1
|
Hoxhallari L, Katsikis K, Makri A, Pouliou M, Kanaki Z, Vatsellas G, Sonou C, Telios D, Giotakis E, Giotakis A, Makrythanasis P, Agelopoulos M, Psyrri A, Rampias T. Regulation of nucleotide excision repair by wild-type HRAS signaling in head and neck cancer. Cancer Gene Ther 2025:10.1038/s41417-025-00902-y. [PMID: 40221503 DOI: 10.1038/s41417-025-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by a high rate of locoregional or distant relapse among patients. It is well established that resistance to chemotherapeutic drugs has an important role in the emergence of the recurrent and/or metastatic type of this malignancy which is associated with poor prognosis. Therefore, understanding the molecular basis of chemoresistance in head and neck cancer is required for the development of effective therapeutic strategies. Activating mutations in the HRAS gene are driver events in human cancer. Although numerous studies have demonstrated that oncogenic HRAS mutations promote chemoresistance in HNSCC, the molecular profile of HNSCC tumors that overexpress wild-type HRAS (wtHRASov) and their response to chemotherapy is poorly investigated. To gain deeper insights into the characteristics of wtHRASov tumors, we conducted a gene expression analysis using transcriptome data from The Cancer Genome Atlas (TCGA). This analysis revealed a distinct signature of overexpressed nucleotide excision repair (NER) genes in wtHRASov tumors, which are associated with chemoresistance. We further explored the role of these NER components in response to genotoxic stress, utilizing a diverse panel of HNSCC cell lines and patient-derived xenografts. Our findings indicate that in a specific cluster of head and neck tumors, ERK/cJun signaling activation is strongly reliant on HRAS activity. Inhibiting HRAS in these tumors results in a significant downregulation of the NER signature components, re-sensitizing cancer cells to platinum-based chemotherapy.
Collapse
Affiliation(s)
- Lorena Hoxhallari
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Konstantinos Katsikis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Antigoni Makri
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Marialena Pouliou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Giannis Vatsellas
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Christina Sonou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Dimitrios Telios
- 2nd Department of Otolaryngology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Evangelos Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, University General Hospital "Hippocration", Athens, Greece
| | - Aristeidis Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, University General Hospital "Hippocration", Athens, Greece
| | - Periklis Makrythanasis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Marios Agelopoulos
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece
| | - Amanda Psyrri
- Internal Medicine/Medical Oncology Department, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Theodoros Rampias
- Biomedical Research Foundation, Academy of Athens (BRFAA), Center of Basic Research, Athens, Greece.
| |
Collapse
|
2
|
Loyer N, Hogg EKJ, Shaw HG, Pasztor A, Murray DH, Findlay GM, Januschke J. A CDK1 phosphorylation site on Drosophila PAR-3 regulates neuroblast polarisation and sensory organ formation. eLife 2024; 13:e97902. [PMID: 38869055 PMCID: PMC11216751 DOI: 10.7554/elife.97902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.
Collapse
Affiliation(s)
- Nicolas Loyer
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Elizabeth KJ Hogg
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hayley G Shaw
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Anna Pasztor
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - David H Murray
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Greg M Findlay
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jens Januschke
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
3
|
Partscht P, Schiebel E. The diverging role of CDC14B: from mitotic exit in yeast to cell fate control in humans. EMBO J 2023; 42:e114364. [PMID: 37493185 PMCID: PMC10425841 DOI: 10.15252/embj.2023114364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
CDC14, originally identified as crucial mediator of mitotic exit in budding yeast, belongs to the family of dual-specificity phosphatases (DUSPs) that are present in most eukaryotes. Contradicting data have sparked a contentious discussion whether a cell cycle role is conserved in the human paralogs CDC14A and CDC14B but possibly masked due to redundancy. Subsequent studies on CDC14A and CDC14B double knockouts in human and mouse demonstrated that CDC14 activity is dispensable for mitotic progression in higher eukaryotes and instead suggested functional specialization. In this review, we provide a comprehensive overview of our current understanding of how faithful cell division is linked to phosphorylation and dephosphorylation and compare functional similarities and divergences between the mitotic phosphatases CDC14, PP2A, and PP1 from yeast and higher eukaryotes. Furthermore, we review the latest discoveries on CDC14B, which identify this nuclear phosphatase as a key regulator of gene expression and reveal its role in neuronal development. Finally, we discuss CDC14B functions in meiosis and possible implications in other developmental processes.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| |
Collapse
|
4
|
Hu M, Bogoyevitch MA, Jans DA. Respiratory Syncytial Virus Matrix Protein Is Sufficient and Necessary to Remodel Host Mitochondria in Infection. Cells 2023; 12:cells12091311. [PMID: 37174711 PMCID: PMC10177070 DOI: 10.3390/cells12091311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Although respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants, immunosuppressed adults and the elderly worldwide, there is no licensed RSV vaccine or widely applicable antiviral therapeutics We previously reported a staged redistribution of mitochondria with compromised respiratory activities and increased reactive oxygen species (ROS) generation during RSV infection. Here, we show for the first time that the RSV matrix protein (M) is sufficient and necessary to induce these effects. Ectopically expressed M, but not other RSV proteins, was able to induce mitochondrial perinuclear clustering, inhibition of mitochondrial respiration, loss of mitochondrial membrane potential (Δψm), and enhanced generation of mitochondrial ROS (mtROS) in infection. Truncation and mutagenic analysis revealed that the central nucleic acid-binding domain of M is essential for the effects on host mitochondria, with arginine/lysine residues 170/172 being critically important. Recombinant RSV carrying the arginine/lysine mutations in M was unable to elicit effects on host mitochondria. Further, wild-type but not mutant RSV was found to inhibit the mRNA expression of genes encoding mitochondrial proteins, including Complex I subunits. Importantly, the RSV mutant was impaired in virus production, underlining the importance of M-dependent effects on mitochondria to RSV infection. Together, our results highlight M's unique ability to remodel host cell mitochondria and its critical role in RSV infection, representing a novel, potential target for future anti-RSV strategies.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
5
|
Panda M, Kalita E, Rao A, Prajapati VK. Mechanism of cell cycle regulation and cell proliferation during human viral infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:497-525. [PMID: 37061340 DOI: 10.1016/bs.apcsb.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Over the history of the coevolution of Host viral interaction, viruses have customized the host cellular machinery into their use for viral genome replication, causing effective infection and ultimately aiming for survival. They do so by inducing subversions to the host cellular pathways like cell cycle via dysregulation of important cell cycle checkpoints by viral encoded proteins, arresting the cell cycle machinery, blocking cytokinesis as well as targeting subnuclear bodies, thus ultimately disorienting the cell proliferation. Both DNA and RNA viruses have been active participants in such manipulation resulting in serious outcomes of cancer. They achieve this by employing different mechanisms-Protein-protein interaction, protein-phosphorylation, degradation, redistribution, viral homolog, and viral regulation of APC at different stages of cell cycle events. Several DNA viruses cause the quiescent staged cells to undergo cell cycle which increases nucleotide pools logistically significantly persuading viral replication whereas few other viruses arrest a particular stage of cell cycle. This allows the latter group to sustain the infection which allows them to escape host immune response and support viral multiplication. Mechanical study of signaling such viral mediated pathways could give insight into understanding the etiology of tumorigenesis and progression. Overall this chapter highlights the possible strategies employed by DNA/RNA viral families which impact the normal cell cycle but facilitate viral infected cell replication. Such information could contribute to comprehending viral infection-associated disorders to further depth.
Collapse
Affiliation(s)
- Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, India; Department of Biochemistry, School of Biological Sciences, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
6
|
Yam CQX, Lim HH, Surana U. DNA damage checkpoint execution and the rules of its disengagement. Front Cell Dev Biol 2022; 10:1020643. [PMID: 36274841 PMCID: PMC9582513 DOI: 10.3389/fcell.2022.1020643] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chromosomes are susceptible to damage during their duplication and segregation or when exposed to genotoxic stresses. Left uncorrected, these lesions can result in genomic instability, leading to cells' diminished fitness, unbridled proliferation or death. To prevent such fates, checkpoint controls transiently halt cell cycle progression to allow time for the implementation of corrective measures. Prominent among these is the DNA damage checkpoint which operates at G2/M transition to ensure that cells with damaged chromosomes do not enter the mitotic phase. The execution and maintenance of cell cycle arrest are essential aspects of G2/M checkpoint and have been studied in detail. Equally critical is cells' ability to switch-off the checkpoint controls after a successful completion of corrective actions and to recommence cell cycle progression. Interestingly, when corrective measures fail, cells can mount an unusual cellular response, termed adaptation, where they escape checkpoint arrest and resume cell cycle progression with damaged chromosomes at the cost of genome instability or even death. Here, we discuss the DNA damage checkpoint, the mitotic networks it inhibits to prevent segregation of damaged chromosomes and the strategies cells employ to quench the checkpoint controls to override the G2/M arrest.
