regulates spindle assembly during postovulatory aging and prevents deterioration in mouse oocyte quality. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1328-1334. [PMID: 28476647 DOI: 10.1016/j.bbamcr.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/11/2022]
Abstract
If no fertilization occurs for a prolonged time following ovulation, oocytes experience a time-dependent deterioration in quality both in vivo and in vitro due to processes called postovulatory aging. Because the postovulatory aging of oocytes has marked detrimental effects on embryo development and offspring, many efforts have been made to unveil the underlying mechanisms. Here we showed that translationally controlled tumor protein (TCTP) regulates spindle assembly during postovulatory aging and prevents deterioration in mouse oocyte quality. Spindle dynamics decreased with reduced TCTP level during aging of mouse oocytes. Knockdown of TCTP accelerated the reduction of spindle dynamics, accompanying with aging-related deterioration of oocyte quality. Conversely, overexpression of TCTP prevented aging-associated decline of spindle dynamics. Moreover, the aging-related abnormalities in oocytes were rescued after TCTP overexpression, thereby improving fertilization competency and subsequent embryo development. Therefore, our results demonstrate that TCTP-mediated spindle dynamics play a key role in maintaining oocyte quality during postovulatory aging and overexpression of TCTP is sufficient to prevent aging-associated abnormalities in mouse oocytes.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jing Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
47
|
Karaki S, Benizri S, Mejías R, Baylot V, Branger N, Nguyen T, Vialet B, Oumzil K, Barthélémy P, Rocchi P. Lipid-oligonucleotide conjugates improve cellular uptake and efficiency of TCTP-antisense in castration-resistant prostate cancer. J Control Release 2017; 258:1-9. [PMID: 28472637 DOI: 10.1016/j.jconrel.2017.04.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/25/2017] [Accepted: 04/29/2017] [Indexed: 01/08/2023]
Abstract
Translationally controlled tumor protein (TCTP) has been implicated in a plethora of important cellular processes related to cell growth, cell cycle progression, malignant transformation and inhibition of apoptosis. Therefore, TCTP is now recognized as a potential therapeutic target in several cancers including prostate, breast and lung cancers. We previously showed that TCTP is overexpressed in castration-resistant prostate cancer (CRPC), and it has been implicated resistance to treatment. Recently, we developed TCTP antisense oligonucleotides (ASOs) to inhibit TCTP expression. However, the intracellular delivery and silencing activity of these oligonucleotides remains a challenge, and depend on the use of transfection agents and delivery systems. Here we show that lipid-modified ASO (LASOs) has improved penetration and efficiency in inhibiting TCTP expression in the absence of additional transfection agents, both in vitro and in vivo. Transfection with TCTP-LASO led to rapid and prolonged internalization via macropinocytosis, TCTP downregulation and significant decreased cell viability. We also show that lipid-modification led to delayed tumor progression in CRPC xenografts models, with no significant toxic effects observed.
