1
|
Khalilzad MA, Mohammadi J, Amirsaadat S, Najafi S, Zare S, Nilforoushzadeh MA, Khalilzad M, Khaghani A, Soltankouhi MRF, Hajimohammad A. Elevating Dermatology Beyond Aesthetics: Perinatal-Derived Advancements for Rejuvenation, Alopecia Strategies, Scar Therapies, and Progressive Wound Healing. Stem Cell Rev Rep 2025; 21:709-729. [PMID: 39804520 DOI: 10.1007/s12015-024-10835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2024] [Indexed: 04/03/2025]
Abstract
Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds. Regulating an intricate network of biological processes improves the development and repair of tissues. Studies done by dermatologists indicate that several compounds found in the decidua, umbilical cord, and amniotic membrane have the potential to be used for regeneration. Examples include mesenchymal stem cells, growth factors, and immunomodulatory pharmaceuticals. Due to research and technological developments, scientists may use placental sections to facilitate skin regeneration, minimize scarring, and expedite wound healing. This study examines the current state of dermatological therapy, with a focus on using derivatives obtained from fetal tissue as the basis. The critical areas of study focus on this strategy are the potential benefits, growth opportunities, and recovery rates. Based on a thorough examination of the available literature and clinical data, we want to make definitive conclusions on the possible influence of fetal tissue derivatives in dermatological therapy.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Soumayeh Amirsaadat
- Stem Cell Research Center, Tabriz university of medical sciences, Tabriz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laser application Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayoub Khaghani
- Department of Gynecological Surgery, Tehranpars Hospital, Tehran, Iran
| | | | - Alireza Hajimohammad
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Cheng Y, Dang S, Zhang Y, Chen Y, Yu R, Liu M, Jin S, Han A, Katz S, Wang S. Sequencing-free whole genome spatial transcriptomics at molecular resolution in intact tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641951. [PMID: 40161724 PMCID: PMC11952344 DOI: 10.1101/2025.03.06.641951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Recent breakthroughs in spatial transcriptomics technologies have enhanced our understanding of diverse cellular identities, compositions, interactions, spatial organizations, and functions. Yet existing spatial transcriptomics tools are still limited in either transcriptomic coverage or spatial resolution. Leading spatial-capture or spatial-tagging transcriptomics techniques that rely on in-vitro sequencing offer whole-transcriptome coverage, in principle, but at the cost of lower spatial resolution compared to image-based techniques. In contrast, high-performance image-based spatial transcriptomics techniques, which rely on in situ hybridization or in situ sequencing, achieve single-molecule spatial resolution and retain sub-cellular morphologies, but are limited by probe libraries that target only a subset of the transcriptome, typically covering several hundred to a few thousand transcript species. Together, these limitations hinder unbiased, hypothesis-free transcriptomic analyses at high spatial resolution. Here we develop a new image-based spatial transcriptomics technology termed Reverse-padlock Amplicon Encoding FISH (RAEFISH) with whole-genome level coverage while retaining single-molecule spatial resolution in intact tissues. We demonstrate image-based spatial transcriptomics targeting 23,000 human transcript species or 22,000 mouse transcript species, including nearly the entire protein-coding transcriptome and several thousand long-noncoding RNAs, in single cells in cultures and in tissue sections. Our analyses reveal differential subcellular localizations of diverse transcripts, cell-type-specific and cell-type-invariant tissue zonation dependent transcriptome, and gene expression programs underlying preferential cell-cell interactions. Finally, we further develop our technology for direct spatial readout of gRNAs in an image-based high-content CRISPR screen. Overall, these developments provide the research community with a broadly applicable technology that enables high-coverage, high-resolution spatial profiling of both long and short, native and engineered RNA species in many biomedical contexts.
Collapse
Affiliation(s)
- Yubao Cheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shengyuan Dang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- These authors contributed equally to this work
| | - Yuan Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- These authors contributed equally to this work
| | - Yanbo Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruihuan Yu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Present Address: Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Miao Liu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shengyan Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ailin Han
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Samuel Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University, New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics and Development Program, Yale University, New Haven, CT 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Biochemistry, Quantitative Biology, Biophysics, and Structural Biology Program, Yale University, New Haven, CT 06510, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
- Lead contact
| |
Collapse
|
3
|
Huang S, Li J, Ye H, Huang Z, Wu J, Liu L, Ma S, Luo H, Wei T, Liu K, Deng J, Liu D, Tan C. Increased proline intake during gestation alleviates obesity-related impaired fetal development and placental function in gilts. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:355-365. [PMID: 40034458 PMCID: PMC11872664 DOI: 10.1016/j.aninu.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 03/05/2025]
Abstract
Maternal proline (Pro) supplementation enhances fetal survival and placental development in mice. However, the effect of Pro on fetal and placental development in gilts remains to be investigated, particularly in the context of obesity-induced impaired pregnancy. Here, we investigated the effect of dietary Pro on fetal and placental development in obese gilts. Exp.1: On day 60 of gestation, 48 gilts with similar delivery times were selected and followed up until delivery to determine the relationship between maternal obesity, litter performance, and Pro abundance in term placentae. The results showed that impaired reproductive performance was associated with body condition parameters and inadequate placental Pro availability of gilts. Exp. 2: A total of 114 gilts were then used in a 2 × 3 factorial design to investigate the interaction between body condition (factor I: normal or obese gilts) and dietary Pro levels (factor II: low [0.89%, L-Pro], medium [1.39%, M-Pro], and high [1.89%, H-Pro]) on farrowing performance and placental angiogenesis. This resulted in six treatment combinations: normal-L-Pro, obese-L-Pro, normal-M-Pro, obese-M-Pro, normal-H-Pro, and obese-H-Pro. The effective number of replicates per group was 17, 21, 19, 21, 18, and 18, respectively (1 gilt per replicate). The results showed that increasing Pro intake increased piglet birth weight (P = 0.001), litter weight (P < 0.001), placental efficiency (P = 0.036) and placental vascular density (P < 0.001), and decreased the number of mummified fetuses (P = 0.001), the rate of low-birth-weight piglets (P = 0.005), and the rate of invalid piglets (P = 0.029). Interaction effects were observed between body condition and dietary Pro levels on piglet birth weight (P = 0.046), within-litter birth weight variation (P = 0.012), and placental vascular density (P = 0.007). Moreover, the beneficial effect of Pro on farrowing performance may be related to the improvement of sirtuin 1-superoxide dismutase 2-mitochondrial reactive oxygen species axis homeostasis and angiogenesis in the placenta. Our results suggest that gestation diets need to provide adequate Pro to meet the needs of fetal and placental development, particularly in obese gilts.
Collapse
Affiliation(s)
- Shuangbo Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinfeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongxuan Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zihao Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liudan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu 610225, China
| | - Tanghong Wei
- Dekon Food and Agriculture Group, Chengdu 610225, China
| | - Kai Liu
- Guangdong Foodstuffs IMP&EXP (Group) Corp, Guangzhou 510642, China
| | - Jinping Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dingfa Liu
- Guangdong Foodstuffs IMP&EXP (Group) Corp, Guangzhou 510642, China
| | - Chengquan Tan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Gerovasili E, Sarantaki A, Bothou A, Deltsidou A, Dimitrakopoulou A, Diamanti A. The role of vitamin D deficiency in placental dysfunction: A systematic review. Metabol Open 2025; 25:100350. [PMID: 40034802 PMCID: PMC11874864 DOI: 10.1016/j.metop.2025.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Vitamin D plays a critical role in pregnancy, supporting placental function via angiogenesis, immune regulation, and nutrient transport. Deficiency in vitamin D during gestation is associated with complications such as preeclampsia, intrauterine growth restriction (IUGR), and preterm birth. However, the mechanisms linking vitamin D deficiency to placental dysfunction remain inadequately understood, highlighting the need for systematic evaluation. Methods A systematic review was conducted in adherence to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, with searches in PubMed, Scopus, and Web of Science for studies published within the last 20 years. Inclusion criteria targeted human studies examining the association between vitamin D and placental function, including randomized controlled trials, cohort studies, and case-control studies. A total of 10 studies were included following rigorous screening and quality assessment. Results Findings from human studies indicate that maternal vitamin D deficiency significantly impairs placental function by reducing vascular integrity, downregulating nutrient transporters, and promoting inflammation. Mechanistic evidence highlights decreased expression of vascular endothelial growth factor (VEGF) and increased inflammatory cytokines in vitamin D-deficient pregnancies. Supplementation with active vitamin D [1α,25(OH)2D3] mitigated these adverse effects, restoring placental growth, improving nutrient transport, and reducing inflammation. Notably, population-specific differences and sex-specific responses to vitamin D sufficiency were observed. Conclusions Vitamin D is essential for optimal placental function and pregnancy outcomes. This review underscores the need for standardized supplementation protocols and further research into long-term and population-specific effects of vitamin D. Addressing these gaps can inform targeted interventions to reduce pregnancy complications and improve maternal-fetal health.
Collapse
Affiliation(s)
- Eleni Gerovasili
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| | - Antigoni Sarantaki
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| | - Anastasia Bothou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| | - Anna Deltsidou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| | - Aikaterini Dimitrakopoulou
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| | - Athina Diamanti
- Department of Midwifery, Faculty of Health and Caring Sciences, University of West Attica, Egaleo, Greece
| |
Collapse
|
5
|
Eldakhakhny BM, Ghoneim FM, Soliman MFM, El-Khair SMA, Elsamanoudy AZ, Almoghrabi YM, Mohie PM, Hassan FE, Elfattah AAA. Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes. Histochem Cell Biol 2025; 163:28. [PMID: 39869176 DOI: 10.1007/s00418-025-02355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2025] [Indexed: 01/28/2025]
Abstract
Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin. GDM was induced using streptozotocin (STZ) at 40 mg/kg, and metformin was administered at 200 mg/kg from gestational day (GD) 4 to GD17. Blood glucose and insulin levels were assessed, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) was calculated. Placentae were weighed and subjected to histological, immunohistochemical, and molecular analyses, focusing on key angiogenesis markers (VEGF, VEGFR, CD31, KLF2) and oxidative stress indicators (MDA, eNOS). GDM increased placental weight, angiogenesis (elevated VEGF, VEGFR, CD31), and oxidative stress (elevated MDA, eNOS). Histopathological changes included villous edema, membrane rupture, and hemosiderin deposition. Metformin treatment reduced placental weight; normalized VEGF, KLF2, and PlGF expression; and improved placental architecture. Additionally, oxidative stress was significantly reduced in metformin-treated GDM rats. In conclusion, GDM induces placental abnormalities, promoting excessive angiogenesis and oxidative stress, potentially leading to IUGR and other complications. Metformin showed protective effects by reducing placental overgrowth and restoring vascular and oxidative balance. These findings suggest that metformin may play a therapeutic role in improving placental health in GDM pregnancies, warranting further investigation into its long-term effects on fetal development and maternal health.
Collapse
Affiliation(s)
- Basmah M Eldakhakhny
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, 21465, Jeddah, Saudi Arabia
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatma M Ghoneim
- Physiological Sciences Department, MBBS Program, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mona F M Soliman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Salwa M Abo El-Khair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ayman Z Elsamanoudy
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, 21465, Jeddah, Saudi Arabia.
- Food, Nutrition, and Lifestyle Research Unit, King Fahd for Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Yousef M Almoghrabi
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, 21465, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, Regenerative Medicine Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Passant M Mohie
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatma E Hassan
- Faculty of Medicine, Medical Physiology Department, Kasr Alainy, Giza, 11562, Egypt
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
| | - Amany A Abd Elfattah
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| |
Collapse
|
6
|
Sundrani D, Kapare A, Yadav H, Randhir K, Gupte S, Joshi S. Placental expression and methylation of angiogenic factors in assisted reproductive technology pregnancies from India. Epigenomics 2025; 17:21-31. [PMID: 39655657 DOI: 10.1080/17501911.2024.2438593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
AIM This study aims to examine the gene expression and DNA methylation patterns of angiogenic factors in the placentae of Indian women who underwent assisted reproductive technology (ART) procedures and their association with maternal one-carbon metabolites and birth outcome. METHODS Placental gene expression and DNA methylation of angiogenic factors (VEGF, PlGF, FLT-1, KDR) in Indian women who underwent ART procedures (n = 64) and women who conceived naturally (Non-ART) (n = 93) was investigated using RT-qPCR and Epitect Methyl-II PCR assay kits. Maternal plasma one-carbon metabolites were assessed by CMIA technology. RESULT Gene expression of FLT-1 and KDR was higher (p < 0.05) in the ART placentae. Placental global DNA methylation levels were higher (p < 0.01) and DNA methylation levels of VEGF promoter were lower (p < 0.05) in ART compared to non-ART women. Maternal plasma folate and vitamin B12 levels were higher (p < 0.01) in the ART group. Gene expression of PlGF was negatively associated with maternal plasma folate (p < 0.05) whereas KDR was positively associated with maternal plasma homocysteine (p < 0.05). Gene expression of KDR was positively associated with chest circumference of the baby (p < 0.05). CONCLUSION Hypomethylation of VEGF and increased expression of FLT-1 and KDR was observed in the placentae of women who underwent ART procedure.