Collapse
Affiliation(s)
| | - Hong Hwa Lim
- A*STAR Singapore Immunology Network, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Siqueira IR, de Souza Rodrigues A, Flores MS, Vieira Cunha EL, Goldberg M, Harmon B, Batabyal R, Freishtat RJ, Cechinel LR. Circulating Extracellular Vesicles and Particles Derived From Adipocytes: The Potential Role in Spreading MicroRNAs Associated With Cellular Senescence. FRONTIERS IN AGING 2022; 3:867100. [PMID: 36016863 PMCID: PMC9395989 DOI: 10.3389/fragi.2022.867100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022]
Abstract
Aging is associated with adipose tissue dysfunction and is recognized as a risk factor for shortened life span. Considering that in vitro findings have shown the involvement of microRNA in extracellular vesicles and particles (EVPs) on senescence, we hypothesized that circulating EVPs derived from adipocytes can be involved in the aging process via their microRNA cargo. We aimed to determine the microRNA profiles of circulating EVPs derived from adipocytes (FABP4+) from aged and young adult animals and to perform in silico prediction of their downstream signaling effects. Plasma was obtained from Wistar rats (3 and 21 months old), and adipocyte-derived EVPs were isolated using the commercially available kit. Fatty acid-binding protein 4 (FABP4) was used for adipocyte-derived EVPs isolation; microRNA isolation and microarray expression analysis were performed. The analysis revealed 728 miRNAs, 32 were differentially between groups (p < 0.05; fold change ≥ |1.1|), of which 15 miRNAs were upregulated and 17 were downregulated in circulating EVPs from aged animals compared to young adults. A conservative filter was applied, and 18 microRNAs had experimentally validated and highly conserved predicted mRNA targets, with a total of 2,228 mRNAs. Canonical pathways, disease and functions, and upstream regulator analyses were performed using IPA-QIAGEN, allowing a global and interconnected evaluation. IPA categories impacted negatively were cell cycle, cellular development, cellular growth and proliferation, and tissue development, while those impacted positively were “digestive system cancer” and “endocrine gland tumor.” Interestingly, the upregulated miR-15-5p targets several cyclins, such as CCND1 and CCND2, and miR-24-3p seems to target CDK4 (cyclin-dependent kinase 4); then potentially inhibiting their expression, both miRNAs can induce a negative regulation of cell cycle progression. In contrast, silencing of negative cell cycle checkpoint regulators, such as p21 and p16, can be predicted, which can induce impairment in response to genotoxic stressors. In addition, predicted targets, such as SMAD family members, seem to be involved in the positive control of digestive and endocrine tumors. Taken together, this exploratory study indicates that miRNA signature in circulating adipocyte-derived EVPs may be involved with the double-edged sword of cellular senescence, including irreversible proliferation arrest and tissue-dependent cancer, and seems to be suitable for further validation and confirmatory studies.
Collapse
Affiliation(s)
- Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Ionara Rodrigues Siqueira,
| | - Andressa de Souza Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Siqueira Flores
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduarda Letícia Vieira Cunha
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Madeleine Goldberg
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| | - Rachael Batabyal
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| | - Robert J. Freishtat
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| |
Collapse
|
8
|
Chiappa M, Petrella S, Damia G, Broggini M, Guffanti F, Ricci F. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front Oncol 2022; 12:903016. [PMID: 35719948 PMCID: PMC9201472 DOI: 10.3389/fonc.2022.903016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is the principle member of the well conserved serine/threonine kinase family. PLK1 has a key role in the progression of mitosis and recent evidence suggest its important involvement in regulating the G2/M checkpoint, in DNA damage and replication stress response, and in cell death pathways. PLK1 expression is tightly spatially and temporally regulated to ensure its nuclear activation at the late S-phase, until the peak of expression at the G2/M-phase. Recently, new roles of PLK1 have been reported in literature on its implication in the regulation of inflammation and immunological responses. All these biological processes are altered in tumors and, considering that PLK1 is often found overexpressed in several tumor types, its targeting has emerged as a promising anti-cancer therapeutic strategy. In this review, we will summarize the evidence suggesting the role of PLK1 in response to DNA damage, including DNA repair, cell cycle progression, epithelial to mesenchymal transition, cell death pathways and cancer-related immunity. An update of PLK1 inhibitors currently investigated in preclinical and clinical studies, in monotherapy and in combination with existing chemotherapeutic drugs and targeted therapies will be discussed.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Serena Petrella
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giovanna Damia
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Francesca Ricci
- Laboratory of Experimental Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
9
|
Lee KG, Rajakumar N. Partial ablation of frontal cortical subplate leads to developmental abnormalities in KCC2 in the prefrontal cortex. Mol Cell Neurosci 2022; 120:103733. [DOI: 10.1016/j.mcn.2022.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022] Open
|
10
|
Ferencova I, Vaskovicova M, Drutovic D, Knoblochova L, Macurek L, Schultz RM, Solc P. CDC25B is required for the metaphase I-metaphase II transition in mouse oocytes. J Cell Sci 2022; 135:274615. [PMID: 35237831 DOI: 10.1242/jcs.252924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
Mammalian oocytes are arrested at meiotic prophase I. The dual-specificity phosphatase CDC25B is essential for cyclin-dependent kinase 1 (CDK1) activation that drives resumption of meiosis. CDC25B reverses the inhibitory effect of the protein kinases WEE1/MYT1 on CDK1 activation. Cdc25b-/- female mice are infertile because oocytes cannot activate CDK1. To identify a role for CDC25B following resumption of meiosis, we restored CDK1 activation in Cdc25b-/- oocytes by inhibiting WEE1/MYT1, or expressing EGFP-CDC25A or constitutively active EGFP-CDK1 from microinjected cRNAs. Forced CDK1 activation in Cdc25b-/- oocytes allowed resumption of meiosis, but oocytes mostly arrested at metaphase I (MI) with intact spindles. Similarly, ∼1/3 of Cdc25b+/- oocytes with reduced amount of CDC25B arrest in MI. MI arrested Cdc25b-/- oocytes also display a transient decrease in CDK1 activity similar to Cdc25b+/+ oocytes during the MI-MII transition, whereas Cdc25b+/- oocytes exhibit only a partial APC/C activation and anaphase I entry. Thus, CDC25B is necessary for resumption of meiosis and the MI-MII transition.
Collapse
Affiliation(s)
- Ivana Ferencova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michaela Vaskovicova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - David Drutovic
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Lucie Knoblochova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Libor Macurek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Petr Solc
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
11
|
Cell cycle involvement in cancer therapy; WEE1 kinase, a potential target as therapeutic strategy. Mutat Res 2022; 824:111776. [PMID: 35247630 DOI: 10.1016/j.mrfmmm.2022.111776] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Mitosis is the process of cell division and is regulated by checkpoints in the cell cycle. G1-S, S, and G2-M are the three main checkpoints that prevent initiation of the next phase of the cell cycle phase until previous phase has completed. DNA damage leads to activation of the G2-M checkpoint, which can trigger a downstream DNA damage response (DDR) pathway to induce cell cycle arrest while the damage is repaired. If the DNA damage cannot be repaired, the replication stress response (RSR) pathway finally leads to cell death by apoptosis, in this case called mitotic catastrophe. Many cancer treatments (chemotherapy and radiotherapy) cause DNA damages based on SSBs (single strand breaks) or DSBs (double strand breaks), which cause cell death through mitotic catastrophe. However, damaged cells can activate WEE1 kinase (as a part of the DDR and RSR pathways), which prevents apoptosis and cell death by inducing cell cycle arrest at G2 phase. Therefore, inhibition of WEE1 kinase could sensitize cancer cells to chemotherapeutic drugs. This review focuses on the role of WEE1 kinase (as a biological macromolecule which has a molecular mass of 96 kDa) in the cell cycle, and its interactions with other regulatory pathways. In addition, we discuss the potential of WEE1 inhibition as a new therapeutic approach in the treatment of various cancers, such as melanoma, breast cancer, pancreatic cancer, cervical cancer, etc.
Collapse
|
12
|
Bora P, Gahurova L, Hauserova A, Stiborova M, Collier R, Potěšil D, Zdráhal Z, Bruce AW. DDX21 is a p38-MAPK-sensitive nucleolar protein necessary for mouse preimplantation embryo development and cell-fate specification. Open Biol 2021; 11:210092. [PMID: 34255976 PMCID: PMC8277471 DOI: 10.1098/rsob.210092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.
Collapse
Affiliation(s)
- Pablo Bora
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic.,Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Andrea Hauserova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Martina Stiborova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Rebecca Collier
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
13
|
p38-MAPK-mediated translation regulation during early blastocyst development is required for primitive endoderm differentiation in mice. Commun Biol 2021; 4:788. [PMID: 34172827 PMCID: PMC8233355 DOI: 10.1038/s42003-021-02290-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Successful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.
Collapse
|
14
|
Paudel S, Liu B, Cummings MJ, Quinn KE, Bazer FW, Caron KM, Wang X. Temporal and spatial expression of adrenomedullin and its receptors in the porcine uterus and peri-implantation conceptuses. Biol Reprod 2021; 105:876-891. [PMID: 34104954 DOI: 10.1093/biolre/ioab110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Adrenomedullin (ADM) is an evolutionarily conserved multi-functional peptide hormone that regulates implantation, embryo spacing and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus, and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, expression of CALCRL, RAMP2 and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10-7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation and placentation in pigs.
Collapse
Affiliation(s)
- Sudikshya Paudel
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Bangmin Liu
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Magdalina J Cummings
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| | - Kelsey E Quinn
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Fuller W Bazer
- Departments of Animal Science, Texas A&M University, College Station TX, 77843, USA
| | - Kathleen M Caron
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Xiaoqiu Wang
- Department of Animal Science, North Carolina State University, Raleigh NC 27695, USA.,The Comparative Medicine Institute, North Carolina State University, Raleigh NC 27695, USA
| |
Collapse
|
15
|
Tyrpak DR, Li Y, Lei S, Avila H, MacKay JA. Single-Cell Quantification of the Transition Temperature of Intracellular Elastin-like Polypeptides. ACS Biomater Sci Eng 2021; 7:428-440. [PMID: 33455201 PMCID: PMC8375696 DOI: 10.1021/acsbiomaterials.0c01117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Elastin-like polypeptides (ELPs) are modular, stimuli-responsive materials that self-assemble into protein-rich microdomains in response to heating. By cloning ELPs to effector proteins, expressed intracellular fusions can even modulate cellular pathways. A critical step in engineering these fusions is to determine and control their intracellular phase transition temperature (Tt). To do so, this Method paper describes a simple live-cell imaging technique to estimate the Tt of non-fluorescent ELP fusion proteins by co-transfection with a fluorescent ELP marker. Intracellular microdomain formation can then be visualized in live cells through the co-assembly of the non-fluorescent and fluorescent ELP fusion proteins. If the two ELP fusions have different Tt, the intracellular ELP mixture phase separates at the temperature corresponding to the fusion with the lower Tt. In addition, co-assembled ELP microdomains often exhibit pronounced differences in size or number, compared to single transfected treatments. These features enable live-cell imaging experiments and image analysis to determine the intracellular Tt of a library of related ELP fusions. As a case study, we employ the recently reported Caveolin1-ELP library (CAV1-ELPs). In addition to providing a detailed protocol, we also report the development of a useful FIJI plugin named SIAL (Simple Image Analysis Library), which contains programs for image randomization and blinding, phenotype scoring, and ROI selection. These tasks are important parts of the protocol detailed here and are also commonly employed in other image analysis workflows.