Collapse
Affiliation(s)
- Sara Karaki
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, 27 Bd. Lei Roure BP30059, 13273 Marseille, France; Institut Paoli-Calmettes, 13273 Marseille, France; Aix-Marseille Université, 13284 Marseille, France; CNRS UMR7258, 13009 Marseille, France
| | - Sebastien Benizri
- ARNA Laboratory, University of Bordeaux, F-33076 Bordeaux, France; INSERM U1212, F-33076, Bordeaux, France; UMR CNRS 5320, F-33076, Bordeaux, France
| | - Raquel Mejías
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, 27 Bd. Lei Roure BP30059, 13273 Marseille, France; Institut Paoli-Calmettes, 13273 Marseille, France; Aix-Marseille Université, 13284 Marseille, France; CNRS UMR7258, 13009 Marseille, France
| | - Virginie Baylot
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, 27 Bd. Lei Roure BP30059, 13273 Marseille, France; Institut Paoli-Calmettes, 13273 Marseille, France; Aix-Marseille Université, 13284 Marseille, France; CNRS UMR7258, 13009 Marseille, France
| | - Nicolas Branger
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, 27 Bd. Lei Roure BP30059, 13273 Marseille, France; Institut Paoli-Calmettes, 13273 Marseille, France; Aix-Marseille Université, 13284 Marseille, France; CNRS UMR7258, 13009 Marseille, France
| | - Tan Nguyen
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, 27 Bd. Lei Roure BP30059, 13273 Marseille, France; Institut Paoli-Calmettes, 13273 Marseille, France; Aix-Marseille Université, 13284 Marseille, France; CNRS UMR7258, 13009 Marseille, France
| | - Brune Vialet
- ARNA Laboratory, University of Bordeaux, F-33076 Bordeaux, France; UMR CNRS 5320, F-33076, Bordeaux, France; UMR CNRS 5320, F-33076, Bordeaux, France
| | - Khalid Oumzil
- ARNA Laboratory, University of Bordeaux, F-33076 Bordeaux, France; INSERM U1212, F-33076, Bordeaux, France
| | - Philippe Barthélémy
- ARNA Laboratory, University of Bordeaux, F-33076 Bordeaux, France; INSERM U1212, F-33076, Bordeaux, France; UMR CNRS 5320, F-33076, Bordeaux, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR1068, 27 Bd. Lei Roure BP30059, 13273 Marseille, France; Institut Paoli-Calmettes, 13273 Marseille, France; Aix-Marseille Université, 13284 Marseille, France; CNRS UMR7258, 13009 Marseille, France.
| |
Collapse
|
48
|
Function of translationally controlled tumor protein (TCTP) in Eudrilus eugeniae regeneration. PLoS One 2017; 12:e0175319. [PMID: 28403226 PMCID: PMC5389791 DOI: 10.1371/journal.pone.0175319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/23/2017] [Indexed: 01/07/2023] Open
Abstract
TCTP (Translationally Controlled Tumour Protein) is a multifunctional protein that plays a role in the development, immune system, tumour reversion, and maintenance of stem cells. The mRNA of the Tpt1 gene is over-expressed during liver regeneration. But, the function of the protein in regeneration is not known. To study the role of the protein in regeneration, the earthworm Eudrilus eugeniae was chosen. First, the full length cDNA of the Tpt1 gene was sequenced. The size of the cDNA is 504 bp and the protein has 167 amino acids. The highest level of TCTP expression was documented in the worm after three days of regeneration. The protein was found to be expressed specifically in the epithelial layer of the skin. During regeneration, the protein expression was found to be the highest at the tip of blastema. The pharmacological suppression of TCTP using nutlin-3 and TCTP RNAi experiments resulted in the failure of the regeneration process. The suppression of TCTP caused the arrest of proliferation in posterior amputated worms. The severe cell death was documented in the amputated region of nutlin-3 injected worm. The silencing of TCTP has blocked the modification of clitellar segments. The experiments confirm that TCTP has major functions in the upstream signalling of cell proliferation in the early regeneration process in E. eugeniae.
Collapse
|
49
|
Bae SY, Byun S, Bae SH, Min DS, Woo HA, Lee K. TPT1 (tumor protein, translationally-controlled 1) negatively regulates autophagy through the BECN1 interactome and an MTORC1-mediated pathway. Autophagy 2017; 13:820-833. [PMID: 28409693 DOI: 10.1080/15548627.2017.1287650] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction.
