1
|
Stojko M, Spychał A, Nikel K, Kołodziej R, Zalejska-Fiolka J. The Impact of Diet on Lipoprotein(a) Levels. Life (Basel) 2024; 14:1403. [PMID: 39598201 PMCID: PMC11595969 DOI: 10.3390/life14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Lipoprotein(a) [Lp(a)] is recognized as an independent risk factor for cardiovascular diseases; however, the impact of fat-based diets on its levels remains unclear. OBJECTIVE This study aims to assess and analyze current evidence on the impact of various types of fat-based diets on Lp(a) levels. MATERIAL AND METHODS A comprehensive search of the PubMed database was conducted on 9 July 2024, focusing on clinical and randomized trials published since 2000. Out of 697 identified studies, 33 met the inclusion criteria and were selected for analysis. RESULTS The findings suggest that modifications in fat-based diets, particularly concerning the type and amount of consumed fats and fatty acids, can significantly influence plasma Lp(a) levels. Diets rich in unsaturated fats, including polyunsaturated and monounsaturated fatty acids, were associated with more favorable effects in lowering Lp(a) levels. In contrast, diets high in saturated fats were linked to elevated Lp(a) levels. However, these conclusions were not consistent across all studies considered. CONCLUSIONS This work highlights the importance of a personalized dietary approach, considering both genetic predispositions and dietary habits. While diet alone may not drastically alter Lp(a) levels due to their strong genetic determination, a comprehensive strategy involving a healthy diet rich in unsaturated fats, regular physical activity, and effective weight management is recommended to reduce the risk of cardiovascular diseases. Further research is needed to clarify the mechanisms through which different fats affect Lp(a) and to develop targeted dietary recommendations.
Collapse
Affiliation(s)
- Michał Stojko
- Scientific Society of the Department and Chair of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.); (K.N.)
| | - Aleksandra Spychał
- Scientific Society of the Department and Chair of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.); (K.N.)
| | - Kamil Nikel
- Scientific Society of the Department and Chair of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.); (K.N.)
| | - Rafał Kołodziej
- Students Scientific Association, Department of Immunology, Faculty of Medical Science, University of Rzeszów, 35001 Rzeszów, Poland;
| | - Jolanta Zalejska-Fiolka
- Department and Chair of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
2
|
Kunkler K, Gerlt S. Identity preserved plant molecular farming offers value-added opportunity for farmers. FRONTIERS IN PLANT SCIENCE 2024; 15:1434778. [PMID: 38962242 PMCID: PMC11220184 DOI: 10.3389/fpls.2024.1434778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
Bulk commodity row crop production in the United States is frequently subject to narrow profit margins, often complicated by weather, supply chains, trade, and other factors. Farmers seeking to increase profits and hedge against market volatility often seek to diversify their operations, including producing more lucrative or productive crop varieties. Recombinant plants producing animal or other non-native proteins (commonly referred to as plant molecular farming) present a value-added opportunity for row crop farmers. However, these crops must be produced under robust identity preserved systems to prevent comingling with bulk commodities to maintain the value for farmers, mitigate against market disruptions, and minimize any potential food, feed, or environmental risks.
Collapse
Affiliation(s)
- Kyle Kunkler
- Department of Government Affairs, American Soybean Association, Washington, DC, United States
| | - Scott Gerlt
- Department of Economics, American Soybean Association, St. Louis, MO, United States
| |
Collapse
|
3
|
Ali M, Joseph M, Alfaro-Wisaquillo MC, Quintana-Ospina GA, Patiño D, Vu T, Dean LL, Fallen B, Mian R, Taliercio E, Toomer O, Oviedo-Rondón EO. Effects of high oleic full-fat soybean meal on broiler live performance, carcass and parts yield, and fatty acid composition of breast fillets. Poult Sci 2024; 103:103399. [PMID: 38281331 PMCID: PMC10840106 DOI: 10.1016/j.psj.2023.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
The effects of high oleic oil full-fat (HO-FF) soybean meal (SBM) on broiler meat quality could lead to value-added food products. This experiment evaluated the effects of dietary normal oleic extruded expelled (NO-EE), normal oleic full-fat (NO-FF), or HO-FF SBM on live performance, carcass and parts yield, and breast fatty acid composition. Diets were formulated to be isoenergetic and isonitrogenous. A total of 540 Ross-708 male broilers were raised on floor pens with 18 broilers/pen and 10 replicates/treatment. Data were analyzed in a completely randomized design. Chickens were fed with a starter (0-14 d), grower (15-35 d), or a finisher diet (36-47 d) up to 47 d. Chickens were weighed at 7, 14, 35, and 47 d. At 48 d, 4 broilers per pen were processed. Breast samples were collected and evaluated for quality and fatty acid content. Broilers fed diets with NO-EE were heavier (P < 0.05) than chickens fed diets with full-fat SBM (NO-FF and HO-FF) at d 7, 14, 35 while feed conversion ratio (FCR) of NO-EE was best (P < 0.05) at 7 and 47 d. Carcass yield was also higher for broilers fed NO-EE than the other treatments. Diet did not affect parts yield, breast meat color, cooking, drip loss, white stripping, or SM quality parameters. More breast fillets without wooden breast (score 1) were observed (P < 0.05) for NO-FF than the other 2 treatments. The breast meat fatty acid profile (g fatty acid/100 g of all fatty acids) was significantly affected (P < 0.001) by diet. Broilers fed the HO-FF SBM diet had 54 to 86% more oleic acid, 72.5% to 2.2 times less linoleic acid, and reduced stearic and palmitic acid levels in the breast meat than NO-FF and NO-EE. In conclusion, feeding HO-FF to broilers enriched the oleic acid content of their breast meat while reducing the saturated fatty acid content relative to the NO-FF and NO-EE treatment groups.
Collapse
Affiliation(s)
- Muhammad Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael Joseph
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Danny Patiño
- Trouw Nutrition-Latin America, Ciudad de Guatemala, Guatemala
| | - Thien Vu
- Food Science & Market Quality and Handling Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Lisa L Dean
- Food Science & Market Quality and Handling Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Ben Fallen
- Soybean and Nitrogen Fixation Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Rouf Mian
- Soybean and Nitrogen Fixation Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Earl Taliercio
- Soybean and Nitrogen Fixation Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Ondulla Toomer
- Food Science & Market Quality and Handling Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | | |
Collapse
|
4
|
Desjardins LC, Rudkowska I. Novel high-oleic oil consumption for cardiometabolic health: a narrative review. Crit Rev Food Sci Nutr 2023; 64:10903-10911. [PMID: 38069579 DOI: 10.1080/10408398.2023.2283719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Several cardiometabolic disorders are risk factors for cardiovascular diseases (CVDs), and prevention is imperative in reducing the burden of these diseases on the healthcare system. Although novel high-oleic acid oils (HOOs) are now commonly used for high-temperature frying in both foodservice and the manufacture of processed foods, there are still limited data regarding their effects on CVD risk. This narrative review aims to clarify these effects by comparing HOOs with saturated fatty acid (SFA)-rich and polyunsaturated fatty acid (PUFA)-rich oils, first regarding their physicochemical properties and then concerning their effects on CVD risk factors using recent randomized controlled trials (RCTs). Overall, although HOOs are more stable than PUFA-rich oils, they do not have the same high-temperature stability as SFA-rich oils. RCTs demonstrate that HOO consumption improves the plasma lipid profile compared with SFA-rich oils while showing similar effects to those of PUFA-rich oils on CVD risk factors. Finally, the current literature lacks information on the actual consumption of HOOs, their long-term effects on cardiometabolic health, and the impact of prolonged heating of these oils on CVD risk factors. In sum, the short-term intake of HOOs may be beneficial for cardiometabolic health; however, more research is needed.
Collapse
Affiliation(s)
- Louis-Charles Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec, Canada
- Centre Nutrition, santé et société (NUTRISS), Laval University, Quebec, Canada
- School of Nutrition, Laval University, Quebec, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Quebec, Canada
- Department of Kinesiology, Laval University, Quebec, Canada
| |
Collapse
|
5
|
Mac Giollabhui N, Mischoulon D, Dunlop BW, Kinkead B, Schettler PJ, Liu RT, Okereke OI, Lamon-Fava S, Fava M, Rapaport MH. Individuals with depression exhibiting a pro-inflammatory phenotype receiving omega-3 polyunsaturated fatty acids experience improved motivation-related cognitive function: Preliminary results from a randomized controlled trial. Brain Behav Immun Health 2023; 32:100666. [PMID: 37503359 PMCID: PMC10368827 DOI: 10.1016/j.bbih.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Cognitive impairment related to major depressive disorder (MDD) is highly prevalent, debilitating and is lacking in effective treatments; dysregulated inflammatory physiology is a putative mechanism and may represent a therapeutic target. In depressed individuals exhibiting a pro-inflammatory phenotype who were enrolled in a 12-week randomized placebo-controlled trial of 3 doses of omega-3 polyunsaturated fatty acids (ω-3-FA), we examined: (i) the relationship between dysregulated inflammatory physiology and baseline cognitive impairment; (ii) improvement in cognitive impairment following treatment; and (iii) the association between baseline inflammatory biomarkers and change in cognitive impairment for those receiving treatment. We randomized 61 unmedicated adults aged 45.50 years (75% female) with DSM-5 MDD, body mass index >25 kg/m2, and C-reactive protein (CRP) ≥3.0 mg/L to three doses of ω-3-FA (1, 2, or 4 g daily) or matching placebo. Analyses focused on 45 study completers who had inflammatory biomarkers assessed [circulating CRP, interleukin-6 (IL-6) and tumor necrosis factor-α (TNFα) as well as lipopolysaccharide (LPS)-stimulated concentrations of IL-6 and TNFα in peripheral blood mononuclear cells (PBMC)] and on the highest dose ω-3-FA (4 g daily; n = 11) compared to placebo (n = 10). Impairment in motivational symptoms (e.g., alertness, energy, enthusiasm) and higher-order cognitive functions (e.g., word-finding, memory) were assessed by a validated self-report measure. Among all 45 participants at baseline, lower concentrations of IL-6 in LPS-stimulated PBMC were associated with greater impairment in higher-order cognitive functions (r = -0.35, p = .02). Based on hierarchical linear modeling, individuals receiving 4 g/day of ω-3-FA reported significant improvement in motivational symptoms compared to placebo (B = -0.07, p = .03); in the 4 g/day group, lower baseline concentrations of TNFα in LPS-stimulated PBMC were associated with significant improvement in motivational symptoms (Ρ = .71, p = .02) following treatment. In this exploratory clinical trial, daily supplementation with 4 g of ω-3-FA improves motivational symptoms in depressed individuals exhibiting an inflammatory phenotype.
Collapse
Affiliation(s)
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Becky Kinkead
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Pamela J. Schettler
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Richard T. Liu
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia I. Okereke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Hyman Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Chen DK, Metherel AH, Rezaei K, Parzanini C, Chen CT, Ramsden CE, Horowitz M, Faurot KR, MacIntosh B, Zamora D, Bazinet RP. Analysis of omega-3 and omega-6 polyunsaturated fatty acid metabolism by compound-specific isotope analysis in humans. J Lipid Res 2023; 64:100424. [PMID: 37572791 PMCID: PMC10507585 DOI: 10.1016/j.jlr.2023.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Natural variations in the 13C:12C ratio (carbon-13 isotopic abundance [δ13C]) of the food supply have been used to determine the dietary origin and metabolism of fatty acids, especially in the n-3 PUFA biosynthesis pathway. However, n-6 PUFA metabolism following linoleic acid (LNA) intake remains under investigation. Here, we sought to use natural variations in the δ13C signature of dietary oils and fatty fish to analyze n-3 and n-6 PUFA metabolism following dietary changes in LNA and eicosapentaenoic acid (EPA) + DHA in adult humans. Participants with migraine (aged 38.6 ± 2.3 years, 93% female, body mass index of 27.0 ± 1.1 kg/m2) were randomly assigned to one of three dietary groups for 16 weeks: 1) low omega-3, high omega-6 (H6), 2) high omega-3, high omega-6 (H3H6), or 3) high omega-3, low omega-6 (H3). Blood was collected at baseline, 4, 10, and 16 weeks. Plasma PUFA concentrations and δ13C were determined. The H6 intervention exhibited increases in plasma LNA δ13C signature over time; meanwhile, plasma LNA concentrations were unchanged. No changes in plasma arachidonic acid δ13C or concentration were observed. Participants on the H3H6 and H3 interventions demonstrated increases in plasma EPA and DHA concentration over time. Plasma δ13C-EPA increased in total lipids of the H3 group and phospholipids of the H3H6 group compared with baseline. Compound-specific isotope analysis supports a tracer-free technique that can track metabolism of dietary fatty acids in humans, provided that the isotopic signature of the dietary source is sufficiently different from plasma δ13C.