Collapse
Affiliation(s)
- David R Tyrpak
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Yaocun Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Siqi Lei
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, 1450 San Pablo Street, Los Angeles, California 90033, United States
- Biomedical Engineering, University of Southern California Viterbi School of Engineering, 1042 Downey Way, Los Angeles, California 90089, United States
| |
Collapse
|
16
|
Dhanasekara CS, Zhang J, Nie S, Li G, Fan Z, Wang S. Nanoparticles target intimal macrophages in atherosclerotic lesions. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102346. [PMID: 33259961 PMCID: PMC8514141 DOI: 10.1016/j.nano.2020.102346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 10/25/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
Oxidized phosphatidylcholines (oxPCs) enriched on the oxidized LDL (oxLDL) surface are responsible ligands for binding oxLDL to the CD36 receptor of intimal macrophages in atherosclerotic lesions. We synthesized liposome-like nanoparticles (NPs) using soy phosphatidylcholine and incorporated 1-palmitoyl-2-(4-keto-dodec-3-enedioyl) phosphatidylcholine, a type of oxPCs, on their surface to make ligand-NP (L-NPs). The objectives of this study were to measure and compare their binding affinity to and uptake by primary mouse and THP-1 derived macrophages, and to determine their target specificity to intimal macrophages in aortic lesions in LDL receptor null (LDLr-/-) mice. All in vitro data demonstrate that L-NPs had a high binding affinity to macrophage CD36 receptor. L-NPs had 1.4-fold higher accumulation in aortic lesion areas than NPs. L-NPs co-localized with intimal macrophages and CD36 receptors in the aortic lesions. This target delivery approach may portend a breakthrough in molecular imaging and targeted treatment of atherosclerosis.
Collapse
Affiliation(s)
| | - Jia Zhang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Shufang Nie
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Guigen Li
- Department of Chemistry, Texas Tech University, Lubbock, TX, USA
| | - Zhaoyang Fan
- Department of Electrical & Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
| |
Collapse
|
17
|
Arroyo M, Cañuelo A, Calahorra J, Hastert F, Sánchez A, Clarke DJ, Marchal J. Mitotic entry upon Topo II catalytic inhibition is controlled by Chk1 and Plk1. FEBS J 2020; 287:4933-4951. [PMID: 32144855 PMCID: PMC7483426 DOI: 10.1111/febs.15280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Catalytic inhibition of topoisomerase II during G2 phase delays onset of mitosis due to the activation of the so-called decatenation checkpoint. This checkpoint is less known compared with the extensively studied G2 DNA damage checkpoint and is partially compromised in many tumor cells. We recently identified MCPH1 as a key regulator that confers cells with the capacity to adapt to the decatenation checkpoint. In the present work, we have explored the contributions of checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1), in order to better understand the molecular basis of decatenation checkpoint. Our results demonstrate that Chk1 function is required to sustain the G2 arrest induced by catalytic inhibition of Topo II. Interestingly, Chk1 loss of function restores adaptation in cells lacking MCPH1. Furthermore, we demonstrate that Plk1 function is required to bypass the decatenation checkpoint arrest in cells following Chk1 inhibition. Taken together, our data suggest that MCPH1 is critical to allow checkpoint adaptation by counteracting Chk1-mediated inactivation of Plk1. Importantly, we also provide evidence that MCPH1 function is not required to allow recovery from this checkpoint, which lends support to the notion that checkpoint adaptation and recovery are different mechanisms distinguished in part by specific effectors.
Collapse
Affiliation(s)
- M. Arroyo
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - A. Cañuelo
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - J. Calahorra
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - F.D. Hastert
- Department of Biology, Technische Universität Darmstadt, Germany
| | - A. Sánchez
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| | - D. J. Clarke
- Department of Genetics, Cell Biology and Development, University of Minnesota, US
| | - J.A. Marchal
- Departamento de Biología ExperimentalUniversidad de Jaén, Spain
| |
Collapse
|
18
|
Chen A, Feng Y, Lai H, Ju W, Li Z, Li Y, Wang A, Hong Q, Zhong F, Wei C, Fu J, Guan T, Liu B, Kretzler M, Lee K, He JC. Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J Clin Invest 2020; 130:5523-5535. [PMID: 32634130 PMCID: PMC7524479 DOI: 10.1172/jci140155] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Using the Nephrotic Syndrome Study Network Consortium data set and other publicly available transcriptomic data sets, we identified retinoic acid receptor responder protein 1 (RARRES1) as a gene whose expression positively correlated with renal function decline in human glomerular disease. The glomerular expression of RARRES1, which is largely restricted to podocytes, increased in focal segmental glomerulosclerosis (FSGS) and diabetic kidney disease (DKD). TNF-α was a potent inducer of RARRES1 expression in cultured podocytes, and transcriptomic analysis showed the enrichment of cell death pathway genes with RARRES1 overexpression. The overexpression of RARRES1 indeed induced podocyte apoptosis in vitro. Notably, this effect was dependent on its cleavage in the extracellular domain, as the mutation of its cleavage site abolished the apoptotic effect. Mechanistically, the soluble RARRES1 was endocytosed and interacted with and inhibited RIO kinase 1 (RIOK1), resulting in p53 activation and podocyte apoptosis. In mice, podocyte-specific overexpression of RARRES1 resulted in marked glomerular injury and albuminuria, while the overexpression of RARRES1 cleavage mutant had no effect. Conversely, podocyte-specific knockdown of Rarres1 in mice ameliorated glomerular injury in the setting of adriamycin-induced nephropathy. Our study demonstrates an important role and the mechanism of RARRES1 in podocyte injury in glomerular disease.
Collapse
Affiliation(s)
- Anqun Chen
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ye Feng
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Han Lai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yu Li
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Andrew Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Quan Hong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tianjun Guan
- Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Bichen Liu
- Department of Nephrology, Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Renal Section, James J. Peters VA Medical Center, Bronx, New York, USA
| |
Collapse
|
19
|
Activation and degranulation of CAR-T cells using engineered antigen-presenting cell surfaces. PLoS One 2020; 15:e0238819. [PMID: 32976541 PMCID: PMC7518621 DOI: 10.1371/journal.pone.0238819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/24/2020] [Indexed: 11/19/2022] Open
Abstract
Adoptive cell transfer of Chimeric Antigen Receptor (CAR)-T cells showed promising results in patients with B cell malignancies. However, the detailed mechanism of CAR-T cell interaction with the target tumor cells is still not well understood. This work provides a systematic method for analyzing the activation and degranulation of second-generation CAR-T cells utilizing antigen-presenting cell surfaces. Antigen-presenting cell surfaces composed of circular micropatterns of CAR-specific anti-idiotype antibodies have been developed to mimic the interaction of CAR-T cells with target tumor cells using micro-contact printing. The levels of activation and degranulation of fixed non-transduced T cells (NT), CD19.CAR-T cells, and GD2.CAR-T cells on the antigen-presenting cell surfaces were quantified and compared by measuring the intensity of the CD3ζ chain phosphorylation and the Lysosome-Associated Membrane Protein 1 (LAMP-1), respectively. The size and morphology of the cells were also measured. The intracellular Ca2+ flux of NT and CAR-T cells upon engagement with the antigen-presenting cell surface was reported. Results suggest that NT and CD19.CAR-T cells have comparable activation levels, while NT have higher degranulation levels than CD19.CAR-T cells and GD2.CAR-T cells. The findings show that antigen-presenting cell surfaces allow a quantitative analysis of the molecules involved in synapse formation in different CAR-T cells in a systematic, reproducible manner.
Collapse
|
20
|
Zhang QY, Chen XQ, Liu XC, Wu DM. PKMYT1 Promotes Gastric Cancer Cell Proliferation and Apoptosis Resistance. Onco Targets Ther 2020; 13:7747-7757. [PMID: 32801781 PMCID: PMC7414979 DOI: 10.2147/ott.s255746] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 01/10/2023] Open
Abstract
Background Abnormal expression of protein kinase membrane associated tyrosine/threonine 1 (PKMYT1) is closely associated with multiple types of cancers. In the present study, we examined the roles of PKMYT1 in gastric cancer (GC) progression. Methods We examined the expression status of PKMYT1 in GC tissues and cell lines. Meanwhile, short hairpin RNA (shRNA) was used to inhibit the endogenous expression of PKMYT1 in GC cells. Then we analyzed the effect of PKMYT1 on the malignant biological behavior of GC cells by in vitro and in vivo experiments. Results The findings showed high PKMYT1 expressions in GC tissues as well as a positive correlation between PKMYT1 expression and prognosis of patients with GC. Additional findings also revealed that PKMYT1 silencing significantly enhanced apoptosis and inhibited GC cell proliferation. In vivo, the silence of PKMYT1 inhibits tumor growth. Further analysis showed that the increase in PKMYT1 expressions led to malignant biological behavior through activation of the MAPK signaling pathway. Conclusion Our data suggested that PKMYT1 promotes cell proliferation and apoptosis resistance in GC cells by activating the MAPK signaling pathway, making it a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Qi-Yong Zhang
- Department of Gastroenterology, The First People's Hospital of Lanzhou, Lanzhou City, Gansu 730050, People's Republic of China
| | - Xiao-Qin Chen
- Department of Gastroenterology, The First People's Hospital of Lanzhou, Lanzhou City, Gansu 730050, People's Republic of China
| | - Xiong-Chang Liu
- Department of Gastroenterology, The First People's Hospital of Lanzhou, Lanzhou City, Gansu 730050, People's Republic of China
| | - De-Ming Wu
- Department of Gastroenterology, The First People's Hospital of Lanzhou, Lanzhou City, Gansu 730050, People's Republic of China
| |
Collapse
|
21
|
Ibragimova N, Mokshina N, Ageeva M, Gurjanov O, Mikshina P. Rearrangement of the Cellulose-Enriched Cell Wall in Flax Phloem Fibers over the Course of the Gravitropic Reaction. Int J Mol Sci 2020; 21:ijms21155322. [PMID: 32727025 PMCID: PMC7432630 DOI: 10.3390/ijms21155322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022] Open
Abstract
The plant cell wall is a complex structure consisting of a polysaccharide network. The rearrangements of the cell wall during the various physiological reactions of plants, however, are still not fully characterized. Profound changes in cell wall organization are detected by microscopy in the phloem fibers of flax (Linum usitatissimum) during the restoration of the vertical position of the inclined stems. To characterize the underlying biochemical and structural changes in the major cell wall polysaccharides, we compared the fiber cell walls of non-inclined and gravistimulated plants by focusing mainly on differences in non-cellulosic polysaccharides and the fine cellulose structure. Biochemical analysis revealed a slight increase in the content of pectins in the fiber cell walls of gravistimulated plants as well as an increase in accessibility for labeling non-cellulosic polysaccharides. The presence of galactosylated xyloglucan in the gelatinous cell wall layer of flax fibers was demonstrated, and its labeling was more pronounced in the gravistimulated plants. Using solid state NMR, an increase in the crystallinity of the cellulose in gravistimulated plants, along with a decrease in cellulose mobility, was demonstrated. Thus, gravistimulation may affect the rearrangement of the cell wall, which can enable restoration in a vertical position of the plant stem.
