1
|
Tabesh F, Maleki F, Nouri F, Zarepur E, Haghighatdoost F, Ghaffari S, Salehi N, Lotfizadeh M, Azdaki N, Assareh A, Gholipour M, Maleki Z, Mohammadifard N, Sarrafzadegan N. Association of whole and refined grains food consumption with coronary artery disease in a multi-center, case-control study of Iranian adults: Iran Premature Coronary Artery Disease (IPAD). Nutr Metab Cardiovasc Dis 2025; 35:103866. [PMID: 39986935 DOI: 10.1016/j.numecd.2025.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/21/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND AND AIMS Low whole grain food consumption is the leading cause of coronary artery disease (CAD) burden in middle-East countries. However, investigations examining the association of whole and refined grain foods and CAD are scarce in this region. We aimed to investigate the association of whole and refined grain foods with CAD in Iranians with different ethnicities. METHODS AND RESULTS This was a multi-center case-control study among Iranian ethnicities consisting of Fars, Azari, Kurd, Arab, Lor, Gilak, Qashqaei, and Bakhtiari within the framework of the Iran premature coronary artery disease (IPAD) project. The data were collected from hospitals with catheterization laboratories. Cases were 2099 patients with a stenosis ≥75 % in at least one vessel or ≥50 % in the left main artery. Control group were 1168 individuals with normal angiography test. Grains intake was assessed using a validated semi-quantitative food frequency questionnaire. Compared with those with the lowest intake of whole grain foods, subjects in the top quartile had lower risk of CAD (OR = 0.54, 95 % CI: 0.40, 0.72; P < 0.001) after full adjustment. However, a significant direct link was found between higher refined grain foods consumption and the risk of CAD (OR = 1.43, 95 % CI: 0.91-1.84; P = 0.013). CONCLUSION Our findings support dietary recommendations to increase whole grain foods and mitigating refined grain food consumption to reduce the risk of CAD and its severity.
Collapse
Affiliation(s)
- Faezeh Tabesh
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Maleki
- Department of Cardiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Nouri
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Zarepur
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Haghighatdoost
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Nahid Salehi
- Cardiovascular Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Lotfizadeh
- School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nahid Azdaki
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ahmadreza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboobeh Gholipour
- Department of Cardiology, Healthy Heart Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zeinab Maleki
- Hypertension Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Ardisson Korat AV, Duscova E, Shea MK, Jacques PF, Sebastiani P, Wang M, Mahdavi S, Eliassen AH, Willett WC, Sun Q. Dietary Carbohydrate Intake, Carbohydrate Quality, and Healthy Aging in Women. JAMA Netw Open 2025; 8:e2511056. [PMID: 40377936 DOI: 10.1001/jamanetworkopen.2025.11056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Importance Dietary carbohydrate quality is inversely associated with risks of chronic disease and all-cause mortality. However, limited evidence exists regarding the role of carbohydrate quality and dietary carbohydrate types in promoting healthy aging. Objective To evaluate the long-term role of dietary carbohydrate intake and carbohydrate quality in healthy aging. Design, Setting, and Participants This prospective cohort study used data from the Nurses' Health Study (NHS) from January 1984 to December 2016 and included participants aged younger than 60 years in 1984. Data were analyzed from January 2023 to February 2025. Exposure Intakes of total carbohydrates; refined carbohydrates; high-quality carbohydrates from whole grains, fruits, vegetables, and legumes; dietary fiber; and the dietary glycemic index (GI) and glycemic load (GL). Main Outcomes and Measures Nutrient intakes were derived from 1984 and 1986 food frequency questionnaires. The primary outcome was healthy aging, defined as the absence of major chronic diseases, lack of cognitive and physical function impairments, and having good mental health, according to 2014 or 2016 NHS questionnaire data. Multivariate logistic regression was used to calculate associations of each carbohydrate variable with healthy aging. Results Among 47 513 participants (mean [SD] baseline age, 48.5 [6.2] years), 3706 (7.8%) met our healthy aging definition. Every 10%-calorie increment in intakes of total carbohydrates (odds ratio [OR], 1.17; 95% CI, 1.10-1.25) and high-quality carbohydrates (OR, 1.31; 95% CI, 1.22-1.41) was positively associated with healthy aging. Refined carbohydrates were associated with lower odds of healthy aging (OR, 0.87; 95% CI, 0.80-0.95). Intakes of carbohydrates from fruits, vegetables, and whole grains were positively associated with odds of healthy aging (ORs ranging from 1.11; 95% CI, 1.07-1.15 to 1.37; 95% CI, 1.20-1.57 per 5% energy increment). Additionally, intakes of total dietary fiber and fiber from fruits, vegetables, and cereals were associated with higher odds of healthy aging (ORs ranging from 1.07; 95% CI, 1.03-1.11 to 1.17; 95% CI, 1.13-1.22 per 1-SD increment). GL was positively associated with healthy aging, which was attenuated by dietary fiber adjustment. A higher GI (OR, 0.76; 95% CI, 0.67-0.87) and carbohydrate-to-fiber ratio (OR, 0.71; 95% CI, 0.62-0.81) were inversely associated with healthy aging when comparing extreme quintiles. There were positive associations for isocaloric replacements of refined carbohydrates, animal protein, total fat, or trans fats with high-quality carbohydrates (ORs ranging from 1.08; 95% CI, 1.01-1.16 to 1.16; 95% CI, 1.11-1.21). Conclusions and Relevance In this cohort study of women, intakes of high-quality carbohydrates and dietary fiber were associated with positive health status in older adulthood, suggesting that dietary carbohydrate quality may be an important determinant of healthy aging.
