1
|
Rasmussen M, Jin JP. Mechanoregulation and function of calponin and transgelin. BIOPHYSICS REVIEWS 2024; 5:011302. [PMID: 38515654 PMCID: PMC10954348 DOI: 10.1063/5.0176784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
It is well known that chemical energy can be converted to mechanical force in biological systems by motor proteins such as myosin ATPase. It is also broadly observed that constant/static mechanical signals potently induce cellular responses. However, the mechanisms that cells sense and convert the mechanical force into biochemical signals are not well understood. Calponin and transgelin are a family of homologous proteins that participate in the regulation of actin-activated myosin motor activity. An isoform of calponin, calponin 2, has been shown to regulate cytoskeleton-based cell motility functions under mechanical signaling. The expression of the calponin 2 gene and the turnover of calponin 2 protein are both under mechanoregulation. The regulation and function of calponin 2 has physiological and pathological significance, as shown in platelet adhesion, inflammatory arthritis, arterial atherosclerosis, calcific aortic valve disease, post-surgical fibrotic peritoneal adhesion, chronic proteinuria, ovarian insufficiency, and tumor metastasis. The levels of calponin 2 vary in different cell types, reflecting adaptations to specific tissue environments and functional states. The present review focuses on the mechanoregulation of calponin and transgelin family proteins to explore how cells sense steady tension and convert the force signal to biochemical activities. Our objective is to present a current knowledge basis for further investigations to establish the function and mechanisms of calponin and transgelin in cellular mechanoregulation.
Collapse
Affiliation(s)
- Monica Rasmussen
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | - J.-P. Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, Illinois 60612, USA
| |
Collapse
|
2
|
Hsieh TB, Jin JP. Evolution and function of calponin and transgelin. Front Cell Dev Biol 2023; 11:1206147. [PMID: 37363722 PMCID: PMC10285543 DOI: 10.3389/fcell.2023.1206147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Calponin and transgelin (originally named SM22) are homologous cytoskeleton proteins that regulate actin-activated myosin motor functions in smooth muscle contraction and non-muscle cell motility during adhesion, migration, proliferation, phagocytosis, wound healing, and inflammatory responses. They are abundant cytoskeleton proteins present in multiple cell types whereas their physiological functions remain to be fully established. This focused review summarizes the evolution of genes encoding calponin and transgelin and their isoforms and discusses the structural similarity and divergence in vertebrate and invertebrate species in the context of functions in regulating cell motility. As the first literature review focusing on the evolution of the calponin-transgelin family of proteins in relevance to their structure-function relationship, the goal is to outline a foundation of current knowledge for continued investigations to understand the biological functions of calponin and transgelin in various cell types during physiological and pathological processes.
Collapse
Affiliation(s)
- Tzu-Bou Hsieh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - J.-P. Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
3
|
Keen AN, Payne LA, Mehta V, Rice A, Simpson LJ, Pang KL, del Rio Hernandez A, Reader JS, Tzima E. Eukaryotic initiation factor 6 regulates mechanical responses in endothelial cells. J Cell Biol 2022; 221:e202005213. [PMID: 35024764 PMCID: PMC8763864 DOI: 10.1083/jcb.202005213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
The repertoire of extratranslational functions of components of the protein synthesis apparatus is expanding to include control of key cell signaling networks. However, very little is known about noncanonical functions of members of the protein synthesis machinery in regulating cellular mechanics. We demonstrate that the eukaryotic initiation factor 6 (eIF6) modulates cellular mechanobiology. eIF6-depleted endothelial cells, under basal conditions, exhibit unchanged nascent protein synthesis, polysome profiles, and cytoskeleton protein expression, with minimal effects on ribosomal biogenesis. In contrast, using traction force and atomic force microscopy, we show that loss of eIF6 leads to reduced stiffness and force generation accompanied by cytoskeletal and focal adhesion defects. Mechanistically, we show that eIF6 is required for the correct spatial mechanoactivation of ERK1/2 via stabilization of an eIF6-RACK1-ERK1/2-FAK mechanocomplex, which is necessary for force-induced remodeling. These results reveal an extratranslational function for eIF6 and a novel paradigm for how mechanotransduction, the cellular cytoskeleton, and protein translation constituents are linked.
Collapse
Affiliation(s)
- Adam N. Keen
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Luke A. Payne
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Vedanta Mehta
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Lisa J. Simpson
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kar Lai Pang
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Armando del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - John S. Reader
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ellie Tzima
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Kotani H, Yoshizaki A, Matsuda KM, Norimatsu Y, Kuzumi A, Fukayama M, Fukasawa T, Ebata S, Yoshizaki-Ogawa A, Asano Y, Oba K, Sato S. Serum Calponin 3 Levels in Patients with Systemic Sclerosis: Possible Association with Skin Sclerosis and Arthralgia. J Clin Med 2021; 10:jcm10020280. [PMID: 33466615 PMCID: PMC7828654 DOI: 10.3390/jcm10020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by tissue fibrosis and vasculopathy in various organs with a background of inflammation initiated by autoimmune abnormalities. Calponin 3 plays a role in the cell motility and contractibility of fibroblasts during wound healing in the skin. We aimed to evaluate serum calponin 3 levels in SSc patients and their association with clinical manifestations of SSc. Serum samples were collected from 68 patients with SSc and 20 healthy controls. Serum calponin 3 levels were examined using enzyme-linked immunosorbent assay kits, and their association with clinical features of SSc was statistically analyzed. The upper limit of the 95% confidence interval of serum calponin 3 levels in healthy controls was utilized as the cut-off value when dividing SSc patients into the elevated and normal groups. Serum calponin 3 levels were significantly higher in SSc patients than in healthy controls (mean (95% confidence interval), 15.38 (14.66–16.11) vs. 13.56 (12.75–14.38) ng/mL, p < 0.05). The modified Rodnan total skin thickness score was significantly higher in the elevated serum calponin 3 level group than in the normal level group (median (25–75th percentiles), 10.0 (2.0–16.0) vs. 6.5 (3.25–8.75), p < 0.05). Moreover, SSc patients with increased serum calponin 3 levels also had a higher frequency of arthralgia (40% vs. 9%, p < 0.05). Elevated serum calponin 3 levels were associated with skin sclerosis and arthralgia in SSc patients. Serum calponin 3 levels might be a biomarker that reflects the severity of skin sclerosis and joint involvement in SSc.