Collapse
|
22
|
Munro T, Miller CM, Antunes E, Sharma D. Interactions of Osteoprogenitor Cells with a Novel Zirconia Implant Surface. J Funct Biomater 2020; 11:E50. [PMID: 32708701 PMCID: PMC7565437 DOI: 10.3390/jfb11030050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 02/03/2023] Open
Abstract
Background: This study compared the in vitro response of a mouse pre-osteoblast cell line on a novel sandblasted zirconia surface with that of titanium. Material and Methods: The MC3T3-E1 subclone 4 osteoblast precursor cell line was cultured on either sandblasted titanium (SBCpTi) or sandblasted zirconia (SBY-TZP). The surface topography was analysed by three-dimensional laser microscopy and scanning electron microscope. The wettability of the discs was also assessed. The cellular response was quantified by assessing the morphology (day 1), proliferation (day 1, 3, 5, 7, 9), viability (day 1, 9), and migration (0, 6, 24 h) assays. Results: The sandblasting surface treatment in both titanium and zirconia increased the surface roughness by rendering a defined surface topography with titanium showing more apparent nano-topography. The wettability of the two surfaces showed no significant difference. The zirconia surface resulted in improved cellular spreading and a significantly increased rate of migration compared to titanium. However, the cellular proliferation and viability noted in our experiments were not significantly different on the zirconia and titanium surfaces. Conclusions: The novel, roughened zirconia surface elicited cellular responses comparable to, or exceeding that, of titanium. Therefore, this novel zirconia surface may be an acceptable substitute for titanium as a dental implant material.
Collapse
Affiliation(s)
- Thomas Munro
- College of Medicine and Dentistry, James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia;
| | - Catherine M. Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia;
- The Australian Institute of Tropical Health and Medicine (AITHM) James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia
| | - Elsa Antunes
- College of Science & Engineering, James Cook University, 1 James Cook Drive, Douglas, Townsville 4814, QLD, Australia;
| | - Dileep Sharma
- College of Medicine and Dentistry, James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia;
- The Australian Institute of Tropical Health and Medicine (AITHM) James Cook University, 14-88 McGregor Road, Smithfield 4878, QLD, Australia
| |
Collapse
|
23
|
Pratap AA, Holsinger RMD. Altered Brain Adiponectin Receptor Expression in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:E150. [PMID: 32664663 PMCID: PMC7407895 DOI: 10.3390/ph13070150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes share common pathologies with Alzheimer's disease (AD). Adiponectin, an adipocyte-derived protein, regulates energy metabolism via its receptors, AdipoR1 and AdipoR2. To investigate the distribution of adiponectin receptors (AdipoRs) in Alzheimer's, we examined their expression in the aged 5XFAD mouse model of AD. In age-matched wild-type mice, we observed neuronal expression of both ARs throughout the brain as well as endothelial expression of AdipoR1. The pattern of receptor expression in the aged 5XFAD brain was significantly perturbed. Here, we observed decreased neuronal expression of both ARs and decreased endothelial expression of AdipoR1, but robust expression of AdipoR2 in activated astrocytes. We also observed AdipoR2-expressing astrocytes in the dorsomedial hypothalamic and thalamic mediodorsal nuclei, suggesting the possibility that astrocytes utilise AdipoR2 signalling to fuel their activated state in the AD brain. These findings provide further evidence of a metabolic disturbance and demonstrate a potential shift in energy utilisation in the AD brain, supporting imaging studies performed in AD patients.
Collapse
Affiliation(s)
- Anishchal A. Pratap
- Laboratory of Molecular Neuroscience and Dementia, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
24
|
Terhune SS, Jung Y, Cataldo KM, Dash RK. Network mechanisms and dysfunction within an integrated computational model of progression through mitosis in the human cell cycle. PLoS Comput Biol 2020; 16:e1007733. [PMID: 32251461 PMCID: PMC7162553 DOI: 10.1371/journal.pcbi.1007733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/16/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022] Open
Abstract
The cellular protein-protein interaction network that governs cellular proliferation (cell cycle) is highly complex. Here, we have developed a novel computational model of human mitotic cell cycle, integrating diverse cellular mechanisms, for the purpose of generating new hypotheses and predicting new experiments designed to help understand complex diseases. The pathogenic state investigated is infection by a human herpesvirus. The model starts at mitotic entry initiated by the activities of Cyclin-dependent kinase 1 (CDK1) and Polo-like kinase 1 (PLK1), transitions through Anaphase-promoting complex (APC/C) bound to Cell division cycle protein 20 (CDC20), and ends upon mitotic exit mediated by APC/C bound to CDC20 homolog 1 (CDH1). It includes syntheses and multiple mechanisms of degradations of the mitotic proteins. Prior to this work, no such comprehensive model of the human mitotic cell cycle existed. The new model is based on a hybrid framework combining Michaelis-Menten and mass action kinetics for the mitotic interacting reactions. It simulates temporal changes in 12 different mitotic proteins and associated protein complexes in multiple states using 15 interacting reactions and 26 ordinary differential equations. We have defined model parameter values using both quantitative and qualitative data and using parameter values from relevant published models, and we have tested the model to reproduce the cardinal features of human mitosis determined experimentally by numerous laboratories. Like cancer, viruses create dysfunction to support infection. By simulating infection of the human herpesvirus, cytomegalovirus, we hypothesize that virus-mediated disruption of APC/C is necessary to establish a unique mitotic collapse with sustained CDK1 activity, consistent with known mechanisms of virus egress. With the rapid discovery of cellular protein-protein interaction networks and regulatory mechanisms, we anticipate that this model will be highly valuable in helping us to understand the network dynamics and identify potential points of therapeutic interventions.
Collapse
Affiliation(s)
- Scott S. Terhune
- Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yongwoon Jung
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Katie M. Cataldo
- Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
25
|
Seo H, Li X, Wu G, Bazer FW, Burghardt RC, Bayless KJ, Johnson GA. Mechanotransduction drives morphogenesis to develop folding during placental development in pigs. Placenta 2019; 90:62-70. [PMID: 32056554 DOI: 10.1016/j.placenta.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Our aim was to evaluate whether mechanical forces applied to the placenta of pigs correlate with morphological changes that coordinate the development of placental folds. METHODS We examined changes in the length of placental folds, expression of mechanotransduction-implicated molecules in placental tissues, changes in the size of subepithelial blood vessels within the endometrium, and effects of in vivo supplementation with arginine on fold development. RESULTS We observed that: 1) the length of folds increased 2) osteopontin, talin and focal adhesion kinase co-localized into aggregates at the maternal placental (uterine)-fetal placental interface; 3) filamin, actin related protein 2, and F-actin were enriched in the tops of maternal placental folds extending into fetal placental tissue; 4) maternal stromal fibroblasts acquired alpha smooth muscle actin; 5) endometrial blood vessels increased in size; and 6) supplementation with arginine increased fold length. CONCLUSION Results indicate that lengthening of folds associates with polymerization of actin that coincides with FA assembly, endometrial fibroblasts differentiate into myofibroblasts, and dilation of subepithelial blood vessels correlates with development of folds that is enhanced by arginine. We propose that dilation of subepithelial endometrial blood vessels delivers increased blood flow that pushes upward on the interface between the uterine luminal epithelium (LE) and the placental chorionic epithelium (CE), protrusive forces from growing uterine blood vessels trigger focal adhesion assembly and actin polymerization between the LE and CE, and endometrial fibroblasts differentiate into contractile myofibroblasts that pull connective tissue downward and inward to sculpt folds at the maternal placental-fetal placental interface.
Collapse
Affiliation(s)
- Heewon Seo
- Department of Veterinary Integrative Biosciences, College Station, TX, 77843, USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College Station, TX, 77843, USA
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M System Health Sciences Center, College Station, TX, 77843, USA
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Nolasco P, Fernandes CG, Ribeiro-Silva JC, Oliveira PVS, Sacrini M, de Brito IV, De Bessa TC, Pereira LV, Tanaka LY, Alencar A, Laurindo FRM. Impaired vascular smooth muscle cell force-generating capacity and phenotypic deregulation in Marfan Syndrome mice. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165587. [PMID: 31678158 DOI: 10.1016/j.bbadis.2019.165587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
Mechanisms whereby fibrillin-1 mutations determine thoracic aorta aneurysms/dissections (TAAD) in Marfan Syndrome (MFS) are unclear. Most aortic aneurysms evolve from mechanosignaling deregulation, converging to impaired vascular smooth muscle cell (VSMC) force-generating capacity accompanied by synthetic phenotype switch. However, little is known on VSMC mechanoresponses in MFS pathophysiology. Here, we investigated traction force-generating capacity in aortic VSMC cultured from 3-month old mg∆lpn MFS mice, together with morpho-functional and proteomic data. Cultured MFS-VSMC depicted marked phenotype changes vs. wild-type (WT) VSMC, with overexpressed cell proliferation markers but either lower (calponin-1) or higher (SM alpha-actin and SM22) differentiation marker expression. In parallel, the increased cell area and its complex non-fusiform shape suggested possible transition towards a mesenchymal-like phenotype, confirmed through several markers (e.g. N-cadherin, Slug). MFS-VSMC proteomic profile diverged from that of WT-VSMC particularly regarding lower expression of actin cytoskeleton-regulatory proteins. Accordingly, MFS-VSMC displayed lower traction force-generating capacity and impaired contractile moment at physiological substrate stiffness, and markedly attenuated traction force responses to enhanced substrate rigidity. Such impaired mechanoresponses correlated with decreased number, altered morphology and delocalization of focal adhesions, as well as disorganized actin stress fiber network vs. WT-VSMC. In VSMC cultured from 6-month-old mice, phenotype changes were attenuated and both WT-VSMC and MFS-VSMC generated less traction force, presumably involving VSMC aging, but without evident senescence. In summary, MFS-VSMC display impaired force-generating capacity accompanying a mesenchymal-like phenotype switch connected to impaired cytoskeleton/focal adhesion organization. Thus, MFS-associated TAAD involves mechanoresponse impairment common to other TAAD types, but through distinct mechanisms.