Collapse
Affiliation(s)
- Andres V Ardisson Korat
- US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
- Tufts University School of Medicine, Tufts University, Boston, Massachusetts
| | - Ecaterina Duscova
- US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - M Kyla Shea
- US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Paul F Jacques
- US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Sara Mahdavi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Walter C Willett
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
3
|
Yu T, Humbert F, Li D, Savarin A, Zhang M, Cui Y, Wang H, Dong T, Wu Y. Effects of Chicken Protein Hydrolysate as a Protein Source to Partially Replace Chicken Meal on Gut Health, Gut Microbial Structure, and Metabolite Composition in Cats. Vet Sci 2025; 12:388. [PMID: 40284890 PMCID: PMC12031455 DOI: 10.3390/vetsci12040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Protein hydrolysates positively affect intestinal function in both humans and animals, but their impact on gut health and the gut microbial profile in cats has not been thoroughly investigated. In this study, a total of 30 adult cats were randomly assigned to one of three dietary treatments for a 60-day feeding trial. The three dietary treatments were as follows: (1) basal diet (CON), (2) diet containing 15% powdered chicken protein hydrolysate (HP15%), and (3) diet containing 15% liquid chicken protein hydrolysate (HL15%). Compared to the CON group, the HP15% group had a decreased calprotectin levels and fecal gases emissions (p < 0.05). A higher abundance of Bacteroidota, Veillonellaceae, and Bacteroidaceae, while a lower abundance of Firmicutes was showed in the HL15% group than that in the CON group (p < 0.05). At the genus level, compared with the CON group, an increased abundance of Bacteroides spp. and Bifidobacterium spp. was showed, whereas a reduced abundance of Alloprevotella spp. was presented in the HP15% and HL15% groups (p < 0.05). The metabolomic analysis revealed 1405 distinct metabolites between the HP15% and CON groups (p < 0.05, VIP-pred-OPLS-DA > 1), and the level of cholic acid decreased while the level of isodeoxycholic acid increased in the HP15% group (p < 0.05). The metabolomic analysis revealed 1910 distinct metabolites between the HL15% and CON groups (p < 0.05, VIP-pred-OPLS-DA > 1), and the levels of 4-coumaryl alcohol and enterolactone increased in the HL15% group (p < 0.05). In summary, this study suggested that partially replacing chicken meat with chicken protein hydrolysate in the diet of cats helps regulate the gut microbial community and metabolite profile and improves intestinal health.
Collapse
Affiliation(s)
- Tong Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Fabian Humbert
- Jiangxi Wing Biotechnology Co., Ltd., Shanghai 200001, China; (F.H.); (D.L.); (A.S.)
| | - Dan Li
- Jiangxi Wing Biotechnology Co., Ltd., Shanghai 200001, China; (F.H.); (D.L.); (A.S.)
| | - Arnaud Savarin
- Jiangxi Wing Biotechnology Co., Ltd., Shanghai 200001, China; (F.H.); (D.L.); (A.S.)
| | - Mingrui Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Yingyue Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Tianyu Dong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| | - Yi Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Y.); (M.Z.); (Y.C.); (H.W.); (T.D.)
| |
Collapse
|
4
|
Munteanu C, Kotova P, Schwartz B. Impact of Olive Oil Components on the Expression of Genes Related to Type 2 Diabetes Mellitus. Nutrients 2025; 17:570. [PMID: 39940428 PMCID: PMC11820997 DOI: 10.3390/nu17030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterized by insulin resistance and beta cell dysfunction, resulting in hyperglycemia. Olive oil, a cornerstone of the Mediterranean diet, has attracted considerable attention due to its potential health benefits, including reducing the risk of developing T2DM. This literature review aims to critically examine and synthesize existing research regarding the impact of olive oil on the expression of genes relevant to T2DM. This paper also seeks to provide an immunological and genetic perspective on the signaling pathways of the main components of extra virgin olive oil. Key bioactive components of olive oil, such as oleic acid and phenolic compounds, were identified as modulators of insulin signaling. These compounds enhanced the insulin signaling pathway, improved lipid metabolism, and reduced oxidative stress by decreasing reactive oxygen species (ROS) production. Additionally, they were shown to alleviate inflammation by inhibiting the NF-κB pathway and downregulating pro-inflammatory cytokines and enzymes. Furthermore, these bioactive compounds were observed to mitigate endoplasmic reticulum (ER) stress by downregulating stress markers, thereby protecting beta cells from apoptosis and preserving their function. In summary, olive oil, particularly its bioactive constituents, has been demonstrated to enhance insulin sensitivity, protect beta cell function, and reduce inflammation and oxidative stress by modulating key genes involved in these processes. These findings underscore olive oil's therapeutic potential in managing T2DM. However, further research, including well-designed human clinical trials, is required to fully elucidate the role of olive oil in personalized nutrition strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Polina Kotova
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| | - Betty Schwartz
- The Institute of Biochemistry, Food Science and Nutrition, The School of Nutritional Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 9190500, Israel
| |
Collapse
|
5
|
Xiao X, Wu Y, Jie Z, Lin L, Li Y, Hu W, Li Y, Zhong S. Akkermansia Muciniphila supplementation improves hyperlipidemia, cardiac function, and gut microbiota in high fat fed apolipoprotein E-deficient mice. Prostaglandins Other Lipid Mediat 2024; 175:106906. [PMID: 39265779 DOI: 10.1016/j.prostaglandins.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Hyperlipidemia, obesity and gut dysbiosis are pivotal risk factors for atherosclerotic cardiovascular disease (ACVD). Supplementation of Akkermansia muciniphila (AKK) has also been proven to be effective in the prevention and treatment of obesity and other metabolic disorders. Here we found that AKK was more abundant in healthy control than ACVD patients via metagenomic sequencing on fecal samples. Subsequently, we investigated the role and underlying mechanism of AKK on obesity-associated atherosclerosis. AKK intervention partially reversed the exacerbation of atherosclerotic lesion formation in ApoE-/- mice by improving dyslipidemia. Interestingly, replenishment with AKK significantly enhanced cardiac function and reduced the body weight. It also reduced pro-inflammatory cytokine IL-6 and increased anti-inflammatory IL-10 in the circulation. Additionally, AKK colonization dramatically regulated gut microbiota and increased the abundance of Lactobacillaceae. Our findings have provided novel insights into the therapeutic potential of AKK as a beneficial microbe for treating atherosclerotic-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yuanyuan Wu
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen 518083, PR China; Shenzhen Key Laboratory of Human Commensal Microorganisms and Health Research, BGI-Shenzhen, Shenzhen 518083, PR China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen 2100, Denmark
| | - Lu Lin
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yangchen Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Weixian Hu
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China
| | - Yong Li
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China.
| | - Shilong Zhong
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Jaworska K, Kopacz W, Koper M, Ufnal M. Microbiome-Derived Trimethylamine N-Oxide (TMAO) as a Multifaceted Biomarker in Cardiovascular Disease: Challenges and Opportunities. Int J Mol Sci 2024; 25:12511. [PMID: 39684223 DOI: 10.3390/ijms252312511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Biomarkers play a crucial role in various stages of disease management, including screening, diagnosis, prediction, prognosis, treatment, and safety monitoring. Although they are powerful tools in disease diagnosis, management, and drug development, identifying and validating reliable biomarkers remains a significant challenge. Among potential microbiome-derived biomarkers, trimethylamine N-oxide (TMAO) has gained notable attention for its link to atherosclerosis and cardiovascular risk. However, despite the growing body of research on TMAO, its practical application in clinical settings for disease management and patient outcome enhancement is still not a reality. This paper presents recent data on the utility of TMAO as a cardiovascular biomarker, categorized by its various roles: diagnostic, prognostic, susceptibility/risk, monitoring, pharmacodynamic/response, predictive, and safety. It also briefly discusses research on TMAO's potential role in cardiovascular disease development. While TMAO shows promise, particularly in prognostic applications, its reliability as a biomarker has been inconsistent across studies. These variances may result from several confounding factors that affect TMAO plasma levels, including diet, kidney function, and demographic variables. The review aims to elucidate the specific contexts in which TMAO can be valuable, potentially leading to more personalized and effective management of cardiovascular disease.