Collapse
Affiliation(s)
- Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
- Correspondence: ; Tel.: +81-3-3815-5411
| | - Kazuki M. Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| | - Yuta Norimatsu
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| | - Maiko Fukayama
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| | - Takemichi Fukasawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| | - Satoshi Ebata
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| | - Yoshihide Asano
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| | - Koji Oba
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan;
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (H.K.); (K.M.M.); (Y.N.); (A.K.); (M.F.); (T.F.); (S.E.); (A.Y.-O.); (Y.A.); (S.S.)
| |
Collapse
|
5
|
Kajuluri LP, Li Y, Morgan KG. The uterine myocyte, contractile machinery and proteins of the myometrium and their relationship to the dynamic nature of myometrial function. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Nair VA, Al-khayyal NA, Sivaperumal S, Abdel-Rahman WM. Calponin 3 promotes invasion and drug resistance of colon cancer cells. World J Gastrointest Oncol 2019; 11:971-982. [PMID: 31798778 PMCID: PMC6883188 DOI: 10.4251/wjgo.v11.i11.971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/27/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Calponin 3 (CNN3) is an actin-binding protein expressed in smooth muscle and non-smooth muscle cells. It is required for cytoskeletal rearrangement and wound healing. AIM To dissect the role of CNN3 in carcinogenesis with a focus on colon cancer. METHODS A total of 20 cancer cell lines (8 breast, 11 colon, and HeLa cervical cancer cell as a positive control for mesenchymal phenotype) and 57 formalin-fixed, paraffin-embedded sections from archived sporadic colorectal carcinomas were included in this study. CNN3 expression analysis by western blot or immunohistochemistry was followed by functional analyses. The CNN3 gene was silenced by specific small interfering RNA (commonly known as siRNA), followed by confirmation of the silencing efficiency by western blotting. Then, the silenced cells and control siRNA-transfected cells were analyzed for changes in epithelial and mesenchymal markers, invasion, and response to 5-fluoruracil treatment. We also performed proteomics analysis using a phospho-kinase array-based panel of 45 proteins. RESULTS CNN3 showed positive expression in 6/8 breast and 9/11 colon cancer lines and in HeLa cells. Interestingly, the colorectal adenocarcinoma line SW480 was negative, while the cell line developed from its matching lymph node metastasis (SW620) was positive for CNN3. CNN3 expression was fairly consistent with the metastatic phenotype in colon cancer because it was absent in one other colon cell line from a primary site and expressed in all others. We selected SW620 for subsequent functional analyses. CNN3-silenced SW620 cells showed a reduction in collagen invasion and loss of mesenchymal markers. CNN3 silencing caused an increase in the SW620 colon cancer cell sensitivity to 5-fluorouracil. Phospho-kinase array-based proteomics analysis showed that CNN3 silencing in SW620 reduced extracellular signal-regulated kinase, β-Catenin, mutant p53, c-Jun, and heat shock protein 60 activities but increased that of checkpoint kinase 2. CNN3 was expressed in 20/57 (35%) colon cancer cases as shown by immunohistochemistry. CNN3 was associated with a decrease in overall survival in colon cancer in silico. CONCLUSION These results show the involvement of CNN3 in lymph node metastasis and resistance to chemotherapy in colon cancer and suggest that significant oncogenic pathways are involved in these CNN3-related actions.
Collapse
Affiliation(s)
- Vidhya A Nair
- Environment and Cancer Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Noura A Al-khayyal
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, College of Health Sciences and Environment and Cancer Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Elbadawy M, Usui T, Mori T, Tsunedomi R, Hazama S, Nabeta R, Uchide T, Fukushima R, Yoshida T, Shibutani M, Tanaka T, Masuda S, Okada R, Ichikawa R, Omatsu T, Mizutani T, Katayama Y, Noguchi S, Iwai S, Nakagawa T, Shinohara Y, Kaneda M, Yamawaki H, Sasaki K. Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture. Cancer Sci 2019; 110:2806-2821. [PMID: 31254429 PMCID: PMC6726682 DOI: 10.1111/cas.14118] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
In human and dogs, bladder cancer (BC) is the most common neoplasm affecting the urinary tract. Dog BC resembles human muscle-invasive BC in histopathological characteristics and gene expression profiles, and could be an important research model for this disease. Cancer patient-derived organoid culture can recapitulate organ structures and maintains the gene expression profiles of original tumor tissues. In a previous study, we generated dog prostate cancer organoids using urine samples, however dog BC organoids had never been produced. Therefore we aimed to generate dog BC organoids using urine samples and check their histopathological characteristics, drug sensitivity, and gene expression profiles. Organoids from individual BC dogs were successfully generated, expressed urothelial cell markers (CK7, CK20, and UPK3A) and exhibited tumorigenesis in vivo. In a cell viability assay, the response to combined treatment with a range of anticancer drugs (cisplatin, vinblastine, gemcitabine or piroxicam) was markedly different in each BC organoid. In RNA-sequencing analysis, expression levels of basal cell markers (CK5 and DSG3) and several novel genes (MMP28, CTSE, CNN3, TFPI2, COL17A1, and AGPAT4) were upregulated in BC organoids compared with normal bladder tissues or two-dimensional (2D) BC cell lines. These established dog BC organoids might be a useful tool, not only to determine suitable chemotherapy for BC diseased dogs but also to identify novel biomarkers in human muscle-invasive BC. In the present study, for the 1st time, dog BC organoids were generated and several specifically upregulated organoid genes were identified. Our data suggest that dog BC organoids might become a new tool to provide fresh insights into both dog BC therapy and diagnostic biomarkers.