Collapse
Affiliation(s)
- Deepali Sundrani
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Aishwarya Kapare
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Himanshi Yadav
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Karuna Randhir
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Sanjay Gupte
- Department of Obstetrics and Gynecology, Gupte Hospital and Research Centre, Pune, Maharashtra, India
| | - Sadhana Joshi
- Mother and Child Health, ICMR - Collaborating Centre of Excellence (CCoE), Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
7
|
Casarotto LT, Jones HN, Chavatte-Palmer P, Laporta J, Peñagaricano F, Ouellet V, Bromfield J, Dahl GE. Late-gestation heat stress alters placental structure and function in multiparous dairy cows. J Dairy Sci 2025; 108:1125-1137. [PMID: 39694242 DOI: 10.3168/jds.2024-25529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/28/2024] [Indexed: 12/20/2024]
Abstract
The placenta plays a pivotal role in fetal development and the dam's subsequent lactation performance, because it facilitates nutrient transfer, heat dissipation, and gas exchange with the growing fetus, and regulates key hormones essential for mammary gland development. Heat stress experienced during gestation and lactation can significantly reduce the placenta's capacity to perform these critical functions. To investigate the impact of heat stress, trials were conducted over the summer months of 2020, 2022, and 2023 in Florida. Multiparous pregnant Holstein cows were dried off 54 ± 5 d before their expected calving date and randomly assigned to 1 of 2 treatments for the entire dry period: active cooling (CL; access to barn shade, natural ventilation plus forced air circulation via fans, and water soakers; n = 20) or heat stress (HT; access to barn shade and natural ventilation; n = 20). Gestation length and calf birth weights were recorded. Placentas were collected from a subset of cows shortly after calving (4.00 ± 1.54 h; n = 10/treatment) and analyzed for total placental weight, as well as cotyledon weight, number, and surface area within 1 h after expulsion. A representative cotyledon sample was isolated for histological analysis. Tissues were also processed for RNA sequencing and DNA methylation analysis. DNA methylation was analyzed by double restriction enzyme reduced representation bisulfate sequencing. Differentially methylated cytosines between HT and CL were identified via logistic regression with a cut-off value of 15% methylation difference and a q-value <0.2. Morphological and histological data were analyzed using generalized linear mixed models. Results indicate that gestation length was shorter in HT cows compared with CL cows (274.2 vs. 277.2 ± 1.46 d), and heifers born to HT dams were lighter at birth (31.4 vs. 34.8 ± 1.59 kg). Placentas from HT dams tended to have lower total weight (3.54 vs. 4.54 ± 0.38 kg) and fewer cotyledons (66.2 vs. 103.3 ± 8.65). However, placental efficiency was higher in the HT versus CL group (11.5 vs. 8.52 ± 0.91%). Cotyledons from HT cows had greater vascular area (43.1% vs. 31.8% ± 10.4% of total area) and a tendency for less connective tissue (52.7% vs. 65.8% ± 5.39% of total area). A total of 289 differentially expressed genes were identified between HT and CL placentas, with 179 upregulated and 110 downregulated in the HT group. Key genes affected included NPSR1, SPATC1L, PGF, HSPB8, IL6, HBA/HBB, MMP12, PAPPA2, PAG14, and SLC7A10. Dysregulated pathways in HT placentas involved gas and oxygen transport, nutrient transport, inflammatory response, and cortisol biosynthesis. Heat stress induced hypermethylation of regulatory pathways, including collagen biosynthesis and degradation, extracellular matrix structural components, and placental tissue organization. Our findings demonstrate that late-gestation HT causes significant transcript alterations in the placenta, leading to adaptations for thermoregulation and morphological changes. These alterations negatively affect birth weight, health, and dam lactation performance, underscoring the need to address HT during late gestation to ensure optimal fetal development and postnatal outcomes. Addressing these issues can help improve dairy cow resilience to climate change, enhancing animal welfare and productivity.
Collapse
Affiliation(s)
- L T Casarotto
- Department of Animal Sciences, University of Florida, Gainesville, FL 31608
| | - H N Jones
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32603
| | - P Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France; France Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - J Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706
| | - F Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706
| | - V Ouellet
- Department of Animal Sciences, Université Laval, Québec City, QC, G1V DA6, Canada
| | - J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL 31608
| | - G E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 31608.
| |
Collapse
|
8
|
Bonnell V, White M, Connor K. Do nutritional interventions before or during pregnancy affect placental phenotype? Findings from a systematic review of human clinical trials. J Glob Health 2024; 14:04240. [PMID: 39700380 DOI: 10.7189/jogh.14.04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Background Maternal nutritional interventions aim to address nutrient deficiencies in pregnancy, a leading cause of maternal and neonatal morbidity and mortality worldwide. How these interventions influence the placenta, which plays a vital role in fetal growth and nutrient supply, is not well understood. This leaves a major gap in understanding how such interventions could influence pregnancy outcomes and fetal health. We hypothesised that nutritional interventions influence placental phenotype, and that these placental changes relate to how successful an intervention is in improving pregnancy outcomes. Methods We searched PubMed, ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform using pre-defined search terms for records published from January 2001 to September 2021 that reported on clinical trials in humans, which administered a maternal nutritional intervention during the periconceptional or pregnancy period and reported on placental phenotype (shape and form, function or placental disorders). These records were then screened by two reviewers for eligibility. Results Fifty-three eligible articles reported on (multiple) micronutrient- (n = 33 studies), lipid- (n = 11), protein- (n = 2), and diet-/lifestyle-based (n = 8) interventions. Of the micronutrient-based interventions, 16 (48%) were associated with altered placental function, namely altered nutrient transport/metabolism (n = 9). Nine (82%) of the lipid-based interventions were associated with altered placental phenotype, including elevated placental fatty acid levels (n = 5), altered nutrient transport/metabolism gene expression (n = 4), and decreased inflammatory biomarkers (n = 2). Of the protein-based interventions, two (66%) were associated with altered placental phenotype, including increased placental efficiency (n = 1) and decreased preeclampsia risk (n = 1). Three (38%) of diet and lifestyle-based interventions were associated with placental changes, namely placental gene expression (n = 1) and disease (n = 2). In studies with data on maternal (n = 30) or offspring (n = 20) outcomes, interventions that influenced placental phenotype were more likely to have also been associated with improved maternal outcomes (n/N = 11/15, 73%) and offspring birth outcomes (n/N = 6/11, 54%) compared to interventions that did not associate with placental changes (n/N = 2/15 (13%) and n/N = 1/9 (11%) respectively). Conclusions Periconceptional and prenatal nutritional interventions to improve maternal/pregnancy health associate with altered placental development and function. These placental adaptations likely benefit the pregnancy and improve offspring outcomes. Understanding the placenta's role in the success of interventions to combat nutrient deficiencies is critical for improving interventions and reducing maternal and neonatal morbidity and mortality globally.
Collapse
|
9
|
Liu Y, Li P, Liao J, Rao M, Peng L, Gan H, Shang L, Xiao Z, Liu X. Decreased RSPO3 and β-Catenin in Preeclampsia: Correlation with Blood Pressure and Pregnancy Outcomes. Med Sci Monit 2024; 30:e945848. [PMID: 39568191 PMCID: PMC11600639 DOI: 10.12659/msm.945848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/27/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND This study aimed to investigate the expression of RSPO3 and ß-catenin in preeclampsia and the relationship between RSPO3 and b-catenin levels and maternal-fetal outcomes. MATERIAL AND METHODS We enrolled 60 pregnant women with preeclampsia and 60 pregnant women without preeclampsia. We collected peripheral blood from the patients upon admission; placenta and cord blood were collected after delivery. The expression of RSPO3 and ß-catenin in maternal blood, cord blood, and placenta was measured. We used the Spearman method to examine the correlations between clinical characteristics and RSPO3. Logistic regression modeling was used to identify the independent risk factors for preeclampsia. RESULTS RSPO3 and ß-catenin levels were decreased in the peripheral blood, cord blood, and placentas of women with preeclampsia, with significant differences (P<0.05). The preeclampsia group had more adverse pregnancy outcomes. RSPO3 level of the preeclampsia group was negatively correlated with systolic blood pressure (r=-0.4654, P<0.001) and diastolic blood pressure (r=-0.4617, P<0.001) in cord blood, and systolic blood pressure (r=-0.5373, P<0.05) and diastolic blood pressure (r=-0.4898, P<0.05) in maternal blood. CONCLUSIONS RSPO3 and ß-catenin were decreased in preeclampsia, RSPO3 was negatively correlated with blood pressure, and RSPO3 could be a risk factor for the development of preeclampsia.
Collapse
|
10
|
de Vos ES, Mulders AGMGJ, Koning AHJ, Smit HS, Rossem LV, Steegers-Theunissen RPM. Periconceptional maternal intake of ultra-processed foods, energy and macronutrients the impact on imaging markers of early utero-placental vascular development: The rotterdam periconception cohort. Clin Nutr 2024; 43:46-53. [PMID: 39321745 DOI: 10.1016/j.clnu.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND & AIMS The quantity and quality of maternal nutrition in the periconception period is an important determinant for embryonic and foetal development and subsequent pregnancy course and outcome. The intake of ultra-processed foods (UPF) has increased worldwide and adverse health outcomes have been reported. However, the impact of UPF intake on the placenta, essential for prenatal nourishment, is unknown. Therefore, we aim to investigate associations between the periconceptional maternal intake of UPF, energy and related macronutrients, and first-trimester utero-placental vascular development. METHODS We included 214 ongoing pregnancies in the Virtual Placenta study, a subcohort of the Rotterdam periconception cohort. At enrollment, participants filled out a food frequency questionnaire from which we calculated the average daily energy from UPF, total energy intake and macronutrient intake from UPF. At 7-9-11 weeks of gestation, we performed sequential three-dimensional power Doppler ultrasounds of the first-trimester utero-placental vasculature. Virtual Organ Computer-aided AnaLysis (VOCAL) software, Virtual Reality segmentation and a skeletonization algorithm were applied to measure placental volume (PV), utero-placental vascular volume (uPVV) and generate the utero-placental vascular skeleton (uPVS). Absolute vascular morphology was quantified by assigning a morphologic characteristic to each voxel in the uPVS (end-, bifurcation-, crossing- or vessel point) and used to calculate density of vascular branching. Linear mixed models adjusted for confounders were used to investigate associations between maternal intake of UPF, total energy and macronutrients from UPF and PV, uPVV and uPVS characteristics. RESULTS Energy intake from UPF and total energy intake were not consistently associated with imaging markers of utero-placental vascular development. Higher carbohydrate intake of 10 g/day from UPF was associated with increased uPVS trajectories (end points (β = 0.34, 95%CI = 0.07; 0.61), bifurcation points (β = 0.38, 95%CI = 0.05; 0.70), vessel points (β = 0.957, 95%CI = 0.21; 1.71). No associations were observed with PV. CONCLUSIONS Against our hypothesis, periconceptional maternal intake of UPF and total energy were not convincingly associated with impaired first-trimester utero-placental vascular development. Remarkably, the increased intake of carbohydrates from UPF, which is often considered 'unhealthy', is positively associated with first-trimester utero-placental vascular development. Given the complexity of diet, further research should elucidate what underlies these findings to be able to interpret how nutrition may impact utero-placental vascular development in early pregnancy. CLINICAL TRIAL NUMBER This study is registered at the Dutch Trial Register (NTR6854).
Collapse
Affiliation(s)
- Eline S de Vos
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Annemarie G M G J Mulders
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Anton H J Koning
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Hilco S Smit
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Régine P M Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
11
|
Wu Y, Su K, Zhang Y, Liang L, Wang F, Chen S, Gao L, Zheng Q, Li C, Su Y, Mao Y, Zhu S, Chai C, Lan Q, Zhai M, Jin X, Zhang J, Xu X, Zhang Y, Gao Y, Huang H. A spatiotemporal transcriptomic atlas of mouse placentation. Cell Discov 2024; 10:110. [PMID: 39438452 PMCID: PMC11496649 DOI: 10.1038/s41421-024-00740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
The placenta, a temporary but essential organ for gestational support, undergoes intricate morphological and functional transformations throughout gestation. However, the spatiotemporal patterns of gene expression underlying placentation remain poorly understood. Utilizing Stereo-seq, we constructed a Mouse Placentation Spatiotemporal Transcriptomic Atlas (MPSTA) spanning from embryonic day (E) 7.5 to E14.5, which includes the transcriptomes of large trophoblast cells that were not captured in previous single-cell atlases. We defined four distinct strata of the ectoplacental cone, an early heterogeneous trophectoderm structure, and elucidated the spatial trajectory of trophoblast differentiation during early postimplantation stages before E9.5. Focusing on the labyrinth region, the interface of nutrient exchange in the mouse placenta, our spatiotemporal ligand-receptor interaction analysis unveiled pivotal modulators essential for trophoblast development and placental angiogenesis. We also found that paternally expressed genes are exclusively enriched in the placenta rather than in the decidual regions, including a cluster of genes enriched in endothelial cells that may function in placental angiogenesis. At the invasion front, we identified interface-specific transcription factor regulons, such as Atf3, Jun, Junb, Stat6, Mxd1, Maff, Fos, and Irf7, involved in gestational maintenance. Additionally, we revealed that maternal high-fat diet exposure preferentially affects this interface, exacerbating inflammatory responses and disrupting angiogenic homeostasis. Collectively, our findings furnish a comprehensive, spatially resolved atlas that offers valuable insights and benchmarks for future explorations into placental morphogenesis and pathology.
Collapse
Affiliation(s)
- Yanting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
| | - Kaizhen Su
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- BGI Research, Shenzhen, Guangdong, China
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Langchao Liang
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- BGI Research, Shenzhen, Guangdong, China
| | - Siyue Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Qiutong Zheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yunfei Su
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Simeng Zhu
- Department of Cardiology, Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochao Chai
- BGI Research, Qingdao, Shandong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Lan
- BGI Research, Shenzhen, Guangdong, China
| | - Man Zhai
- BGI Research, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI Research, Shenzhen, Guangdong, China
| | - Jinglan Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xun Xu
- BGI Research, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, Guangdong, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| | - Ya Gao
- BGI Research, Shenzhen, Guangdong, China.