Collapse
Affiliation(s)
- Daniel K Chen
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Adam H Metherel
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Kimia Rezaei
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Camilla Parzanini
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Chuck T Chen
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Beth MacIntosh
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA; Metabolic and Nutrition Research Core, UNC Medical Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA; Department of Psychiatry, UNC School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Richard P Bazinet
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Hossain ME, Akter N, Bhowmik P, Islam MS, Sultan MN, Islam S. Animal protein-soybean oil-based broiler diet optimizes net profit at the expense of desirable ω-6 fatty acids from the breast muscle of the broiler chicken. J Anim Physiol Anim Nutr (Berl) 2023; 107:1216-1240. [PMID: 36971147 DOI: 10.1111/jpn.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Total 288 Ross-308-day-old male broiler chicks were randomly distributed into six dietary treatment groups in a two-way ANOVA with 2 × 3 factorial arrangements (two factors, i.e., dietary protein and energy having two types of protein, e.g., plant, animal and three different sources of energy, e.g., soybean oil, rice bran oil and sunflower oil) to justify if animal protein-soybean oil based broiler diet optimizes net profit at the expense of desirable ω-6 fatty acids in the breast muscle of the broiler chicken. Average daily feed intake (ADFI), final live weight (FLW), average daily gain (ADG), feed efficiency (FE), carcass characteristics, cardio-pulmonary morphometry, fatty acid profile of the breast muscle and cost-benefit analysis were measured. Results indicated that animal protein significantly increased 4.27% FLW, 6.13% ADFI, 4.31% ADG and 2.93% wing weight. Accordingly, soybean oil increased 4.76% FLW, 3.80% ADG and 1.36% dressing percentage at the expense of 12.07% proventriculus weight compared with sunflower oil. The generalized linear model identified no interaction effects of the sources of protein and energy on overall performance of the birds. Replacement of vegetable protein by animal protein decreased 14.01% ∑ω-3, 12.16% ∑ω-6 and 12.21% sum of polyunsaturated fatty acids (∑PUFA) and concomitantly increased 10.82% sum of saturated fatty acids (∑SFAs) in the breast muscle (Pectoralis major). Accordingly, replacement of sunflower oil by soybean oil decreased 29.17% ∑ω-3, 6.71% ∑ω-6, 11.62% sum of monounsaturated fatty acids (∑MUFAs) and 7.33% ∑PUFAs and concurrently increased 18.36% ∑SFAs in the breast muscle of the broiler birds. It was concluded that animal protein-soybean oil-based broiler diet optimized net profit at the expense of desirable ω-3 and ω-6 fatty acids in the breast muscle of the broiler chicken.
Collapse
Affiliation(s)
- Md Emran Hossain
- Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Nasima Akter
- Department of Dairy and Poultry Science, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Priunka Bhowmik
- Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Md Saiful Islam
- Poultry Feed Division, ACI Godrej Agrovet Private Limited, Bangladesh
| | - Md Nahid Sultan
- Department of Livestock Services, Kishoreganj, Nilphamari, Bangladesh
| | - Shilpi Islam
- Department of Animal Science and Nutrition, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, Bangladesh
| |
Collapse
|
8
|
Wang Q, Zhang H, Jin Q, Wang X. Effects of Dietary Plant-Derived Low-Ratio Linoleic Acid/Alpha-Linolenic Acid on Blood Lipid Profiles: A Systematic Review and Meta-Analysis. Foods 2023; 12:3005. [PMID: 37628004 PMCID: PMC10453764 DOI: 10.3390/foods12163005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This meta-analysis aimed to investigate the impact of low-ratio linoleic acid/alpha-linolenic acid (LA/ALA) supplementation on the blood lipid profiles in adults. We conducted a systematic search for relevant randomized controlled trials (RCTs) assessing the effects of low-ratio LA/ALA using databases including PubMed, Embase, Cochrane, and Web of Science, as well as screened related references up until February 2023. The intervention effects were analyzed adopting weighted mean difference (WMD) and 95% confidence interval (CI). The meta-analysis indicated that low-ratio LA/ALA supplementation decreased total cholesterol (TC, WMD: -0.09 mmol/L, 95% CI: -0.17, -0.01, p = 0.031, I2 = 33.2%), low-density lipoprotein cholesterol (LDL-C, WMD: -0.08 mmol/L, 95% CI: -0.13, -0.02, p = 0.007, I2 = 0.0%), and triglycerides (TG, WMD: -0.05 mmol/L, 95% CI: -0.09, 0.00, p = 0.049, I2 = 0.0%) concentrations. There was no significant effect on high-density lipoprotein cholesterol concentration (HDL-C, WMD: -0.00 mmol/L, 95% CI: -0.02, 0.02, p = 0.895, I2 = 0.0%). Subgroup analysis showed that low-ratio LA/ALA supplementation significantly decreased plasma TC, LDL-C, and TG concentrations when the intervention period was less than 12 weeks. In the subgroup analysis, a noteworthy decrease in both TC and LDL-C levels was observed in individuals receiving low-ratio LA/ALA supplementation in the range of 1-5. These findings suggest that this specific range could potentially be effective in reducing lipid profiles. The findings of this study provide additional evidence supporting the potential role of low-ratio LA/ALA supplementation in reducing TC, LDL-C, and TG concentrations, although no significant impact on HDL-C was observed.
Collapse
Affiliation(s)
| | | | | | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Huang NK, Lichtenstein AH, Matuszek G, Matthan NR. Comparison of Plasma Metabolome Response to Diets Enriched in Soybean and Partially-Hydrogenated Soybean Oil in Moderately Hypercholesterolemic Adults-A Pilot Study. Metabolites 2023; 13:474. [PMID: 37110133 PMCID: PMC10140885 DOI: 10.3390/metabo13040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Partially-hydrogenated fat/trans fatty acid intake has been associated with adverse effects on cardiometabolic risk factors. Comparatively unexplored is the effect of unmodified oil relative to partially-hydrogenated fat on the plasma metabolite profile and lipid-related pathways. To address this gap, we conducted secondary analyses using a subset of samples randomly selected from a controlled dietary intervention trial involving moderately hypercholesterolemic individuals. Participants (N = 10, 63 ± 8 y, BMI, 26.2 ± 4.2 kg/m2, LDL-C, 3.9 ± 0.5 mmol/L) were provided with diets enriched in soybean oil (SO) and partially-hydrogenated soybean oil (PHSO). Plasma metabolite concentrations were determined using an untargeted approach and pathway analysis using LIPIDMAPS. Data were assessed using a volcano plot, receiver operating characteristics curve, partial least square-discrimination analysis and Pearson correlations. Among the known metabolites higher in plasma after the PHSO diet than the SO diet, the majority were phospholipids (53%) and di- and triglycerides (DG/TG, 34%). Pathway analysis indicated upregulation of phosphatidylcholine synthesis from DG and phosphatidylethanolamine. We identified seven metabolites (TG_56:9, TG_54:8, TG_54:7, TG_54:6, TG_48:5, DG_36:5 and benproperine) as potential biomarkers for PHSO intake. These data indicate that TG-related metabolites were the most affected lipid species, and glycerophospholipid biosynthesis was the most active pathway in response to PHSO compared to SO intake.
Collapse
Affiliation(s)
- Neil K. Huang
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Alice H. Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Gregory Matuszek
- Bionformatics Core Unit, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | - Nirupa R. Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| |
Collapse
|
10
|
Messina M, Duncan A, Messina V, Lynch H, Kiel J, Erdman JW. The health effects of soy: A reference guide for health professionals. Front Nutr 2022; 9:970364. [PMID: 36034914 PMCID: PMC9410752 DOI: 10.3389/fnut.2022.970364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Soy is a hotly debated and widely discussed topic in the field of nutrition. However, health practitioners may be ill-equipped to counsel clients and patients about the use of soyfoods because of the enormous, and often contradictory, amount of research that has been published over the past 30 years. As interest in plant-based diets increases, there will be increased pressure for practitioners to gain a working knowledge of this area. The purpose of this review is to provide concise literature summaries (400-500 words) along with a short perspective on the current state of knowledge of a wide range of topics related to soy, from the cholesterol-lowering effects of soy protein to the impact of isoflavones on breast cancer risk. In addition to the literature summaries, general background information on soyfoods, soy protein, and isoflavones is provided. This analysis can serve as a tool for health professionals to be used when discussing soyfoods with their clients and patients.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Alison Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Heidi Lynch
- Kinesiology Department, Point Loma Nazarene University, San Diego, CA, United States
| | - Jessica Kiel
- Scientific and Clinical Affairs, Medifast Inc., Baltimore, MD, United States
| | - John W. Erdman
- Division of Nutritional Sciences and Beckman Institute, Department of Food Science and Human Nutrition, University of Illinois at Urbana/Champaign, Urbana, IL, United States
| |
Collapse
|
11
|
Yang ZH, Nill K, Takechi-Haraya Y, Playford MP, Nguyen D, Yu ZX, Pryor M, Tang J, Rojulpote KV, Mehta NN, Wen H, Remaley AT. Differential Effect of Dietary Supplementation with a Soybean Oil Enriched in Oleic Acid versus Linoleic Acid on Plasma Lipids and Atherosclerosis in LDLR-Deficient Mice. Int J Mol Sci 2022; 23:ijms23158385. [PMID: 35955518 PMCID: PMC9369370 DOI: 10.3390/ijms23158385] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Both monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) play important roles in lipid metabolism, and diets enriched with either of these two fatty acids are associated with decreased cardiovascular risk. Conventional soybean oil (CSO), a common food ingredient, predominantly contains linoleic acid (LA; C18:2), a n-6 PUFA. Recently, a modified soybean oil (MSO) enriched in oleic acid (C18:1), a n-9 MUFA, has been developed, because of its improved chemical stability to oxidation. However, the effect of the different dietary soybean oils on cardiovascular disease remains unknown. To test whether diets rich in CSO versus MSO would attenuate atherosclerosis development, LDL receptor knock-out (LDLR-KO) mice were fed a Western diet enriched in saturated fatty acids (control), or a Western diet supplemented with 5% (w/w) LA-rich CSO or high-oleic MSO for 12 weeks. Both soybean oils contained a similar amount of linolenic acid (C18:3 n-3). The CSO diet decreased plasma lipid levels and the cholesterol content of VLDL and LDL by approximately 18% (p < 0.05), likely from increased hepatic levels of PUFA, which favorably regulated genes involved in cholesterol metabolism. The MSO diet, but not the CSO diet, suppressed atherosclerotic plaque size compared to the Western control diet (Control Western diet: 6.5 ± 0.9%; CSO diet: 6.4 ± 0.7%; MSO diet: 4.0 ± 0.5%) (p < 0.05), independent of plasma lipid level changes. The MSO diet also decreased the ratio of n-6/n-3 PUFA in the liver (Control Western diet: 4.5 ± 0.2; CSO diet: 6.1 ± 0.2; MSO diet: 2.9 ± 0.2) (p < 0.05), which correlated with favorable hepatic gene expression changes in lipid metabolism and markers of systemic inflammation. In conclusion, supplementation of the Western diet with MSO, but not CSO, reduced atherosclerosis development in LDLR-KO mice independent of changes in plasma lipids.