Collapse
Affiliation(s)
- Mohamed Elbadawy
- Laboratory of Veterinary PharmacologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
- Department of PharmacologyFaculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Tatsuya Usui
- Laboratory of Veterinary PharmacologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Takashi Mori
- Laboratory of Veterinary Clinical OncologyFaculty of Applied Biological SciencesGifu UniversityGifuJapan
- Center for Highly Advanced Integration of Nano and Life SciencesGifu University (G‐CHAIN)GifuJapan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast, and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast, and Endocrine SurgeryYamaguchi University Graduate School of MedicineUbeJapan
- Department of Translational Research and Developmental Therapeutics against CancerSchool of MedicineYamaguchi UniversityUbeJapan
| | - Rina Nabeta
- Department of Veterinary SurgeryFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Tsuyoshi Uchide
- Department of Veterinary SurgeryFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Ryuji Fukushima
- Animal Medical CenterFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Toshinori Yoshida
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Makoto Shibutani
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Takaharu Tanaka
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Sosuke Masuda
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Rena Okada
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Ryo Ichikawa
- Laboratory of Veterinary PathologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of AnimalsTokyo University of Agriculture and TechnologyFuchuJapan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of AnimalsTokyo University of Agriculture and TechnologyFuchuJapan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of AnimalsTokyo University of Agriculture and TechnologyFuchuJapan
| | - Shunsuke Noguchi
- Laboratory of Veterinary RadiologyGraduate School of Life and Environmental SciencesOsaka Prefecture UniversitySanoJapan
| | - Satomi Iwai
- Laboratory of Small Animal Surgery 2School of Veterinary MedicineKitasato UniversityTowadaJapan
| | - Takayuki Nakagawa
- Laboratory of Veterinary SurgeryGraduate School of Agricultural and Life SciencesUniversity of TokyoTokyoJapan
| | - Yuta Shinohara
- Laboratory of Veterinary PharmacologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
- Pet Health & Food DivisionIskara Industry CO., LTDTokyoJapan
| | - Masahiro Kaneda
- Laboratory of Veterinary AnatomyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary PharmacologySchool of Veterinary MedicineKitasato UniversityTowadaJapan
| | - Kazuaki Sasaki
- Laboratory of Veterinary PharmacologyDepartment of Veterinary MedicineFaculty of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan
| |
Collapse
|
8
|
Belousov PV, Afanasyeva MA, Gubernatorova EO, Bogolyubova AV, Uvarova AN, Putlyaeva LV, Ramanauskaite EM, Kopylov AT, Demin DE, Tatosyan KA, Ustiugova AS, Prokofjeva MM, Lanshchakov KV, Vanushko VE, Zaretsky AR, Severskaia NV, Dvinskikh NY, Abrosimov AY, Kuprash DV, Schwartz AM. Multi-dimensional immunoproteomics coupled with in vitro recapitulation of oncogenic NRAS Q61R identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia. Cancer Lett 2019; 467:96-106. [PMID: 31326556 DOI: 10.1016/j.canlet.2019.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023]
Abstract
Tumor-associated antigen (TAA)-specific autoantibodies have been widely implicated in cancer diagnosis. However, cancer cell lines that are typically exploited as candidate TAA sources in immunoproteomic studies may fail to accurately represent the autoantigen-ome of lower-grade neoplasms. Here, we established an integrated strategy for the identification of disease-relevant TAAs in thyroid neoplasia, which combined NRASQ61R oncogene expression in non-tumorous thyroid Nthy-ori 3-1 cells with a multi-dimensional proteomic technique DISER that consisted of profiling NRASQ61R-induced proteins using 2-dimensional difference gel electrophoresis (2D-DIGE) coupled with serological proteome analysis (SERPA) of the TAA repertoire of patients with thyroid encapsulated follicular-patterned/RAS-like phenotype (EFP/RLP) tumors. We identified several candidate cell-based (nicotinamide phosphoribosyltransferase NAMPT, glutamate dehydrogenase GLUD1, and glutathione S-transferase omega-1 GSTO1) and autoantibody (fumarate hydratase FH, calponin-3 CNN3, and pyruvate kinase PKM autoantibodies) biomarkers, including NRASQ61R-induced TAA phosphoglycerate kinase 1 PGK1. Meta-profiling of the reactivity of the identified autoantibodies across an independent SERPA series implicated the PKM autoantibody as a histological phenotype-independent biomarker of thyroid malignancy (11/38 (29%) patients with overtly malignant and uncertain malignant potential (UMP) tumors vs 0/22 (p = 0.0046) and 0/20 (p = 0.011) patients with non-invasive EFP/RLP tumors and healthy controls, respectively). PGK1 and CNN3 autoantibodies were identified as EFP/RLP-specific biomarkers, potentially suitable for further discriminating tumors with different malignant potential (PGK1: 7/22 (32%) patients with non-invasive EFP/RLP tumors vs 0/38 (p = 0.00044) and 0/20 (p = 0.0092) patients with other tumors and healthy controls, respectively; СNN3: 9/29 (31%) patients with malignant and borderline EFP/RLP tumors vs 0/31 (p = 0.00068) and 0/20 (p = 0.0067) patients with other tumors and healthy controls, respectively). The combined use of PKM, CNN3, and PGK1 autoantibodies allowed the reclassification of malignant/UMP tumor risk in 19/41 (46%) of EFP/RLP tumor patients. Taken together, we established an experimental pipeline DISER for the concurrent identification of cell-based and TAA biomarkers. The combination of DISER with in vitro oncogene expression allows further targeted identification of oncogene-induced TAAs. Using this integrated approach, we identified candidate autoantibody biomarkers that might be of value for differential diagnostic purposes in thyroid neoplasia.