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
- Shenzhen Engineering Laboratory for Birth Defects Screening, BGI Research, Shenzhen, Guangdong, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Simioni C, Sanz JM, Gafà R, Tagliatti V, Greco P, Passaro A, Neri LM. Effects of SARS-COV-2 on molecules involved in vascularization and autophagy in placenta tissues. J Mol Histol 2024; 55:753-764. [PMID: 39088116 PMCID: PMC11464539 DOI: 10.1007/s10735-024-10228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
SARS-CoV-2 infection is considered as a multi-organ disease, and several studies highlighted the relevance of the virus infection in the induction of vascular injury and tissue morphological alterations, including placenta. In this study, immunohistochemical analyses were carried out on placenta samples derived from women with COVID-19 infection at delivery (SARS-CoV-2 PCR+) or women healed from a COVID-19 infection (SARS-CoV-2 negative at delivery, SARS-CoV-2 PCR-) or women who gave birth before 2019 (Control). Angiotensin Converting Enzyme 2 (ACE2) receptor, Cluster of differentiation 147 (CD147), endothelial CD34 marker, Vascular Endothelial Growth Factor (VEGF) and total Microtubule-associated protein 1 Light Chain 3B marker (LC3B) were investigated in parallel with SPIKE protein by standard IHC. Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS) was used to examine antigen co-expression in the same specimen. SPIKE protein was detected in villi and decidua from women with ongoing infection, with no significant differences in SPIKE staining between both biopsy sites. VEGF was significantly increased in SARS-CoV-2 PCR + biopsies compared to control and SARS-CoV-2 PCR- samples, and MICSSS method showed the co-localization of SPIKE with VEGF and CD34. The induction of autophagy, as suggested by the LC3B increase in SARS-CoV-2 PCR + biopsies and the co-expression of LC3B with SPIKE protein, may explain one of the different mechanisms by which placenta may react to infection. These data could provide important information on the impact that SARS-CoV-2 may have on the placenta and mother-to-fetus transmission.
Collapse
Affiliation(s)
- C Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy
| | - J M Sanz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - R Gafà
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Oncohematology Department, University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Italy
| | - V Tagliatti
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Oncohematology Department, University Hospital of Ferrara Arcispedale Sant'Anna, Ferrara, Italy
| | - P Greco
- Department of Medical Sciences, Obstetric and Gynecological Clinic, University of Ferrara, Ferrara, Italy
| | - A Passaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - L M Neri
- Laboratory for Technologies of Advanced Therapies (LTTA)-Electron Microscopy Center, University of Ferrara, Ferrara, Italy.
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
13
|
Milyutina YP, Kerkeshko GO, Vasilev DS, Zalozniaia IV, Bochkovskii SK, Tumanova NL, Shcherbitskaia AD, Mikhel AV, Tolibova GH, Arutjunyan AV. Placental Transport of Amino Acids in Rats with Methionine-Induced Hyperhomocysteinemia. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1711-1726. [PMID: 39523111 DOI: 10.1134/s0006297924100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 11/16/2024]
Abstract
Maternal hyperhomocysteinemia (HHcy) is a risk factor for intrauterine growth restriction presumably caused by a decrease in the placental transport of nutrients. We investigated the effect of experimental HHcy induced by daily methionine administration to pregnant rats on the free amino acid levels in the maternal and fetal blood, as well as on morphological and biochemical parameters associated with the amino acid transport through the placenta. HHcy caused an increase in the levels of most free amino acids in the maternal blood on gestational day 20, while the levels of some amino acids in the fetal blood were decreased. In rats with HHcy, the maternal sinusoids in the placental labyrinth were narrowed, which was accompanied by aggregation of red blood cells. We also observed an increase in the neutral amino acid transporters (LAT1, SNAT2) protein levels and activation of 4E-BP1, a downstream effector of mTORC1 complex, in the labyrinth zone. Maternal HHcy affected the placental barrier permeability, as evidenced by intensification of the mother-to-fetus transfer of Evans Blue dye. The imbalance in the free amino acid levels in the maternal and fetal blood in HHcy may be due to the competition of homocysteine with other amino acids for common transporters, as well as a decrease in the area of exchange zone between maternal and fetal circulations in the placental labyrinth. Upregulation of the neutral amino acid transporter expression in the labyrinth zone may be a compensatory response to an insufficient intrauterine amino acid supply and fetal growth restriction.
Collapse
Affiliation(s)
- Yulia P Milyutina
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia.
| | - Gleb O Kerkeshko
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Dmitrii S Vasilev
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Irina V Zalozniaia
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Sergey K Bochkovskii
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Natalia L Tumanova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Anastasiia D Shcherbitskaia
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Anastasiia V Mikhel
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Gulrukhsor H Tolibova
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| | - Alexander V Arutjunyan
- D. O. Ott Research Institute of Obstetrics, Gynecology, and Reproductive Medicine, St. Petersburg, 199034, Russia
| |
Collapse
|
14
|
Zhu Z, Zou Q, Wang C, Li D, Yang Y, Xiao Y, Jin Y, Yan J, Luo L, Sun Y, Liang X. Isl Identifies the Extraembryonic Mesodermal/Allantois Progenitors and is Required for Placenta Morphogenesis and Vasculature Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400238. [PMID: 38923264 PMCID: PMC11348239 DOI: 10.1002/advs.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Indexed: 06/28/2024]
Abstract
The placenta links feto-maternal circulation for exchanges of nutrients, gases, and metabolic wastes between the fetus and mother, being essential for pregnancy process and maintenance. The allantois and mesodermal components of amnion, chorion, and yolk sac are derived from extraembryonic mesoderm (Ex-Mes), however, the mechanisms contributing to distinct components of the placenta and regulation the interactions between allantois and epithelium during chorioallantoic fusion and labyrinth formation remains unclear. Isl1 is expressed in progenitors of the Ex-Mes and allantois the Isl1 mut mouse line is analyzed to investigate contribution of Isl1+ Ex-Mes / allantoic progenitors to cells of the allantois and placenta. This study shows that Isl1 identifies the Ex-Mes progenitors for endothelial and vascular smooth muscle cells, and most of the mesenchymal cells of the placenta and umbilical cord. Deletion of Isl1 causes defects in allantois growth, chorioallantoic fusion, and placenta vessel morphogenesis. RNA-seq and CUT&Tag analyses revealed that Isl1 promotes allantoic endothelial, inhibits mesenchymal cell differentiation, and allantoic signals regulated by Isl1 mediating the inductive interactions between the allantois and chorion critical for chorionic epithelium differentiation, villous formation, and labyrinth angiogenesis. This study above reveals that Isl1 plays roles in regulating multiple genetic and epigenetic pathways of vascular morphogenesis, provides the insight into the mechanisms for placental formation, highlighting the necessity of Isl1 for placenta formation/pregnant maintenance.
Collapse
Affiliation(s)
- Zeyue Zhu
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Qicheng Zou
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Chunxiao Wang
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Dixi Li
- Department of Hematology, Tongji HospitalTongji University School of MedicineShanghai200120China
| | - Yan Yang
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Ying Xiao
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Yao Jin
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Jie Yan
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Lina Luo
- Key Laboratory of Arrhythmia of the Ministry of Education of ChinaEast HospitalTongji University School of MedicineShanghai200120China
| | - Yunfu Sun
- Shanghai East HospitalTongji University School of Medicine150 Jimo RoadShanghai200120China
| | - Xingqun Liang
- Shanghai East HospitalTongji University School of Medicine150 Jimo RoadShanghai200120China
| |
Collapse
|
15
|
Liu Z, Zhang X, Xiong S, Huang S, Ding X, Xu M, Yao J, Liu S, Zhao F. Endothelial dysfunction of syphilis: Pathogenesis. J Eur Acad Dermatol Venereol 2024; 38:1478-1490. [PMID: 38376088 DOI: 10.1111/jdv.19899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024]
Abstract
Treponema pallidum is the causative factor of syphilis, a sexually transmitted disease (STD) characterized by perivascular infiltration of inflammatory cells, vascular leakage, swelling and proliferation of endothelial cells (ECs). The endothelium lining blood and lymphatic vessels is a key barrier separating body fluids from host tissues and is a major target of T. pallidum. In this review, we focus on how T. pallidum establish intimate interactions with ECs, triggering endothelial dysfunction such as endothelial inflammation, abnormal repairment and damage of ECs. In addition, we summarize that migration and invasion of T. pallidum across vascular ECs may occur through two pathways. These two mechanisms of transendothelial migration are paracellular and cholesterol-dependent, respectively. Herein, clarifying the relationship between T. pallidum and endothelial dysfunction is of great significance to provide novel strategies for diagnosis and prevention of syphilis, and has a great potential prospect of clinical application.
Collapse
Affiliation(s)
- Zhaoping Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaohong Zhang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shun Xiong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shaobin Huang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Ding
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Man Xu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Jiangchen Yao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shuangquan Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
16
|
Wang L, Han Q, Yan L, Ma X, Li G, Wu H, Liu Y, Chen H, Ji P, Wang B, Zhang R, Liu G. Mtnr1b deletion disrupts placental angiogenesis through the VEGF signaling pathway leading to fetal growth restriction. Pharmacol Res 2024; 206:107290. [PMID: 38960012 DOI: 10.1016/j.phrs.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
The placenta, as a "transit station" between mother and fetus, has functions delivering nutrients, excreting metabolic wastes and secreting hormones. A healthy placenta is essential for fetal growth and development while the melatonergic system seems to play a critical physiological role in this organ since melatonin, its synthetic enzymes and receptors are present in the placenta. In current study, Mtnr1a and Mtnr1b knockout mice were constructed to explore the potential roles of melatonergic system played on the placental function and intrauterine growth retardation (IUGR). The result showed that Mtnr1a knockout had little effect on placental function while Mtnr1b knockout reduced placental efficiency and increased IUGR. Considering the extremely high incidence of IURG in sows, the pregnant sows were treated with melatonin. This treatment reduced the incidence of IUGR. All the evidence suggests that the intact melatonergic system in placenta is required for its function. Mechanistical studies uncovered that Mtnr1b knockout increased placental oxidative stress and apoptosis but reduced the angiogenesis. The RNA sequencing combined with histochemistry study identified the reduced angiogenesis and placental vascular density in Mtnr1b knockout mice. These alterations were mediated by the disrupted STAT3/VEGFR2/PI3K/AKT pathway, i.e., Mtnr1b knockout reduced the phosphorylation of STAT3 which is the promotor of VEGFR2. The downregulated VEGFR2 and its downstream elements of PI3K and AKT expressions, then, jeopardizes the angiogenesis and placental development.
Collapse
MESH Headings
- Animals
- Female
- Pregnancy
- Placenta/metabolism
- Placenta/blood supply
- Fetal Growth Retardation/genetics
- Fetal Growth Retardation/metabolism
- Mice, Knockout
- Signal Transduction
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Neovascularization, Physiologic/drug effects
- Neovascularization, Physiologic/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Melatonin/pharmacology
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Mice
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Apoptosis
- Mice, Inbred C57BL
- Oxidative Stress
- Swine
- Angiogenesis
Collapse
Affiliation(s)
- Likai Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, China
| | - Qi Han
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing, China
| | - Laiqing Yan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, China
| | - Xiao Ma
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, China
| | - Guangdong Li
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, China
| | - Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, China
| | - Yunjie Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, China
| | - Huiling Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, China
| | - Pengyun Ji
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, China
| | - Bingyuan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, China
| | - Ran Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, China.
| | - Guoshi Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, China.
| |
Collapse
|
17
|
Villarroel F, Ponce N, Gómez FA, Muñoz C, Ramírez E, Nualart F, Salinas P. Exposure to fine particulate matter 2.5 from wood combustion smoke causes vascular changes in placenta and reduce fetal size. Reprod Toxicol 2024; 127:108610. [PMID: 38750704 DOI: 10.1016/j.reprotox.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
During gestation, maternal blood flow to the umbilical cord and placenta increases, facilitating efficient nutrient absorption, waste elimination, and effective gas exchange for the developing fetus. However, the effects of exposure to wood smoke during this period on these processes are unknown. We hypothesize that exposure to PM2.5, primarily sourced from wood combustion for home heating, affects placental vascular morphophysiology and fetal size. We used exposure chambers that received either filtered or unfiltered air. Female rats were exposed to PM2.5 during pre-gestational and/or gestational stages. Twenty-one days post-fertilization, placentas were collected via cesarean section. In these placentas, oxygen diffusion capacity was measured, and the expression of angiogenic factors was analyzed using qPCR and immunohistochemistry. In groups exposed to PM2.5 during pre-gestational and/or gestational stages, a decrease in fetal weight, crown-rump length, theoretical and specific diffusion capacity, and an increase in HIF-1α expression were observed. In groups exposed exclusively to PM2.5 during the pre-gestational stage, there was an increase in the expression of placental genes Flt-1, Kdr, and PIGF. Additionally, in the placental labyrinth region, the expression of angiogenic factors was elevated. Changes in angiogenesis and angiogenic factors reflect adaptations to hypoxia, impacting fetal growth and oxygen supply. In conclusion, this study demonstrates that exposure to PM2.5, emitted from wood smoke, in both pre-gestational and gestational stages, affects fetal development and placental health. This underscores the importance of addressing air pollution in areas with high levels of wood smoke, which poses a significant health risk to pregnant women and their fetuses.