Collapse
Affiliation(s)
- Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
- Correspondence: ; Tel.: +1-301-496-6220
| | - Kimball Nill
- Minnesota Soybean Research & Promotion Council, 1020 Innovation Lane, Mankato, MN 56001, USA;
| | - Yuki Takechi-Haraya
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA; (M.P.P.); (N.N.M.)
| | - David Nguyen
- Laboratory of Imaging Physics, NHLBI, NIH, Bethesda, MD 20892, USA; (D.N.); (H.W.)
| | - Zu-Xi Yu
- Pathology Core, NHLBI, NIH, Bethesda, MD 20892, USA;
| | - Milton Pryor
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
| | - Jingrong Tang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
| | - Krishna Vamsi Rojulpote
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA; (M.P.P.); (N.N.M.)
| | - Han Wen
- Laboratory of Imaging Physics, NHLBI, NIH, Bethesda, MD 20892, USA; (D.N.); (H.W.)
| | - Alan T. Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive MSC 1666, Bethesda, MD 20892, USA; (Y.T.-H.); (M.P.); (J.T.); (K.V.R.); (A.T.R.)
| |
Collapse
|
12
|
Tanprasertsuk J, Scott TM, Barbey AK, Barger K, Wang XD, Johnson MA, Poon LW, Vishwanathan R, Matthan NR, Lichtenstein AH, Ferland G, Johnson EJ. Carotenoid-Rich Brain Nutrient Pattern Is Positively Correlated With Higher Cognition and Lower Depression in the Oldest Old With No Dementia. Front Nutr 2021; 8:704691. [PMID: 34268331 PMCID: PMC8275828 DOI: 10.3389/fnut.2021.704691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Healthy dietary patterns are related to better cognitive health in aging populations. While levels of individual nutrients in neural tissues are individually associated with cognitive function, the investigation of nutrient patterns in human brain tissue has not been conducted. Methods: Brain tissues were acquired from frontal and temporal cortices of 47 centenarians from the Georgia Centenarian Study. Fat-soluble nutrients (carotenoids, vitamins A, E, K, and fatty acids [FA]) were measured and averaged from the two brain regions. Nutrient patterns were constructed using principal component analysis. Cognitive composite scores were constructed from cognitive assessment from the time point closest to death. Dementia status was rated by Global Deterioration Scale (GDS). Pearson's correlation coefficients between NP scores and cognitive composite scores were calculated controlling for sex, education, hypertension, diabetes, and APOE ε4 allele. Result: Among non-demented subjects (GDS = 1-3, n = 23), a nutrient pattern higher in carotenoids was consistently associated with better performance on global cognition (r = 0.38, p = 0.070), memory (r = 0.38, p = 0.073), language (r = 0.42, p = 0.046), and lower depression (r = -0.40, p = 0.090). The findings were confirmed with univariate analysis. Conclusion: Both multivariate and univariate analyses demonstrate that brain nutrient pattern explained mainly by carotenoid concentrations is correlated with cognitive function among subjects who had no dementia. Investigation of their synergistic roles on the prevention of age-related cognitive impairment remains to be performed.
Collapse
Affiliation(s)
- Jirayu Tanprasertsuk
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Tammy M. Scott
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Aron K. Barbey
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Mary Ann Johnson
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE, United States
| | - Leonard W. Poon
- Institute of Gerontology, College of Public Health, University of Georgia, Athens, GA, United States
| | - Rohini Vishwanathan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Nirupa R. Matthan
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Alice H. Lichtenstein
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Guylaine Ferland
- Département de Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Elizabeth J. Johnson
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| |
Collapse
|
13
|
Messina M, Shearer G, Petersen K. Soybean oil lowers circulating cholesterol levels and coronary heart disease risk, and has no effect on markers of inflammation and oxidation. Nutrition 2021; 89:111343. [PMID: 34171740 DOI: 10.1016/j.nut.2021.111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
To reduce risk of coronary heart disease, replacement of saturated fats (SFAs) with polyunsaturated fats (PUFA) is recommended. Strong and concordant evidence supports this recommendation, but controversy remains. Some observational studies have reported no association between SFAs and coronary heart disease, likely because of failure to account for the macronutrient replacing SFAs, which determines the direction and strength of the observed associations. Controversy also persists about whether ω-6 (nω-6) PUFA or a high dietary ratio of nω-6 to ω-3 (nω-3) fatty acids leads to proinflammatory and pro-oxidative states. These issues are relevant to soybean oil, which is the leading edible oil consumed globally and in the United States. Soybean oil accounts for over 40% of the US intake of both essential fatty acids. We reviewed clinical and epidemiologic literature to determine the effects of soybean oil on cholesterol levels, inflammation, and oxidation. Clinical evidence indicates that soybean oil does not affect inflammatory biomarkers, nor does it increase oxidative stress. On the other hand, it has been demonstrated that when dietary SFAs are replaced with soybean oil, blood cholesterol levels are lowered. Regarding the nω-6:nω-3 dietary ratio, health agencies have consistently rejected the importance of this ratio, instead emphasizing the importance of consuming sufficient amounts of each type of fat. Thus, several lines of evidence indicate that soybean oil can positively contribute to overall health and reduction of risk of coronary heart disease.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., Pittsfield, Massachusetts, USA.
| | - Gregory Shearer
- Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristina Petersen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
14
|
Baer DJ, Henderson T, Gebauer SK. Consumption of High-Oleic Soybean Oil Improves Lipid and Lipoprotein Profile in Humans Compared to a Palm Oil Blend: A Randomized Controlled Trial. Lipids 2021; 56:313-325. [PMID: 33596340 PMCID: PMC8248317 DOI: 10.1002/lipd.12298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Partially hydrogenated oils (PHO) have been removed from the food supply due to adverse effects on risk for coronary heart disease (CHD). High-oleic soybean oils (HOSBO) are alternatives that provide functionality for different food applications. The objective of this study was to determine how consumption of diets containing HOSBO compared to other alternative oils, with similar functional properties, modifies LDL cholesterol (LDLc) and other risk factors and biomarkers of CHD. A triple-blind, crossover, randomized controlled trial was conducted in humans (n = 60) with four highly-controlled diets containing (1) HOSBO, (2) 80:20 blend of HOSBO and fully hydrogenated soybean oil (HOSBO+FHSBO), (3) soybean oil (SBO), and (4) 50:50 blend of palm oil and palm kernel oil (PO + PKO). Before and after 29 days of feeding, lipids/lipoproteins, blood pressure, body composition, and markers of inflammation, oxidation, and hemostasis were measured. LDLc, apolipoprotein B (apoB), NonHDL-cholesterol (HDLc), ratios of total cholesterol (TC)-to-HDLc and LDLc-to-HDL cholesterol, and LDL particle number and small LDL particles concentration were lower after HOSBO and HOSBO+FHSBO compared to PO (specific comparisons p < 0.05). Other than TC:HDL, there were no differences in lipid/lipoprotein markers when comparing HOSBO+FHSBO with HOSBO. LDLc and apoB were higher after HOSBO compared to SBO (p < 0.05). PO + PKO increased HDLc (p < 0.001) and apolipoprotein AI (p < 0.03) compared to HOSBO and HOSBO+FHSBO. With the exception of lipid hydroperoxides, dietary treatments did not affect other CHD markers. HOSBO, and blends thereof, is a PHO replacement that results in more favorable lipid/lipoprotein profiles compared to PO + PKO (an alternative fat with similar functional properties).
Collapse
Affiliation(s)
- David J. Baer
- United States Department of AgricultureBeltsville Human Nutrition Research Center10300 Baltimore Avenue, BARC‐East, Building 307B, Room 213, BeltsvilleMD20705USA
| | - Theresa Henderson
- United States Department of AgricultureBeltsville Human Nutrition Research Center10300 Baltimore Avenue, BARC‐East, Building 307B, Room 213, BeltsvilleMD20705USA
| | - Sarah K. Gebauer
- United States Department of AgricultureBeltsville Human Nutrition Research Center10300 Baltimore Avenue, BARC‐East, Building 307B, Room 213, BeltsvilleMD20705USA
- Department of Health and Human ServicesUnited States Food and Drug Administration, Center for Food Safety and Applied NutritionCollege ParkMD 20740USA; study was conducted while employed at USDA
| |
Collapse
|
15
|
Wang Q, Liu R, Chang M, Zhang H, Jin Q, Wang X. Dietary oleic acid supplementation and blood inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 62:2508-2525. [PMID: 33305589 DOI: 10.1080/10408398.2020.1854673] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The aim of this systematic review and meta-analysis was to analyze data from randomized controlled trials (RCTs) assessing the effects of oleic acid (OA) supplementation on blood inflammatory markers in adults. PubMed, EMBASE and Cochrane Library databases were systematically searched from 1950 to 2019, with adults and a minimum intervention duration of 4 weeks. The effect size was estimated, adopting standardized mean difference (SMD) and 95% confidence interval (CI). Of the 719 identified studies, thirty-one RCTs involving 1634 subjects were eligible. The results of this study revealed that increasing OA supplementation significantly reduced C-reactive protein (CRP) (SMD: -0.11, 95% CI: -0.21, -0.01, P = 0.038). However, dietary OA consumption did not significantly affect tumor necrosis factor (TNF) (SMD: -0.05, 95% CI: -0.19, 0.10, P = 0.534), interleukin 6 (IL-6) (SMD: 0.01, 95% CI: -0.10, 0.13, P = 0.849), fibrinogen (SMD: 0.08, 95% CI: -0.16, 0.31, P = 0.520), plasminogen activator inhibitor type 1 (PAI-1) activity (SMD: -0.11, 95% CI: -0.34, 0.12, P = 0.355), soluble intercellular adhesion molecule-1 (sICAM-1) (SMD: -0.06, 95% CI: -0.26, 0.13, P = 0.595) or soluble vascular cell adhesion molecule-1 (sVCAM-1) (SMD: -0.04, 95% CI: -0.27, 0.18, P = 0.701). Overall, the meta-analysis demonstrated that dietary OA supplementation significantly reduced CRP, yet did not affect other inflammatory markers including TNF, IL-6, fibrinogen, PAI-1 activity, sICAM-1or sVCAM-1.
Collapse
Affiliation(s)
- Qiong Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Rodríguez-Morató J, Galluccio J, Dolnikowski GG, Lichtenstein AH, Matthan NR. Comparison of the Postprandial Metabolic Fate of U- 13C Stearic Acid and U- 13C Oleic Acid in Postmenopausal Women. Arterioscler Thromb Vasc Biol 2020; 40:2953-2964. [PMID: 32998517 DOI: 10.1161/atvbaha.120.315260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Compare the postprandial fatty acid metabolism of isotopically labeled stearate (U-13C18:0) and oleate (U-13C18:1). Approach and Results: In conjunction with a randomized-controlled crossover trial, 6 hypercholesterolemic postmenopausal women (≥50 years; body mass index: 25.6±3.0 kg/m2; LDL [low-density lipoprotein]-cholesterol ≥110 mg/dL) consumed isocaloric diets enriched in 18:0 or 18:1 (10%-15% E) for 5 weeks each. On day 1 of week 5, following a 12-hour fast, participants receive their experimental diet divided into 13 hourly meals beginning at 8 am. U-13C18:0 or U-13C18:1 was incorporated into the 1:00 pm meal (1.0 mg/kg body weight). Serial blood and breath samples were collected over 12 hours and fasting samples at 24 and 48 hours. Plasma and lipid subfraction fatty acid profiles were assessed by gas chromatography-flame ionization detector, isotope-enrichment by liquid chromatography time-of-flight mass spectrometry, and fatty acid oxidation rate (expired 13CO2) by isotope ratio mass spectrometry. Both diets resulted in similar plasma LDL-cholesterol concentrations. Kinetic curves showed that U-13C18:0 had a higher plasma area under the curve (66%), lower plasma clearance rate (-46%), and a lower cumulative oxidation rate (-34%) than U-13C18:1. Three labeled plasma metabolites of U-13C18:0 were detected: 13C16:0, 13C16:1, and 13C18:1. No plasma metabolites of U-13C18:1 were detected within the study time-frame. Higher incorporation of 18:0 in cholesteryl ester and triglyceride fractions was observed on the 18:0 compared with the 18:1 diet. CONCLUSIONS The neutrality of 18:0 on plasma LDL-cholesterol concentrations is not attributable to a single factor. Compared with 18:1, 18:0 had higher plasma area under the curve because of lower clearance and oxidation rates, underwent both a direct and a multistage conversion to 18:1, and was preferentially incorporated into cholesteryl esters and triglycerides.