Collapse
Affiliation(s)
- Kinga Jaworska
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Wojciech Kopacz
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Mateusz Koper
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Marcin Ufnal
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| |
Collapse
|
7
|
Almer G, Enko D, Kartiosuo N, Niinikoski H, Lehtimäki T, Munukka E, Viikari J, Rönnemaa T, Rovio SP, Mykkänen J, Lagström H, Jula A, Herrmann M, Raitakari OT, Meinitzer A, Pahkala K. Association of Serum Trimethylamine-N-Oxide Concentration from Childhood to Early Adulthood with Age and Sex. Clin Chem 2024; 70:1162-1171. [PMID: 38906833 DOI: 10.1093/clinchem/hvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Primary prevention is the cornerstone of cardiometabolic health. In the randomized, controlled Special Turku Coronary Risk Factor Intervention Project (STRIP), dietary counseling intervention was given to children from infancy to 20 years of age and a follow-up was completed at age 26 years. We investigated the associations of age, sex, gut microbiome, and dietary intervention with the gut metabolite and the cardiac biomarker trimethylamine-N-oxide (TMAO). METHODS Overall, 592 healthy participants (females 46%) from STRIP were investigated. Compared to the control group, the intervention group had received dietary counseling between ages 7 months and 20 years focused on low intakes of saturated fat and cholesterol and the promotion of fruit, vegetable, and whole-grain consumption. TMAO serum concentrations were measured by a liquid chromatography-tandem mass spectrometry method at ages 11, 13, 15, 17, 19, and 26 years. Microbiome composition was assessed using 16S rRNA gene sequencing at 26 years of age. RESULTS TMAO concentrations increased from age 11 to 26 years in both sexes. At all measurement time points, males showed significantly higher serum TMAO concentrations compared to females, but concentrations were similar between the intervention and control groups. A direct association between TMAO concentrations and reported fiber intake was found in females. Gut microbiome analysis did not reveal associations with TMAO. CONCLUSIONS TMAO concentration increased from childhood to early adulthood but was not affected by the given dietary intervention. In females, TMAO concentrations could be directly associated with higher fiber intake suggesting sex-specific differences in TMAO metabolism.
Collapse
Affiliation(s)
- Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Institute of Medical and Chemical Laboratory Diagnostics, General Hospital Hochsteiermark, Leoben, Austria
| | - Noora Kartiosuo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Harri Niinikoski
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eveliina Munukka
- Microbiome Biobank, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Mykkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti Jula
- Department of Public Health Solutions, Institute for Health and Welfare, Turku, Finland
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku;Finland
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Wang S, Hu Y, Liu B, Li Y, Wang M, Sun Q. Lignan Intake and Type 2 Diabetes Incidence Among US Men and Women. JAMA Netw Open 2024; 7:e2426367. [PMID: 39110458 PMCID: PMC11307137 DOI: 10.1001/jamanetworkopen.2024.26367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/09/2024] [Indexed: 08/10/2024] Open
Abstract
Importance Lignans are phytoestrogens abundant in Western diets and may be associated with type 2 diabetes (T2D) risk. Objective To prospectively investigate associations between lignan intake and T2D incidence. Design, Setting, and Participants Population-based cohort study of US men and women enrolled in the Nurses' Health Study (NHS, 1984-2018), NHSII (1991-2019), and Health Professionals Follow-Up Study (HPFS, 1986-2020), as well as 496 participants from the Men's Lifestyle Validation Study (MLVS). Participants were free of T2D, cardiovascular disease, and cancer at baseline. Data were analyzed from November 2022 to July 2023. Exposures Total and individual lignans were assessed using a validated food frequency questionnaire, which was updated every 2 to 4 years. In the MLVS, lignan intake was measured using 2 sets of 7-day diet records (7DDRs). Main Outcomes and Measures Incident T2D cases were confirmed using American Diabetes Association diagnostic criteria. Cox proportional hazards models were used to assess multivariable-adjusted associations. Results The current study included 201 111 participants (mean [SD] age, 44.7 [10.1] years; 161 169 female participants [80.2%]; 2614 African American participants [1.3%], 1609 Asian participants [0.8%], 2414 Hispanic and other race or ethnicity participants [1.2%], and 194 474 White participants [96.7%]) from the HPFS, NHS, and NHSII studies. The median (IQR) total lignan intake of the highest quintile ranged from 355.1 (330.2-396.9) μg/d in NHS to 459.9 (422.2-519.5) μg/d in HPFS at the median follow-up time. Over 5 068 689 person-years, 20 291 incident cases of T2D were identified. Higher lignan intake was inversely associated with T2D incidence, except for lariciresinol. The multivariable-adjusted pooled hazard ratios (HRs) for the highest vs lowest quintiles were 0.87 (95% CI, 0.83-0.91) for total lignans, 0.72 (95% CI, 0.69-0.76) for secoisolariciresinol, 0.92 (95% CI, 0.87-0.96) for pinoresinol, 0.93 (95% CI, 0.89-0.98) for matairesinol, and 0.99 (95% CI, 0.94-1.04) for lariciresinol. Secoisolariciresinol intake exhibited a significant inverse association with T2D risk among individuals with obesity (HR, 0.75 for body mass index [BMI] ≥30; 95% CI, 0.71-0.79 vs HR, 0.82 for BMI <25; 95% CI, 0.81-0.83; P < .001 for interaction) and premenopausal women (HR, 0.67 for premenopausal women; 95% CI, 0.65-0.69 vs HR, 0.82 for the past use of hormones; 95% CI, 0.76-0.88; P = .003 for interaction). Dietary lignan assessed with 7DDRs was associated with lower HbA1c levels (percentage change range from -0.92% to 1.50%), as well as lower C-reactive protein levels and better lipid profiles. Conclusions and Relevance This cohort study found that long-term lignan consumption was associated with a lower T2D risk, particularly among individuals with obesity and premenopausal women.