Collapse
Affiliation(s)
- Francisca Villarroel
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; MSc. Program in Biological Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nikol Ponce
- PhD Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Surgical and Morphological Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile
| | - Fernando A Gómez
- Laboratory of Genetics and Molecular Immunology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Cristián Muñoz
- Laboratory of Genetics and Molecular Immunology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion, Chile; Center for Advanced Microscopy CMA BIO-BIO, Universidad de Concepcion, Concepcion, Chile
| | - Paulo Salinas
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
18
|
Han Q, Yu Y, Liu X, Guo Y, Shi J, Xue Y, Li Y. The Role of Endothelial Cell Mitophagy in Age-Related Cardiovascular Diseases. Aging Dis 2024:AD.2024.0788. [PMID: 39122456 DOI: 10.14336/ad.2024.0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a major risk factor for cardiovascular diseases (CVD), and mitochondrial autophagy impairment is considered a significant physiological change associated with aging. Endothelial cells play a crucial role in maintaining vascular homeostasis and function, participating in various physiological processes such as regulating vascular tone, coagulation, angiogenesis, and inflammatory responses. As aging progresses, mitochondrial autophagy impairment in endothelial cells worsens, leading to the development of numerous cardiovascular diseases. Therefore, regulating mitochondrial autophagy in endothelial cells is vital for preventing and treating age-related cardiovascular diseases. However, there is currently a lack of systematic reviews in this area. To address this gap, we have written this review to provide new research and therapeutic strategies for managing aging and age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghong Guo
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Hart NR. Paradoxes: Cholesterol and Hypoxia in Preeclampsia. Biomolecules 2024; 14:691. [PMID: 38927094 PMCID: PMC11201883 DOI: 10.3390/biom14060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in preeclampsia. Those affected by preeclampsia and their offspring experience increased lifetime risks of CVD. At the systemic level, preeclampsia is characterized by increased cellular, membrane, and blood levels of cholesterol; however, cholesterol-dependent signaling, such as canonical Wnt/βcatenin, Hedgehog, and endothelial nitric oxide synthase, is downregulated indicating a cholesterol deficit with the upregulation of cholesterol synthesis and efflux. Hypoxia-related signaling in preeclampsia also appears to be paradoxical with increased Hypoxia-Inducible Factors in the placenta but measurably increased oxygen in maternal blood in placental villous spaces. This review addresses the molecular mechanisms by which excessive systemic cholesterol and deficient cholesterol-dependent signaling may arise from the effects of dietary lipid variance and environmental membrane modifiers causing the cellular hypoxia that characterizes preeclampsia.
Collapse
Affiliation(s)
- Nancy R Hart
- PeaceHealth St. Joseph Medical Center, Bellingham, WA 98225, USA
| |
Collapse
|
20
|
Li M, Zhou H, Pan Z, Shi M, Yang J, Guo J, Wan H. Synergistic promotion of angiogenesis after intracerebral hemorrhage by ginsenoside Rh2 and chrysophanol in rats. Bioorg Chem 2024; 147:107416. [PMID: 38705107 DOI: 10.1016/j.bioorg.2024.107416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a debilitating condition characterized by the rupture of cerebral blood vessels, resulting in profound neurological deficits. A significant challenge in the treatment of ICH lies in the brain's limited capacity to regenerate damaged blood vessels. This study explores the potential synergistic effects of Ginsenoside Rh2 and Chrysophanol in promoting angiogenesis following ICH in a rat model. METHODS Network pharmacology was employed to predict the potential targets and pathways of Ginsenoside Rh2 and Chrysophanol for ICH treatment. Molecular docking was utilized to assess the binding affinity between these compounds and their respective targets. Experimental ICH was induced in male Sprague-Dawley rats through stereotactic injection of type VII collagenase into the right caudate putamen (CPu). The study encompassed various methodologies, including administration protocols, assessments of neurological function, magnetic resonance imaging, histological examination, observation of brain tissue ultrastructure, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunofluorescence staining, Western blot analysis, and statistical analyses. RESULTS Network pharmacology analysis indicated that Ginsenoside Rh2 and Chrysophanol may exert their therapeutic effects in ICH by promoting angiogenesis. Results from animal experiments revealed that rats treated with Ginsenoside Rh2 and Chrysophanol exhibited significantly improved neurological function, reduced hematoma volume, and diminished pathological injury compared to the Model group. Immunofluorescence analysis demonstrated enhanced expression of vascular endothelial growth factor receptor 2 (VEGFR2) and CD31, signifying augmented angiogenesis in the peri-hematomal region following combination therapy. Importantly, the addition of a VEGFR2 inhibitor reversed the increased expression of VEGFR2 and CD31. Furthermore, Western blot analysis revealed upregulated expression of angiogenesis-related factors, including VEGFR2, SRC, AKT1, MAPK1, and MAPK14, in the combination therapy group, but this effect was abrogated upon VEGFR2 inhibitor administration. CONCLUSION The synergistic effect of Ginsenoside Rh2 and Chrysophanol demonstrated a notable protective impact on ICH injury in rats, specifically attributed to their facilitation of angiogenesis. Consequently, this research offers a foundation for the utilization of Ginsenosides Rh2 and Chrysophanol in medical settings and offers direction for the advancement of novel pharmaceuticals for the clinical management of ICH.
Collapse
Affiliation(s)
- Mengying Li
- School of Life Sciences, Zhejiang Chinese Medical University, 310053, China
| | - Huifen Zhou
- Academy of TCM Cardio-Cerebrovascular Diseases of Zhejiang Chinese Medical University, 310053, China
| | - Zhiyong Pan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 310006, China
| | - Min Shi
- The Affiliated Rehabilitation Hospital of Zhejiang Chinese Medical University, 310052, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, 310053, China.
| | - Jianwen Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, China.
| | - Haitong Wan
- Academy of TCM Cardio-Cerebrovascular Diseases of Zhejiang Chinese Medical University, 310053, China.
| |
Collapse
|
21
|
Ma K, Su B, Li F, Li J, Nie J, Xiong W, Luo J, Huang S, Zhou T, Liang X, Li F, Deng J, Tan C. Maternal or post-weaning dietary fructo-oligosaccharide supplementation reduces stillbirth rate of sows and diarrhea of weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:155-164. [PMID: 38774024 PMCID: PMC11107255 DOI: 10.1016/j.aninu.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024]
Abstract
Fructo-oligosaccharides (FOS) are well-known prebiotics that have the potential to improve sow reproductive performance and increase piglet growth. However, previous studies were observed in sole FOS-supplemented diets of sows or weaned piglets and did not consider the sow-to-piglet transfer effect on the performance and diarrhea rate of weaned piglets. This study explores the effects of dietary FOS supplementation on the reproductive performance of sows, and the effects of FOS supplementation at different stages on the growth performance and diarrhea rate of weaned piglets. A split-plot experimental design was used with sow diet effect in the whole plot and differing piglet diet effect in the subplot. Fifty-two multiparous sows (223.24 ± 14.77 kg) were randomly divided into 2 groups (0 or 0.2% FOS). The experiment lasted from day 85 of gestation to day 21 of lactation. Reproductive performance, glucose tolerance, placental angiogenesis, and intestinal flora of sows were assessed. At weaning, 192 weaned piglets were grouped in 2 × 2 factorial designs, with the main effects of FOS supplemental level of sow diet (0 and 0.2%), and FOS supplemental level of weaned piglet diet (0 and 0.2%), respectively. The growth performance and diarrhea rate of the weaned piglets were analyzed during a 28-d experiment. Maternal dietary supplementation of FOS was shown to reduce the stillbirth and invalid piglet rates (P < 0.05), improve the insulin sensitivity (P < 0.05) and fecal scores (P < 0.05) of sows, increase the abundance of Akkermansia muciniphila (P = 0.016), decrease the abundance of Escherichia coli (P = 0.035), and increase the isovalerate content in feces (P = 0.086). Meanwhile, the placental angiogenesis marker CD31 expression was increased in sows fed FOS diet (P < 0.05). Moreover, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets (P < 0.05) and increased the content of short-chain fatty acids in feces (P < 0.05). Furthermore, only post-weaning dietary FOS supplementation could improve nutrient digestibility of weaned piglets (P < 0.05). Collectively, FOS supplementation in sows can reduce stillbirth rate, perinatal constipation, and insulin resistance, as well as improve placental vascularization barrier. Additionally, maternal and post-weaning dietary FOS supplementation reduced the diarrhea rate of weaned piglets, but only FOS supplementation in piglets alone at weaning stage could improve their nutrient digestibility.
Collapse
Affiliation(s)
- Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Su
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Fuyong Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinfeng Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jinxi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Tong Zhou
- Guangzhou Pucheng Biological Technology Co., Guangzhou, 511300, China
| | - Xide Liang
- Baolingbao Biology Co., Ltd, Dezhou, 251200, China
| | - Facai Li
- Baolingbao Biology Co., Ltd, Dezhou, 251200, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
22
|
De Vos ES, Mulders AGMGJ, Koning AHJ, Willemsen SP, Rousian M, Van Rijn BB, Steegers EAP, Steegers-Theunissen RPM. Morphologic development of the first-trimester utero-placental vasculature is positively associated with embryonic and fetal growth: the Rotterdam Periconception Cohort. Hum Reprod 2024; 39:923-935. [PMID: 38503486 PMCID: PMC11063559 DOI: 10.1093/humrep/deae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/31/2024] [Indexed: 03/21/2024] Open
Abstract
STUDY QUESTION Is morphologic development of the first-trimester utero-placental vasculature associated with embryonic growth and development, fetal growth, and birth weight percentiles? SUMMARY ANSWER Using the utero-placental vascular skeleton (uPVS) as a new imaging marker, this study reveals morphologic development of the first-trimester utero-placental vasculature is positively associated with embryonic growth and development, fetal growth, and birth weight percentiles. WHAT IS KNOWN ALREADY First-trimester development of the utero-placental vasculature is associated with placental function, which subsequently impacts embryonic and fetal ability to reach their full growth potential. The attribution of morphologic variations in the utero-placental vascular development, including the vascular structure and branching density, on prenatal growth remains unknown. STUDY DESIGN, SIZE, DURATION This study was conducted in the VIRTUAL Placental study, a subcohort of 214 ongoing pregnancies, embedded in the prospective observational Rotterdam Periconception Cohort (Predict study). Women were included before 10 weeks gestational age (GA) at a tertiary referral hospital in The Netherlands between January 2017 and March 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS We obtained three-dimensional power Doppler volumes of the gestational sac including the embryo and the placenta at 7, 9, and 11 weeks of gestation. Virtual Reality-based segmentation and a recently developed skeletonization algorithm were applied to the power Doppler volumes to generate the uPVS and to measure utero-placental vascular volume (uPVV). Absolute vascular morphology was quantified by assigning a morphologic characteristic to each voxel in the uPVS (i.e. end-, bifurcation-crossing-, or vessel point). Additionally, total vascular length (mm) was calculated. The ratios of the uPVS characteristics to the uPVV were calculated to determine the density of vascular branching. Embryonic growth was estimated by crown-rump length and embryonic volume. Embryonic development was estimated by Carnegie stages. Fetal growth was measured by estimated fetal weight in the second and third trimester and birth weight percentiles. Linear mixed models were used to estimate trajectories of longitudinal measurements. Linear regression analysis with adjustments for confounders was used to evaluate associations between trajectories of the uPVS and prenatal growth. Groups were stratified for conception method (natural/IVF-ICSI conceptions), fetal sex (male/female), and the occurrence of placenta-related complications (yes/no). MAIN RESULTS AND THE ROLE OF CHANCE Increased absolute vascular morphologic development, estimated by positive random intercepts of the uPVS characteristics, is associated with increased embryonic growth, reflected by crown-rump length (endpoints β = 0.017, 95% CI [0.009; 0.025], bifurcation points β = 0.012, 95% CI [0.006; 0.018], crossing points β = 0.017, 95% CI [0.008; 0.025], vessel points β = 0.01, 95% CI [0.002; 0.008], and total vascular length β = 0.007, 95% CI [0.003; 0.010], and similarly with embryonic volume and Carnegie stage, all P-values ≤ 0.01. Density of vascular branching was negatively associated with estimated fetal weight in the third trimester (endpoints: uPVV β = -94.972, 95% CI [-185.245; -3.698], bifurcation points: uPVV β = -192.601 95% CI [-360.532; -24.670]) and birth weight percentiles (endpoints: uPVV β = -20.727, 95% CI [-32.771; -8.683], bifurcation points: uPVV β -51.097 95% CI [-72.257; -29.937], and crossing points: uPVV β = -48.604 95% CI [-74.246; -22.961])), all P-values < 0.05. After stratification, the associations were observed in natural conceptions specifically. LIMITATION, REASONS FOR CAUTION Although the results of this prospective observational study clearly demonstrate associations between first-trimester utero-placental vascular morphologic development and prenatal growth, further research is required before we can draw firm conclusions about a causal relationship. WIDER IMPLICATIONS OF THE FINDINGS Our findings support the hypothesis that morphologic variations in utero-placental vascular development play a role in the vascular mechanisms involved in embryonic and fetal growth and development. Application of the uPVS could benefit our understanding of the pathophysiology underlying placenta-related complications. Future research should focus on the clinical applicability of the uPVS as an imaging marker for the early detection of fetal growth restriction. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the Department of Obstetrics and Gynecology of the Erasmus MC, University Medical Centre, Rotterdam, The Netherlands. There are no conflicts of interest. TRIAL REGISTRATION NUMBER Registered at the Dutch Trial Register (NTR6854).