Collapse
Affiliation(s)
- Jose Rodríguez-Morató
- Cardiovascular and Mass Spectrometry Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.R.-M., J.G., G.G.D., A.H.L., N.R.M.).,Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain (J.R.-M.)
| | - Jean Galluccio
- Cardiovascular and Mass Spectrometry Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.R.-M., J.G., G.G.D., A.H.L., N.R.M.)
| | - Gregory G Dolnikowski
- Cardiovascular and Mass Spectrometry Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.R.-M., J.G., G.G.D., A.H.L., N.R.M.)
| | - Alice H Lichtenstein
- Cardiovascular and Mass Spectrometry Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.R.-M., J.G., G.G.D., A.H.L., N.R.M.)
| | - Nirupa R Matthan
- Cardiovascular and Mass Spectrometry Laboratories, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.R.-M., J.G., G.G.D., A.H.L., N.R.M.)
| |
Collapse
|
17
|
Segura Munoz RR, Quach T, Gomes-Neto JC, Xian Y, Pena PA, Weier S, Pellizzon MA, Kittana H, Cody LA, Geis AL, Heck K, Schmaltz RJ, Bindels LB, Cahoon EB, Benson AK, Clemente TE, Ramer-Tait AE. Stearidonic-Enriched Soybean Oil Modulates Obesity, Glucose Metabolism, and Fatty Acid Profiles Independently of Akkermansia muciniphila. Mol Nutr Food Res 2020; 64:e2000162. [PMID: 32656952 PMCID: PMC8606245 DOI: 10.1002/mnfr.202000162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Indexed: 11/06/2022]
Abstract
SCOPE Previous studies have suggested that diets rich in omega-3 and low in omega-6 long-chain polyunsaturated fatty acids (PUFAs) can limit the development of metabolic syndrome (MetS). Transgenic soybeans yielding oils enriched for omega-3 PUFAs represent a new and readily-available option for incorporating omega-3 PUFAs into diets to provide health benefits. METHODS AND RESULTS Transgenic soybean oils, enriched for either stearidonic acid (SDA) or eicosapentaenoic acid (EPA), are incorporated into diets to test their effects on limiting the development of MetS in a mouse model of diet-induced obesity. Supplementation with SDA- but not EPA-enriched oils improved features of MetS compared to feeding a control wild-type oil. Because previous studies have linked the gut microorganism Akkermansia muciniphila to the metabolic effects of feeding omega-3 PUFAs, the causal contribution of A. muciniphila to mediating the metabolic benefits provided by SDA-enriched diets is investigated. Although A. muciniphila is not required for SDA-induced metabolic improvements, this microorganism does modulate levels of saturated and mono-unsaturated fatty acids in host adipose tissues. CONCLUSION Together, these findings support the utilization of SDA-enriched diets to modulate weight gain, glucose metabolism, and fatty acid profiles of liver and adipose tissue.
Collapse
Affiliation(s)
- Rafael R Segura Munoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Truyen Quach
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - João C Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yibo Xian
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Pamela A Pena
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Steven Weier
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | | | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Liz A Cody
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Abby L Geis
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, 72916, USA
| | - Kari Heck
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert J Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Laure B Bindels
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Andrew K Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Tom Elmo Clemente
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
18
|
Tanprasertsuk J, Mohn ES, Matthan NR, Lichtenstein AH, Barger K, Vishwanathan R, Johnson MA, Poon LW, Johnson EJ. Serum Carotenoids, Tocopherols, Total n-3 Polyunsaturated Fatty Acids, and n-6/n-3 Polyunsaturated Fatty Acid Ratio Reflect Brain Concentrations in a Cohort of Centenarians. J Gerontol A Biol Sci Med Sci 2019; 74:306-314. [PMID: 29893813 DOI: 10.1093/gerona/gly125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 02/01/2023] Open
Abstract
Investigating the role of nutrition on cognitive health is challenging. Human brain tissue is inaccessible in living humans and is often limited in deceased individuals. Therefore, biomarkers of brain nutrient levels are of interest. The objective of this study was to characterize the relationships between levels of fat-soluble nutrients in serum and matched brain tissues from the frontal and temporal cortices of participants in the Georgia Centenarian Study (n = 47). After adjusting for sex, race, cognitive status (Global Deterioration Scale), body mass index, and presence of hypertension and/or diabetes, there was a significant relationship (p < 0.05) between serum and brain levels of carotenoids (lutein, zeaxanthin, cryptoxanthin, β-carotene), α-, γ-tocopherols, total n-3 polyunsaturated fatty acids (PUFAs), and n-6/n-3 PUFA ratio. The relationship between serum and brain total n-6 PUFAs was inconsistent among the two brain regions. No significant relationship was identified between serum and brain retinol, total saturated fatty acid, total monounsaturated fatty acid, and trans-fatty acid levels. These findings suggest that serum carotenoids, tocopherols, total n-3 PUFAs, and n-6/n-3 PUFA ratio reflect levels in brain and can be used as surrogate biomarkers in older population.
Collapse
Affiliation(s)
- Jirayu Tanprasertsuk
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Emily S Mohn
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Rohini Vishwanathan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| | - Mary Ann Johnson
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia.,Institute of Gerontology, University of Georgia, Athens, Georgia
| | - Leonard W Poon
- Institute of Gerontology, University of Georgia, Athens, Georgia
| | - Elizabeth J Johnson
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts
| |
Collapse
|
19
|
Walker ME, Matthan NR, Goldbaum A, Meng H, Lamon-Fava S, Lakshman S, Jang S, Molokin A, Solano-Aguilar G, Urban JF, Lichtenstein AH. Dietary patterns influence epicardial adipose tissue fatty acid composition and inflammatory gene expression in the Ossabaw pig. J Nutr Biochem 2019; 70:138-146. [PMID: 31202119 PMCID: PMC6958552 DOI: 10.1016/j.jnutbio.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Epicardial adipose tissue (EAT) inflammation is implicated in the development and progression of coronary atherosclerosis. Dietary saturated and polyunsaturated fatty acids (SFAs and PUFA) can influence adipose tissue inflammation. We investigated the influence of dietary patterns, with emphasis on dietary fat type, and statin therapy, on EAT fatty acid (FA) composition and inflammatory gene expression. Thirty-two Ossabaw pigs were fed isocaloric amounts of a Heart Healthy (high in unsaturated fat) or Western (high in saturated fat) diets +/- atorvastatin for 6 months. EAT FA composition reflected dietary fat composition. There was no significant effect of atorvastatin on EAT FA composition. Total and long-chain SFAs were positively associated with inflammatory signaling (TLR2) and a gene involved in lipid mediator biosynthesis (PTGS2) (P<.0003). Medium-chain SFAs capric and lauric acids were negatively associated with IL-6 (all P<.0003). N-6 and n-3 PUFAs were positively associated with anti-inflammatory signaling genes (PPARG, FFAR4 and ADIPOQ) and long-chain n-3 PUFAs were positively associated with a gene involved in lipid mediator biosynthesis (ALOX5) (all P<.0003). These data indicate that dietary patterns, differing in fat type, influence EAT FA composition. Associations between EAT SFAs, PUFAs, and expression of genes related to inflammation provide a link between dietary quality and EAT inflammation.
Collapse
Affiliation(s)
- Maura E Walker
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Audrey Goldbaum
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Huicui Meng
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| | - Sukla Lakshman
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Saebyeol Jang
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Aleksey Molokin
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Gloria Solano-Aguilar
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Joseph F Urban
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705.
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111.
| |
Collapse
|
20
|
Meng H, Matthan NR, Wu D, Li L, Rodríguez-Morató J, Cohen R, Galluccio JM, Dolnikowski GG, Lichtenstein AH. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women-randomized crossover trial. Am J Clin Nutr 2019; 110:305-315. [PMID: 31179489 DOI: 10.1093/ajcn/nqz095] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Direct comparisons between SFAs varying in chain length, specifically palmitic acid (16:0) and stearic acid (18:0), relative to the latter's metabolic product, oleic acid (18:1), on cardiometabolic risk factors are limited. OBJECTIVE The aim of this study was to determine the relative comparability of diets enriched in palmitic acid, stearic acid, and oleic acid on inflammation and coagulation markers, T lymphocyte proliferation/ex-vivo cytokine secretion, plasma cardiometabolic risk factors, and fecal bile acid concentrations. METHODS Hypercholesterolemic postmenopausal women (n = 20, mean ± SD age 64 ± 7 y, BMI 26.4 ± 3.4 kg/m2, LDL cholesterol ≥ 2.8 mmol/L) were provided with each of 3 diets [55% energy (%E) carbohydrate, 15%E protein, 30%E fat, with ∼50% fat contributed by palmitic acid, stearic acid, or oleic acid in each diet; 5 wk/diet phase] using a randomized crossover design with 2-wk washouts between phases. Outcome measures were assessed at the end of each phase. RESULTS Fasting LDL-cholesterol and non-HDL-cholesterol concentrations were lower after the stearic acid and oleic acid diets than the palmitic acid diet (all P < 0.01). Fasting HDL-cholesterol concentrations were lower after the stearic acid diet than the palmitic acid and oleic acid diets (P < 0.01). The stearic acid diet resulted in lower lithocholic acid (P = 0.01) and total secondary bile acid (SBA) concentrations (P = 0.04) than the oleic acid diet. All other outcome measures were similar between diets. Lithocholic acid concentrations were positively correlated with fasting LDL-cholesterol concentrations (r = 0.33; P = 0.011). Total SBA, lithocholic acid, and deoxycholic acid concentrations were negatively correlated with fasting HDL cholesterol (r = -0.51 to -0.44; P < 0.01) concentrations and positively correlated with LDL cholesterol:HDL cholesterol (r = 0.37-0.54; P < 0.01) ratios. CONCLUSIONS Dietary stearic acid and oleic acid had similar effects on fasting LDL-cholesterol and non-HDL-cholesterol concentrations and more favorable ones than palmitic acid. Unlike oleic acid, the hypocholesterolemic effect of stearic acid may be mediated by inhibition of intestinal hydrophobic SBA synthesis. These findings add to the data suggesting there should be a reassessment of current SFA dietary guidance and Nutrient Facts panel labeling.This trial was registered at clinicaltrials.gov as NCT02145936.