Collapse
Affiliation(s)
- Siyue Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Binkai Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Joslin Diabetes Center, Boston, Massachusetts
| |
Collapse
|
9
|
Deng K, Gupta DK, Shu XO, Lipworth L, Zheng W, Cai H, Cai Q, Yu D. Circulating Metabolite Profiles and Risk of Coronary Heart Disease Among Racially and Geographically Diverse Populations. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004437. [PMID: 38950084 PMCID: PMC11335450 DOI: 10.1161/circgen.123.004437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/17/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Metabolomics may reveal novel biomarkers for coronary heart disease (CHD). We aimed to identify circulating metabolites and construct a metabolite risk score (MRS) associated with incident CHD among racially and geographically diverse populations. METHODS Untargeted metabolomics was conducted using baseline plasma samples from 900 incident CHD cases and 900 age-/sex-/race-matched controls (300 pairs of Black Americans, White Americans, and Chinese adults, respectively), which detected 927 metabolites with known identities among ≥80% of samples. After quality control, 896 case-control pairs remained and were randomly divided into discovery (70%) and validation (30%) sets within each race. In the discovery set, conditional logistic regression and least absolute shrinkage and selection operator over 100 subsamples were applied to identify metabolites robustly associated with CHD risk and construct the MRS. The MRS-CHD association was evaluated using conditional logistic regression and the C-index. Mediation analysis was performed to examine if MRS mediated associations between conventional risk factors and incident CHD. The results from the validation set were presented as the main findings. RESULTS Twenty-four metabolites selected in ≥90% of subsamples comprised the MRS, which was significantly associated with incident CHD (odds ratio per 1 SD, 2.21 [95% CI, 1.62-3.00] after adjusting for sociodemographics, lifestyles, family history, and metabolic health status). MRS could distinguish incident CHD cases from matched controls (C-index, 0.69 [95% CI, 0.63-0.74]) and improve CHD risk prediction when adding to conventional risk factors (C-index, 0.71 [95% CI, 0.65-0.76] versus 0.67 [95% CI, 0.61-0.73]; P<0.001). The odds ratios and C-index were similar across subgroups defined by race, sex, socioeconomic status, lifestyles, metabolic health, family history, and follow-up duration. The MRS mediated large portions (46.0%-74.2%) of the associations for body mass index, smoking, diabetes, hypertension, and dyslipidemia with incident CHD. CONCLUSIONS In a diverse study sample, we identified 24 circulating metabolites that, when combined into an MRS, were robustly associated with incident CHD and modestly improved CHD risk prediction beyond conventional risk factors.
Collapse
Affiliation(s)
- Kui Deng
- Vanderbilt Epidemiology Center, Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Deepak K. Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center & Division of Cardiovascular Medicine, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Xiao-Ou Shu
- Vanderbilt Epidemiology Center, Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Loren Lipworth
- Vanderbilt Epidemiology Center, Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Wei Zheng
- Vanderbilt Epidemiology Center, Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Hui Cai
- Vanderbilt Epidemiology Center, Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Qiuyin Cai
- Vanderbilt Epidemiology Center, Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Danxia Yu
- Vanderbilt Epidemiology Center, Division of Epidemiology, Dept of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
10
|
Laveriano-Santos EP, Luque-Corredera C, Trius-Soler M, Lozano-Castellón J, Dominguez-López I, Castro-Barquero S, Vallverdú-Queralt A, Lamuela-Raventós RM, Pérez M. Enterolignans: from natural origins to cardiometabolic significance, including chemistry, dietary sources, bioavailability, and activity. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38952149 DOI: 10.1080/10408398.2024.2371939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The enterolignans, enterolactone and enterodiol, the main metabolites produced from plant lignans by the gut microbiota, have enhanced bioavailability and activity compared to their precursors, with beneficial effects on metabolic and cardiovascular health. Although extensively studied, the biosynthesis, cardiometabolic effects, and other therapeutic implications of mammalian lignans are still incompletely understood. The aim of this review is to provide a comprehensive overview of these phytoestrogen metabolites based on up-to-date information reported in studies from a wide range of disciplines. Established and novel synthetic strategies are described, as are the various lignan precursors, their dietary sources, and a proposed metabolic pathway for their conversion to enterolignans. The methodologies used for enterolignan analysis and the available data on pharmacokinetics and bioavailability are summarized and their cardiometabolic bioactivity is explored in detail. The special focus given to research on the health benefits of microbial-derived lignan metabolites underscores the critical role of lignan-rich diets in promoting cardiovascular health.
Collapse
Affiliation(s)
- Emily P Laveriano-Santos
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | | | - Marta Trius-Soler
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Julian Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Inés Dominguez-López
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Sara Castro-Barquero
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- BCNatal|Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), University of Barcelona, Barcelona, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy, XIA, Faculty of Pharmacy and Food Sciences, Polyphenol Research Group, University of Barcelona, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, Santa Coloma de Gramanet, Spain
- CIBER Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
12
|
陈 悦, 卢 燕, 吴 军, 邱 海. [Characteristics and clinical value of intestinal metabolites in children aged 4-6 years with obstructive sleep apnea-hypopnea syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:575-583. [PMID: 38926373 PMCID: PMC11562065 DOI: 10.7499/j.issn.1008-8830.2309129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/06/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES To study the characteristics and clinical value of intestinal metabolites in children aged 4-6 years with obstructive sleep apnea-hypopnea syndrome (OSAHS). METHODS A total of 31 children aged 4-6 years with OSAHS were prospectively enrolled as the test group, and 24 healthy children aged 4-6 years were included as the control group. Relevant clinical indicators were recorded. Fecal samples were collected, and non-targeted metabolomics analysis using liquid chromatography-mass spectrometry was performed to detect all metabolites. RESULTS A total of 206 metabolites were detected, mainly amino acids and their derivatives. There was a significant difference in the overall composition of intestinal metabolites between the test and control groups (P<0.05). Eighteen different metabolites were selected, among which six (N-acetylmethionine, L-methionine, L-lysine, DL-phenylalanine, L-tyrosine, and L-isoleucine) had receiver operating characteristic curve areas greater than 0.7 for diagnosing OSAHS. Among them, N-acetylmethionine had the largest area under the curve, which was 0.807, with a sensitivity of 70.83% and a specificity of 80.65%. Correlation analysis between different metabolites and clinical indicators showed that there were positive correlations between the degree of tonsil enlargement and enterolactone, between uric acid and phenylacetaldehyde, between blood glucose and acetylmethionine, and between cholesterol and 9-bromodiphenyl and procaine (P<0.05). There were negative correlations between the degree of tonsil enlargement and N-methyltyramine, aspartate aminotransferase and indolepropionic acid and L-isoleucine, between alanine aminotransferase and DL-phenylalanine, between indolepropionic acid and L-isoleucine, between uric acid and hydroxyquinoline, and between urea nitrogen and N,N-dicyclohexylurea (P<0.05). The metabolic functional pathways affected by differential metabolites mainly included riboflavin metabolism, arginine and proline metabolism, pantothenic acid and coenzyme A biosynthesis, cysteine and methionine metabolism, lysine degradation and glutathione metabolism. CONCLUSIONS Intestinal metabolites and metabolic functions are altered in children aged 4-6 years with OSAHS, primarily involving amino acid metabolism disorders. The screened differential intestinal metabolites have potential screening and diagnostic value as biomarkers for OSAHS.