Collapse
Affiliation(s)
- Patrícia Nolasco
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carolina Gonçalves Fernandes
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - João Carlos Ribeiro-Silva
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia V S Oliveira
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana Sacrini
- Laboratorio de Microrreologia e Fisiologia Molecular, Instituto de Física da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Isis Vasconcelos de Brito
- Laboratorio de Microrreologia e Fisiologia Molecular, Instituto de Física da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Tiphany Coralie De Bessa
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Lygia V Pereira
- Laboratorio de Genetica Molecular, Instituto de Biologia, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leonardo Y Tanaka
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Adriano Alencar
- Laboratorio de Microrreologia e Fisiologia Molecular, Instituto de Física da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco Rafael Martins Laurindo
- Laboratorio de Biologia Vascular, LIM-64 (Biologia Cardiovascular Translacional), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
27
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
28
|
The observation of high hypotonicity manipulating cell division. Heliyon 2019; 5:e02095. [PMID: 31508515 PMCID: PMC6726586 DOI: 10.1016/j.heliyon.2019.e02095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/12/2019] [Accepted: 07/12/2019] [Indexed: 11/23/2022] Open
Abstract
We report a morphological manipulation of cell division which was achieved by changing the environment from isotonic to highly hypotonic. Cells at telophase were observed to undergo a morphological reversal to anaphase, with the contractile ring being reopened and the cell shape reversing from dumb-bell back to spherical. Once restored to isosmotic environment, the reversed cells would either continue to divide or instead to form binuclear cells that further proliferated in runaway fashions. The immunofluorescent staining of tubulins and myosin II indicated that the hypotonic stress affected the accumulation of tubulins and myosin II at the contractile ring. Distinct from previous studies using specific chemical reagents, the present study provides a simple method to manipulate cell division. The morphological reversal is the adaption of dividing cells to the environmental change. The observation opens a new window to understand cell division mechanisms and runaways.
Collapse
|
29
|
Interplay between Phosphatases and the Anaphase-Promoting Complex/Cyclosome in Mitosis. Cells 2019; 8:cells8080814. [PMID: 31382469 PMCID: PMC6721574 DOI: 10.3390/cells8080814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.
Collapse
|
30
|
Hui J, Pang SW. Cell migration on microposts with surface coating and confinement. Biosci Rep 2019; 39:BSR20181596. [PMID: 30674640 PMCID: PMC6379512 DOI: 10.1042/bsr20181596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Understanding cell migration in a 3D microenvironment is essential as most cells encounter complex 3D extracellular matrix (ECM) in vivo Although interactions between cells and ECM have been studied previously on 2D surfaces, cell migration studies in 3D environment are still limited. To investigate cell migration under various degrees of confinements and coating conditions, 3D platforms with micropost arrays and controlled fibronectin (FN) protein coating were developed. MC3T3-E1 cells spread and contacted the top surface of microposts if FN was coated on top. When FN was coated all over the microposts, cells were trapped between microposts with 3 μm spacing and barely moved. As the spacing between microposts increased from 3 to 5 μm, cells became elongated with limited cell movement of 0.18 μm/min, slower than the cell migration speed of 0.40 μm/min when cells moved on top. When cells were trapped in between the microposts, cell nuclei were distorted and actin filaments formed along the sidewalls of microposts. With the addition of a top cover to introduce cell confinement, the cell migration speed was 0.23 and 0.84 μm/min when the channel height was reduced from 20 to 10 μm, respectively. Cell traction force was monitored at on the top and bottom microposts with 10 μm channel height. These results show that the MC3T3-E1 cell morphology, migration speed, and movement position were affected by surface coating and physical confinement, which will provide significant insights for in vivo cell migration within a 3D ECM.
Collapse
Affiliation(s)
- Jianan Hui
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
- Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| | - Stella W Pang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
- Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Salahuddin S, Fath EK, Biel N, Ray A, Moss CR, Patel A, Patel S, Hilding L, Varn M, Ross T, Cramblet WT, Lowrey A, Pagano JS, Shackelford J, Bentz GL. Epstein-Barr Virus Latent Membrane Protein-1 Induces the Expression of SUMO-1 and SUMO-2/3 in LMP1-positive Lymphomas and Cells. Sci Rep 2019; 9:208. [PMID: 30659232 PMCID: PMC6338769 DOI: 10.1038/s41598-018-36312-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022] Open
Abstract
Epstein-Barr Virus latent membrane protein-1 (LMP1) interacts with the SUMO-conjugating enzyme Ubc9, which induces protein sumoylation and may contribute to LMP1-mediated oncogenesis. After analyzing human lymphoma tissues and EBV-positive cell lines, we now document a strong correlation between LMP1 and sumo-1/2/3 or SUMO-1/2/3 levels, and show that LMP1-induced sumo expression requires the activation of NF-κB signaling through CTAR1 and CTAR2. Together, these results point to a second mechanism by which LMP1 dysregulates sumoylation processes and adds EBV-associated lymphomas to the list of malignancies associated with increased SUMO expression.
Collapse
Affiliation(s)
- Sadia Salahuddin
- Departments of Medicine and Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA.,Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Emma K Fath
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Natalie Biel
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Ashley Ray
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - C Randall Moss
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Akash Patel
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Sheetal Patel
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Leslie Hilding
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Matthew Varn
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Tabithia Ross
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Wyatt T Cramblet
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Angela Lowrey
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Joseph S Pagano
- Departments of Medicine and Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Julia Shackelford
- Department of Cellular Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Gretchen L Bentz
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA. .,Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
32
|
Rata S, Suarez Peredo Rodriguez MF, Joseph S, Peter N, Echegaray Iturra F, Yang F, Madzvamuse A, Ruppert JG, Samejima K, Platani M, Alvarez-Fernandez M, Malumbres M, Earnshaw WC, Novak B, Hochegger H. Two Interlinked Bistable Switches Govern Mitotic Control in Mammalian Cells. Curr Biol 2018; 28:3824-3832.e6. [PMID: 30449668 PMCID: PMC6287978 DOI: 10.1016/j.cub.2018.09.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022]
Abstract
Distinct protein phosphorylation levels in interphase and M phase require tight regulation of Cdk1 activity [1, 2]. A bistable switch, based on positive feedback in the Cdk1 activation loop, has been proposed to generate different thresholds for transitions between these cell-cycle states [3-5]. Recently, the activity of the major Cdk1-counteracting phosphatase, PP2A:B55, has also been found to be bistable due to Greatwall kinase-dependent regulation [6]. However, the interplay of the regulation of Cdk1 and PP2A:B55 in vivo remains unexplored. Here, we combine quantitative cell biology assays with mathematical modeling to explore the interplay of mitotic kinase activation and phosphatase inactivation in human cells. By measuring mitotic entry and exit thresholds using ATP-analog-sensitive Cdk1 mutants, we find evidence that the mitotic switch displays hysteresis and bistability, responding differentially to Cdk1 inhibition in the mitotic and interphase states. Cdk1 activation by Wee1/Cdc25 feedback loops and PP2A:B55 inactivation by Greatwall independently contributes to this hysteretic switch system. However, elimination of both Cdk1 and PP2A:B55 inactivation fully abrogates bistability, suggesting that hysteresis is an emergent property of mutual inhibition between the Cdk1 and PP2A:B55 feedback loops. Our model of the two interlinked feedback systems predicts an intermediate but hidden steady state between interphase and M phase. This could be verified experimentally by Cdk1 inhibition during mitotic entry, supporting the predictive value of our model. Furthermore, we demonstrate that dual inhibition of Wee1 and Gwl kinases causes loss of cell-cycle memory and synthetic lethality, which could be further exploited therapeutically.
Collapse
Affiliation(s)
- Scott Rata
- Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, UK
| | | | - Stephy Joseph
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Brighton BN1 9RQ, UK
| | - Nisha Peter
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Brighton BN1 9RQ, UK
| | - Fabio Echegaray Iturra
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Brighton BN1 9RQ, UK
| | - Fengwei Yang
- Department of Chemical and Process Engineering, University of Surrey, 388 Stag Hill, Guildford GU2 7JP, UK
| | - Anotida Madzvamuse
- Department of Mathematics, University of Sussex, Science Park Road, Brighton BN1 9QH, UK
| | - Jan G Ruppert
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Kumiko Samejima
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Melpomeni Platani
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | | | - Marcos Malumbres
- Spanish National Cancer Research Centre, Melchor Fernandez Almagro, Madrid E28029, Spain
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Bela Novak
- Department of Biochemistry, University of Oxford, South Park Road, Oxford OX1 3QU, UK.