Collapse
Affiliation(s)
- Huicui Meng
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lijun Li
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Jose Rodríguez-Morató
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Rebecca Cohen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Jean M Galluccio
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Gregory G Dolnikowski
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
21
|
Plasma Phospholipid Fatty Acids and Coronary Heart Disease Risk: A Matched Case-Control Study within the Women's Health Initiative Observational Study. Nutrients 2019; 11:nu11071672. [PMID: 31330892 PMCID: PMC6682955 DOI: 10.3390/nu11071672] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
Background and Aims: The association of fatty acids with coronary heart disease (CHD) has been examined, mainly through dietary measurements, and has generated inconsistent results due to measurement error. Large observational studies and randomized controlled trials have shown that plasma phospholipid fatty acids (PL-FA), especially those less likely to be endogenously synthesized, are good biomarkers of dietary fatty acids. Thus, PL-FA profiles may better predict CHD risk with less measurement error. Methods: We performed a matched case-control study of 2428 postmenopausal women nested in the Women’s Health Initiative Observational Study. Plasma PL-FA were measured using gas chromatography and expressed as molar percentage (moL %). Multivariable conditional logistic regression was used to calculate odds ratios (95% CIs) for CHD associated with 1 moL % change in PL-FA. Results: Higher plasma PL long-chain saturated fatty acids (SFA) were associated with increased CHD risk, while higher n-3 polyunsaturated fatty acids (PUFA) were associated with decreased risk. No significant associations were observed for very-long-chain SFA, monounsaturated fatty acids (MUFA), PUFA n-6 or trans fatty acids (TFA). Substituting 1 moL % PUFA n-6 or TFA with an equivalent proportion of PUFA n-3 were associated with lower CHD risk. Conclusions: Higher plasma PL long-chain SFA and lower PUFA n-3 were associated with increased CHD risk. A change in diet by limiting foods that are associated with plasma PL long-chain SFA and TFA while enhancing foods high in PUFA n-3 may be beneficial in CHD among postmenopausal women.
Collapse
|
22
|
Guasch-Ferré M, Zong G, Willett WC, Zock PL, Wanders AJ, Hu FB, Sun Q. Associations of Monounsaturated Fatty Acids From Plant and Animal Sources With Total and Cause-Specific Mortality in Two US Prospective Cohort Studies. Circ Res 2019; 124:1266-1275. [PMID: 30689516 PMCID: PMC6459723 DOI: 10.1161/circresaha.118.313996] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/24/2019] [Indexed: 11/16/2022]
Abstract
RATIONALE Dietary monounsaturated fatty acids (MUFAs) can come from both plant and animal sources with divergent nutrient profiles that may potentially obscure the associations of total MUFAs with chronic diseases. OBJECTIVE To investigate the associations of cis-MUFA intake from plant (MUFA-P) and animal (MUFA-A) sources with total and cause-specific mortality. METHODS AND RESULTS We followed 63 412 women from the NHS (Nurses' Health Study; 1990-2012) and 29 966 men from the HPFS (Health Professionals Follow-Up Study; 1990-2012). MUFA-Ps and MUFA-As were calculated based on data collected through validated food frequency questionnaires administered every 4 years and updated food composition databases. During 1 896 864 person-years of follow-up, 20 672 deaths occurred. Total MUFAs and MUFA-Ps were inversely associated with total mortality after adjusting for potential confounders, whereas MUFA-As were associated with higher mortality. When MUFA-Ps were modeled to isocalorically replace other macronutrients, hazard ratios (HRs, 95% CIs) of total mortality were 0.84 (0.77-0.92; P<0.001) for replacing saturated fatty acids, 5% of energy); 0.86 (0.82-0.91; P<0.001) for replacing refined carbohydrates (5% energy); 0.91 (0.85-0.97; P<0.001) for replacing trans fats (2% energy), and 0.77 (0.71-0.82; P<0.001) for replacing MUFA-As (5% energy). For isocalorically replacing MUFA-As with MUFA-Ps, HRs (95% CIs) were 0.74 (0.64-0.86; P<0.001) for cardiovascular mortality; 0.73 (0.65-0.82; P<0.001) for cancer mortality, and 0.82 (0.73-0.91; P<0.001) for mortality because of other causes. CONCLUSIONS Higher intake of MUFA-Ps was associated with lower total mortality, and MUFA-As intake was associated with higher mortality. Significantly lower mortality risk was observed when saturated fatty acids, refined carbohydrates, or trans fats were replaced by MUFA-Ps, but not MUFA-As. These data suggest that other constituents in animal foods, such as saturated fatty acids, may confound the associations for MUFAs when they are primarily derived from animal products. More evidence is needed to elucidate the differential associations of MUFA-Ps and MUFA-As with mortality.
Collapse
Affiliation(s)
- Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Geng Zong
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Walter C. Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter L. Zock
- Unilever Research and Development, Vlaardingen, The Netherlands
| | - Anne J Wanders
- Unilever Research and Development, Vlaardingen, The Netherlands
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
23
|
Sena CM, Cipriano MA, Botelho MF, Seiça RM. Lipoic Acid Prevents High-Fat Diet-Induced Hepatic Steatosis in Goto Kakizaki Rats by Reducing Oxidative Stress Through Nrf2 Activation. Int J Mol Sci 2018; 19:2706. [PMID: 30208622 PMCID: PMC6164246 DOI: 10.3390/ijms19092706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023] Open
Abstract
Prevention of hepatic fat accumulation may be an important approach for liver diseases due to the increased relevance of hepatic steatosis in this field. This study was conducted to investigate the effects of the antioxidant α-lipoic acid (α-LA) on hepatic steatosis, hepatocellular function, and oxidative stress in a model of type 2 diabetes fed with a high fat diet (HFD). Goto-Kakizaki rats were randomly divided into four groups. The first group received only a standard rat diet (control GK) including groups 2 (HFD), 3 (vehicle group), and 4 (α-LA group), which were given HFD, ad libitum during three months. Wistar rats are the non-diabetic control group. Carbohydrate and lipid metabolism, liver function, plasma and liver tissue malondialdehyde (MDA), liver GSH, tumor necrosis factor-α (TNF-α) and nuclear factor E2 (erythroid-derived 2)-related factor-2 (Nrf2) levels were assessed in the different groups. Liver function was assessed using quantitative hepatobiliary scintigraphy, serum aspartate, and alanine aminotransferases (AST, ALT), alkaline phosphatase, gamma-glutamyltranspeptidase, and bilirubin levels. Histopathologically steatosis and fibrosis were evaluated. Type 2 diabetic animals fed with HFD showed a marked hepatic steatosis and a diminished hepatic extraction fraction and both were fully prevented with α-LA. Plasma and liver tissue MDA and hepatic TNF-α levels were significantly higher in the HFD group when compared with the control group and significantly lower in the α-LA group. Systemic and hepatic cholesterol, triglycerides, and serum uric acid levels were higher in hyperlipidemic GK rats and fully prevented with α-LA. In addition, nuclear Nrf2 activity was significantly diminished in GK rats and significantly augmented after α-LA treatment. In conclusion, α-LA strikingly ameliorates steatosis in this animal model of diabetes fed with HFD by decrementing the inflammatory marker TNF-α and reducing oxidative stress. α-LA might be considered a useful therapeutic tool to prevent hepatic steatosis by incrementing antioxidant defense systems through Nrf2 and consequently decreasing oxidative stress and inflammation in type 2 diabetes.
Collapse
Affiliation(s)
- Cristina Maria Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
- iCBR, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
| | | | - Maria Filomena Botelho
- iCBR, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
| | - Raquel Maria Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
- iCBR, Faculty of Medicine, University of Coimbra; Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
| |
Collapse
|
24
|
Raatz SK, Conrad Z, Jahns L, Belury MA, Picklo MJ. Modeled replacement of traditional soybean and canola oil with high-oleic varieties increases monounsaturated fatty acid and reduces both saturated fatty acid and polyunsaturated fatty acid intake in the US adult population. Am J Clin Nutr 2018; 108:594-602. [PMID: 30084912 DOI: 10.1093/ajcn/nqy127] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/21/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND High-oleic (HO) seed oils are being introduced as replacements for trans fatty acid (TFA)-containing fats and oils. Negative health effects associated with TFAs led to their removal from the US Generally Recognized As Safe list. HO oils formulated for use in food production may result in changes in fatty acid intake at population levels. Objectives The purposes of this study were to 1) identify major food sources of soybean oil (SO) and canola oil (CO), 2) estimate effects of replacing SO and CO with HO varieties on fatty acid intake overall and by age and sex strata, and 3) compare predicted intakes with the Dietary Reference Intakes and Adequate Intakes (AIs) for the essential fatty acids (EFAs) α-linolenic acid (ALA) and linoleic acid (LA). Design Food and nutrient intakes from NHANES waves 2007-2008, 2009-2010, 2011-2012, and 2013-2014 in 21,029 individuals aged ≥20 y were used to model dietary changes. We estimated the intake of fatty acid with the replacement of HO-SO and HO-CO for commodity SO and CO at 10%, 25%, and 50% and evaluated the potential for meeting the AI at these levels. RESULTS Each modeling scenario decreased saturated fatty acids (SFAs), although intakes remained greater than recommended for all age and sex groups. Models of all levels increased the intake of total monounsaturated fatty acids (MUFAs), especially oleic acid, and decreased the intake of total polyunsaturated fatty acids (PUFAs), particularly LA and ALA. Replacement of traditional with HO oils at 25-50% places specific adult age and sex groups at risk of not meeting the AI for LA and ALA. Conclusions The replacement of traditional oils with HO varieties will increase MUFA intake and reduce both SFA and PUFA intakes, including EFAs, and may place specific age and sex groups at risk of inadequate LA and ALA intake.
Collapse
Affiliation(s)
- Susan K Raatz
- USDA-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| | - Zach Conrad
- USDA-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND
| | - Lisa Jahns
- USDA-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND
| | - Martha A Belury
- Program of Human Nutrition, Ohio State University, Columbus, OH
| | - Matthew J Picklo
- USDA-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND
| |
Collapse
|
25
|
Strandjord SE, Lands B, Hibbeln JR. Validation of an equation predicting highly unsaturated fatty acid (HUFA) compositions of human blood fractions from dietary intakes of both HUFAs and their precursors. Prostaglandins Leukot Essent Fatty Acids 2018; 136:171-176. [PMID: 28390839 PMCID: PMC5591053 DOI: 10.1016/j.plefa.2017.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/10/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
Proportions of omega-3 (n-3) and omega-6 (n-6) in 20- and 22-carbon highly unsaturated fatty acids with 3 or more double bonds (HUFA) accumulated in tissue HUFA (e.g., the %n-6 in HUFA) are biomarkers reflecting intakes of n-6 and n-3 fatty acids. An empirical equation, referred to here as the Lands' Equation, was developed previously to use dietary intakes of n-6 and n-3 HUFA and their 18-carbon precursors to estimate the %n-6 in HUFA of humans. From the PubMed database, we identified clinical trials reporting (a) dietary intake of at least linoleic acid (18:2n-6) and alpha-linolenic acid (18:3n-3), and (b) the amounts of at least arachidonic acid (20:4n-6), eicosapentaenoic acid (20:5n-3), and docosahexaenoic acid (22:6n-3) in lipids of plasma, serum, or red blood cell. Linear regression analyses comparing reported and predicted %n-6 in HUFA gave a correlation coefficient of 0.73 (p<0.000000) for 34 studies with 92 subject groups. These results indicate that circulating HUFA compositions can be reliably estimated from dietary intake data that not only includes n-3 and n-6 HUFA consumption, but also includes consumption of 18 carbon n-3 and n-6 precursor fatty acids.