Collapse
Affiliation(s)
- E S De Vos
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A G M G J Mulders
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A H J Koning
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - S P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M Rousian
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - B B Van Rijn
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - E A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - R P M Steegers-Theunissen
- Department of Obstetrics and Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Zhao S, Zhou J, Chen R, Zhou W, Geng H, Huang Y, Shi S, Yuan L, Wang Z, Wang D. Decreased FGF23 inhibits placental angiogenesis via the ERK1/2-EGR-1 signaling pathway in preeclampsia. Cytokine 2024; 176:156508. [PMID: 38266461 DOI: 10.1016/j.cyto.2024.156508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
PURPOSE This study aimed to investigate the expression of fibroblast growth factor 23 (FGF23) in pregnant women with preeclampsia and elucidate its role in promoting placental angiogenesis through the ERK1/2-EGR-1 signaling pathway. METHODS Serum FGF23 levels were measured by ELISA in healthy pregnant women and patients with preeclampsia during the first, second, and third trimesters of pregnancy. Wound healing, Transwell, and tube formation assays were performed to investigate the effects of FGF23 on cell migration, invasion and tube formation. The expression of vascular endothelial growth factor A (VEGF-A) and its upstream signaling molecules, p-ERK, and EGR-1, in placental tissues was detected by RT-qPCR and western blotting. Additionally, the effect of FGF23 on VEGF-A, p-ERK, and EGR-1 expression was further explored in vitro. RESULTS Serum FGF23 levels increased with gestational age. During the third trimester, the control group exhibited a more pronounced increase in FGF23 levels than the preeclampsia group. Administering exogenous FGF23 promoted trophoblast cell migration, invasion and enhanced tube formation in vascular endothelial cells. The expression levels of VEGF-A, p-ERK, and EGR-1 in the placental tissues were significantly lower in the preeclampsia group than in the control group. In vitro experiments confirmed that FGF23 up-regulated VEGF-A expression through the p-ERK/EGR-1 signaling pathway. CONCLUSION The serum level of FGF23 decreased in pregnant women with preeclampsia, inhibiting the ERK1/2-EGR-1 pathway and resulting in decreased expression of VEGF-A, thereby inhibiting placental angiogenesis. This could be a potential mechanism involved in the progression of preeclampsia.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Junling Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Run Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Wei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Huizhen Geng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Yihong Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Shaole Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Lemin Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Zilian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Dongyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| |
Collapse
|
24
|
Gudenschwager-Basso EK, Frydman G, Weerakoon S, Andargachew H, Piltaver CM, Huckle WR. Morphological evaluation of the feline placenta correlates with gene expression of vascular growth factors and receptors†. Biol Reprod 2024; 110:569-582. [PMID: 38092011 DOI: 10.1093/biolre/ioad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 03/16/2024] Open
Abstract
Placental angiogenesis is critical for normal development. Angiogenic factors and their receptors are key regulators of this process. Dysregulated placental vascular development is associated with pregnancy complications. Despite their importance, vascular growth factor expression has not been thoroughly correlated with placental morphologic development across gestation in cats. We postulate that changes in placental vessel morphology can be appreciated as consequences of dynamic expression of angiogenic signaling agents. Here, we characterized changes in placental morphology alongside expression analysis of angiogenic factor splice variants and receptors throughout pregnancy in domestic shorthair cats. We observed increased vascular and lamellar density in the lamellar zone during mid-pregnancy. Immunohistochemical analysis localized the vascular endothelial growth factor A (VEGF-A) receptor KDR to endothelial cells of the maternal and fetal microvasculatures. PlGF and its principal receptor Flt-1 were localized to the trophoblasts and fetal vasculature. VEGF-A was found in trophoblast cells and associated with endothelial cells. We detected expression of two Plgf splice variants and four Vegf-a variants. Quantitative real-time polymerase chain reaction analysis showed upregulation of mRNAs encoding pan Vegf-a and all Vegf-a splice forms at gestational days 30-35. Vegf-A showed a marked relative increase in expression during mid-pregnancy, consistent with the pro-angiogenic changes seen in the lamellar zone at days 30-35. Flt-1 was upregulated during late pregnancy. Plgf variants showed stable expression during the first two-thirds of pregnancy, followed by a marked increase toward term. These findings revealed specific spatiotemporal expression patterns of VEGF-A family members consistent with pivotal roles during normal placental development.
Collapse
Affiliation(s)
- Erwin K Gudenschwager-Basso
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Galit Frydman
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Shaneke Weerakoon
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Hariyat Andargachew
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Cassandra M Piltaver
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - William R Huckle
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| |
Collapse
|
25
|
Yang Y, Hou G, Ji F, Zhou H, Lv R, Hu C. Maternal Supplementation with Ornithine Promotes Placental Angiogenesis and Improves Intestinal Development of Suckling Piglets. Animals (Basel) 2024; 14:689. [PMID: 38473074 DOI: 10.3390/ani14050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The blood vessels of the placenta are crucial for fetal growth. Here, lower vessel density and ornithine (Orn) content were observed in placentae for low-birth-weight fetuses versus normal-birth-weight fetuses at day 75 of gestation. Furthermore, the Orn content in placentae decreased from day 75 to 110 of gestation. To investigate the role of Orn in placental angiogenesis, 48 gilts (Bama pig) were allocated into four groups. The gilts in the control group were fed a basal diet (CON group), while those in the experimental groups were fed a basal diet supplemented with 0.05% Orn (0.05% Orn group), 0.10% Orn (0.10% Orn group), and 0.15% Orn (0.15% Orn group), respectively. The results showed that 0.15% Orn and 0.10% Orn groups exhibited increased birth weight of piglets compared with the CON group. Moreover, the 0.15% Orn group was higher than the CON group in the blood vessel densities of placenta. Mechanistically, Orn facilitated placental angiogenesis by regulating vascular endothelial growth factor-A (VEGF-A). Furthermore, maternal supplementation with 0.15% Orn during gestation increased the jejunal and ileal villi height and the concentrations of colonic propionate and butyrate in suckling piglets. Collectively, these results showed that maternal supplementation with Orn promotes placental angiogenesis and improves intestinal development of suckling piglets.
Collapse
Affiliation(s)
- Yun Yang
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
26
|
Huang Z, Yang Y, Ma S, Li J, Ye H, Chen Q, Li Z, Deng J, Tan C. KLF4 down-regulation underlies placental angiogenesis impairment induced by maternal glucose intolerance in late pregnancy. J Nutr Biochem 2024; 124:109509. [PMID: 37907170 DOI: 10.1016/j.jnutbio.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/06/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Maternal glucose intolerance in late pregnancy can easily impair pregnancy outcomes and placental development. The impairment of placental angiogenesis is closely related to the occurrence of glucose intolerance during pregnancy, but the mechanism remains largely unknown. In this study, the pregnant mouse model of maternal high-fat diet and endothelial injury model of porcine vascular endothelial cells (PVECs) was used to investigate the effect of glucose intolerance on pregnancy outcomes and placental development. Feeding pregnant mice, a high-fat diet was shown to induce glucose intolerance in late pregnancy, and significantly increase the incidence of resorbed fetuses. Moreover, a decrease was observed in the proportion of blood sinusoids area and the expression level of CD31 in placenta, indicating that placental vascular development was impaired by high-fat diet. Considering that hyperglycemia is an important symptom of glucose intolerance, we exposed PVECs to high glucose (50 mM), which verified the negative effects of high glucose on endothelial function. Bioinformatics analysis further emphasized that high glucose exposure could significantly affect the angiogenesis-related functions of PVECs and predicted that Krüppel-like factor 4 (KLF4) may be a key mediator of these functional changes. The subsequent regulation of KLF4 expression confirmed that the inhibition of KLF4 expression was an important reason why high glucose impaired the endothelial function and angiogenesis of PVECs. These results indicate that high-fat diet can aggravate maternal glucose intolerance and damage pregnancy outcome and placental angiogenesis, and that regulating the expression of KLF4 may be a potential therapeutic strategy for maintaining normal placental angiogenesis.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yunyu Yang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Department of Animal Science, Guangdong Maoming Agriculture & Forestry Technical College, Maoming, China
| | - Shuo Ma
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinfeng Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hongxuan Ye
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiling Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhishan Li
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| | - Chengquan Tan
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
27
|
Liu Z, Song Y, Hu R, Geng Y, Huang Y, Li F, Ma W, Dong H, Song K, Ding J, Xu X, Wu X, Zhang M, Zhong Z. Bushen Antai recipe ameliorates immune microenvironment and maternal-fetal vascularization in STAT3-deficient abortion-prone mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116889. [PMID: 37423519 DOI: 10.1016/j.jep.2023.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spontaneous abortion (SA) is an intricate disorder affecting women of reproductive age. Previous studies have confirmed the indispensable role of signal transducer and activator of transcription (STAT) 3 in normal pregnancy. Bushen Antai recipe (BAR) is a satisfactory formula commonly used in practice, based on the rationale of traditional Chinese medicine (TCM) for SA. AIM OF THE STUDY The current study explores the potential therapeutic effects and mechanistic insights of BAR in STAT3-deficient abortion-prone mice. MATERIALS AND METHODS A STAT3-deficient abortion-prone mouse model was developed using intraperitoneal injection of stattic from embryo day (ED) 5.5 to ED9.5 among pregnant females (C57BL/6). We separately administered BAR1 (5.7 g/kg), BAR2 (11.4 g/kg), progesterone (P4), or distilled water at 10 ml/kg/day from ED0.5 until ED10.5. The embryo resorption rate and placenta-uterus structure were observed on ED10.5. The systemic immune status was examined by analyzing the frequency of immunosuppressive myeloid-derived suppressor cells (MDSCs), the ratio of two macrophage (M) subtypes, and the protein expression of associated molecules. Morphological observation, immunohistochemistry, and western blotting were used to evaluate the vascularization conditions at the maternal-fetal interface. RESULTS BAR1, BAR2, or P4 treatment exerted remarkable effects in alleviating embryo resorption rate and disordered placental-uterus structure in STAT3-deficient abortion-prone mice. Western blotting indicated the deficiency of phosphorylated STAT3 and two prime target molecules, PR and HIF-1α, at the maternal-fetal interface under STAT3 inhibition. Simultaneously, BAR2 treatment significantly upregulated their expression levels. The systemic immune environment was disrupted, indicated by the reduced serum cytokine concentrations, MDSCs frequency, M2/M1 ratio, and the expression of immunomodulatory factors. Nonetheless, BAR2 or P4 treatment revived the immune tolerance for semi-allogenic embryos by enhancing the immune cells and factors. Besides, the western blot and immunohistochemistry results revealed that BAR2 or P4 treatment upregulated VEGFA/FGF2 and activated ERK/AKT phosphorylation. Therefore, BAR2 or P4 facilitated vascularization at the maternal-fetal interface in STAT3-deficient abortion-prone mice. CONCLUSIONS BAR sustained pregnancy by reviving the systemic immune environment and promoting angiogenesis at the maternal-fetal interface in STAT3-deficient abortion-prone mice.
Collapse
Affiliation(s)
- Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenwen Ma
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Haoxu Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kunkun Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahui Ding
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Xiaohu Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiao Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhiyan Zhong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Ma S, Li J, Ye H, Huang S, Huang Z, Wu D, Ma K, Xie J, Yin Y, Tan C. Effects of dietary supplementation of different levels of gamma-aminobutyric acid on reproductive performance, glucose intolerance, and placental development of gilts. J Anim Sci 2024; 102:skad405. [PMID: 38133610 PMCID: PMC10781436 DOI: 10.1093/jas/skad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
This study aimed to investigate the effects of dietary gamma-aminobutyric acid (GABA) supplementation on reproductive performance, glucose intolerance, and placental development of gilts during mid-late gestation. Based on the principle of backfat thickness consistency, 124 gilts at 65 d of gestation were assigned to three dietary groups: CON (basic diet, n = 41), LGABA (basic diet supplemented with 0.03% GABA, n = 42), and HGABA (basic diet supplemented with 0.06% GABA, n = 41). The litter performance, glucose tolerance, placental angiogenesis, and nutrients transporters were assessed. The LGABA group improved piglet vitality and placental efficiency and decreased area under the curve of glucose tolerance test compared to the CON group (P < 0.05). Meanwhile, the LGABA group enhanced placental vessel density, platelet endothelial cell adhesion molecule-1 levels and gene expression of fibroblast growth factor 18 (P < 0.05). Furthermore, LGABA showed an uptrend in glucose transporter type 1 mRNA level (P = 0.09). Taken together, this study revealed that the dietary supplementation of 0.03% GABA can improve piglet vitality, glucose intolerance, and placental development of gilts.
Collapse
Affiliation(s)
- Shuo Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinfeng Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hongxuan Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Kaidi Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Institute of Subtropical Agriculture, Chinese Academy of Science, Research Center for Healthy Breeding of Livestock and Poultry, Changsha, Hunan 410125, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Institute of Subtropical Agriculture, Chinese Academy of Science, Research Center for Healthy Breeding of Livestock and Poultry, Changsha, Hunan 410125, China
| | - Chengquan Tan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
29
|
Jiang E, Wang H, Li X, Bi Y, Mao C, Jiang F, Song E, Lan X. A 14-bp deletion in bovine EPAS1 gene is associated with carcass traits. Anim Biotechnol 2023; 34:4553-4558. [PMID: 36681875 DOI: 10.1080/10495398.2023.2166841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
EPAS1 (Endothelial PAS Domain Protein 1) gene is well-known for its function in plateau hypoxia adaptability. It encodes HIF-2α, which involved in the induction of genes regulated by oxygen and then affects multiple physiological processes such as angiogenesis and energy metabolism. All of these indicate it may affect the development of animals. In this study, a 14-bp deletion in EPAS1 gene was uncovered in Shandong black cattle population (n = 502). Two genotypes (II and ID) were found and the frequency of the homozygous II genotype is higher than the heterozygous ID genotype. This population is consisted with HWE (p > 0.05). And more importantly, the 14-bp deletion was associated with outside flat (p = 0.003), brisket (p = 0.001), and knuckle (p = 0.032). These findings suggested that the 14-bp deletion is significantly associated with carcass traits, which could be served as a molecular marker applied to cow breeding.