Collapse
|
13
|
Schorr KA, Agayn V, de Groot LCPGM, Slagboom PE, Beekman M. A plant-based diet index to study the relation between diet and disease risk among adults: a narrative review. J Nutr Health Aging 2024; 28:100272. [PMID: 38815475 DOI: 10.1016/j.jnha.2024.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
Plant-based diets (PBD) may offer various health benefits and contribute to a sustainable way of life, but, if not planned correctly, may also confer risks, e.g., by focusing on plant foods with low nutrient density, such as foods primarily consisting of refined carbohydrates. A plant-based diet index (PDI) differentiating between a healthful, unhealthful, and overall PBD, offers a promising approach to standardize and compare studies and integrate results. In this review we (1) summarize current evidence on the PDI and disease risk of relevance to public health, (2) discuss the methodology of the PDI and how it can be sensibly applied in further studies and (3) indicate areas with a lack of knowledge, such as vulnerable populations. In summary, our amalgamation shows, that adherence to a healthier plant-based diet is associated with an 8-68% lower risk for metabolic risk factors, diabetes, and cardiovascular disease, while adherence to an unhealthier plant-based diet is associated with a 10-63% higher risk. Although differences in calculation methods and underlying diet patterns between populations should be accounted for, the PDI can be a useful tool to assess adherence to different plant-based diet patterns and their association with health outcomes in cohort studies across cultures.
Collapse
Affiliation(s)
- Kerstin A Schorr
- Innoso BV, Den Haag, The Neterhlands; Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | - Marian Beekman
- Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Agulló V, Favari C, Pilla N, Bresciani L, Tomás-Barberán FA, Crozier A, Del Rio D, Mena P. Using Targeted Metabolomics to Unravel Phenolic Metabolites of Plant Origin in Animal Milk. Int J Mol Sci 2024; 25:4536. [PMID: 38674121 PMCID: PMC11050474 DOI: 10.3390/ijms25084536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Milk holds a high nutritional value and is associated with diverse health benefits. The understanding of its composition of (poly)phenolic metabolites is limited, which necessitates a comprehensive evaluation of the subject. This study aimed at analyzing the (poly)phenolic profile of commercial milk samples from cows and goats and investigating their sterilization treatments, fat content, and lactose content. Fingerprinting of phenolic metabolites was achieved by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). Two hundred and three potential microbial and phase II metabolites of the main dietary (poly)phenols were targeted. Twenty-five metabolites were identified, revealing a diverse array of phenolic metabolites in milk, including isoflavones and their microbial catabolites equol and O-desmethylangolensin, phenyl-γ-valerolactones (flavan-3-ol microbial catabolites), enterolignans, urolithins (ellagitannin microbial catabolites), benzene diols, and hippuric acid derivates. Goat's milk contained higher concentrations of these metabolites than cow's milk, while the sterilization process and milk composition (fat and lactose content) had minimal impact on the metabolite profiles. Thus, the consumption of goat's milk might serve as a potential means to supplement bioactive phenolic metabolites, especially in individuals with limited production capacity. However, further research is needed to elucidate the potential health effects of milk-derived phenolics.
Collapse
Affiliation(s)
- Vicente Agulló
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Niccolò Pilla
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Francisco A. Tomás-Barberán
- Quality, Safety, and Bioactivity of Plant Foods Research Group, Laboratory of Food & Health, CEBAS–CSIC, Espinardo P.O. Box 164, 30100 Murcia, Spain;
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia;
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy
| |
Collapse
|
15
|
Shea JW, Jacobs DR, Howard AG, Lulla A, Lloyd-Jones DM, Murthy VL, Shah RV, Trujillo-Gonzalez I, Gordon-Larsen P, Meyer KA. Choline metabolites and incident cardiovascular disease in a prospective cohort of adults: Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 2024; 119:29-38. [PMID: 37865185 PMCID: PMC10808833 DOI: 10.1016/j.ajcnut.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND The potential role for choline metabolite trimethylamine N-oxide (TMAO) in cardiovascular disease (CVD) has garnered much attention, but there have been limited data from diverse population-based cohorts. Furthermore, few studies have included circulating choline and betaine, which can serve as precursors to TMAO and may independently influence CVD. OBJECTIVE We quantified prospective associations between 3 choline metabolites and 19-y incident CVD in a population-based cohort and tested effect modification of metabolite-CVD associations by kidney function. METHODS Data were from the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a prospective cohort with recruitment from 4 US urban centers (year 0: 1985-1986, n = 5115, ages 18-30). The analytic sample included 3444 White and Black males and females, aged 33 to 45, who attended the year 15 follow-up exam and did not have prevalent CVD. TMAO, choline, and betaine were quantitated from stored plasma (-70°C) using liquid-chromatography mass-spectrometry. Nineteen-year incident CVD events (n = 221), including coronary heart disease and stroke, were identified through adjudicated hospitalization records and linkage with the National Death Register. RESULTS Plasma choline was positively associated with CVD in Cox proportional hazards regression analysis adjusted for demographics, health behaviors, CVD risk factors, and metabolites (hazard ratio: 1.24; 95% CI: 1.09, 1.40 per standard deviation-unit choline). TMAO and betaine were not associated with CVD in an identically adjusted analysis. There was statistical evidence for effect modification by kidney function with CVD positively associated with TMAO and negatively associated with betaine at lower values of estimated glomerular filtration rate (interaction P values: 0.0046 and 0.020, respectively). CONCLUSIONS Our findings are consistent with a positive association between plasma choline and incident CVD. Among participants with lower kidney function, TMAO was positively, and betaine negatively, associated with CVD. These results further our understanding of the potential role for choline metabolism on CVD risk.