Collapse
Affiliation(s)
| | | | - Joseph R Hibbeln
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rm 3N-07, MSC 9410, Bethesda, MD 20892-2088, USA.
| |
Collapse
|
26
|
Matthan NR, Solano-Aguilar G, Meng H, Lamon-Fava S, Goldbaum A, Walker ME, Jang S, Lakshman S, Molokin A, Xie Y, Beshah E, Stanley J, Urban Jr. JF, Lichtenstein AH. The Ossabaw Pig Is a Suitable Translational Model to Evaluate Dietary Patterns and Coronary Artery Disease Risk. J Nutr 2018; 148:542-551. [PMID: 29659954 PMCID: PMC6669954 DOI: 10.1093/jn/nxy002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 02/07/2023] Open
Abstract
Background Animal models that mimic diet-induced human pathogenesis of chronic diseases are of increasing importance in preclinical studies. The Ossabaw pig is an established model for obesity-related metabolic disorders when fed extreme diets in caloric excess. Objective To increase the translational nature of this model, we evaluated the effect of diets resembling 2 human dietary patterns, the Western diet (WD) and the Heart Healthy Diet (HHD), without or with atorvastatin (-S or +S) therapy, on cardiometabolic risk factors and atherosclerosis development. Methods Ossabaw pigs (n = 32; 16 boars and 16 gilts, aged 5-8 wk) were randomized according to a 2 × 2 factorial design into 4 groups (WD-S, WD+S, HHD-S, and HHD+S) and were fed the respective diets for 6 mo. The WD (high in saturated fat, cholesterol, and refined grain) and the HHD (high in unsaturated fat, whole grain, and fruit and vegetables) were isocaloric [38% of energy (%E) from fat, 47%E from carbohydrate, and 15%E from protein]. Body composition was determined by using dual-energy X-ray absorptiometry, serum fatty acid (FA) profiles by gas chromatography, cardiometabolic risk profile by standard procedures, and degree of atherosclerosis by histopathology. Results Serum FA profiles reflected the predominant dietary FA. Pigs fed the WD had 1- to 4-fold higher concentrations of LDL cholesterol, non-HDL cholesterol, HDL cholesterol, high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor α (TNF-α), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) compared with HHD-fed pigs (all P-diet < 0.05). Statin therapy significantly lowered concentrations of LDL cholesterol (-39%), non-HDL cholesterol (-38%), and triglycerides (-6%) (P-statin < 0.02). A greater degree of atheromatous changes (macrophage infiltration, foam cells, fatty streaks) and lesion incidence was documented in the coronary arteries (P-diet < 0.05), as well as 2- to 3-fold higher lipid deposition in the aortic arch or thoracic aorta of WD- compared with HHD-fed pigs (P-diet < 0.001). Conclusions Ossabaw pigs manifested a dyslipidemic and inflammatory profile accompanied by early-stage atherosclerosis when fed a WD compared with an HHD, which was moderately reduced by atorvastatin therapy. This phenotype presents a translational model to examine mechanistic pathways of whole food-based dietary patterns on atherosclerosis development.
Collapse
Affiliation(s)
- Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Gloria Solano-Aguilar
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Huicui Meng
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Audrey Goldbaum
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Maura E Walker
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Saebyeol Jang
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Sukla Lakshman
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Aleksey Molokin
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Yue Xie
- Department of Parasitology, Sichuan Agricultural University, College of Veterinary Medicine, Chengdu, China
| | - Ethiopia Beshah
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | | | - Joseph F Urban Jr.
- Diet, Genomics, and Immunology Laboratory, USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
27
|
Zong G, Li Y, Sampson L, Dougherty LW, Willett WC, Wanders AJ, Alssema M, Zock PL, Hu FB, Sun Q. Monounsaturated fats from plant and animal sources in relation to risk of coronary heart disease among US men and women. Am J Clin Nutr 2018; 107:445-453. [PMID: 29566185 PMCID: PMC5875103 DOI: 10.1093/ajcn/nqx004] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/17/2017] [Indexed: 12/19/2022] Open
Abstract
Background Monounsaturated fatty acids (MUFAs) improve blood lipid profiles in intervention studies, but prospective evidence with regard to MUFA intake and coronary heart disease (CHD) risk is limited and controversial. Objective We investigated the associations of cis MUFA intake from plant (MUFA-P) and animal (MUFA-A) sources with CHD risk separately among 63,442 women from the Nurses' Health Study (1990-2012) and 29,942 men from the Health Professionals Follow-Up Study (1990-2012). Design Intakes of MUFA-Ps and MUFA-As were calculated by using validated food-frequency questionnaires collected every 4 y. Incident nonfatal myocardial infarction and fatal CHD cases (n = 4419) were confirmed by medical record review. Results During follow-up, MUFA-Ps and MUFA-As contributed 5.8-7.9% and 4.2-5.4% of energy on average, respectively. When MUFA-Ps were modeled to isocalorically replace other macronutrients, HRs (95% CIs) of CHD were 0.83 (0.68, 1.00) for saturated fatty acids (SFAs; 5% of energy), 0.86 (0.76, 0.97) for refined carbohydrates (5% of energy), and 0.80 (0.70, 0.91) for trans fats (2% of energy) (P = 0.05, 0.01, and 0.001, respectively). For MUFA-As, corresponding HRs (95% CIs) for the same isocaloric substitutions were 1.04 (0.79, 1.38) for SFAs, 1.11 (0.91, 1.35) for refined carbohydrates, and 0.88 (0.77, 1.01) for trans fats (P = 0.76, 0.31, and 0.08, respectively). Given the common food sources of SFAs and MUFA-As (Spearman correlation coefficients of 0.81-0.83 between these groups of fatty acids), we further estimated CHD risk when the sum of MUFA-As and SFAs (5% of energy) was replaced by MUFA-Ps, and found that the HR was 0.81 (95% CI: 0.73, 0.90; P < 0.001) for this replacement. Conclusions The largely different associations of MUFA-Ps and MUFA-As with CHD risk suggest that plant-based foods are the preferable sources of MUFAs for CHD prevention. These findings are observational and warrant confirmation in intervention settings. This study was registered at clinicaltrials.gov as NCT00005152 and NCT00005182.
Collapse
Affiliation(s)
- Geng Zong
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
| | - Yanping Li
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
| | - Laura Sampson
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
| | - Lauren W Dougherty
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
| | - Walter C Willett
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
- Departments of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Anne J Wanders
- Unilever Research and Development, Vlaardingen, Netherlands
| | - Marjan Alssema
- Unilever Research and Development, Vlaardingen, Netherlands
- EMGO Institute for Health and Care Research, VU Medical Center, Amsterdam, Netherlands
| | - Peter L Zock
- Unilever Research and Development, Vlaardingen, Netherlands
| | - Frank B Hu
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
- Departments of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Qi Sun
- Departments of Nutrition and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Kulkarni KP, Patil G, Valliyodan B, Vuong TD, Shannon JG, Nguyen HT, Lee JD. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome 2018; 61:217-222. [PMID: 29365289 DOI: 10.1139/gen-2017-0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.
Collapse
Affiliation(s)
- Krishnanand P Kulkarni
- a School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gunvant Patil
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Babu Valliyodan
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tri D Vuong
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - J Grover Shannon
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Henry T Nguyen
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeong-Dong Lee
- a School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
29
|
Mohn ES, Kuchan MJ, Erdman JW, Neuringer M, Matthan NR, Chen CYO, Johnson EJ. The Subcellular Distribution of Alpha-Tocopherol in the Adult Primate Brain and Its Relationship with Membrane Arachidonic Acid and Its Oxidation Products. Antioxidants (Basel) 2017; 6:antiox6040097. [PMID: 29186823 PMCID: PMC5745507 DOI: 10.3390/antiox6040097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022] Open
Abstract
The relationship between α-tocopherol, a known antioxidant, and polyunsaturated fatty acid (PUFA) oxidation, has not been directly investigated in the primate brain. This study characterized the membrane distribution of α-tocopherol in brain regions and investigated the association between membrane α-tocopherol and PUFA content, as well as brain PUFA oxidation products. Nuclear, myelin, mitochondrial, and neuronal membranes were isolated using a density gradient from the prefrontal cortex (PFC), cerebellum (CER), striatum (ST), and hippocampus (HC) of adult rhesus monkeys (n = 9), fed a stock diet containing vitamin E (α-, γ-tocopherol intake: ~0.7 µmol/kg body weight/day, ~5 µmol/kg body weight/day, respectively). α-tocopherol, PUFAs, and PUFA oxidation products were measured using high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography-gas chromatography/mass spectrometry (LC-GC/MS) respectively. α-Tocopherol (ng/mg protein) was highest in nuclear membranes (p < 0.05) for all regions except HC. In PFC and ST, arachidonic acid (AA, µg/mg protein) had a similar membrane distribution to α-tocopherol. Total α-tocopherol concentrations were inversely associated with AA oxidation products (isoprostanes) (p < 0.05), but not docosahexaenoic acid oxidation products (neuroprostanes). This study reports novel data on α-tocopherol accumulation in primate brain regions and membranes and provides evidence that α-tocopherol and AA are similarly distributed in PFC and ST membranes, which may reflect a protective effect of α-tocopherol against AA oxidation.
Collapse
Affiliation(s)
- Emily S. Mohn
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | | | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| | - Martha Neuringer
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA;
| | - Nirupa R. Matthan
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Chung-Yen Oliver Chen
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Elizabeth J. Johnson
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
30
|
Mohn ES, Erdman JW, Kuchan MJ, Neuringer M, Johnson EJ. Lutein accumulates in subcellular membranes of brain regions in adult rhesus macaques: Relationship to DHA oxidation products. PLoS One 2017; 12:e0186767. [PMID: 29049383 PMCID: PMC5648219 DOI: 10.1371/journal.pone.0186767] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/07/2017] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Lutein, a carotenoid with anti-oxidant functions, preferentially accumulates in primate brain and is positively related to cognition in humans. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid (PUFA), is also beneficial for cognition, but is susceptible to oxidation. The present study characterized the membrane distribution of lutein in brain regions important for different domains of cognitive function and determined whether membrane lutein was associated with brain PUFA oxidation. METHODS Adult rhesus monkeys were fed a stock diet (~2 mg/day lutein or ~0.5 μmol/kg body weight/day) (n = 9) or the stock diet plus a daily supplement of lutein (~4.5 mg/day or~1 μmol/kg body weight/day) and zeaxanthin (~0.5 mg/day or 0.1 μmol/kg body weight/day) for 6-12 months (n = 4). Nuclear, myelin, mitochondrial, and neuronal plasma membranes were isolated using a Ficoll density gradient from prefrontal cortex (PFC), cerebellum (CER), striatum (ST), and hippocampus (HC). Carotenoids, PUFAs, and PUFA oxidation products were measured using HPLC, GC, and LC-GC/MS, respectively. RESULTS All-trans-lutein (ng/mg protein) was detected in all regions and membranes and was highly variable among monkeys. Lutein/zeaxanthin supplementation significantly increased total concentrations of lutein in serum, PFC and CER, as well as lutein in mitochondrial membranes and total DHA concentrations in PFC only (P<0.05). In PFC and ST, mitochondrial lutein was inversely related to DHA oxidation products, but not those from arachidonic acid (P <0.05). DISCUSSION This study provides novel data on subcellular lutein accumulation and its relationship to DHA oxidation in primate brain. These findings support the hypothesis that lutein may be associated with antioxidant functions in the brain.