Collapse
Affiliation(s)
- Pavel V Belousov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Marina A Afanasyeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina O Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V Bogolyubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Genetics and Life Sciences, Educational Center «Sirius», Sochi, Russia
| | - Aksinya N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Lidia V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | | | | | - Denis E Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Karina A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alina S Ustiugova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Maria M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kirill V Lanshchakov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; Central Clinical Hospital of the Presidential Administration of the Russian Federation, Moscow, Russia
| | - Vladimir E Vanushko
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrew R Zaretsky
- Shemyakin-Ovchinnikov Research Institute for Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Evrogen Lab LLC, Moscow, Russia
| | - Natalya V Severskaia
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Nina Y Dvinskikh
- Tsyb Medical Radiological Research Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Alexander Y Abrosimov
- National Medical Research Center for Endocrinology, Ministry of Health of the Russian Federation, Moscow, Russia; National University of Science & Technology «MISIS», Moscow, Russia
| | - Dmitry V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Calponin 3 Regulates Cell Invasion and Doxorubicin Resistance in Gastric Cancer. Gastroenterol Res Pract 2019; 2019:3024970. [PMID: 30911294 PMCID: PMC6398029 DOI: 10.1155/2019/3024970] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/22/2019] [Indexed: 12/29/2022] Open
Abstract
Calponin 3 (CNN3) is an F-actin-binding protein that regulates actin cytoskeletal rearrangement. However, the role of CNN3 in cancer cell invasion and resistance to chemotherapeutic agents has not yet been investigated. The present study was undertaken to investigate whether CNN3 influences cancer-related phenotypes in gastric cancer. We demonstrate that CNN3 contributes to cell invasion and resistance to doxorubicin in gastric cancer. CNN3 expression was markedly elevated in highly invasive cancer cell lines compared to less invasive or noninvasive cancer cell lines. Depletion of CNN3 protein suppressed the invasive ability of gastric cancer cells. The highly invasive MKN-28 gastric cancer cells were more resistant to doxorubicin than the noninvasive MKN-45 cells; however, knockdown of CNN3 expression in MKN-28 cells resensitized them to doxorubicin treatment. Taken together, our results suggest that CNN3 plays a key role in invasiveness and doxorubicin resistance in gastric cancer cells.
Collapse
|
10
|
Ciuba K, Hawkes W, Tojkander S, Kogan K, Engel U, Iskratsch T, Lappalainen P. Calponin-3 is critical for coordinated contractility of actin stress fibers. Sci Rep 2018; 8:17670. [PMID: 30518778 PMCID: PMC6281606 DOI: 10.1038/s41598-018-35948-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/05/2018] [Indexed: 01/05/2023] Open
Abstract
Contractile actomyosin bundles, stress fibers, contribute to morphogenesis, migration, and mechanosensing of non-muscle cells. In addition to actin and non-muscle myosin II (NMII), stress fibers contain a large array of proteins that control their assembly, turnover, and contractility. Calponin-3 (Cnn3) is an actin-binding protein that associates with stress fibers. However, whether Cnn3 promotes stress fiber assembly, or serves as either a positive or negative regulator of their contractility has remained obscure. Here, we applied U2OS osteosarcoma cells as a model system to study the function of Cnn3. We show that Cnn3 localizes to both NMII-containing contractile ventral stress fibers and transverse arcs, as well as to non-contractile dorsal stress fibers that do not contain NMII. Fluorescence-recovery-after-photobleaching experiments revealed that Cnn3 is a dynamic component of stress fibers. Importantly, CRISPR/Cas9 knockout and RNAi knockdown studies demonstrated that Cnn3 is not essential for stress fiber assembly. However, Cnn3 depletion resulted in increased and uncoordinated contractility of stress fibers that often led to breakage of individual actomyosin bundles within the stress fiber network. Collectively these results provide evidence that Cnn3 is dispensable for the assembly of actomyosin bundles, but that it is required for controlling proper contractility of the stress fiber network.
Collapse
Affiliation(s)
- Katarzyna Ciuba
- Insitute of Biotechnology, P.O. Box 56, 0014, University of Helsinki, Helsinki, Finland
| | - William Hawkes
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Konstantin Kogan
- Insitute of Biotechnology, P.O. Box 56, 0014, University of Helsinki, Helsinki, Finland
| | - Ulrike Engel
- Nikon Imaging Center at Heidelberg University and Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 267, Heidelberg, 69120, Germany
| | - Thomas Iskratsch
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Pekka Lappalainen
- Insitute of Biotechnology, P.O. Box 56, 0014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Matsui TS, Ishikawa A, Deguchi S. Transgelin-1 (SM22α) interacts with actin stress fibers and podosomes in smooth muscle cells without using its actin binding site. Biochem Biophys Res Commun 2018; 505:879-884. [PMID: 30301526 DOI: 10.1016/j.bbrc.2018.09.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022]
Abstract
Transgelin-1 (SM22α) has been recognized as a smooth muscle marker and a tumor suppressor, but many details of the working mechanisms remain unclear. Transgelin-1 belongs to the calponin family of actin-binding proteins with an N-terminal calponin homology domain (CH-domain) and a C-terminal calponin-like module (CLIK23). Here, we demonstrate that transgelin-1 interacts with actin stress fibers and podosomes in smooth muscle cells via its type-3 CH-domain, while CLIK23 is dispensable for the binding to the actin structures. We further suggest that the EF-hand motif in transgelin-1 contributes to proper folding of the CH-domain and in turn to the interaction with the actin structures. These results are in contrast to the ones reported in in vitro studies that demonstrated CLIK23 was necessary for the transgelin-1-actin binding, while the CH-domain was not. Besides, within cells, transgelin-1 phosphorylation at Ser181 in CLIK23 did not affect its colocalization with the actin structures, while the same phosphorylation was reported in in vitro studies to negatively regulate actin binding. Thus, our results suggest the molecular basis of intracellular interaction between transgelin-1 and actin, distinct from that in vitro. The actin binding capability intrinsic to CLIK23 may not appear within cells probably because of the weaker competition for actin binding compared to other actin binding molecules.
Collapse
Affiliation(s)
- Tsubasa S Matsui
- Department of Nanopharmaceutical Science, Nagoya Institute of Technology, Japan; Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Akihiro Ishikawa
- Department of Nanopharmaceutical Science, Nagoya Institute of Technology, Japan; Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Shinji Deguchi
- Department of Nanopharmaceutical Science, Nagoya Institute of Technology, Japan; Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan.