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Science Park Road, Brighton BN1 9RQ, UK.
| |
Collapse
|
33
|
Boonthum C, Namdee K, Khongkow M, Temisak S, Chatdarong K, Sajomsang W, Ponglowhapan S, Yata T. Gonadotropin-releasing hormone-modified chitosan as a safe and efficient gene delivery vector for spermatogonia cells. Reprod Domest Anim 2018; 53 Suppl 3:23-28. [DOI: 10.1111/rda.13346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Chatwalee Boonthum
- Department of Obstetrics, Gynaecology and Reproduction; Research Unit of Obstetrics and Reproduction in Animals; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| | - Katawut Namdee
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - Sasithont Temisak
- Bio Analysis Group, Chemical Metrology and Biometry Department; National Institute of Metrology (NIMT); Pathumthani Thailand
| | - Kaywalee Chatdarong
- Department of Obstetrics, Gynaecology and Reproduction; Research Unit of Obstetrics and Reproduction in Animals; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| | - Warayuth Sajomsang
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| | - Suppawiwat Ponglowhapan
- Department of Obstetrics, Gynaecology and Reproduction; Research Unit of Obstetrics and Reproduction in Animals; Faculty of Veterinary Science; Chulalongkorn University; Bangkok Thailand
| | - Teerapong Yata
- National Nanotechnology Centre (NANOTEC); National Science and Technology Development Agency; Pathumthani Thailand
| |
Collapse
|
34
|
Zhong F, Chen Z, Zhang L, Xie Y, Nair V, Ju W, Kretzler M, Nelson RG, Li Z, Chen H, Wang Y, Zhang A, Lee K, Liu Z, He JC. Tyro3 is a podocyte protective factor in glomerular disease. JCI Insight 2018; 3:123482. [PMID: 30429374 PMCID: PMC6302948 DOI: 10.1172/jci.insight.123482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/11/2018] [Indexed: 01/05/2023] Open
Abstract
Our previous work demonstrated a protective role of protein S in early diabetic kidney disease (DKD). Protein S exerts antiinflammatory and antiapoptotic effects through the activation of TYRO3, AXL, and MER (TAM) receptors. Among the 3 TAM receptors, we showed that the biological effects of protein S were mediated largely by TYRO3 in diabetic kidneys. Our data now show that TYRO3 mRNA expression is highly enriched in human glomeruli and that TYRO3 protein is expressed in podocytes. Interestingly, glomerular TYRO3 mRNA expression increased in mild DKD but was suppressed in progressive DKD, as well as in focal segmental glomerulosclerosis (FSGS). Functionally, morpholino-mediated knockdown of tyro3 altered glomerular filtration barrier development in zebrafish larvae, and genetic ablation of Tyro3 in murine models of DKD and Adriamycin-induced nephropathy (ADRN) worsened albuminuria and glomerular injury. Conversely, the induction of TYRO3 overexpression specifically in podocytes significantly attenuated albuminuria and kidney injury in mice with DKD, ADRN, and HIV-associated nephropathy (HIVAN). Mechanistically, TYRO3 expression was suppressed by activation of TNF-α/NF-κB pathway, which may contribute to decreased TYRO3 expression in progressive DKD and FSGS, and TYRO3 signaling conferred antiapoptotic effects through the activation of AKT in podocytes. In conclusion, TYRO3 plays a critical role in maintaining normal podocyte function and may be a potential new drug target to treat glomerular diseases.
Collapse
Affiliation(s)
- Fang Zhong
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhaohong Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Liwen Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yifan Xie
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Viji Nair
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Ju
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert G Nelson
- Chronic Kidney Disease Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Zhengzhe Li
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongyu Chen
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, China
| | - Yongjun Wang
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Kyung Lee
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - John Cijiang He
- Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J Peters Veterans Affair Medical Center, Bronx, New York, USA
| |
Collapse
|
35
|
Anton KA, Kajita M, Narumi R, Fujita Y, Tada M. Src-transformed cells hijack mitosis to extrude from the epithelium. Nat Commun 2018; 9:4695. [PMID: 30410020 PMCID: PMC6224566 DOI: 10.1038/s41467-018-07163-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/15/2018] [Indexed: 12/19/2022] Open
Abstract
At the initial stage of carcinogenesis single mutated cells appear within an epithelium. Mammalian in vitro experiments show that potentially cancerous cells undergo live apical extrusion from normal monolayers. However, the mechanism underlying this process in vivo remains poorly understood. Mosaic expression of the oncogene vSrc in a simple epithelium of the early zebrafish embryo results in extrusion of transformed cells. Here we find that during extrusion components of the cytokinetic ring are recruited to adherens junctions of transformed cells, forming a misoriented pseudo-cytokinetic ring. As the ring constricts, it separates the basal from the apical part of the cell releasing both from the epithelium. This process requires cell cycle progression and occurs immediately after vSrc-transformed cell enters mitosis. To achieve extrusion, vSrc coordinates cell cycle progression, junctional integrity, cell survival and apicobasal polarity. Without vSrc, modulating these cellular processes reconstitutes vSrc-like extrusion, confirming their sufficiency for this process. Potentially cancerous cells undergo live apical extrusion from normal monolayers and vSrc expression induces this in zebrafish epithelia. Here, the authors show that vSrc coordinates cytokinetic ring formation, cell cycle progression, junctional integrity, cell survival and apicobasal polarity to induce extrusion of transformed cells.
Collapse
Affiliation(s)
- Katarzyna A Anton
- Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mihoko Kajita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| | - Rika Narumi
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo, 060-0815, Japan
| | - Masazumi Tada
- Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
36
|
Gérard C, Gonze D, Goldbeter A. Revisiting a skeleton model for the mammalian cell cycle: From bistability to Cdk oscillations and cellular heterogeneity. J Theor Biol 2018; 461:276-290. [PMID: 30352237 DOI: 10.1016/j.jtbi.2018.10.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
A network of cyclin-dependent kinases (Cdks) regulated by multiple negative and positive feedback loops controls progression in the mammalian cell cycle. We previously proposed a detailed computational model for this network, which consists of four coupled Cdk modules. Both this detailed model and a reduced, skeleton version show that the Cdk network is capable of temporal self-organization in the form of sustained Cdk oscillations, which correspond to the orderly progression along the different cell cycle phases G1, S (DNA replication), G2 and M (mitosis). We use the skeleton model to revisit the role of positive feedback (PF) loops on the dynamics of the mammalian cell cycle by showing that the multiplicity of PF loops extends the range of bistability in the isolated Cdk modules controlling the G1/S and G2/M transitions. Resorting to stochastic simulations we show that, through their effect on the range of bistability, multiple PF loops enhance the robustness of Cdk oscillations with respect to molecular noise. The model predicts that a rise in the total level of Cdk1 also enlarges the domain of bistability in the isolated Cdk modules as well as the range of oscillations in the full Cdk network. Surprisingly, stochastic simulations indicate that Cdk1 overexpression reduces the robustness of Cdk oscillations towards molecular noise; this result is due to the increased distance between the two branches of the bistable switch at higher levels of Cdk1. At intermediate levels of growth factor stochastic simulations show that cells may randomly switch between cell cycle arrest and cell proliferation, as a consequence of fluctuations. In the presence of Cdk1 overexpression, these transitions occur even at low levels of growth factor. Extending stochastic simulations from single cells to cell populations suggests that stochastic switches between cell cycle arrest and proliferation may provide a source of heterogeneity in a cell population, as observed in cancer cells characterized by Cdk1 overexpression.
Collapse
Affiliation(s)
- Claude Gérard
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, B-1050 Brussels, Belgium
| | - Didier Gonze
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, B-1050 Brussels, Belgium
| | - Albert Goldbeter
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, B-1050 Brussels, Belgium.
| |
Collapse
|
37
|
Fu J, Wei C, Zhang W, Schlondorff D, Wu J, Cai M, He W, Baron MH, Chuang PY, Liu Z, He JC, Lee K. Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy of diabetic mice. Kidney Int 2018; 94:326-345. [PMID: 29861058 PMCID: PMC6054896 DOI: 10.1016/j.kint.2018.02.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 01/15/2023]
Abstract
Endothelial dysfunction promotes the pathogenesis of diabetic nephropathy (DN), which is considered to be an early event in disease progression. However, the molecular changes associated with glomerular endothelial cell (GEC) injury in early DN are not well defined. Most gene expression studies have relied on the indirect assessment of GEC injury from isolated glomeruli or renal cortices. Here, we present transcriptomic analysis of isolated GECs, using streptozotocin-induced diabetic wildtype (STZ-WT) and diabetic eNOS-null (STZ-eNOS-/-) mice as models of mild and advanced DN, respectively. GECs of both models in comparison to their respective nondiabetic controls showed significant alterations in the regulation of apoptosis, oxidative stress, and proliferation. The extent of these changes was greater in STZ-eNOS-/- than in STZ-WT GECs. Additionally, genes in STZ-eNOS-/- GECs indicated further dysregulation in angiogenesis and epigenetic regulation. Moreover, a biphasic change in the number of GECs, characterized by an initial increase and subsequent decrease over time, was observed only in STZ-eNOS-/- mice. This is consistent with an early compensatory angiogenic process followed by increased apoptosis, leading to an overall decrease in GEC survival in DN progression. From the genes altered in angiogenesis in STZ-eNOS-/- GECs, we identified potential candidate genes, Lrg1 and Gpr56, whose function may augment diabetes-induced angiogenesis. Thus, our results support a role for GEC in DN by providing direct evidence for alterations of GEC gene expression and molecular pathways. Candidate genes of specific pathways, such as Lrg1 and Gpr56, can be further explored for potential therapeutic targeting to mitigate the initiation and progression of DN.
Collapse
Affiliation(s)
- Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Detlef Schlondorff
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jinshan Wu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Minchao Cai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wu He
- Flow Cytometry Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret H Baron
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters VA Medical Center at Bronx, New York, New York, USA.
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
38
|
The Tumor Suppressor MIG6 Controls Mitotic Progression and the G2/M DNA Damage Checkpoint by Stabilizing the WEE1 Kinase. Cell Rep 2018; 24:1278-1289. [DOI: 10.1016/j.celrep.2018.06.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 03/07/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
|
39
|
Genomic integration and ligand-dependent activation of the human estrogen receptor α in the crustacean Daphnia magna. PLoS One 2018; 13:e0198023. [PMID: 29883470 PMCID: PMC5993276 DOI: 10.1371/journal.pone.0198023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/12/2018] [Indexed: 02/06/2023] Open
Abstract
The freshwater crustacean Daphnia have a long history in water quality assessments and now lend themselves to detection of targeted chemicals using genetically encoded reporter gene due to recent progress in the development of genome editing tools. By introducing human genes into Daphnia, we may be able to detect chemicals that affect the human system, or even apply it to screening potentially useful chemicals. Here, we aimed to develop a transgenic line of Daphnia magna that contains the human estrogen receptor alpha (hERα) and shows a fluorescence response to exposure of estrogens. We designed plasmids to express hERα in Daphnia (EF1α1:esr1) and to report estrogenic activity via red fluorescence (ERE:mcherry) under the control of estrogen response element (ERE). After confirmation of functionality of the plasmids by microinjection into embryos, the two plasmids were joined, a TALE site was added and integrated into the D. magna genome using TALEN. When the resulting transgenic Daphnia named the ES line was exposed to Diethylstilbestrol (DES) or 17β-Estradiol (E2), the ES line could reliably expressed red fluorescence derived from mCherry in a ligand-dependent manner, indicating that an estrogen-responsive line of D. magna was established. This is the first time a human gene was expressed in Daphnia, showcasing potential for further research.