Collapse
Affiliation(s)
- Enhui Jiang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongyang Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuelan Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yi Bi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cui Mao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fugui Jiang
- Institute of Animal Science and Veterinary, Shandong Academy of Agriculture Science, Jinan, Shandong, China
| | - Enliang Song
- Institute of Animal Science and Veterinary, Shandong Academy of Agriculture Science, Jinan, Shandong, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Chen Y, Wan G, Li Z, Liu X, Zhao Y, Zou L, Liu W. Endothelial progenitor cells in pregnancy-related diseases. Clin Sci (Lond) 2023; 137:1699-1719. [PMID: 37986615 PMCID: PMC10665129 DOI: 10.1042/cs20230853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Placental neovascularization plays a crucial role in fetomaternal circulation throughout pregnancy and is dysregulated in several pregnancy-related diseases, including preeclampsia, gestational diabetes mellitus, and fetal growth restriction. Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that differentiate into mature endothelial cells, which influence vascular homeostasis, neovascularization, and endothelial repair. Since their discovery in 1997 by Asahara et al., the role of EPCs in vascular biology has garnered a lot of interest. However, although pregnancy-related conditions are associated with changes in the number and function of EPCs, the reported findings are conflicting. This review discusses the discovery, isolation, and classification of EPCs and highlights discrepancies between current studies. Overviews of how various diseases affect the numbers and functions of EPCs, the role of EPCs as biomarkers of pregnancy disorders, and the potential therapeutic applications involving EPCs are also provided.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zeyun Li
- The First Clinical School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
31
|
Zhang Y, Liang J, Gu H, Du T, Xu P, Yu T, He Q, Huang Z, Lei S, Li J. Activation of LXRα attenuates 2-Ethylhexyl diphenyl phosphate (EHDPP) induced placental dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115605. [PMID: 37864966 DOI: 10.1016/j.ecoenv.2023.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is one of the typical organophosphate flame retardants (OPFRs) and has been widely detected in environmental media. Exposure to EHDPP during pregnancy affects placental development and fetal growth. Liver X receptor α (LXRα) is essential to placental development. However, finite information is available regarding the function of LXRα in placenta damages caused by EHDPP. In present study we investigated to figure out whether LXRα is playing roles in EHDPP-induced placenta toxicity. While EHDPP restrained cell viability, migration, and angiogenesis dose-dependently in HTR-8/SVneo and JEG-3 cells, overexpression or activation by agonist T0901317 of LXRα alleviated the above phenomenon, knockdown or inhibition by antagonist GSK2033 had the opposite effects in vitro. Further study indicated EHDPP decreased LXRα expression and transcriptional activity leading to mRNA, protein expression levels downregulation of viability, migration, angiogenesis-related genes Forkhead box M1 (Foxm1), endothelial nitric oxide synthase (eNos), matrix metalloproteinase-2 (Mmp-2), matrix metalloproteinase-9 (Mmp-9), vascular endothelial growth factor-A (Vegf-a) and upregulation of inflammatory genes interleukin-6 (Il-6), interleukin-1β (Il-1β) and tumor necrosis factor-α (Tnf-α) in vitro and in vivo. Moreover, EHDPP caused decreased placental volume and fetal weight in mice, treatment with LXRα agonist T0901317 restored these adverse effects. Taken together, our study unveiled EHDPP-induced placenta toxicity and the protective role of LXRα in combating EHDPP-induced placental dysfunction. Activating LXRα could serve as a therapeutic strategy to reverse EHDPP-induced placental toxicity.
Collapse
Affiliation(s)
- Yue Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jie Liang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, Jiangsu 225007, China
| | - Hao Gu
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Ting Du
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ting Yu
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qing He
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Saifei Lei
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Jing Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
32
|
Homayoon Vala M, Bagheri H, Sargazi Z, Bakhtiary N, Pourbeiranvand S, Salehnia M. Evaluation of Vascular Endothelial Growth Factor Gene Expression in Recellularized Liver Tissue by Mouse Embryo Fibroblast. IRANIAN BIOMEDICAL JOURNAL 2023; 27:340-8. [PMID: 37950395 PMCID: PMC10826915 DOI: 10.61186/ibj.3862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/10/2023] [Indexed: 12/25/2023]
Abstract
Background The aim of the present study was to evaluate alterations in the vegf gene expression as an angiogenic factor in mouse embryo fibroblasts seeded on the decellularized liver fragments. Methods Liver tissue samples (n = 10) collected from adult male mice were randomly divided into decellularized and native control groups. Tissues were decellularized by treating with 1% Triton X-100 and 0.1% SDS for 24 hours and assessed by H&E staining and SEM. Then DNA content analysis and toxicity tests were performed. By centrifugation, DiI-labeled mouse embryo fibroblasts were seeded on each scaffold and cultured for one week. The recellularized scaffolds were studied by H&E staining, SEM, and LSCM. After RNA extraction and cDNA synthesis, the expression of the vegf gene in these samples was investigated using real-time RT-PCR. Results Our observations showed that the decellularized tissues had morphology and porous structure similar to the control group, and their DNA content significantly reduced (p < 0.05) and reached to 4.12% of the control group. The MTT test indicated no significant cellular toxicity for the decellularized scaffolds. Light microscopy, SEM, and LSCM observations confirmed the attachment and penetration of embryonic fibroblast cells on the surface and into different depths of the scaffolds. There was no statistically significant difference in terms of vegf gene expression in the cultured cells in the presence and absence of a scaffold. Conclusion The reconstructed scaffold had no effect on vegf gene expression. Decellularized mouse liver tissue recellularized by embryonic fibroblasts could have an application in regenerative medicine.
Collapse
Affiliation(s)
- Motahare Homayoon Vala
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Hamed Bagheri
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Zinat Sargazi
- Department of Anatomical Sciences, School of Medical Sciences, Zahedan University, Zahedan, Iran
| | - Negar Bakhtiary
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
- Burn Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Shahram Pourbeiranvand
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Biomaterials, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
- Department of Anatomical Sciences, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
33
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
34
|
Pei CZ, Seok J, Kim GJ, Choi BC, Baek KH. Deficiency of HtrA4 in BeWo cells downregulates angiogenesis through IL-6/JAK/STAT3 signaling. Biomed Pharmacother 2023; 166:115288. [PMID: 37579694 DOI: 10.1016/j.biopha.2023.115288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023] Open
Abstract
In a previous study, we investigated the effects of high-temperature requirement factor A4 (HtrA4) deficiency on trophoblasts using the BeWo KO cell line. However, the effects of this deficiency on angiogenesis remain unclear. To explore the role of HtrA4 in angiogenesis, HUVECs were co-cultured with wild-type BeWo cells (BeWo WT), BeWo KO, and HtrA4-rescued BeWo KO (BeWo KO-HtrA4 rescue) cells. Dil staining and dextran analysis revealed that HUVECs co-cultured with BeWo KO formed tubes, but they were often disjointed compared to those co-cultured with BeWo WT, BeWo KO-HtrA4 rescue, and HUVECs controls. RT-PCR, ELISA, and western blot analysis were performed to assess angiogenesis-related factors at the mRNA and protein levels. HtrA4 deficiency inhibited IL-6 expression in trophoblasts, and the reduced secretion of IL-6 decreases VEGFA expression in HUVECs by modulating the JAK2/STAT3 signaling pathway to prevent tube formation. Moreover, rescuing HtrA4 expression restored the HUVEC tube formation ability. Interestingly, IL-6 expression was lower in supernatants with only cultured HUVECs than in co-cultured HUVECs with BeWo WT cells, but the HUVEC tube formation ability was similar. These findings suggest that the promoting angiogenesis-related signaling pathway differs between only HUVECs and co-cultured HUVECs, and that the deficiency of HtrA4 weakens the activation of the IL-6/JAK/STAT3/VEGFA signaling pathway, reducing the ability of tube formation in HUVECs. HtrA4 deficiency in trophoblasts hinders angiogenesis and may contribute to placental dysfunction.
Collapse
Affiliation(s)
- Chang-Zhu Pei
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, the Republic of Korea
| | - Jin Seok
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, the Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, the Republic of Korea
| | - Bum-Chae Choi
- Department of Obstetrics and Gynecology, CL Women's Hospital, Gwangju 61917, the Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, the Republic of Korea; Department of Bioconvergence, CHA University, Gyeonggi-Do 13488, the Republic of Korea.
| |
Collapse
|
35
|
Keighley LM, Lynch-Sutherland CF, Almomani SN, Eccles MR, Macaulay EC. Unveiling the hidden players: The crucial role of transposable elements in the placenta and their potential contribution to pre-eclampsia. Placenta 2023; 141:57-64. [PMID: 37301654 DOI: 10.1016/j.placenta.2023.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The human placenta is a vital connection between maternal and fetal tissues, allowing for the exchange of molecules and modulation of immune interactions during pregnancy. Interestingly, some of the placenta's unique functions can be attributed to transposable elements (TEs), which are DNA sequences that have mobilised into the genome. Co-option throughout mammalian evolution has led to the generation of TE-derived regulators and TE-derived genes, some of which are expressed in the placenta but silenced in somatic tissues. TE genes encompass both TE-derived genes with a repeat element in the coding region and TE-derived regulatory regions such as alternative promoters and enhancers. Placental-specific TE genes are known to contribute to the placenta's unique functions, and interestingly, they are also expressed in some cancers and share similar functions. There is evidence to support that aberrant activity of TE genes may contribute to placental pathologies, cancer and autoimmunity. In this review, we highlight the crucial roles of TE genes in placental function, and how their dysregulation may lead to pre-eclampsia, a common and dangerous placental condition. We provide a summary of the functional TE genes in the placenta to offer insight into their significance in normal and abnormal human development. Ultimately, this review highlights an opportunity for future research to investigate the potential dysregulation of TE genes in the development of placental pathologies such as pre-eclampsia. Further understanding of TE genes and their role in the placenta could lead to significant improvements in maternal and fetal health.
Collapse
Affiliation(s)
- Laura M Keighley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand
| | - Chiemi F Lynch-Sutherland
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, 9054, New Zealand.
| |
Collapse
|
36
|
Sayres L, Flockton AR, Ji S, Rey Diaz C, Gumina DL, Su EJ. Angiogenic Function of Human Placental Endothelial Cells in Severe Fetal Growth Restriction Is Not Rescued by Individual Extracellular Matrix Proteins. Cells 2023; 12:2339. [PMID: 37830553 PMCID: PMC10572031 DOI: 10.3390/cells12192339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Severe fetal growth restriction (FGR) is characterized by increased placental vascular resistance resulting from aberrant angiogenesis. Interactions between endothelial cells (ECs) and the extracellular matrix (ECM) are critical to the complex process of angiogenesis. We have previously found that placental stromal abnormalities contribute to impaired angiogenesis in severe FGR. The objective of this research is to better characterize the effect of individual ECM proteins on placental angiogenic properties in the setting of severe FGR. ECs were isolated from human placentae, either control or affected by severe FGR, and subjected to a series of experiments to interrogate the role of ECM proteins on adhesion, proliferation, migration, and apoptosis. We found impaired proliferation and migration of growth-restricted ECs. Although individual substrates did not substantially impact migratory capacity, collagens I, III, and IV partially mitigated proliferative defects seen in FGR ECs. Differences in adhesion and apoptosis between control and FGR ECs were not evident. Our findings demonstrate that placental angiogenic defects that characterize severe FGR cannot be explained by a singular ECM protein, but rather, the placental stroma as a whole. Further investigation of the effects of stromal composition, architecture, stiffness, growth factor sequestration, and capacity for remodeling is essential to better understand the role of ECM in impaired angiogenesis in severe FGR.
Collapse
Affiliation(s)
- Lauren Sayres
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Amanda R. Flockton
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Shuhan Ji
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Carla Rey Diaz
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Diane L. Gumina
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| | - Emily J. Su
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, CO 80045, USA
| |
Collapse
|
37
|
Luo Z, Yao J, Wang Z, Xu J. Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives. J Transl Med 2023; 21:441. [PMID: 37407961 DOI: 10.1186/s12967-023-04286-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
Endothelial cells (ECs) angiogenesis is the process of sprouting new vessels from the existing ones, playing critical roles in physiological and pathological processes such as wound healing, placentation, ischemia/reperfusion, cardiovascular diseases and cancer metastasis. Although mitochondria are not the major sites of energy source in ECs, they function as important biosynthetic and signaling hubs to regulate ECs metabolism and adaptations to local environment, thus affecting ECs migration, proliferation and angiogenic process. The understanding of the importance and potential mechanisms of mitochondria in regulating ECs metabolism, function and the process of angiogenesis has developed in the past decades. Thus, in this review, we discuss the current understanding of mitochondrial proteins and signaling molecules in ECs metabolism, function and angiogeneic signaling, to provide new and therapeutic targets for treatment of diverse cardiovascular and angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Zhen Luo
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Zhe Wang
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China
| | - Jianxiong Xu
- Shanghai Key Laboratory of Veterinary Biotechnology/Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai, China.
| |
Collapse
|
38
|
Tiwari D, Choudhury SS, Nath T, Bose S. An investigation into the role of Notch signaling, altered angiogenesis, and inflammatory-induced preterm delivery and related complications in Northeast Indian patients. Placenta 2023; 139:172-180. [PMID: 37421871 DOI: 10.1016/j.placenta.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Notch signaling is crucial during pregnancy with ability to regulate angiogenesis and inflammatory response. Considering the enigmatic importance of Notch signaling in pregnancy including placenta development, gestational disorders and adverse pregnancy; we performed experimental analysis to identify the Notch receptor-ligands association with Preterm delivery (PTD) and linked complication. METHOD A total of 245 cases [Term n = 135 and Preterm n = 110] were enrolled for the study from Northeast Indian Population. The differential mRNA expression of Notch receptors , ligands, its downstream target Hes1 and Immune markers (IL-10, IL-12 and TNF-α) was studied by real time polymerase chain reaction. Further the protein study of Notch1 and 4, Hes1, VEGF and TNF-α was performed by immunofluorescence. RESULTS Placental mRNA expression of all the four notch receptors [Notch1 = 2.15 ± 1.02 fold, Notch2 = 6.85 ± 2.70 fold, and Notch3 = 1.74 ± 0.90 fold and Notch4 = 14.15 ± 6.72 fold]; ligands [JAG1 = 2.71 ± 1.22, JAG2 = 4.41 ± 2.31, DLL1 = 3.55 ± 1.38, DLL3 = 4.31 ± 2.82 and DLL4 = 3.07 ± 1.30 folds] and downstream target [Hes1 = 6.09 ± 2.89 folds] was elevated in PTD cases compared to Term delivery (TD) cases. The mRNA expression of pro-inflammatory marker (IL-12 = 3.99 ± 1.02 fold and TNF-α = 16.83 ± 2.97), was upregulated. The upregulated expression of Notch1(p < 0.001), JAG1 (p = 0.006), JAG2 (p = 0.009), DLL1 (p = 0.001), DLL4 (p < 0.001) Hes1 (p < 0.001), TNF-α (p < 0.001) and IL-12 (p = 0.006) were associated with the baby death; and Notch4 significantly inversely correlated with low birth weight (LBW). Consistently higher protein level expression of Notch1, Hes1, VEGFA and TNF-α was observed in preterm with highest expression in negative outcome cases. DISCUSSION To conclude, the increased Notch1 expression and angiogenesis linked inflammation holds key in understanding the pathogenesis of PTD and linked complications and underlines its potential as therapeutic target for PTD interventions.