| |
Collapse
|
12
|
Hirata H, Ku WC, Yip AK, Ursekar CP, Kawauchi K, Roy A, Guo AK, Vedula SRK, Harada I, Chiam KH, Ishihama Y, Lim CT, Sawada Y, Sokabe M. MEKK1-dependent phosphorylation of calponin-3 tunes cell contractility. J Cell Sci 2016; 129:3574-3582. [PMID: 27528401 DOI: 10.1242/jcs.189415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022] Open
Abstract
MEKK1 (also known as MAP3K1), which plays a major role in MAPK signaling, has been implicated in mechanical processes in cells, such as migration. Here, we identify the actin-binding protein calponin-3 as a new MEKK1 substrate in the signaling that regulates actomyosin-based cellular contractility. MEKK1 colocalizes with calponin-3 at the actin cytoskeleton and phosphorylates it, leading to an increase in the cell-generated traction stress. MEKK1-mediated calponin-3 phosphorylation is attenuated by the inhibition of myosin II activity, the disruption of actin cytoskeletal integrity and adhesion to soft extracellular substrates, whereas it is enhanced upon cell stretching. Our results reveal the importance of the MEKK1-calponin-3 signaling pathway to cell contractility.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Wei-Chi Ku
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ai Kia Yip
- A*STAR Bioinformatics Institute, 138671 Singapore
| | | | - Keiko Kawauchi
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Amrita Roy
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Alvin Kunyao Guo
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | | | - Ichiro Harada
- Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa 277-0032, Japan Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Keng-Hwee Chiam
- Mechanobiology Institute, National University of Singapore, 117411 Singapore A*STAR Bioinformatics Institute, 138671 Singapore
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Department of Biomedical Engineering, National University of Singapore, 117583 Singapore
| | - Yasuhiro Sawada
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Locomotive Syndrome Research Institute, Nadogaya Hospital, Kashiwa 277-0032, Japan Department of Biological Sciences, National University of Singapore, 117543 Singapore
| | - Masahiro Sokabe
- Mechanobiology Institute, National University of Singapore, 117411 Singapore Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
13
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
14
|
Kim TK, Tirloni L, Pinto AFM, Moresco J, Yates JR, da Silva Vaz I, Mulenga A. Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding. PLoS Negl Trop Dis 2016; 10:e0004323. [PMID: 26751078 PMCID: PMC4709002 DOI: 10.1371/journal.pntd.0004323] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/02/2015] [Indexed: 12/31/2022] Open
Abstract
Ixodes scapularis is the most medically important tick species and transmits five of the 14 reportable human tick borne disease (TBD) agents in the USA. This study describes LC-MS/MS identification of 582 tick- and 83 rabbit proteins in saliva of I. scapularis ticks that fed for 24, 48, 72, 96, and 120 h, as well as engorged but not detached (BD), and spontaneously detached (SD). The 582 tick proteins include proteases (5.7%), protease inhibitors (7.4%), unknown function proteins (22%), immunity/antimicrobial (2.6%), lipocalin (3.1%), heme/iron binding (2.6%), extracellular matrix/ cell adhesion (2.2%), oxidant metabolism/ detoxification (6%), transporter/ receptor related (3.2%), cytoskeletal (5.5%), and housekeeping-like (39.7%). Notable observations include: (i) tick saliva proteins of unknown function accounting for >33% of total protein content, (ii) 79% of proteases are metalloproteases, (iii) 13% (76/582) of proteins in this study were found in saliva of other tick species and, (iv) ticks apparently selectively inject functionally similar but unique proteins every 24 h, which we speculate is the tick's antigenic variation equivalent strategy to protect important tick feeding functions from host immune system. The host immune responses to proteins present in 24 h I. scapularis saliva will not be effective at later feeding stages. Rabbit proteins identified in our study suggest the tick's strategic use of host proteins to modulate the feeding site. Notably fibrinogen, which is central to blood clotting and wound healing, was detected in high abundance in BD and SD saliva, when the tick is preparing to terminate feeding and detach from the host. A remarkable tick adaptation is that the feeding lesion is completely healed when the tick detaches from the host. Does the tick concentrate fibrinogen at the feeding site to aide in promoting healing of the feeding lesion? Overall, these data provide broad insight into molecular mechanisms regulating different tick feeding phases. These data set the foundation for in depth I. scapularis tick feeding physiology and TBD transmission studies.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Flemming A, Huang QQ, Jin JP, Jumaa H, Herzog S. A Conditional Knockout Mouse Model Reveals That Calponin-3 Is Dispensable for Early B Cell Development. PLoS One 2015; 10:e0128385. [PMID: 26046660 PMCID: PMC4457629 DOI: 10.1371/journal.pone.0128385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/26/2015] [Indexed: 12/28/2022] Open
Abstract
Calponins form an evolutionary highly conserved family of actin filament-associated proteins expressed in both smooth muscle and non-muscle cells. Whereas calponin-1 and calponin-2 have already been studied to some extent, little is known about the role of calponin-3 under physiological conditions due to the lack of an appropriate animal model. Here, we have used an unbiased screen to identify novel proteins implicated in signal transduction downstream of the precursor B cell receptor (pre-BCR) in B cells. We find that calponin-3 is expressed throughout early B cell development, localizes to the plasma membrane and is phosphorylated in a Syk-dependent manner, suggesting a putative role in pre-BCR signaling. To investigate this in vivo, we generated a floxed calponin-3-GFP knock-in mouse model that enables tracking of cells expressing calponin-3 from its endogenous promoter and allows its tissue-specific deletion. Using the knock-in allele as a reporter, we show that calponin-3 expression is initiated in early B cells and increases with their maturation, peaking in the periphery. Surprisingly, conditional deletion of the Cnn3 revealed no gross defects in B cell development despite this regulated expression pattern and the in vitro evidence, raising the question whether other components may compensate for its loss in lymphocytes. Together, our work identifies calponin-3 as a putative novel mediator downstream of the pre-BCR. Beyond B cells, the mouse model we generated will help to increase our understanding of calponin-3 in muscle and non-muscle cells under physiological conditions.