Collapse
|
40
|
Hayashi Y, Fujimura A, Kato K, Udagawa R, Hirota T, Kimura K. Nucleolar integrity during interphase supports faithful Cdk1 activation and mitotic entry. SCIENCE ADVANCES 2018; 4:eaap7777. [PMID: 29881774 PMCID: PMC5990311 DOI: 10.1126/sciadv.aap7777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
The nucleolus is a dynamic nuclear body that has been demonstrated to disassemble at the onset of mitosis; the relationship between cell cycle progression and nucleolar integrity, however, remains poorly understood. We studied the role of nucleolar proteins in mitosis by performing a global analysis using small interfering RNAs specific to nucleolar proteins; we focused on nucleolar protein 11 (NOL11), with currently unknown mitotic functions. Depletion of NOL11 delayed entry into the mitotic phase owing to increased inhibitory phosphorylation of cyclin-dependent kinase 1 (Cdk1) and aberrant accumulation of Wee1, a kinase that phosphorylates and inhibits Cdk1. In addition to effects on overall mitotic phenotypes, NOL11 depletion reduced ribosomal RNA (rRNA) levels and caused nucleolar disruption during interphase. Notably, mitotic phenotypes found in NOL11-depleted cells were recapitulated when nucleolar disruption was induced by depletion of rRNA transcription factors or treatment with actinomycin D. Furthermore, delayed entry into the mitotic phase, caused by the depletion of pre-rRNA transcription factors, was attributable to nucleolar disruption rather than to G2/M checkpoint activation or reduced protein synthesis. Our findings therefore suggest that maintenance of nucleolar integrity during interphase is essential for proper cell cycle progression to mitosis via the regulation of Wee1 and Cdk1.
Collapse
Affiliation(s)
- Yuki Hayashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Akiko Fujimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Kazashi Kato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Rina Udagawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, 3-8-1 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Keiji Kimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba Science City, Ibaraki 305-8577, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
41
|
Dai JB, Chen Y, Sakata JT. EGR-1 Expression in Catecholamine-synthesizing Neurons Reflects Auditory Learning and Correlates with Responses in Auditory Processing Areas. Neuroscience 2018; 379:415-427. [DOI: 10.1016/j.neuroscience.2018.03.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
|
42
|
Modified Cross-Linking, Ligation, and Sequencing of Hybrids (qCLASH) Identifies Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Targets in Endothelial Cells. J Virol 2018; 92:JVI.02138-17. [PMID: 29386283 DOI: 10.1128/jvi.02138-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma (KS) tumors are derived from endothelial cells and express Kaposi's sarcoma-associated herpesvirus (KSHV) microRNAs (miRNAs). Although miRNA targets have been identified in B cell lymphoma-derived cells and epithelial cells, little has been done to characterize the KSHV miRNA targetome in endothelial cells. A recent innovation in the identification of miRNA targetomes, cross-linking, ligation, and sequencing of hybrids (CLASH), unambiguously identifies miRNAs and their targets by ligating the two species while both species are still bound within the RNA-induced silencing complex (RISC). We developed a streamlined quick CLASH (qCLASH) protocol that requires a lower cell input than the original method and therefore has the potential to be used on patient biopsy samples. Additionally, we developed a fast-growing, KSHV-negative endothelial cell line derived from telomerase-immortalized vein endothelial long-term culture (TIVE-LTC) cells. qCLASH was performed on uninfected cells and cells infected with either wild-type KSHV or a mutant virus lacking miR-K12-11/11*. More than 1,400 cellular targets of KSHV miRNAs were identified. Many of the targets identified by qCLASH lacked a canonical seed sequence match. Additionally, most target regions in mRNAs originated from the coding DNA sequence (CDS) rather than the 3' untranslated region (UTR). This set of genes includes some that were previously identified in B cells and some new genes that warrant further study. Pathway analysis of endothelial cell targets showed enrichment in cell cycle control, apoptosis, and glycolysis pathways, among others. Characterization of these new targets and the functional consequences of their repression will be important in furthering our understanding of the role of KSHV miRNAs in oncogenesis.IMPORTANCE KS lesions consist of endothelial cells latently infected with KSHV. Cells that make up these lesions express KSHV miRNAs. Identification of the targets of KSHV miRNAs will help us understand their role in viral oncogenesis. The cross-linking and sequencing of hybrids (CLASH) protocol is a method for unambiguously identifying miRNA targetomes. We developed a streamlined version of CLASH, called quick CLASH (qCLASH). qCLASH requires a lower initial input of cells than for its parent protocol. Additionally, a new fast-growing KSHV-negative endothelial cell line, named TIVE-EX-LTC cells, was established. qCLASH was performed on TIVE-EX-LTC cells latently infected with wild-type (WT) KSHV or a mutant virus lacking miR-K12-11/11*. A number of novel targets of KSHV miRNAs were identified, including targets of miR-K12-11, the ortholog of the cellular oncogenic miRNA (oncomiR) miR-155. Many of the miRNA targets were involved in processes related to oncogenesis, such as glycolysis, apoptosis, and cell cycle control.
Collapse
|
43
|
Ruhr IM, Schauer KL, Takei Y, Grosell M. Renoguanylin stimulates apical CFTR translocation and decreases HCO 3- secretion through PKA activity in the Gulf toadfish ( Opsanus beta). ACTA ACUST UNITED AC 2018; 221:jeb.173948. [PMID: 29361605 DOI: 10.1242/jeb.173948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
The guanylin peptides - guanylin, uroguanylin and renoguanylin (RGN) - are endogenously produced hormones in teleost fish enterocytes that are activators of guanylyl cyclase-C (GC-C) and are potent modulators of intestinal physiology, particularly in seawater teleosts. Most notably, they reverse normal net ion-absorbing mechanisms that are vital to water absorption, an important process for seawater teleost survival. The role of guanylin-peptide stimulation of the intestine remains unclear, but it is hypothesized to facilitate the removal of solids from the intestine by providing fluid to enable their removal by peristalsis. The present study used one member of this group of peptides - RGN - to provide evidence for the prominent role that protein kinase A (PKA) plays in mediating the effects of guanylin-peptide stimulation in the posterior intestine of the Gulf toadfish (Opsanus beta). Protein kinase G was found to not mediate the intracellular effects of RGN, despite previous evidence showing that GC-C activation leads to higher cyclic guanosine monophosphate formation. RGN reversed the absorptive short-circuit current and increased conductance in the Gulf toadfish intestine. These effects are correlated to increased trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel to the apical membrane, which is negated by PKA inhibition. Moreover, RGN decreased HCO3- secretion, likely by limiting apical HCO3-/Cl- exchange (possibly by reducing SLC26a6 activity), a reduction that was enhanced by PKA inhibition. RGN seems to alter PKA activity in the posterior intestine to recruit CFTR to the apical membrane and reduce HCO3- secretion.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, FL 33149, USA
| | - Kevin L Schauer
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, FL 33149, USA
| | - Yoshio Takei
- Department of Marine Bioscience, The Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Martin Grosell
- Department of Marine Biology and Ecology, The Rosenstiel School of Marine and Atmospheric Science, The University of Miami, Miami, FL 33149, USA
| |
Collapse
|
44
|
Eldabah N, Nembo EN, Penner M, Semmler J, Swelem R, Hassab A, Molcanyi M, Hescheler J, Nguemo F. Altered Functional Expression of β-Adrenergic Receptors in Rhesus Monkey Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2018; 27:336-346. [PMID: 29233068 DOI: 10.1089/scd.2017.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells have demonstrated the potential to generate large numbers of functional cardiomyocytes (CMs) from different cell sources. Besides Wnt signaling, additional pathways are involved in early cardiac development and function. To date however, no study exists showing the effects of perturbing the canonical Wnt pathway using nonhuman primate embryonic stem (ES) cells. In this study, we investigated the effect of canonical Wnt inhibition during differentiation of nonhuman primate ES cell-derived CMs under defined, growth factor conditions. Rhesus monkey ES (rES) cells were differentiated into spontaneously beating CMs in the absence (control) or presence (treated) of Wnt inhibitor Dickkopf1 (DKK1), vascular endothelial growth factor, and basic fibroblast growth factor combined or added in a sequential manner during differentiation. Quantification and functional characterization of CMs were assessed by molecular and electrophysiological techniques. Analysis revealed no difference in average ratio of spontaneously beating clusters in both control and treated groups. However, the percentage of CMs was significantly reduced and the expressions of specific cardiac markers tested were also decreased in the treated group. Interestingly, we found that in CMs obtained from treated group, β-adrenergic receptors (β-ARs) were less expressed, their function was altered and electrophysiological studies revealed differences in action potential responsiveness to β-AR stimulation. We demonstrated that the Wnt/β-catenin pathway inhibitor, DKK1 associated with other growth factors repressed functional expression of β-ARs in rES cell-derived CMs. Thus, control of this pathway in each cell line and source is important for proper basic research and further cell therapy applications.
Collapse
Affiliation(s)
- Nermeen Eldabah
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany .,2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | | | - Marina Penner
- 3 Clinic of Neurosurgery, Medical Faculty, University of Cologne , Cologne, Germany
| | - Judith Semmler
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Rania Swelem
- 2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | - Amina Hassab
- 2 Department of Clinical and Chemical Pathology, Medical Faculty, University of Alexandria , Alexandria, Egypt
| | - Marek Molcanyi
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Jürgen Hescheler
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| | - Filomain Nguemo
- 1 Institute of Neurophysiology, University of Cologne , Cologne, Germany
| |
Collapse
|
45
|
Alipanah L, Winge P, Rohloff J, Najafi J, Brembu T, Bones AM. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS One 2018; 13:e0193335. [PMID: 29474408 PMCID: PMC5825098 DOI: 10.1371/journal.pone.0193335] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/08/2018] [Indexed: 01/12/2023] Open
Abstract
Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.