Collapse
Affiliation(s)
- Seong-Yeon Bae
- a Graduate School of Pharmaceutical Sciences , College of Pharmacy, Ewha Womans University , Seoul , Korea
| | - Sanguine Byun
- b Division of Bioengineering , College of Life and Sciences and Bioengineering, Incheon National University , Incheon , Korea
| | - Soo Han Bae
- c Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul , Korea
| | - Do Sik Min
- d Department of Molecular Biology , College of Natural Sciences, Pusan National University , Busan , Korea
| | - Hyun Ae Woo
- a Graduate School of Pharmaceutical Sciences , College of Pharmacy, Ewha Womans University , Seoul , Korea
| | - Kyunglim Lee
- a Graduate School of Pharmaceutical Sciences , College of Pharmacy, Ewha Womans University , Seoul , Korea
| |
Collapse
|
50
|
Bommer UA, Vine KL, Puri P, Engel M, Belfiore L, Fildes K, Batterham M, Lochhead A, Aghmesheh M. Translationally controlled tumour protein TCTP is induced early in human colorectal tumours and contributes to the resistance of HCT116 colon cancer cells to 5-FU and oxaliplatin. Cell Commun Signal 2017; 15:9. [PMID: 28143584 PMCID: PMC5286767 DOI: 10.1186/s12964-017-0164-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Translationally controlled tumour protein TCTP is an anti-apoptotic protein frequently overexpressed in cancers, where high levels are often associated with poor patient outcome. TCTP may be involved in protecting cancer cells against the cytotoxic action of anti-cancer drugs. Here we study the early increase of TCTP levels in human colorectal cancer (CRC) and the regulation of TCTP expression in HCT116 colon cancer cells, in response to treatment with the anti-cancer drugs 5-FU and oxaliplatin. Methods Using immunohistochemistry, we assessed TCTP levels in surgical samples from adenomas and adenocarcinomas of the colon, compared to normal colon tissue. We also studied the regulation of TCTP in HCT116 colon cancer cells in response to 5-FU and oxaliplatin by western blotting. TCTP mRNA levels were assessed by RT-qPCR. We used mTOR kinase inhibitors to demonstrate mTOR-dependent translational regulation of TCTP under these conditions. Employing the Real-Time Cell Analysis (RTCA) System and the MTS assay, we investigated the effect of TCTP-knockdown on the sensitivity of HCT116 cells to the anti-cancer drugs 5-FU and oxaliplatin. Results 1. TCTP levels are significantly increased in colon adenomas and adenocarcinomas, compared to normal colon tissue. 2. TCTP protein levels are about 4-fold upregulated in HCT116 colon cancer cells, in response to 5-FU and oxaliplatin treatment, whereas TCTP mRNA levels are down regulated. 3. mTOR kinase inhibitors prevented the up-regulation of TCTP protein, indicating that TCTP is translationally regulated through the mTOR complex 1 signalling pathway under these conditions. 4. Using two cellular assay systems, we demonstrated that TCTP-knockdown sensitises HCT116 cells to the cytotoxicity caused by 5-FU and oxaliplatin. Conclusions Our results demonstrate that TCTP levels increase significantly in the early stages of CRC development. In colon cancer cells, expression of this protein is largely upregulated during treatment with the DNA-damaging anti-cancer drugs 5-FU and oxaliplatin, as part of the cellular stress response. TCTP may thus contribute to the development of anti-cancer drug resistance. These findings indicate that TCTP might be suitable as a biomarker and that combinatorial treatment using 5-FU/oxaliplatin, together with mTOR kinase inhibitors, could be a route to preventing the development of resistance to these drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0164-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia. .,Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - Kara L Vine
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Prianka Puri
- Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Present address: Southeast Sydney Illawarra Area Health Services, Sydney, NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Lisa Belfiore
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,School of Biological Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Karen Fildes
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Marijka Batterham
- School of Mathematics and Applied Statistics, Faculty of Engineering and Information Sciences University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Alistair Lochhead
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Southern IML Pathology Wollongong, 2500, Wollongong, NSW, Australia.,Present address: Syd-Path, St. Vincent's Hospital Darlinghurst, Sydney, 2010, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.,Illawarra Cancer Care Centre, The Wollongong Hospital, Wollongong, 2500, NSW, Australia
| |
Collapse
|