Collapse
Affiliation(s)
- Jonathan W Shea
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, United States
| | - Annie Green Howard
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, United States; Carolina Population Center, University of North Carolina, Chapel Hill, NC, United States
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University, Chicago, IL, United States
| | - Venkatesh L Murthy
- Department of Medicine and Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Ravi V Shah
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Isis Trujillo-Gonzalez
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States
| | - Penny Gordon-Larsen
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, United States; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States
| | - Katie A Meyer
- Nutrition Research Institute, University of North Carolina, Kannapolis, NC, United States; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States.
| |
Collapse
|
16
|
Lanuza F, Meroño T, Zamora-Ros R, Bondonno NP, Rostgaard-Hansen AL, Sánchez-Pla A, Miro B, Carmona-Pontaque F, Riccardi G, Tjønneland A, Landberg R, Halkjær J, Andres-Lacueva C. Plasma metabolomic profiles of plant-based dietary indices reveal potential pathways for metabolic syndrome associations. Atherosclerosis 2023; 382:117285. [PMID: 37778133 DOI: 10.1016/j.atherosclerosis.2023.117285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND AND AIMS Plant-based dietary patterns have been associated with improved health outcomes. This study aims to describe the metabolomic fingerprints of plant-based diet indices (PDI) and examine their association with metabolic syndrome (MetS) and its components in a Danish population. METHODS The MAX study comprised 676 participants (55% women, aged 18-67 y) from Copenhagen. Sociodemographic and dietary data were collected using questionnaires and three 24-h dietary recalls over one year (at baseline, and at 6 and 12 months). Mean dietary intakes were computed, as well as overall PDI, healthful (hPDI) and unhealthful (uPDI) scores, according to food groups for each plant-based index. Clinical variables were also collected at the same time points in a health examination that included complete blood tests. MetS was defined according to the International Diabetes Federation criteria. Plasma metabolites were measured using a targeted metabolomics approach. Metabolites associated with PDI were selected using random forest models and their relationships with PDIs and MetS were analyzed using generalized linear mixed models. RESULTS The mean prevalence of MetS was 10.8%. High, compared to low, hPDI and uPDI scores were associated with a lower and higher odd of MetS, respectively [odds ratio (95%CI); hPDI: 0.56 (0.43-0.74); uPDI: 1.61 (1.26-2.05)]. Out of 411 quantified plasma metabolites, machine-learning metabolomics fingerprinting revealed 13 metabolites, including food and food-related microbial metabolites, like hypaphorine, indolepropionic acid and lignan-derived enterolactones. These metabolites were associated with all PDIs and were inversely correlated with MetS components (p < 0.05). Furthermore, they had an explainable contribution of 12% and 14% for the association between hPDI or uPDI, respectively, and MetS only among participants with overweight/obesity. CONCLUSIONS Metabolites associated with PDIs were inversely associated with MetS and its components, and may partially explain the effects of plant-based diets on cardiometabolic risk factors.
Collapse
Affiliation(s)
- Fabian Lanuza
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Tomas Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| | - Raul Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.
| | - Nicola P Bondonno
- Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100, Copenhagen, Denmark; Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | | | - Alex Sánchez-Pla
- Statistics and Bioinformatics Research Group, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Berta Miro
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Statistics and Bioinformatics Research Group, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Francesc Carmona-Pontaque
- Statistics and Bioinformatics Research Group, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100, Copenhagen, Denmark
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Jytte Halkjær
- Danish Cancer Society Research Center, Strandboulevarden 49, DK 2100, Copenhagen, Denmark
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department de Nutrició, Ciències de L'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona (UB), 08028, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
17
|
Dai Y, Sun Z, Zheng Y, Ge J. Recent advances in the gut microbiome and microbial metabolites alterations of coronary artery disease. Sci Bull (Beijing) 2023; 68:549-552. [PMID: 36914549 DOI: 10.1016/j.scib.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Zhonghan Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Yan Zheng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai 200438, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China.
| |
Collapse
|
18
|
Gu S, Zhang Q, Gu J, Wang C, Chu M, Li J, Mo X. The stereoselective metabolic disruption of cypermethrin on rats by a sub-acute study based on metabolomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31130-31140. [PMID: 36441315 DOI: 10.1007/s11356-022-24359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the massive application of cypermethrin (CYP) for pest control in China, the adverse effects on non-target organisms have aroused great attention. However, comparative studies between its different stereoisomers remain scarce, especially for metabolism perturbations. Herein, the rats were administered α-CYP, β-CYP, and θ-CYP by gavage at doses of 8.5, 29.2, and 25.0 mg/kg/day, respectively, for 28 consecutive days. By blood examination, significant changes in liver and renal function parameters were observed in rats exposed to all three CYPs. The stereoisomeric selectivity in metabolic disturbances was assessed based on a metabolomic strategy via multivariate analysis and pathway analysis. The results demonstrated that amino acid and glycolipid metabolism were disrupted in all CYP groups. Among them, the most significant changes in the metabolic phenotype were observed in the θ-CYP group, with 56 differential metabolites enriched in 9 differential metabolic pathways. At the same time, the endogenous metabolite trimethylamine oxide (TMAO), which is closely linked to the gut microbiota, was also significantly elevated in this group. Gender differences were found in α- and θ-CYP-exposed rats, with perturbations in amino acid and glucose metabolism of greater concern in females and lipid metabolism of greater concern in males. Overall, β-CYP exhibited a lower risk of metabolic perturbations than α-CYP or θ-CYP, which helps to screen suitable agrochemical products for green agricultural development.
Collapse
Affiliation(s)
- Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| | - Jinping Gu
- College of Pharmaceutical Sciences, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengjie Chu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Jing Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Xunjie Mo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| |
Collapse
|
19
|
Baldi S, Tristán Asensi M, Pallecchi M, Sofi F, Bartolucci G, Amedei A. Interplay between Lignans and Gut Microbiota: Nutritional, Functional and Methodological Aspects. Molecules 2023; 28:343. [PMID: 36615537 PMCID: PMC9822457 DOI: 10.3390/molecules28010343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Lignans are non-flavonoid polyphenols present in a wide range of foods frequently consumed in the Western world, such as seeds, vegetables and fruits, and beverages such as coffee, tea and wine. In particular, the human gut microbiota (GM) can convert dietary lignans into biologically active compounds, especially enterolignans (i.e., enterolactone and enterodiol), which play anti-inflammatory and anti-oxidant roles, act as estrogen receptor activators and modulate gene expression and/or enzyme activity. Interestingly, recent evidence documenting those dietary interventions involving foods enriched in lignans have shown beneficial and protective effects on various human pathologies, including colorectal and breast cancer and cardiovascular diseases. However, considering that more factors (e.g., diet, food transit time and intestinal redox state) can modulate the lignans bioactivation by GM, there are usually remarkable inter-individual differences in urine, fecal and blood concentrations of enterolignans; hence, precise and validated analytical methods, especially gas/liquid chromatography coupled to mass spectrometry, are needed for their accurate quantification. Therefore, this review aims to summarize the beneficial roles of enterolignans, their interaction with GM and the new methodological approaches developed for their evaluation in different biological samples, since they could be considered future promising nutraceuticals for the prevention of human chronic disorders.