Collapse
Affiliation(s)
- Leila Alipanah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jens Rohloff
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Javad Najafi
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tore Brembu
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
46
|
Hiong KC, Cao-Pham AH, Choo CYL, Boo MV, Wong WP, Chew SF, Ip YK. Light-dependent expression of a Na +/H + exchanger 3-like transporter in the ctenidium of the giant clam, Tridacna squamosa, can be related to increased H + excretion during light-enhanced calcification. Physiol Rep 2018; 5:5/8/e13209. [PMID: 28438983 PMCID: PMC5408280 DOI: 10.14814/phy2.13209] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 12/03/2022] Open
Abstract
Na+/H+ exchangers (NHEs) regulate intracellular pH and ionic balance by mediating H+ efflux in exchange for Na+ uptake in a 1:1 stoichiometry. This study aimed to obtain from the ctenidium of the giant clam Tridacna squamosa (TS) the complete cDNA sequence of a NHE3‐like transporter (TSNHE3), and to determine the effect of light exposure on its mRNA expression level and protein abundance therein. The coding sequence of TSNHE3 comprised 2886 bp, encoding 961 amino acids with an estimated molecular mass of 105.7 kDa. Immunofluorescence microscopy revealed that TSNHE3 was localized to the apical membrane of epithelial cells of the ctenidial filaments and the tertiary water channels. Particularly, the apical immunofluorescence of the ctenidial filaments was consistently stronger in the ctenidium of clams exposed to 12 h of light than those of the control kept in darkness. Indeed, light induced significant increases in the transcript level and protein abundance of TSNHE3/TSNHE3 in the ctenidium, indicating that the transcription and translation of TSNHE3/TSNHE3 were light‐dependent. As light‐enhanced calcification generates H+, the increased expression of TSNHE3/TSNHE3 in the ctenidium could be a response to augment H+ excretion in pursuance of whole‐body acid‐base balance during light exposure. These results signify that shell formation in giant clams requires the collaboration between the ctenidium, which is a respiratory and iono‐regulatory organ, and the inner mantle, which is directly involved in the calcification process, and provide new insights into the mechanisms of light‐enhanced calcification in giant clams.
Collapse
Affiliation(s)
- Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Anh H Cao-Pham
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Celine Y L Choo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Nanyang Walk, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore .,The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore
| |
Collapse
|
47
|
Abstract
Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.
Collapse
Affiliation(s)
- James W Jacobberger
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| | - R Michael Sramkoski
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Tammy Stefan
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Philip G Woost
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| |
Collapse
|
48
|
Allaway RJ, Fischer DA, de Abreu FB, Gardner TB, Gordon SR, Barth RJ, Colacchio TA, Wood M, Kacsoh BZ, Bouley SJ, Cui J, Hamilton J, Choi JA, Lange JT, Peterson JD, Padmanabhan V, Tomlinson CR, Tsongalis GJ, Suriawinata AA, Greene CS, Sanchez Y, Smith KD. Genomic characterization of patient-derived xenograft models established from fine needle aspirate biopsies of a primary pancreatic ductal adenocarcinoma and from patient-matched metastatic sites. Oncotarget 2017; 7:17087-102. [PMID: 26934555 PMCID: PMC4941373 DOI: 10.18632/oncotarget.7718] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
N-of-1 trials target actionable mutations, yet such approaches do not test genomically-informed therapies in patient tumor models prior to patient treatment. To address this, we developed patient-derived xenograft (PDX) models from fine needle aspiration (FNA) biopsies (FNA-PDX) obtained from primary pancreatic ductal adenocarcinoma (PDAC) at the time of diagnosis. Here, we characterize PDX models established from one primary and two metastatic sites of one patient. We identified an activating KRAS G12R mutation among other mutations in these models. In explant cells derived from these PDX tumor models with a KRAS G12R mutation, treatment with inhibitors of CDKs (including CDK9) reduced phosphorylation of a marker of CDK9 activity (phospho-RNAPII CTD Ser2/5) and reduced viability/growth of explant cells derived from PDAC PDX models. Similarly, a CDK inhibitor reduced phospho-RNAPII CTD Ser2/5, increased apoptosis, and inhibited tumor growth in FNA-PDX and patient-matched metastatic-PDX models. In summary, PDX models can be constructed from FNA biopsies of PDAC which in turn can enable genomic characterization and identification of potential therapies.
Collapse
Affiliation(s)
- Robert J Allaway
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Dawn A Fischer
- Department of Surgery, Division of Surgical Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Francine B de Abreu
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Timothy B Gardner
- Department of Medicine, Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Stuart R Gordon
- Department of Medicine, Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Richard J Barth
- Department of Surgery, Division of Surgical Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Thomas A Colacchio
- Department of Surgery, Division of Surgical Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Matthew Wood
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.,Current location: Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Balint Z Kacsoh
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
| | - Stephanie J Bouley
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jingxuan Cui
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA
| | - Joanna Hamilton
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.,Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Jungbin A Choi
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Joshua T Lange
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jason D Peterson
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Craig R Tomlinson
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA.,Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Gregory J Tsongalis
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Arief A Suriawinata
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Casey S Greene
- Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA.,Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03756, USA.,Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Yolanda Sanchez
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | - Kerrington D Smith
- Department of Surgery, Division of Surgical Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.,Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| |
Collapse
|
49
|
Dai Y, Chen A, Liu R, Gu L, Sharma S, Cai W, Salem F, Salant DJ, Pippin JW, Shankland SJ, Moeller MJ, Ghyselinck NB, Ding X, Chuang PY, Lee K, He JC. Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney Int 2017; 92:1444-1457. [PMID: 28756872 PMCID: PMC5696080 DOI: 10.1016/j.kint.2017.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 04/06/2017] [Accepted: 04/27/2017] [Indexed: 11/24/2022]
Abstract
Proliferation of glomerular epithelial cells, including podocytes, is a key histologic feature of crescentic glomerulonephritis. We previously found that retinoic acid (RA) inhibits proliferation and induces differentiation of podocytes by activating RA receptor-α (RARα) in a murine model of HIV-associated nephropathy. Here, we examined whether RA would similarly protect podocytes against nephrotoxic serum-induced crescentic glomerulonephritis and whether this effect was mediated by podocyte RARα. RA treatment markedly improved renal function and reduced the number of crescentic lesions in nephritic wild-type mice, while this protection was largely lost in mice with podocyte-specific ablation of Rara (Pod-Rara knockout). At a cellular level, RA significantly restored the expression of podocyte differentiation markers in nephritic wild-type mice, but not in nephritic Pod-Rara knockout mice. Furthermore, RA suppressed the expression of cell injury, proliferation, and parietal epithelial cell markers in nephritic wild-type mice, all of which were significantly dampened in nephritic Pod-Rara knockout mice. Interestingly, RA treatment led to the coexpression of podocyte and parietal epithelial cell markers in a small subset of glomerular cells in nephritic mice, suggesting that RA may induce transdifferentiation of parietal epithelial cells toward a podocyte phenotype. In vitro, RA directly inhibited the proliferation of parietal epithelial cells and enhanced the expression of podocyte markers. In vivo lineage tracing of labeled parietal epithelial cells confirmed that RA increased the number of parietal epithelial cells expressing podocyte markers in nephritic glomeruli. Thus, RA attenuates crescentic glomerulonephritis primarily through RARα-mediated protection of podocytes and in part through the inhibition of parietal epithelial cell proliferation and induction of their transdifferentiation into podocytes.
Collapse
Affiliation(s)
- Yan Dai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anqun Chen
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Division of Nephrology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Ruijie Liu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Leyi Gu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shuchita Sharma
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Weijing Cai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - David J Salant
- Department of Medicine/Nephrology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Jeffrey W Pippin
- Department of Medicine, Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | - Stuart J Shankland
- Department of Medicine, Division of Nephrology, University of Washington Medical Center, Seattle, Washington, USA
| | - Marcus J Moeller
- Department of Internal Medicine II, Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter Y Chuang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Section, James J Peters VAMC, Bronx, New York, USA.
| |
Collapse
|
50
|
Boo MV, Hiong KC, Choo CYL, Cao-Pham AH, Wong WP, Chew SF, Ip YK. The inner mantle of the giant clam, Tridacna squamosa, expresses a basolateral Na+/K+-ATPase α-subunit, which displays light-dependent gene and protein expression along the shell-facing epithelium. PLoS One 2017; 12:e0186865. [PMID: 29049367 PMCID: PMC5648256 DOI: 10.1371/journal.pone.0186865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Na+/K+-ATPase (NKA) is essential for maintaining the Na+ and K+ gradients, and supporting the secondary active transport of certain ions/molecules, across the plasma membrane of animal cells. This study aimed to clone the NKA α-subunit (NKAα) from the inner mantle adjacent to the extrapallial fluid of Tridacna squamosa, to determine its subcellular localization, and to examine the effects of light exposure on its transcript level and protein abundance. The cDNA coding sequence of NKAα from T. squamosa comprised 3105 bp, encoding 1034 amino acids with an estimated molecular mass of 114 kDa. NKAα had a basolateral localization along the shell-facing epithelium of the inner mantle. Exposure to 12 h of light led to a significantly stronger basolateral NKAα-immunofluorescence at the shell-facing epithelium, indicating that NKA might play a role in light-enhanced calcification in T. squamosa. After 3 h of light exposure, the transcript level of NKAα decreased transiently in the inner mantle, but returned to the control level thereafter. In comparison, the protein abundance of NKAα remained unchanged at hour 3, but became significantly higher than the control after 12 h of light exposure. Hence, the expression of NKAα in the inner mantle of T. squamosa was light-dependent. It is probable that a higher expression level of NKA was needed in the shell-facing epithelial cells of the inner mantle to cope with a rise in Na+ influx, possibly caused by increases in activities of some Na+-dependent ion transporters/channels involved in light-enhanced calcification.
Collapse
Affiliation(s)
- Mel V. Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Celine Y. L. Choo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Anh H. Cao-Pham
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
- The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|