Collapse
Affiliation(s)
- Alexandra Flemming
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg, Germany
- Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Qi-Quan Huang
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Hassan Jumaa
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg, Germany
- Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Sebastian Herzog
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg, Germany
- Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Hirata H, Gupta M, Vedula SRK, Lim CT, Ladoux B, Sokabe M. Actomyosin bundles serve as a tension sensor and a platform for ERK activation. EMBO Rep 2014; 16:250-7. [PMID: 25550404 DOI: 10.15252/embr.201439140] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tensile forces generated by stress fibers drive signal transduction events at focal adhesions. Here, we report that stress fibers per se act as a platform for tension-induced activation of biochemical signals. The MAP kinase, ERK is activated on stress fibers in a myosin II-dependent manner. In myosin II-inhibited cells, uniaxial stretching of cell adhesion substrates restores ERK activation on stress fibers. By quantifying myosin II- or mechanical stretch-mediated tensile forces in individual stress fibers, we show that ERK activation on stress fibers correlates positively with tensile forces acting on the fibers, indicating stress fibers as a tension sensor in ERK activation. Myosin II-dependent ERK activation is also observed on actomyosin bundles connecting E-cadherin clusters, thus suggesting that actomyosin bundles, in general, work as a platform for tension-dependent ERK activation.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Mukund Gupta
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore Institut Jacques Monod (IJM), CNRS UMR 7592 Université Paris Diderot, Paris, France
| | - Masahiro Sokabe
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Tang DD, Cleary RA, Wang R, Gannon OJ. Reply to "Letter to the editor: 'KDAC and the regulation of nonnuclear smooth muscle protein acetylation'". Am J Physiol Cell Physiol 2014; 307:C494-5. [PMID: 25179806 DOI: 10.1152/ajpcell.00232.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Rachel A Cleary
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Ruping Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | - Olivia J Gannon
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| |
Collapse
|
18
|
Appel S, Ankerne J, Appel J, Oberthuer A, Mallmann P, Dötsch J. CNN3 regulates trophoblast invasion and is upregulated by hypoxia in BeWo cells. PLoS One 2014; 9:e103216. [PMID: 25050546 PMCID: PMC4106885 DOI: 10.1371/journal.pone.0103216] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/29/2014] [Indexed: 01/16/2023] Open
Abstract
CNN3 is an ubiquitously expressed F-actin binding protein, shown to regulate trophoblast fusion and hence seems to play a role in the placentation process. In this study we demonstrate that CNN3 levels are upregulated under low oxygen conditions in the trophoblast cell line BeWo. Since hypoxia is discussed to be a pro-migratory stimulus for placental cells, we examined if CNN3 is involved in trophoblast invasion. Indeed, when performing a matrigel invasion assay we were able to show that CNN3 promotes BeWo cell invasion. Moreover, CNN3 activates the MAPKs ERK1/2 and p38 in trophoblast cells and interestingly, both kinases are involved in BeWo invasion. However, when we repeated the experiments under hypoxic conditions, CNN3 did neither promote cell invasion nor MAPK activation. These results indicate that CNN3 promotes invasive processes by the stimulation of ERK1/2 and/or p38 under normoxic conditions in BeWo cells, but seems to have different functions at low oxygen levels. We further speculated that CNN3 expression might be altered in human placentas derived from pregnancies complicated by IUGR and preeclampsia, since these placental disorders have been described to go along with impaired trophoblast invasion. Our studies show that, at least in our set of placenta samples, CNN3 expression is neither deregulated in IUGR nor in preeclampsia. In summary, we identified CNN3 as a new pro-invasive protein in trophoblast cells that is induced under low oxygen conditions.
Collapse
Affiliation(s)
- Sarah Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Janina Ankerne
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Jan Appel
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Andre Oberthuer
- Neonatal and Pediatric Intensive Care Unit, University of Cologne, Children's Hospital, Cologne, Germany
| | - Peter Mallmann
- Department of Obstetrics and Gynecology, Cologne University, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
19
|
Tang Z, Liang R, Zhao S, Wang R, Huang R, Li K. CNN3 is regulated by microRNA-1 during muscle development in pigs. Int J Biol Sci 2014; 10:377-85. [PMID: 24719555 PMCID: PMC3979990 DOI: 10.7150/ijbs.8015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/01/2014] [Indexed: 12/17/2022] Open
Abstract
The calponin 3 (CNN3) gene has important functions involved in skeletal muscle development. MicroRNAs (miRNAs) play critical role in myogenesis by influencing the mRNA stability or protein translation of target gene. Based on paired microRNA and mRNA profiling in the prenatal skeletal muscle of pigs, our previous study suggested that CNN3 was differentially expressed and a potential target for miR-1. To further understand the biological function and regulation mechanism of CNN3, we performed co-expression analysis of CNN3 and miR-1 in developmental skeletal muscle tissues (16 stages) from Tongcheng (a Chinese domestic breed, obese-type) and Landrace (a Western, lean-type) pigs, respectively. Subsequently, dual luciferase and western blot assays were carried out. During skeletal muscle development, we observe a significantly negative expression correlation between the miR-1 and CNN3 at mRNA level. Our dual luciferase and western blot results suggested that the CNN3 gene was regulated by miR-1. We identified four single nucleotide polymorphisms (SNPs) contained within the CNN3 gene. Association analysis indicated that these CNN3 SNPs are significantly associated with birth weight (BW) and the 21-day weaning weight of the piglets examined. These facts indicate that CNN3 is a candidate gene associated with growth traits and regulated by miR-1 during skeletal muscle development in pigs.
Collapse
Affiliation(s)
- Zhonglin Tang
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Ruyi Liang
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- 2. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R.China
| | - Shuanping Zhao
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Ruiqi Wang
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Ruihua Huang
- 2. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R.China
| | - Kui Li
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| |
Collapse
|
20
|
Jensen MH, Morris EJ, Gallant CM, Morgan KG, Weitz DA, Moore JR. Mechanism of calponin stabilization of cross-linked actin networks. Biophys J 2014; 106:793-800. [PMID: 24559982 PMCID: PMC3944828 DOI: 10.1016/j.bpj.2013.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/11/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
The actin-binding protein calponin has been previously implicated in actin cytoskeletal regulation and is thought to act as an actin stabilizer, but the mechanism of its function is poorly understood. To investigate this underlying physical mechanism, we studied an in vitro model system of cross-linked actin using bulk rheology. Networks with basic calponin exhibited a delayed onset of strain stiffening (10.0% without calponin, 14.9% with calponin) and were able to withstand a higher maximal strain before failing (35% without calponin, 56% with calponin). Using fluorescence microscopy to study the mechanics of single actin filaments, we found that calponin increased the flexibility of actin filaments, evident as a decrease in persistence length from 17.6 μm without to 7.7 μm with calponin. Our data are consistent with current models of affine strain behavior in semiflexible polymer networks, and suggest that calponin stabilization of actin networks can be explained purely by changes in single-filament mechanics. We propose a model in which calponin stabilizes actin networks against shear through a reduction of persistence length of individual filaments.