Collapse
Affiliation(s)
- Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marta Tristán Asensi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Clinical Nutrition, Careggi University Hospital, 50134 Florence, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
20
|
Tian X, Wu Y, Duan C, Zhou X, Li Y, Zheng J, Lai W, Zhang S, Cao L, Zhong S. Tryptophan was metabolized into beneficial metabolites against coronary heart disease or prevented from producing harmful metabolites by the in vitro drug screening model based on Clostridium sporogenes. Front Microbiol 2022; 13:1013973. [DOI: 10.3389/fmicb.2022.1013973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
In our previous study of 2,130 Chinese patients with coronary heart disease (CHD), we found that tryptophan (TRP) metabolites contributed to elevated risks of death. Many TRP-derived metabolites require the participation of intestinal bacteria to produce, and they play an important role in the pathogenesis of metabolic diseases such as CHD. So it is necessary to metabolize TRP into beneficial metabolites against CHD or prevent the production of harmful metabolites through external intervention. Indole-3-butyric acid (IBA) may be a key point of gut microbiota that causes TRP metabolism disorder and affects major adverse cardiovascular events in CHD. Therefore, this study aimed to develop a method based on in vitro culture bacteria to evaluate the effects of IBA on specific microbial metabolites quickly. We detected the concentrations of TRP and its metabolites in 11 bacterial strains isolated from feces using liquid chromatography–mass spectrometry, and selected Clostridium sporogenes as the model strain. Then, IBA was used in our model to explore its effect on TRP metabolism. Results demonstrated that the optimal culture conditions of C. sporogenes were as follows: initial pH, 6.8; culture temperature, 37°C; and inoculum amount, 2%. Furthermore, we found that IBA increases the production of TRP and 5-HIAA by intervening TRP metabolism, and inhibits the production of KYNA. This new bacteria-specific in vitro model provides a flexible, reproducible, and cost-effective tool for identifying harmful agents that can decrease the levels of beneficial TRP metabolites. It will be helpful for researchers when developing innovative strategies for studying gut microbiota.
Collapse
|
21
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
22
|
Ma Y, Liu X, Wang J. Small molecules in the big picture of gut microbiome-host cross-talk. EBioMedicine 2022; 81:104085. [PMID: 35636316 PMCID: PMC9156878 DOI: 10.1016/j.ebiom.2022.104085] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Research on the gut microbiome and related diseases is rapidly growing with the development of sequencing technologies. An increasing number of studies offer new perspectives on disease development or treatment. Among these, the mechanisms of gut microbial metabolite-mediated effects merit better understanding. In this review, we first summarize the shifts in gut microbial metabolites within complex diseases, in which metabolites have correlational and occasionally causal effects on diseases and discuss the reported mechanisms. We further investigate the interactions between gut microbes and drugs, providing insights for precision medication as well as limitations of current research. Finally, we provide new research directions and research strategies for the development of drugs from gut microbial metabolites. FUNDING STATEMENT: None.
Collapse
Affiliation(s)
- Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Gut Microbiota-Derived Metabolites and Cardiovascular Disease Risk: A Systematic Review of Prospective Cohort Studies. Nutrients 2022; 14:nu14132654. [PMID: 35807835 PMCID: PMC9268449 DOI: 10.3390/nu14132654] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota-derived metabolites have recently attracted considerable attention due to their role in host-microbial crosstalk and their link with cardiovascular health. The MEDLINE-PubMed and Elsevier’s Scopus databases were searched up to June 2022 for studies evaluating the association of baseline circulating levels of trimethylamine N-oxide (TMAO), secondary bile acids, short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), tryptophan and indole derivatives, with risk of cardiovascular disease (CVD). A total of twenty-one studies were included in the systematic review after evaluating 1210 non-duplicate records. There were nineteen of the twenty-one studies that were cohort studies and two studies had a nested case–control design. All of the included studies were of high quality according to the “Newcastle–Ottawa Scale”. TMAO was positively associated with adverse cardiovascular events and CVD/all-cause mortality in some, but not all of the included studies. Bile acids were associated with atrial fibrillation and CVD/all-cause mortality, but not with CVD. Positive associations were found between BCAAs and CVD, and between indole derivatives and major adverse cardiovascular events, while a negative association was reported between tryptophan and all-cause mortality. No studies examining the relationship between SCFAs and CVD risk were identified. Evidence from prospective studies included in the systematic review supports a role of microbial metabolites in CVD.
Collapse
|
24
|
Li J, Li Y, Ivey KL, Wang DD, Wilkinson JE, Franke A, Lee KH, Chan AT, Huttenhower C, Hu FB, Rimm EB, Sun Q. Interplay between diet and gut microbiome, and circulating concentrations of trimethylamine N-oxide: findings from a longitudinal cohort of US men. Gut 2022; 71:724-733. [PMID: 33926968 PMCID: PMC8553812 DOI: 10.1136/gutjnl-2020-322473] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Gut-produced trimethylamine N-oxide (TMAO) is postulated as a possible link between red meat intake and poor cardiometabolic health. We investigated whether gut microbiome could modify associations of dietary precursors with TMAO concentrations and cardiometabolic risk markers among free-living individuals. DESIGN We collected up to two pairs of faecal samples (n=925) and two blood samples (n=473), 6 months apart, from 307 healthy men in the Men's Lifestyle Validation Study. Diet was assessed repeatedly using food-frequency questionnaires and diet records. We profiled faecal metagenome and metatranscriptome using shotgun sequencing and identified microbial taxonomic and functional features. RESULTS TMAO concentrations were associated with the overall microbial compositions (permutational analysis of variance (PERMANOVA) test p=0.001). Multivariable taxa-wide association analysis identified 10 bacterial species whose abundance was significantly associated with plasma TMAO concentrations (false discovery rate <0.05). Higher habitual intake of red meat and choline was significantly associated with higher TMAO concentrations among participants who were microbial TMAO-producers (p<0.05), as characterised based on four abundant TMAO-predicting species, but not among other participants (for red meat, P-interaction=0.003; for choline, P-interaction=0.03). Among abundant TMAO-predicting species, Alistipes shahii significantly strengthened the positive association between red meat intake and HbA1c levels (P-interaction=0.01). Secondary analyses revealed that some functional features, including choline trimethylamine-lyase activating enzymes, were associated with TMAO concentrations. CONCLUSION We identified microbial taxa that were associated with TMAO concentrations and modified the associations of red meat intake with TMAO concentrations and cardiometabolic risk markers. Our data underscore the interplay between diet and gut microbiome in producing potentially bioactive metabolites that may modulate cardiometabolic health.