Collapse
Affiliation(s)
- Diptika Tiwari
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Saswati Sanyal Choudhury
- Department of Obstetrics and Gynaecology, Gauhati Medical College Hospital (GMCH), Guwahati, Assam, 781032, India
| | - Tina Nath
- Department of Obstetrics and Gynaecology, Gauhati Medical College Hospital (GMCH), Guwahati, Assam, 781032, India
| | - Sujoy Bose
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
39
|
Chen J, Li Y, Xu L, Sang Y, Li D, Du M. Paradoxical expression of NRP1 in decidual stromal and immune cells reveals a novel inflammation balancing mechanism during early pregnancy. Inflamm Res 2023:10.1007/s00011-023-01734-y. [PMID: 37328599 DOI: 10.1007/s00011-023-01734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVE AND DESIGN To investigate the balancing mechanisms between decidualization-associated inflammation and pregnancy-related immunotolerance. MATERIAL OR SUBJECTS Decidual samples from women with normal pregnancy (n = 58) or unexplained spontaneous miscarriage (n = 13), peripheral blood from normal pregnancy and endometria from non-pregnancy (n = 10) were collected. Primary endometrial stromal cells (ESCs), decidual stromal cells (DSCs), decidual immune cells (DICs) and peripheral blood mononuclear cells (PBMCs) were isolated. TREATMENT The plasmid carrying neuropilin-1 (NRP1) gene was transfected into ESC for overexpression. To induce decidualization in vitro, ESCs were treated with a combination of 10 nM estradiol, 100 nM progesterone and 0.5 mM cAMP. Anti-Sema3a and anti-NRP1 neutralizing antibodies were applied to block the ligand-receptor interactions. METHODS RNA-seq analysis was performed to identify differentially expressed genes in DSCs and DICs, and NRP1 expression was verified by Western blotting and flow cytometry. The secretion of inflammatory mediators was measured using a multifactor cytometric bead array. The effects of Sema3a-NRP1 pathway on DICs were determined by flow cytometry. Statistical differences between groups were compared using the T test and one way or two-way ANOVA. RESULTS Combined with five RNA-seq datasets, NRP1 was the only immune checkpoint changing oppositely between DSCs and DICs. The decreased expression of NRP1 in DSCs allowed intrinsic inflammatory responses required for decidualization, while its increased expression in DICs enhanced tolerant phenotypes beneficial to pregnancy maintenance. DSC-secreted Sema3a promoted immunosuppression in DICs via NRP1 binding. In women with miscarriage, NRP1 was abnormally elevated in DSCs but diminished in decidual macrophages and NK cells. CONCLUSION NRP1 is a multifunctional controller that balances the inflammatory states of DSCs and DICs in gravid uterus. Abnormal expression of NRP1 is implicated in miscarriage.
Collapse
Affiliation(s)
- Jiajia Chen
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Yanhong Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Ling Xu
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Yifei Sang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China.
| | - Meirong Du
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Institute of Planned Parenthood Research), Fudan University Shanghai Medical College, Zhao Zhou Road 413, Shanghai, 200032, China.
- Department of Obstetrics and Gynecology, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau SAR, 519020, China.
| |
Collapse
|
40
|
Abu-Ghazaleh N, Brennecke S, Murthi P, Karanam V. Association of Vascular Endothelial Growth Factors (VEGFs) with Recurrent Miscarriage: A Systematic Review of the Literature. Int J Mol Sci 2023; 24:ijms24119449. [PMID: 37298399 DOI: 10.3390/ijms24119449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Recurrent miscarriage (RM) can be defined as two or more consecutive miscarriages before 20 weeks' gestation. Vascular endothelial growth factors (VEGFs) play an important role in endometrial angiogenesis and decidualization, prerequisites for successful pregnancy outcomes. We conducted a systematic review of the published literature investigating the role of VEGFs in RM. In particular, we explored the methodological inconsistencies between the published reports on this topic. To our knowledge, this is the first systematic literature review to examine the role of VEGFs in RM. Our systematic search followed PRISMA guidelines. Three databases, Medline (Ovid), PubMed, and Embase, were searched. Assessment-bias analyses were conducted using the Joanna Bigger Institute critical appraisal method for case-control studies. Thirteen papers were included in the final analyses. These studies included 677 cases with RM and 724 controls. Endometrial levels of VEGFs were consistently lower in RM cases compared to controls. There were no consistent significant findings with respect to VEGFs levels in decidua, fetoplacental tissues, and serum when RM cases were compared to controls. The interpretation of studies that explored the relationship between VEGFs and RM is hampered by inconsistencies in defining clinical, sampling, and analytical variables. To clarify the association between VEGF and RM in future studies, researchers ideally should use similarly defined clinical groups, similar samples collected in the same way, and laboratory analyses undertaken using the same methods.
Collapse
Affiliation(s)
- Nadine Abu-Ghazaleh
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Shaun Brennecke
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Padma Murthi
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC 3052, Australia
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Vijaya Karanam
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
41
|
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci 2023; 10:1173030. [PMID: 37251083 PMCID: PMC10210153 DOI: 10.3389/fmolb.2023.1173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Serving as the cell's key interface in communicating with the outside world, primary cilia have emerged as an area of multidisciplinary research interest over the last 2 decades. Although the term "ciliopathy" was first used to describe abnormal cilia caused by gene mutations, recent studies focus on abnormalities of cilia that are found in diseases without clear genetic antecedents, such as obesity, diabetes, cancer, and cardiovascular disease. Preeclampsia, a hypertensive disease of pregnancy, is intensely studied as a model for cardiovascular disease partially due to many shared pathophysiologic elements, but also because changes that develop over decades in cardiovascular disease arise in days with preeclampsia yet resolve rapidly after delivery, thus providing a time-lapse view of the development of cardiovascular pathology. As with genetic primary ciliopathies, preeclampsia affects multiple organ systems. While aspirin delays the onset of preeclampsia, there is no cure other than delivery. The primary etiology of preeclampsia is unknown; however, recent reviews emphasize the fundamental role of abnormal placentation. During normal embryonic development, trophoblastic cells, which arise from the outer layer of the 4-day-old blastocyst, invade the maternal endometrium and establish extensive placental vascular connections between mother and fetus. In primary cilia of trophoblasts, Hedgehog and Wnt/catenin signaling operate upstream of vascular endothelial growth factor to advance placental angiogenesis in a process that is promoted by accessible membrane cholesterol. In preeclampsia, impaired proangiogenic signaling combined with an increase in apoptotic signaling results in shallow invasion and inadequate placental function. Recent studies show primary cilia in preeclampsia to be fewer in number and shortened with functional signaling abnormalities. Presented here is a model that integrates preeclampsia lipidomics and physiology with the molecular mechanisms of liquid-liquid phase separation in model membrane studies and the known changes in human dietary lipids over the last century to explain how changes in dietary lipids might reduce accessible membrane cholesterol and give rise to shortened cilia and defects in angiogenic signaling, which underlie placental dysfunction of preeclampsia. This model offers a possible mechanism for non-genetic dysfunction in cilia and proposes a proof-of-concept study to treat preeclampsia with dietary lipids.
Collapse
|
42
|
Correia-Branco A, Mei A, Pillai S, Jayaraman N, Sharma R, Paquette AG, Neradugomma NK, Benson C, Chavkin NW, Mao Q, Wallingford MC. SLC20a1/PiT-1 is required for chorioallantoic placental morphogenesis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2023; 5:e220018. [PMID: 36795703 PMCID: PMC10160536 DOI: 10.1530/vb-22-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/16/2023] [Indexed: 02/17/2023]
Abstract
The placenta mediates the transport of nutrients, such as inorganic phosphate (Pi), between the maternal and fetal circulatory systems. The placenta itself also requires high levels of nutrient uptake as it develops to provide critical support for fetal development. This study aimed to determine placental Pi transport mechanisms using in vitro and in vivo models. We observed that Pi (P33) uptake in BeWo cells is sodium dependent and that SLC20A1/Slc20a1 is the most highly expressed placental sodium-dependent transporter in mouse (microarray), human cell line (RT-PCR) and term placenta (RNA-seq), supporting that normal growth and maintenance of the mouse and human placenta requires SLC20A1/Slc20a1. Slc20a1 wild-type (Slc20a1+/+) and knockout (Slc20a1-/-) mice were produced through timed intercrosses and displayed yolk sac angiogenesis failure as expected at E10.5. E9.5 tissues were analyzed to test whether placental morphogenesis requires Slc20a1. At E9.5, the developing placenta was reduced in size in Slc20a1-/-. Multiple structural abnormalities were also observed in the Slc20a1-/-chorioallantois. We determined that monocarboxylate transporter 1 protein (MCT1+) cells were reduced in developing Slc20a1-/-placenta, confirming that Slc20a1 loss reduced trophoblast syncytiotrophoblast 1 (SynT-I) coverage. Next, we examined the cell type-specific Slc20a1 expression and SynT molecular pathways in silico and identified Notch/Wnt as a pathway of interest that regulates trophoblast differentiation. We further observed that specific trophoblast lineages express Notch/Wnt genes that associate with endothelial cell tip-and-stalk cell markers. In conclusion, our findings support that Slc20a1 mediates the symport of Pi into SynT cells, providing critical support for their differentiation and angiogenic mimicry function at the developing maternal-fetal interface.
Collapse
Affiliation(s)
- Ana Correia-Branco
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ariel Mei
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Sreehari Pillai
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Nirmala Jayaraman
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Radhika Sharma
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Alison G Paquette
- University of Washington, Department of Pediatrics, Seattle, Washington, USA
| | - Naveen K Neradugomma
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Ciara Benson
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Nicholas W Chavkin
- Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Mary C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Tan B, Zhou C, Zang X, Zhao X, Xiao L, Zeng J, Hong L, Wu Z, Gu T. Integrated Analysis of DNA Methylation and Gene Expression in Porcine Placental Development. Int J Mol Sci 2023; 24:ijms24065169. [PMID: 36982243 PMCID: PMC10049215 DOI: 10.3390/ijms24065169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Proper placental development is crucial for the conceptus to grow and survive, because the placenta is responsible for transporting nutrients and oxygen from the pregnant female to the developing fetus. However, the processes of placental morphogenesis and fold formation remain to be fully elucidated. In this study, we used whole-genome bisulfite sequencing and RNA sequencing to produce a global map of DNA methylation and gene expression changes in placentas from Tibetan pig fetuses 21, 28, and 35 days post-coitus. Substantial changes in morphology and histological structures at the uterine-placental interface were revealed via hematoxylin-eosin staining. Transcriptome analysis identified 3959 differentially expressed genes (DEGs) and revealed the key transcriptional properties in three stages. The DNA methylation level in the gene promoter was negatively correlated with gene expression. We identified a set of differentially methylated regions associated with placental developmental genes and transcription factors. The decrease in DNA methylation level in the promoter was associated with the transcriptional activation of 699 DEGs that were functionally enriched in cell adhesion and migration, extracellular matrix remodeling, and angiogenesis. Our analysis provides a valuable resource for understanding the mechanisms of DNA methylation in placental development. The methylation status of different genomic regions plays a key role in establishing transcriptional patterns from placental morphogenesis to fold formation.