Collapse
Affiliation(s)
- Mikkel Herholdt Jensen
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eliza J Morris
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Cynthia M Gallant
- Department of Health Sciences, Boston University, Boston, Massachusetts
| | - Kathleen G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts.
| |
Collapse
|
21
|
Daimon E, Shibukawa Y, Wada Y. Calponin 3 regulates stress fiber formation in dermal fibroblasts during wound healing. Arch Dermatol Res 2013; 305:571-84. [PMID: 23545751 DOI: 10.1007/s00403-013-1343-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 03/13/2013] [Accepted: 03/18/2013] [Indexed: 12/25/2022]
Abstract
Skin wound healing is an intricate process involving various cell types and molecules. In granulation tissue, fibroblasts proliferate and differentiate into myofibroblasts and generate mechanical tension for wound closure and contraction. Actin stress fibers formed in these cells, especially those containing α-smooth muscle actin (α-SMA), are the central machinery for contractile force generation. In the present study, calponin 3 (CNN3), which has a phosphorylation-dependent actin-binding property, was identified in the molecular mechanism underlying stress fiber formation. CNN3 was expressed by fibroblasts/myofibroblasts in the proliferation phase of wound healing, and was associated with α-SMA in stress fibers formed by cultured dermal fibroblasts. CNN3 expression was post-transcriptionally regulated by tension, as demonstrated by disruption of actin filament organization under floating culture or blebbistatin treatment. CNN3 knockdown in primary fibroblasts impaired stress fiber formation, resulting in a phenotype of decreased cellular dynamics such as cell motility and contractile ability. These findings indicate that CNN3 participates in actin stress fiber remodeling, which is required for cell motility and contraction of dermal fibroblasts in the wound healing process.
Collapse
Affiliation(s)
- Etsuko Daimon
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | | | | |
Collapse
|
22
|
Liu Y, Deng B, Zhao Y, Xie S, Nie R. Differentiated markers in undifferentiated cells: expression of smooth muscle contractile proteins in multipotent bone marrow mesenchymal stem cells. Dev Growth Differ 2013; 55:591-605. [PMID: 23557080 DOI: 10.1111/dgd.12052] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 02/24/2013] [Accepted: 02/24/2013] [Indexed: 12/19/2022]
Abstract
In studying the differentiation of stem cells along smooth muscle lineage, smooth muscle cell (SMC) contractile proteins serve as markers for the relative state of maturation. Yet, recent evidence suggests that some SMC markers are probably expressed in multipotent mesenchymal stem cells (MSCs). Such a paradox necessitates investigations to re-examine their role as differentiated markers in MSCs. We tried to detect the expression of four widely used SMC markers including α-smooth muscle actin (α-SMA), h1-calponin, desmin and smooth muscle myosin heavy chain (SM-MHC), as well as the other isoforms of calponin family in resting MSCs. Then we used three different conditions to initiate MSCs differentiation along SMC lineage, and examined the alternation of SMC markers expression at both the transcript level and protein level. Desmin and h1-calponin are expressed in MSCs, in the presence or absence of SMC induction conditions. Moreover, MSCs are shown to express all known isoforms of calponin. Double-staining reveals that h1-calponin +/α-SMA - cells constitute the majority of resting MSCs. Under differentiated conditions, expression of SM-MHC was initiated and expression of α-SMA was promoted. The expression of SM-MHC and upregulation of α-SMA are relatively reliable indications of a mature smooth muscle phenotype in MSCs. Given that the cells are particularly rich in calponins expression, we postulate possible roles of these proteins in regulating cellular function by taking part in actin cytoskeleton and signaling. These findings imply that an extensive study of the cell physiology of MSCs should focus on the functional roles for these proteins, rather than simply regard them as differentiated markers.
Collapse
Affiliation(s)
- Yingxi Liu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guanghzhou, Guangdong 510120, PR China
| | | | | | | | | |
Collapse
|
23
|
Shibukawa Y, Yamazaki N, Daimon E, Wada Y. Rock-dependent calponin 3 phosphorylation regulates myoblast fusion. Exp Cell Res 2013; 319:633-48. [PMID: 23276748 DOI: 10.1016/j.yexcr.2012.12.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/27/2012] [Accepted: 12/18/2012] [Indexed: 11/22/2022]
Abstract
Myogenesis occurs during embryonic development as well as regeneration following postnatal muscle fiber damage. Herein, we show that acidic calponin or calponin 3 (CNN3) regulates both myoblast cell fusion and muscle-specific gene expressions. Overexpression of CNN3 impaired C2C12 cell fusion, whereas CNN3 gene knockdown promoted skeletal myosin expression and fusion. CNN3 was phosphorylated at Ser293/296 in the C-terminal region. The basal inhibitory property of CNN3 against myoblast differentiation was enhanced by Ser293/296Ala mutation or deletion of the C-terminal region, and this inhibition was reversed by Ser293/296Asp mutation. Ser293/296 phosphorylation was required for CNN3 to bind actin and was dependent on Rho-associated kinases 1/2 (ROCK 1/2). Gene knockdown of ROCK1/2 suppressed CNN3 phosphorylation and impaired myoblast fusion, and these effects were partially attenuated by additional CNN3 overexpression of Ser293/296Asp CNN3. These findings indicated that CNN3 phosphorylation by ROCK blunts CNN3's inhibitory effects on muscle cell differentiation and fusion. In muscle tissues, satellite cells, but not mature myofibrils, expressed CNN3. CNN3 was also expressed and phosphorylated during myotube induction in isolated muscle satellite cells. Taken together, these results indicate that CNN3 is a downstream regulator of the ROCK signaling pathway for myogenesis.