Collapse
Affiliation(s)
- Emily S. Mohn
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
| | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Matthew J. Kuchan
- Discovery Research, Abbott Nutrition, Columbus, Ohio, United States of America
| | - Martha Neuringer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Elizabeth J. Johnson
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
31
|
Liu Q, Lichtenstein AH, Matthan NR, Howe CJ, Allison MA, Howard BV, Martin LW, Valdiviezo C, Manson JE, Liu S, Eaton CB. Higher Lipophilic Index Indicates Higher Risk of Coronary Heart Disease in Postmenopausal Women. Lipids 2017; 52:687-702. [PMID: 28689316 PMCID: PMC6903800 DOI: 10.1007/s11745-017-4276-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/19/2017] [Indexed: 11/29/2022]
Abstract
Fatty acids (FAs) are essential components of cell membranes and play an integral role in membrane fluidity. The lipophilic index [LI, defined as the sum of the products between FA levels and melting points (°C), divided by the total amount of FA: [Formula: see text]] is thought to reflect membrane and lipoprotein fluidity and may be associated with the risk of coronary heart disease (CHD). Therefore, we examined the associations of dietary and plasma phospholipid (PL) LI with CHD risk among postmenopausal women. We determined dietary LI for the cohort with completed baseline food frequency questionnaires and free of prevalent cardiovascular diseases in the Women's Health Initiative (WHI) observational study (N = 85,563). We additionally determined plasma PL LI in a matched case-control study (N = 2428) nested within the WHI observational cohort study. Cox proportional hazard regression and multivariable conditional logistic regression were used to calculate HRs/ORs for CHD risk between quartiles of LI after adjusting for potential sources of confounding and selection bias. Higher dietary LI in the cohort study and plasma PL LI in the case-control study were significantly associated with increased risk of CHD: HR = 1.18 (95% CI 1.07-1.31, P for trend <0.01) and OR = 1.76 (95% CI 1.33-2.33, P for trend <0.01) comparing extreme quartiles and adjusting for potential confounders. These associations still persisted after adjusting for the polyunsaturated to saturated fat ratio. Our study indicated that higher LI based on either dietary or plasma measurements, representing higher FA lipophilicity, was associated with elevated risk of CHD among postmenopausal women.
Collapse
Affiliation(s)
- Qing Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center ON Aging, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center ON Aging, Tufts University, Boston, MA, USA
| | - Chanelle J Howe
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Matthew A Allison
- University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Barbara V Howard
- MedStar Health Research Institute, Hyattsville, MD, USA
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - Lisa W Martin
- Division of Cardiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Carolina Valdiviezo
- Medstar Washington Hospital Center and Georgetown University School of Medicine, Washington, DC, USA
| | - JoAnn E Manson
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simin Liu
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA
| | - Charles B Eaton
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA.
- Center for Primary Care and Prevention, Memorial Hospital of Rhode Island, 111 Brewster Street, Pawtucket, RI, 02680, USA.
| |
Collapse
|
32
|
Comparing the Nutritional Impact of Dietary Strategies to Reduce Discretionary Choice Intake in the Australian Adult Population: A Simulation Modelling Study. Nutrients 2017; 9:nu9050442. [PMID: 28467387 PMCID: PMC5452172 DOI: 10.3390/nu9050442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/13/2017] [Accepted: 04/25/2017] [Indexed: 01/13/2023] Open
Abstract
Dietary strategies to reduce discretionary choice intake are commonly utilized in practice, but evidence on their relative efficacy is lacking. The aim was to compare the potential impact on nutritional intake of three strategies to reducing discretionary choices intake in the Australian adult (19-90 years) population. Dietary simulation modelling using data from the National Nutrition and Physical Activity Survey 2011-2012 was conducted (n = 9341; one 24 h dietary recall). Strategies modelled were: moderation (reduce discretionary choices by 50%, with 0%, 25% or 75% energy compensation); substitution (replace 50% of discretionary choices with core choices); reformulation (replace 50% SFA with unsaturated fats, reduce added sugars by 25%, and reduce sodium by 20%). Compared to the base case (observed) intake, modelled intakes in the moderation scenario showed: -17.3% lower energy (sensitivity analyses, 25% energy compensation -14.2%; 75% energy compensation -8.0%), -20.9% lower SFA (-17.4%; -10.5%), -43.3% lower added sugars (-41.1%; -36.7%) and 17.7% lower sodium (-14.3%; -7.5%). Substitution with a range of core items, or with fruits, vegetables and core beverages only, resulted in similar changes in energy intake (-13.5% and -15.4%), SFA (-17.7% and -20.1%), added sugars (-42.6% and -43%) and sodium (-13.7% and -16.5%), respectively. Reformulating discretionary choices had minimal impact on reducing energy intake but reduced SFA (-10.3% to -30.9%), added sugars (-9.3% to -52.9%), and alcohol (-25.0% to -49.9%) and sodium (-3.3% to -13.2%). The substitution and reformulation scenarios minimized negative changes in fiber, protein and micronutrient intakes. While each strategy has strengths and limitations, substitution of discretionary choices with core foods and beverages may optimize the nutritional impact.
Collapse
|
33
|
Best practices for design and implementation of human clinical trials studying dietary oils. Prog Lipid Res 2017; 65:1-11. [DOI: 10.1016/j.plipres.2016.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
|
34
|
Aro A, Becker W, Pedersen JI. Transfatty acids in the Nordic countries. SCANDINAVIAN JOURNAL OF FOOD & NUTRITION 2016. [DOI: 10.1080/17482970601065100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Antti Aro
- Department of Health and Functional CapacityNational Public Health InstituteHelsinkiFinland
| | - Wulf Becker
- Swedish National Food AdministrationUppsalaSweden
| | - Jan I. Pedersen
- Institute of Basic Medical Sciences, Department of NutritionUniversity of OsloOsloNorway
| |
Collapse
|
35
|
Allen BC, Vincent MJ, Liska D, Haber LT. Meta-regression analysis of the effect of trans fatty acids on low-density lipoprotein cholesterol. Food Chem Toxicol 2016; 98:295-307. [DOI: 10.1016/j.fct.2016.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 11/17/2022]
|
36
|
Mode-of-action evaluation for the effect of trans fatty acids on low-density lipoprotein cholesterol. Food Chem Toxicol 2016; 98:282-294. [DOI: 10.1016/j.fct.2016.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/06/2016] [Accepted: 05/26/2016] [Indexed: 01/06/2023]
|
37
|
Trans fatty acids and cholesterol levels: An evidence map of the available science. Food Chem Toxicol 2016; 98:269-281. [PMID: 27394654 DOI: 10.1016/j.fct.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 01/01/2023]
Abstract
High intakes of industrial trans fatty acids (iTFA) increase circulating low density lipoprotein cholesterol (LDL-C) levels, which has implicated iTFA in coronary heart disease (CHD) risk. Published data on iTFA and LDL-C, however, represent higher intake levels than the U.S. population currently consume. This study used state-of-the-art evidence mapping approaches to characterize the full body of literature on LDL-C and iTFA at low intake levels. A total of 32 independent clinical trials that included at least one intervention or control group with iTFA at ≤3%en were found. Findings indicated that a wide range of oils and interventions were used, limiting the ability to determine an isolated effect of iTFA intake. Few data points were found for iTFA at <3%en, with the majority of low-level exposures actually representing control group interventions containing non-partially hydrogenated (PHO) oils. Further, it appears that few dose-response data points are available to assess the relationship of low levels of iTFA, particularly from PHO exposure, and LDL-C. Therefore, limited evidence is available to determine the effect of iTFA at current consumption levels on CHD risk.
Collapse
|
38
|
Huth PJ, Fulgoni VL, Larson BT. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils. Adv Nutr 2015; 6:674-93. [PMID: 26567193 PMCID: PMC4642420 DOI: 10.3945/an.115.008979] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: -8.0%, -10.9%, -7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: -5.7%, -9.2%, -7.3%, -11.7%, -12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n-6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and overall CHD risk.
Collapse
|
39
|
Vaughan RA, Garrison RL, Stamatikos AD, Kang M, Cooper JA, Paton CM. A High Linoleic Acid Diet does not Induce Inflammation in Mouse Liver or Adipose Tissue. Lipids 2015; 50:1115-1122. [PMID: 26404455 DOI: 10.1007/s11745-015-4072-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023]
Abstract
Recently, the pro-inflammatory effects of linoleic acid (LNA) have been re-examined. It is now becoming clear that relatively few studies have adequately assessed the effects of LNA, independent of obesity. The purpose of this work was to compare the effects of several fat-enriched but non-obesigenic diets on inflammation to provide a more accurate assessment of LNA's ability to induce inflammation. Specifically, 8-week-old male C57Bl/6 mice were fed either saturated (SFA), monounsaturated (MUFA), LNA, or alpha-linolenic acid enriched diets (50 % Kcal from fat, 22 % wt/wt) for 4 weeks. Chow and high-fat, hyper-caloric diets were used as negative and positive controls, respectively. Expression of pro-inflammatory and pro-coagulant markers from epididymal fat, liver, and plasma were measured along with food intake and body weights. Mice fed the high SFA, MUFA, and high-fat diets exhibited increased pro-inflammatory markers in liver and adipose tissue; however, mice fed LNA for four weeks did not display significant changes in pro-inflammatory or pro-coagulant markers in epididymal fat, liver, or plasma. The present study demonstrates that LNA alone is insufficient to induce inflammation. Instead, it is more likely that hyper-caloric diets are responsible for diet-induced inflammation possibly due to adipose tissue remodeling.
Collapse
Affiliation(s)
- Roger A Vaughan
- Department of Nutritional Sciences, Texas Tech University, PO Box 41270, Lubbock, TX, 79409, USA
- Department of Exercise Science, High Point University, 833 Montlieu Ave, High Point, NC, 27262, USA
| | - Richard L Garrison
- Department of Nutritional Sciences, Texas Tech University, PO Box 41270, Lubbock, TX, 79409, USA
| | - Alexis D Stamatikos
- Department of Nutritional Sciences, Texas Tech University, PO Box 41270, Lubbock, TX, 79409, USA
| | - Minsung Kang
- Department of Nutritional Sciences, Texas Tech University, PO Box 41270, Lubbock, TX, 79409, USA
| | - Jamie A Cooper
- Department of Foods and Nutrition, University of Georgia, Athens, GA, 30602, USA
| | - Chad M Paton
- Department of Foods and Nutrition, University of Georgia, Athens, GA, 30602, USA.
- Department of Food Science and Technology, University of Georgia, 100 Cedar St., Athens, GA, 30602, USA.
| |
Collapse
|
40
|
Abstract
Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta) model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities.
Collapse
|
41
|
Aladedunye FA. Curbing thermo-oxidative degradation of frying oils: Current knowledge and challenges. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Felix A. Aladedunye
- Human Nutritional Sciences; University of Manitoba; Winnipeg Manitoba Canada
| |
Collapse
|
42
|
Associations between macronutrient intake and serum lipid profile depend on body fat in European adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. Br J Nutr 2014; 112:2049-59. [PMID: 25366323 DOI: 10.1017/s0007114514003183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present study aimed to investigate the relationships between macronutrient intake and serum lipid profile in adolescents from eight European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) cross-sectional study (2006-7), and to assess the role of body fat-related variables in these associations. Weight, height, waist circumference, skinfold thicknesses, total cholesterol, HDL-cholesterol (HDL-C), LDL-cholesterol, TAG, apoB and apoA1 were measured in 454 adolescents (44% boys) aged 12.5-17.5 years. Macronutrient intake (g/4180 kJ per d (1000 kcal per d)) was assessed using two non-consecutive 24 h dietary recalls. Associations were evaluated by multi-level analysis and adjusted for sex, age, maternal education, centre, sum of four skinfolds, moderate-to-vigorous physical activity, sedentary behaviours and diet quality index for adolescents. Carbohydrate intake was inversely associated with HDL-C (β = - 0.189, P< 0.001). An inverse association was found between fat intake and TAG (β = - 0.319, P< 0.001). Associations between macronutrient intake and serum lipids varied according to adiposity levels, i.e. an inverse association between carbohydrate intake and HDL-C was only observed in those adolescents with a higher waist:height ratio. As serum lipids and excess body fat are the major markers of CVD, these findings should be considered when developing strategies to prevent the risk of CVD among adolescents.