Collapse
Affiliation(s)
- Baohua Tan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xupeng Zang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinming Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liyao Xiao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiekang Zeng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
44
|
Xiong Y, Fang Z, Dong J, Chen S, Mao J, Zhang W, Hai L, Zhou J, Wang X. Maternal circulating exosomal miR-185-5p levels as a predictive biomarker in patients with recurrent pregnancy loss. J Assist Reprod Genet 2023; 40:553-566. [PMID: 36745296 PMCID: PMC10033820 DOI: 10.1007/s10815-023-02733-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of this study was to explore the predictive role of microRNAs (miRNAs) from maternal serum exosomes in early recurrent pregnancy loss (RPL) and the related mechanism in early pregnancy. METHODS Maternal serum was collected from pregnant women with RPL history or women with ongoing pregnancy (OP); serum exosomes were extracted and identified. Differentially expressed (DE) miRNAs in exosomes were screened by RNA sequencing and further validated by qRT-PCR. Next, the predictive value of exosomal miRNA and the clinical indicators for subsequent miscarriage in RPL patients were evaluated. Additionally, we verified the regulatory relationship between miR-185-5p and vascular endothelial growth factor (VEGF) in decidual natural killer (dNK) cells by overloading or inhibiting the exosomal miR-185-5p level in trophoblast cells. RESULTS The miRNA sequencing revealed 43 DE miRNAs between OP and RPL patients. The five most significant DE miRNAs (miR-22-3p, miR-185-5p, miR-335-3p, miR-362-5p, and miR-378a-3p) were selected for identification, and miR-185-5p was increased in RPL patients. The area under curve (AUC) of the receiver operating characteristic was 0.925 when using miR-185-5p as a biomarker for subsequent miscarriage in RPL patients. In addition, miR-185-5p in exosomes secreted from HTR-8 cells reduces VEGF expression of dNK cells. CONCLUSIONS The current study, for the first time, successfully constructed the correlation between maternal circulating exosomal miR-185-5p expression pattern and RPL, which may be involved in the pathogenesis of RPL by downregulating the VEGFA of dNK cells and perturbing angiogenesis at the maternal-fetal interface.
Collapse
Affiliation(s)
- Yujing Xiong
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinyi Road, Baqiao District, Xi'An, Shaanxi Province, China
| | - Zheng Fang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinyi Road, Baqiao District, Xi'An, Shaanxi Province, China
| | - Jie Dong
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinyi Road, Baqiao District, Xi'An, Shaanxi Province, China
| | - Shuqiang Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinyi Road, Baqiao District, Xi'An, Shaanxi Province, China
| | - Jiaqin Mao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinyi Road, Baqiao District, Xi'An, Shaanxi Province, China
| | - Wanlin Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinyi Road, Baqiao District, Xi'An, Shaanxi Province, China
| | - Li Hai
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinyi Road, Baqiao District, Xi'An, Shaanxi Province, China
| | - Jing Zhou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinyi Road, Baqiao District, Xi'An, Shaanxi Province, China
| | - Xiaohong Wang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, 569 Xinyi Road, Baqiao District, Xi'An, Shaanxi Province, China.
| |
Collapse
|
45
|
Basak S, Duttaroy AK. Maternal PUFAs, Placental Epigenetics, and Their Relevance to Fetal Growth and Brain Development. Reprod Sci 2023; 30:408-427. [PMID: 35676498 DOI: 10.1007/s43032-022-00989-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFAs), especially omega-3 (n-3) and n-6 long-chain (LC) PUFAs, are indispensable for the fetus' brain supplied by the placenta. Despite being highly unsaturated, n-3 LCPUFA-docosahexaenoic acid (DHA) plays a protective role as an antioxidant in the brain. Deficiency of DHA during fetal development may cause irreversible damages in neurodevelopment programming. Dietary PUFAs can impact placental structure and functions by regulating early placentation processes, such as angiogenesis. They promote remodeling of uteroplacental architecture to facilitate increased blood flow and surface area for nutrient exchange. The placenta's fatty acid transfer depends on the uteroplacental vascular development, ensuring adequate maternal circulatory fatty acids transport to fulfill the fetus' rapid growth and development requirements. Maternal n-3 PUFA deficiency predominantly leads to placental epigenetic changes than other fetal developing organs. A global shift in DNA methylation possibly transmits epigenetic instability in developing fetuses due to n-3 PUFA deficiency. Thus, an optimal level of maternal omega-3 (n-3) PUFAs may protect the placenta's structural and functional integrity and allow fetal growth by controlling the aberrant placental epigenetic changes. This narrative review summarizes the recent advances and underpins the roles of maternal PUFAs on the structure and functions of the placenta and their relevance to fetal growth and brain development.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India.
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
46
|
Wu Z, Nie J, Wu D, Huang S, Chen J, Liang H, Hao X, Feng L, Luo H, Tan C. Dietary adenosine supplementation improves placental angiogenesis in IUGR piglets by up-regulating adenosine A2a receptor. ANIMAL NUTRITION 2023; 13:282-288. [PMID: 37168450 PMCID: PMC10165186 DOI: 10.1016/j.aninu.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Abnormal placental angiogenesis is associated with the occurrence of intrauterine growth restriction (IUGR) in piglets, and effective treatment strategies against this occurrence remain to be explored. Adenosine has been reported to play an important role in angiogenesis, but its role in placental angiogenesis is still unknown. Here, we investigated the effect of dietary adenosine supplementation on IUGR occurrence in piglets by analyzing the role of adenosine in placental angiogenesis for Normal and IUGR piglets. Specifically, 88 sows were allotted to 2 treatments (n = 44) and fed a basal diet supplemented with 0% or 0.1% of adenosine from day 65 of gestation until farrowing, followed by collecting the placental samples of Normal and IUGR piglets, and recording their characteristics. The results showed that adenosine supplementation increased the mean birth weight of piglets (P < 0.05) and placental efficiency (P < 0.05), while decreasing the IUGR piglet rate (P < 0.05). Expectedly, the placenta for IUGR neonates showed a down-regulated vascular density (P < 0.05) and angiogenesis as evidenced by the expression level of vascular cell adhesion molecule-1 (VCAM1) (P < 0.05). Notably, dietary adenosine supplementation promoted angiogenesis (P < 0.05) both in the Normal and IUGR placenta. More importantly, the expression level of adenosine A2a receptor (ADORA2A) was lower (P < 0.05) in the IUGR placenta than in Normal placenta, whereas adenosine treatment could significantly increase ADORA2A expression, and also had an interaction effect between factors IUGR and Ado. Collectively, placentae for IUGR piglets showed impaired angiogenesis and down-regulated expression level of ADORA2A, while dietary adenosine supplementation could activate ADORA2A expression, improve the placental angiogenesis, and ultimately decrease the occurrence of IUGR in piglets.
Collapse
Affiliation(s)
- Zifang Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianzhao Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huajin Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Li Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
- Corresponding authors.
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Corresponding authors.
| |
Collapse
|
47
|
Lin Z, Shi JL, Chen M, Zheng ZM, Li MQ, Shao J. CCL2: An important cytokine in normal and pathological pregnancies: A review. Front Immunol 2023; 13:1053457. [PMID: 36685497 PMCID: PMC9852914 DOI: 10.3389/fimmu.2022.1053457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
C-C motif ligand 2 (CCL2), also known as monocytic chemotactic protein 1 (MCP-1), is an integral chemotactic factor which recruits macrophages for the immune response. Together with its receptors (e.g., CCR2, ACKR1, and ACKR2), they exert noticeable influences on various diseases of different systems. At the maternal-fetal interface, CCL2 is detected to be expressed in trophoblasts, decidual tissue, the myometrium, and others. Meanwhile, existing reports have determined a series of physiological regulators of CCL2, which functions in maintaining normal recruitment of immunocytes, tissue remodeling, and angiogenesis. However, abnormal levels of CCL2 have also been reported to be associated with adverse pregnancy outcomes such as spontaneous abortion, preeclampsia and preterm labor. In this review, we concentrate on CCL2 expression at the maternal-fetal interface, as well as its precise regulatory mechanisms and classic signaling pathways, to reveal the multidimensional aspects of CCL2 in pregnancy.
Collapse
Affiliation(s)
- Zhi Lin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jia-Lu Shi
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Zi-Meng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- National Health Commision (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Jun Shao
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Huang S, Wu D, Hao X, Nie J, Huang Z, Ma S, Chen Y, Chen S, Wu J, Sun J, Ao H, Gao B, Tan C. Dietary fiber supplementation during the last 50 days of gestation improves the farrowing performance of gilts by modulating insulin sensitivity, gut microbiota, and placental function. J Anim Sci 2023; 101:skad021. [PMID: 36634095 PMCID: PMC9912709 DOI: 10.1093/jas/skad021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Our previous study found dietary konjac flour (KF) supplementation could improve insulin sensitivity and reproductive performance of sows, but its high price limits its application in actual production. This study aimed to investigate the effects of supplementation of a cheaper combined dietary fiber (CDF, using bamboo shoots fiber and alginate fiber to partially replace KF) from the last 50 days of gestation to parturition on farrowing performance, insulin sensitivity, gut microbiota, and placental function of gilts. Specifically, a total of 135 pregnant gilts with a similar farrowing time were blocked by backfat thickness and body weight on day 65 of gestation (G65d) and assigned to 1 of the 3 dietary treatment groups (n = 45 per group): basal diet (CON), basal diet supplemented with 2% KF or 2% CDF (CDF containing 15% KF, 60% bamboo shoots fiber, and 25% alginate fiber), respectively. The litter performance, insulin sensitivity and glucose tolerance parameters, placental vessel density, and short-chain fatty acids (SCFAs) levels in feces were assessed. The gut microbiota population in gilts during gestation was also assessed by 16S rDNA gene sequencing. Compared with CON, both KF and CDF treatments not only increased the piglet birth weight (P < 0.05) and piglet vitality (P < 0.01) but also decreased the proportion of piglets with birth weight ≤ 1.2 kg (P < 0.01) and increased the proportion of piglets with birth weight ≥ 1.5 kg (P < 0.01). In addition, KF or CDF supplementation reduced fasting blood insulin level (P < 0.05), homeostasis model assessment-insulin resistance (P < 0.05), serum hemoglobin A1c (P < 0.05), and the level of advanced glycation end products (P < 0.05) at G110d, and increased the placental vascular density (P < 0.05) at farrowing. Meanwhile, KF or CDF supplementation increased microbial diversity (P < 0.05) and SCFAs levels (P < 0.05) in feces at G110d. Notably, the production cost per live-born piglet was lower in CDF group (¥ 36.1) than KF group (¥ 41.3). Overall, KF or CDF supplementation from G65d to farrowing could improve the farrowing performance of gilts possibly by improving insulin sensitivity, regulating gut microbiota and metabolites, and increasing placental vascular density, with higher economic benefits and a similar effect for CDF vs. KF, suggesting the potential of CDF as a cheaper alternative to KF in actual production.
Collapse
Affiliation(s)
- Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuo Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yiling Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shengxing Chen
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Jianyao Wu
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Jihui Sun
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Huasun Ao
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Binghui Gao
- Joinsha Animal Health Products (XIAMEN) Co., Ltd., Xiamen, Fujian 361000, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
49
|
Pang B, Hu C, Li H, Nie X, Wang K, Zhou C, Yi H. Myeloidderived suppressor cells: Escorts at the maternal-fetal interface. Front Immunol 2023; 14:1080391. [PMID: 36817414 PMCID: PMC9932974 DOI: 10.3389/fimmu.2023.1080391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a novel heterogenous group of immunosuppressive cells derived from myeloid progenitors. Their role is well known in tumors and autoimmune diseases. In recent years, the role and function of MDSCs during reproduction have attracted increasing attention. Improving the understanding of their strong association with recurrent implantation failure, pathological pregnancy, and neonatal health has become a focus area in research. In this review, we focus on the interaction between MDSCs and other cell types (immune and non-immune cells) from embryo implantation to postpartum. Furthermore, we discuss the molecular mechanisms that could facilitate the therapeutic targeting of MDSCs. Therefore, this review intends to encourage further research in the field of maternal-fetal interface immunity in order to identify probable pathways driving the accumulation of MDSCs and to effectively target their ability to promote embryo implantation, reduce pathological pregnancy, and increase neonatal health.
Collapse
Affiliation(s)
- Bo Pang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Cardiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Cong Hu
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huimin Li
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Xinyu Nie
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Reproductive Medicine Center, Prenatal Diagnosis Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Keqi Wang
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China.,Cardiology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Zhou
- General Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
50
|
Bai G, Jiang X, Qin J, Zou Y, Zhang W, Teng T, Shi B, Sun H. Perinatal exposure to glyphosate-based herbicides impairs progeny health and placental angiogenesis by disturbing mitochondrial function. ENVIRONMENT INTERNATIONAL 2022; 170:107579. [PMID: 36265358 DOI: 10.1016/j.envint.2022.107579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Glyphosate-based herbicides (GBHs) are the most widely used pesticide worldwide and can provoke placental injury. However, whether and how GBHs damage angiogenesis in the placenta is not yet known. This work evaluated the safety of glyphosate on pregnant sows based on the limit level by governments and investigated the effects and mechanism of Low-GBHs (20 mg/kg) and High-GBHs (100 mg/kg) exposure on placental angiogenesis. Results showed that gestational exposure to GBHs decreased placental vessel density and cell multiplication by interfering with the expression of VEGFA, PLGF, VEGFr2 and Hand2 (indicators of angiogenesis), which may be in relation to oxidative stress-induced disorders of mitochondrial fission and fusion as well as the impaired function of the mitochondrial respiratory chain. Additionally, GBHs destroyed barrier function and nutrient transport in the placenta, and was accompanied by jejunum oxidative stress in newborn piglets. However, GBHs exposure had no significant differences on sow reproductive performance. As a natural antioxidant, betaine treatment protected placenta and newborn piglets against GBHs-induced damage. In conclusion, GBHs impaired placental angiogenesis and function and further damaged the health of postnatal progeny, these effects may be linked to mitochondrial dysfunction. Betaine treatment following glyphosate exposure provided modest relief.
Collapse
Affiliation(s)
- Guangdong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianwei Qin
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingbin Zou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Wentao Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Haoyang Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|