Collapse
Affiliation(s)
- Yukinao Shibukawa
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | | | | | | |
Collapse
|
24
|
Lv P, Miao SB, Shu YN, Dong LH, Liu G, Xie XL, Gao M, Wang YC, Yin YJ, Wang XJ, Han M. Phosphorylation of Smooth Muscle 22α Facilitates Angiotensin II–Induced ROS Production Via Activation of the PKCδ-P47
phox
Axis Through Release of PKCδ and Actin Dynamics and Is Associated With Hypertrophy and Hyperplasia of Vascular Smooth Muscle Cells In Vitro and In Vivo. Circ Res 2012; 111:697-707. [DOI: 10.1161/circresaha.112.272013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
We have demonstrated that smooth muscle (SM) 22α inhibits cell proliferation via blocking Ras-ERK1/2 signaling in vascular smooth muscle cells (VSMCs) and in injured arteries. The recent study indicates that SM22α disruption can independently promote arterial inflammation through activation of reactive oxygen species (ROS)-mediated NF-κB pathways. However, the mechanisms by which SM22α controls ROS production have not been characterized.
Objective:
To investigate how SM22α disruption promotes ROS production and to characterize the underlying mechanisms.
Methods and Results:
ROS level was measured by dihydroethidium staining for superoxide and TBA assay for malondialdehyde, respectively. We showed that downregulation and phosphorylation of SM22α were associated with angiotensin (Ang) II–induced increase in ROS production in VSMCs of rats and human. Ang II induced the phosphorylation of SM22α at Serine 181 in an Ang II type 1 receptor–PKCδ pathway–dependent manner. Phosphorylated SM22α activated the protein kinase C (PKC)δ-p47
phox
axis via 2 distinct pathways: (1) disassociation of PKCδ from SM22α, and in turn binding to p47
phox
, in the early stage of Ang II stimulation; and (2) acceleration of SM22α degradation through ubiquitin-proteasome, enhancing PKCδ membrane translocation via induction of actin cytoskeletal dynamics in later oxidative stress. Inhibition of SM22α phosphorylation abolished the Ang II–activated PKCδ-p47
phox
axis and inhibited the hypertrophy and hyperplasia of VSMCs in vitro and in vivo, accompanied with reduction of ROS generation.
Conclusions:
These findings indicate that the disruption of SM22α plays pivotal roles in vascular oxidative stress. PKCδ-mediated SM22α phosphorylation is a novel link between actin cytoskeletal remodeling and oxidative stress and may be a potential target for the development of new therapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Pin Lv
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - Sui-Bing Miao
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - Ya-Nan Shu
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - Li-Hua Dong
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - George Liu
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - Xiao-Li Xie
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - Min Gao
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - Yu-Can Wang
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - Ya-Juan Yin
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - Xiao-Juan Wang
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| | - Mei Han
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China (P.L., S.-B.M., Y.-N.S., L.-H.D., X.-L.X., M.G., Y.-C.W., Y.-J.Y., X.-J.W., M.H.); and The Institute of Cardiovascular Sciences, Peking University and Key Laboratory of Cardiovascular Sciences, China Administration of Education, Peking University, Beijing, China (G.L.)
| |
Collapse
|
25
|
Jensen MH, Watt J, Hodgkinson J, Gallant C, Appel S, El-Mezgueldi M, Angelini TE, Morgan KG, Lehman W, Moore JR. Effects of basic calponin on the flexural mechanics and stability of F-actin. Cytoskeleton (Hoboken) 2012; 69:49-58. [PMID: 22135101 PMCID: PMC3355516 DOI: 10.1002/cm.20548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 10/28/2011] [Accepted: 11/14/2011] [Indexed: 01/12/2023]
Abstract
The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical and structural interaction of actin with basic calponin, a differentiation marker in smooth muscle cells, on a single filament level. We imaged fluorescently labeled thermally fluctuating actin filaments and found that at moderate calponin binding densities, actin filaments were more flexible, evident as a reduction in persistence length from 8.0 to 5.8 μm. When calponin-decorated actin filaments were subjected to shear, we observed a marked reduction of filament lengths after decoration with calponin, which we argue was due to shear-induced filament rupture rather than depolymerization. This increased shear susceptibility was exacerbated with calponin concentration. Cryo-electron microscopy results confirmed previously published negative stain electron microscopy results and suggested alterations in actin involving actin subdomain 2. A weakening of F-actin intermolecular association is discussed as the underlying cause of the observed mechanical perturbations.
Collapse
Affiliation(s)
- Mikkel Herholdt Jensen
- Boston University, School of Medicine, Boston, MA
- Boston University, Department of Physics, Boston, MA
| | - James Watt
- Boston University, School of Medicine, Boston, MA
| | - Julie Hodgkinson
- Medical School Hannover, Department of Molecular and Cell Physiology, Hannover, Germany
| | - Cynthia Gallant
- Boston University, Department of Health Sciences, Boston, MA
| | - Sarah Appel
- Boston University, Department of Health Sciences, Boston, MA
| | | | - Thomas E. Angelini
- University of Florida, Department of Mechanical and Aerospace Engineering, Gainesville, FL
| | | | | | | |
Collapse
|
26
|
Telmer PG, Tolg C, McCarthy JB, Turley EA. How does a protein with dual mitotic spindle and extracellular matrix receptor functions affect tumor susceptibility and progression? Commun Integr Biol 2011; 4:182-5. [PMID: 21655434 DOI: 10.4161/cib.4.2.14270] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 12/15/2022] Open
Abstract
The mechanisms responsible for the oncogenic effects of the hyaluronan (HA) receptor and mitotic spindle binding protein, RHAMM, are poorly understood. On one hand, extracellular RHAMM interacts with HA and cellsurface receptors such as CD44 to coordinately activate the MAPK/ERK1,2 pathway, thus contributing to the spread and proliferation of tumor cells. On the other hand, intracellular RHAMM decorates mitotic spindles and is necessary for spindle formation and progression through G2/M and overexpression or loss of RHAMM can result in multipole spindles and chromosome missegregation. The deregulation of these intracellular functions could lead to genomic instability and fuel tumor progression. This suggests that both extracellular and intracellular RHAMM can promote tumor progression. Intracellular RHAMM can bind directly to ERK1 to form complexes with ERK2, MEK1 and ERK1,2 substrates, and we present a model whereby RHAMM's function is as a scaffold protein, controlling activation and targeting of ERK1,2 to specific substrates.
Collapse
Affiliation(s)
- Patrick G Telmer
- London Regional Cancer Program; London Health Sciences Center; Departments Oncology and Biochemistry; Schulich School of Medicine; University of Western Ontario; London, ON Canada
| | | | | | | |
Collapse
|