Collapse
|
43
|
Matthan NR, Ooi EM, Van Horn L, Neuhouser ML, Woodman R, Lichtenstein AH. Plasma phospholipid fatty acid biomarkers of dietary fat quality and endogenous metabolism predict coronary heart disease risk: a nested case-control study within the Women's Health Initiative observational study. J Am Heart Assoc 2014; 3:jah3633. [PMID: 25122663 PMCID: PMC4310362 DOI: 10.1161/jaha.113.000764] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Although the relationship between dietary fat quality and coronary heart disease (CHD) risk has been evaluated, typically using diet questionnaires, results are inconsistent and data in postmenopausal women are limited. Plasma phospholipid fatty acid (PL‐FA) profiles, reflecting dietary intake and endogenous FA metabolism, may better predict diet–CHD risk. Methods and Results Using a nested case‐control design, we assessed the association between plasma PL‐FA profiles and CHD risk in 2448 postmenopausal women (1224 cases with confirmed CHD and 1224 controls matched for age, enrollment date, race/ethnicity, and absence of CHD at baseline and after 4.5 years of follow‐up) participating in the Women's Health Initiative observational study. PL‐FA profile was measured using gas chromatography. Product/precursor ratios were used to estimate stearoyl‐CoA‐desaturase (16:1n‐7/16:0, 18:1n‐9/18:0), Δ6‐desaturase (20:3n‐6/18:2n‐6), and Δ5‐desaturase (20:4n‐6/20:3n‐6) activities, indicators of endogenous FA metabolism. Multivariate conditional logistic regression was used to obtain odds ratios (95% CIs) for CHD risk. While no associations were observed for the predominant PL fatty acid (16:0, 18:0, 18:1n‐9, and 18:2n‐6), plasma PL–saturated fatty acid (1.20 [1.08 to 1.32]) and endogenously synthesized PL ω6 fatty acids (20:3n‐6; 3.22 [1.95 to 5.32]), 22:5n‐6; 1.63 [1.20 to 2.23]) and Δ6‐desaturase (1.25 [1.11 to 1.41]) were positively associated with CHD risk. PL‐ω3 fatty acids (20:5n‐3; 0.73 [0.58 to 0.93], 22:5n‐3; 0.56 [0.33 to 0.94], 22:6n‐3; 0.56 [0.39 to 0.80]), 18:1n‐7 (0.54 [0.29 to 0.99]), and Δ5‐desaturase (0.78 [0.70 to 0.88]) were inversely associated with CHD risk. Results support current guidelines regarding regular fish consumption. Additional findings include associations between endogenously synthesized fatty acids and CHD risk, which were partly explained by changes in Δ6‐desaturase and Δ5‐desaturase indexes, suggesting that in vivo metabolism may also play an important role in predicting CHD risk in this cohort of postmenopausal women. Clinical Trial Registration URL: http://ClinicalTrials.gov, Unique identifier: NCT01864122.
Collapse
Affiliation(s)
- Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA (N.R.M., A.H.L.)
| | - Esther M Ooi
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia (E.M.O.)
| | | | | | - Richard Woodman
- School of Medicine, Flinders University, Bedford Park, SA, Australia (R.W.)
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA (N.R.M., A.H.L.)
| |
Collapse
|
44
|
Galão OF, Carrão-Panizzi MC, Gontijo Mandarino JM, Santos Júnior OO, Maruyama SA, Figueiredo LC, Bonafe EG, Visentainer JV. Differences of fatty acid composition in Brazilian genetic and conventional soybeans (Glycine max (L.) Merrill) grown in different regions. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Wang S, Miller B, Matthan NR, Goktas Z, Wu D, Reed DB, Yin X, Grammas P, Moustaid-Moussa N, Shen CL, Lichtenstein AH. Aortic cholesterol accumulation correlates with systemic inflammation but not hepatic and gonadal adipose tissue inflammation in low-density lipoprotein receptor null mice. Nutr Res 2014; 33:1072-82. [PMID: 24267047 DOI: 10.1016/j.nutres.2013.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/31/2013] [Accepted: 09/11/2013] [Indexed: 12/15/2022]
Abstract
Inflammation is a major contributor to the development of atherosclerotic plaque, yet the involvement of liver and visceral adipose tissue inflammatory status in atherosclerotic lesion development has yet to be fully elucidated. We hypothesized that an atherogenic diet would increase inflammatory response and lipid accumulation in the liver and gonadal adipose tissue (GAT) and would correlate with systemic inflammation and aortic lesion formation in low-density lipoprotein (LDL) receptor null (LDLr-/-) mice. For 32 weeks, LDLr-/- mice (n = 10/group) were fed either an atherogenic (high saturated fat and cholesterol) or control (low fat and cholesterol) diet. Hepatic and GAT lipid content and expression of inflammatory factors were measured using standard procedures. Compared with the control diet, the atherogenic diet significantly increased hepatic triglyceride and total cholesterol (TC), primarily esterified cholesterol, and GAT triglyceride content. These changes were accompanied by increased expression of acyl-CoA synthetase long-chain family member 5, CD36, ATP-binding cassette, subfamily A, member 1 and scavenger receptor B class 1, and they decreased the expression of cytochrome P450, family 7 and subfamily a, polypeptide 1 in GAT. Aortic TC content was positively associated with hepatic TC, triglyceride, and GAT triglyceride contents as well as plasma interleukin 6 and monocyte chemoattractant protein-1 concentrations. Although when compared with the control diet, the atherogenic diet increased hepatic tumor necrosis factor α production, they were not associated with aortic TC content. These data suggest that the LDLr-/- mice responded to the atherogenic diet by increasing lipid accumulation in the liver and GAT, which may have increased inflammatory response. Aortic TC content was positively associated with systemic inflammation but not hepatic and GAT inflammatory status.
Collapse
Affiliation(s)
- Shu Wang
- Nutritional Sciences Program, Texas Tech University, Lubbock, TX, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Holub B, Mutch DM, Pierce GN, Rodriguez-Leyva D, Aliani M, Innis S, Yan W, Lamarche B, Couture P, Ma DWL. Proceedings from the 2013 Canadian Nutrition Society Conference on Advances in Dietary Fats and Nutrition. Appl Physiol Nutr Metab 2014; 39:754-62. [PMID: 24749841 DOI: 10.1139/apnm-2013-0418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The science of lipid research continues to rapidly evolve and change. New knowledge enhances our understanding and perspectives on the role of lipids in health and nutrition. However, new knowledge also challenges currently held opinions. The following are the proceedings of the 2013 Canadian Nutrition Society Conference on the Advances in Dietary Fats and Nutrition. Content experts presented state-of-the-art information regarding our understanding of fish oil and plant-based n-3 polyunsaturated fatty acids, nutrigenomics, pediatrics, regulatory affairs, and trans fats. These important contributions aim to provide clarity on the latest advances and opinions regarding the role of different types of fats in health.
Collapse
Affiliation(s)
- Bruce Holub
- a Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Goncalves A, Gleize B, Roi S, Nowicki M, Dhaussy A, Huertas A, Amiot MJ, Reboul E. Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. J Nutr Biochem 2013; 24:1751-7. [DOI: 10.1016/j.jnutbio.2013.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 10/26/2022]
|
49
|
Karupaiah T, Sundram K. Modulation of human postprandial lipemia by changing ratios of polyunsaturated to saturated (P/S) fatty acid content of blended dietary fats: a cross-over design with repeated measures. Nutr J 2013; 12:122. [PMID: 23953645 PMCID: PMC3765521 DOI: 10.1186/1475-2891-12-122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Postprandial lipemia (PL) contributes to coronary artery disease. The fatty acid composition of dietary fats is potentially a modifiable factor in modulating PL response. METHODS This human postprandial study evaluated 3 edible fat blends with differing polyunsaturated to saturated fatty acids (P/S) ratios (POL = 0.27, AHA = 1.00, PCAN = 1.32). A cross-over design included mildly hypercholestrolemic subjects (9 men and 6 women) preconditioned on test diets fats at 31% energy for 7 days prior to the postprandial challenge on the 8th day with 50 g test fat. Plasma lipids and lipoproteins were monitored at 0, 1.5, 3.5, 5.5 and 7 hr. RESULTS Plasma triacylglycerol (TAG) concentrations in response to POL, AHA or PCAN meals were not significant for time x test meal interactions (P > 0.05) despite an observed trend (POL > AHA > PCAN). TAG area-under-the-curve (AUC) increased by 22.58% after POL and 7.63% after PCAN compared to AHA treatments (P > 0.05). Plasma total cholesterol (TC) response was not significant between meals (P > 0.05). Varying P/S ratios of test meals significantly altered prandial high density lipoprotein-cholesterol (HDL-C) concentrations (P < 0.001) which increased with decreasing P/S ratio (POL > AHA > PCAN). Paired comparisons was significant between POL vs PCAN (P = 0.009) but not with AHA or between AHA vs PCAN (P > 0.05). A significantly higher HDL-C AUC for POL vs AHA (P = 0.015) and PCAN (P = 0.001) was observed. HDL-C AUC increased for POL by 25.38% and 16.0% compared to PCAN and AHA respectively. Plasma low density lipoprotein-cholesterol (LDL-C) concentrations was significant (P = 0.005) between meals and significantly lowest after POL meal compared to PCAN (P = 0.004) and AHA (P > 0.05) but not between AHA vs PCAN (P > 0.05). AUC for LDL-C was not significant between diets (P > 0.05). Palmitic (C16:0), oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids in TAGs and cholesteryl esters were significantly modulated by meal source (P < 0.05). CONCLUSIONS P/S ratio of dietary fats significantly affected prandial HDL-C levels without affecting lipemia.
Collapse
Affiliation(s)
| | - Kalyana Sundram
- Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Wang S, Matthan NR, Wu D, Reed DB, Bapat P, Yin X, Grammas P, Shen CL, Lichtenstein AH. Lipid content in hepatic and gonadal adipose tissue parallel aortic cholesterol accumulation in mice fed diets with different omega-6 PUFA to EPA plus DHA ratios. Clin Nutr 2013; 33:260-6. [PMID: 23672804 DOI: 10.1016/j.clnu.2013.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/08/2013] [Accepted: 04/08/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Diets with low omega (ω)-6 polyunsaturated fatty acids (PUFA) to eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) ratios have been shown to decrease aortic cholesterol accumulation and have been suggested to promote weight loss. The involvement of the liver and gonadal adipose tissue (GAT) in mediating these effects is not well understood. LDL receptor null mice were used to assess the effect of an atherogenic diet with different ω-6:EPA+DHA ratios on weight gain, hepatic and GAT lipid accumulation, and their relationship to atherosclerosis. METHODS Four groups of mice were fed a high saturated fat and cholesterol diet (HSF ω-6) alone, or with ω-6 PUFA to EPA+DHA ratios up to 1:1 for 32 weeks. Liver and GAT were collected for lipid and gene expression analysis. RESULTS The fatty acid profile of liver and GAT reflected the diets. All diets resulted in similar weight gains. Compared to HSF ω-6 diet, the 1:1 ratio diet resulted in lower hepatic total cholesterol (TC) content. Aortic TC was positively correlated with hepatic and GAT TC and triglyceride. These differences were accompanied by significantly lower expression of CD36, ATP-transporter cassette A1, scavenger receptor B class 1, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), acetyl-CoA carboxylase alpha, acyl-CoA synthetase long-chain family member 5, and stearoyl-coenzyme A desaturase 1 (SCD1) in GAT, and HMGCR, SCD1 and cytochrome P450 7A1 in liver. CONCLUSIONS Dietary ω-6:EPA+DHA ratios did not affect body weight, but lower ω-6:EPA+DHA ratio diets decreased liver lipid accumulation, which possibly contributed to the lower aortic cholesterol accumulation.
Collapse
Affiliation(s)
- Shu Wang
- Department of Nutrition, Texas Tech University, Lubbock, TX 79409, USA.
| | - Nirupa R Matthan
- JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Dayong Wu
- JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | - Debra B Reed
- Department of Nutrition, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Bapat
- Department of Nutrition, Texas Tech University, Lubbock, TX 79409, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Paula Grammas
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alice H Lichtenstein
- JM USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| |
Collapse
|