Collapse
Affiliation(s)
- Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kerry L. Ivey
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Microbiome and Host Health Program, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Dong D. Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Jeremy E. Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Adrian Franke
- Analytical Biochemistry Shared Resource, University of Hawaii Cancer Center, Honolulu, HI
| | - Kyu Ha Lee
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Andrew T. Chan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA,Broad Institute of MIT and Harvard, Cambridge, MA
| | - Frank B. Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Eric B. Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Qi Sun
- Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA .,Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Li Y, Wang F, Li J, Ivey KL, Wilkinson JE, Wang DD, Li R, Liu G, Eliassen HA, Chan AT, Clish CB, Huttenhower C, Hu FB, Sun Q, Rimm EB. Dietary lignans, plasma enterolactone levels, and metabolic risk in men: exploring the role of the gut microbiome. BMC Microbiol 2022; 22:82. [PMID: 35350985 PMCID: PMC8966171 DOI: 10.1186/s12866-022-02495-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The conversion of plant lignans to bioactive enterolignans in the gastrointestinal tract is mediated through microbial processing. The goal of this study was to examine the relationships between lignan intake, plasma enterolactone concentrations, gut microbiome composition, and metabolic risk in free-living male adults. RESULTS In 303 men participating in the Men's Lifestyle Validation Study (MLVS), lignan intake was assessed using two sets of 7-day diet records, and gut microbiome was profiled through shotgun sequencing of up to 2 pairs of fecal samples (n = 911). A score was calculated to summarize the abundance of bacteria species that were significantly associated with plasma enterolactone levels. Of the 138 filtered species, plasma enterolactone levels were significantly associated with the relative abundances of 18 species at FDR < 0.05 level. Per SD increment of lignan intake was associated with 20.7 nM (SEM: 2.3 nM) higher enterolactone concentrations among participants with a higher species score, whereas the corresponding estimate was 4.0 nM (SEM: 1.7 nM) among participants with a lower species score (P for interaction < 0.001). A total of 12 plasma metabolites were also significantly associated with these enterolactone-predicting species. Of the association between lignan intake and metabolic risk, 19.8% (95%CI: 7.3%-43.6%) was explained by the species score alone, 54.5% (95%CI: 21.8%-83.7%) by both species score and enterolactone levels, and 79.8% (95%CI: 17.7%-98.6%) by further considering the 12 plasma metabolites. CONCLUSION We identified multiple gut bacteria species that were enriched or depleted at higher plasma levels of enterolactone in men. These species jointly modified the associations of lignan intake with plasma enterolactone levels and explained the majority of association between lignan intake and metabolic risk along with enterolactone levels and certain plasma metabolites.
Collapse
Affiliation(s)
- Yanping Li
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Fenglei Wang
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Jun Li
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Kerry L. Ivey
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.430453.50000 0004 0565 2606Microbiome and Host Health Programme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000 Australia ,grid.1014.40000 0004 0367 2697Department of Nutrition and Dietetics, College of Nursing and Health Sciences, Flinders University, Adelaide, Australia
| | - Jeremy E. Wilkinson
- grid.38142.3c000000041936754X Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Dong D. Wang
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ruifeng Li
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Gang Liu
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
| | - Heather A. Eliassen
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Andrew T. Chan
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Clary B. Clish
- grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
| | - Curtis Huttenhower
- grid.38142.3c000000041936754X Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA USA ,grid.66859.340000 0004 0546 1623Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA USA
| | - Frank B. Hu
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Qi Sun
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Eric B. Rimm
- grid.38142.3c000000041936754XDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA ,grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The number of published studies on the health effects of plant-based diets has increased dramatically in the last decade. The purpose of this narrative review is to update the most recent evidence from large prospective cohort studies and meta-analyses on the effects of plant-based dietary patterns on cardiovascular outcomes and risk factors and total mortality. RECENT FINDINGS Most new data from large prospective cohort studies carried out in the USA, Europe, and Asia continue to show inverse associations between plant-based diets and the incidence of ischemic heart disease and stroke, while less data exist for heart failure incidence. New analyses suggest that only some components of plant-based diets are associated with cardiovascular benefit. Recent meta-analyses show inverse associations between plant-protein intake and all-cause mortality, although heterogeneity exists, and small mortality risks from some animal proteins, notably processed meats. New studies continue to demonstrate small but favorable effects of plant-based diets on traditional risk factors and suggest other emerging mechanisms by which plant-based diets exert cardiovascular benefits. The recommendation to consume a plant-based diet to reduce cardiovascular risk remains an evidence-based strategy based on observational studies. New data highlight the importance of ensuring that these diets are nutrient-rich and low in plant foods associated with signals of harm. For this reason, assessment of diet quality is important even in patients who report adherence to plant-based diets. Large randomized trials with hard cardiovascular endpoints might strengthen this evidence-base, but feasibility is limited.
Collapse
|
27
|
Analysis of Gut Microbiota in Patients with Coronary Artery Disease and Hypertension. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:7195082. [PMID: 34987598 PMCID: PMC8723847 DOI: 10.1155/2021/7195082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/25/2021] [Indexed: 01/25/2023]
Abstract
Cardiovascular and cerebrovascular diseases are characterized by high rates of morbidity and mortality. Microbiota is closely associated with cardiovascular disease. We aimed to comprehensively analyze the microbiotas of 300 healthy controls, 300 patients with high blood pressure (HBP), and 300 patients with coronary heart disease (CHD). The results indicated no significant difference in microbiota diversity among the three groups (P > 0.05). However, differences in microbiota richness among the three groups were significant (P < 0.05). Bacteroidetes and Bacteroidia were the dominant bacteria in the CHD group, Enterobacteriales and Escherichia-shigella in the HBP group, and Acidaminococcaceae and Phascolarctobacterium in the healthy control group. The prediction results of the random forest model indicated that the population with CHD displayed prominent features with high sensitivity, indicating that microbiota detection might become a novel clinical indicator to predict and monitor the risk of cardiovascular events. The prediction of microbiota function suggested differences in oxygen supply and chronic inflammation between populations with HBP/CHD and healthy populations. Although there is no difference in gut microbiota diversity among the three groups, each group has its dominant microbiota in terms of richness.
Collapse
|
28
|
Baranyi A, Meinitzer A, von Lewinski D, Rothenhäusler HB, Amouzadeh-Ghadikolai O, Harpf H, Harpf L, Traninger H, Hödl R, Harb BM, Obermayer-Pietsch B, Schweinzer M, Braun CK, Enko D. Sex-specific differences in trimethylamine N-oxide (TMAO) concentrations before and after cardiac rehabilitation in acute myocardial infarction patients. EXCLI JOURNAL 2022; 21:1-10. [PMID: 35145364 PMCID: PMC8822301 DOI: 10.17179/excli2021-4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/03/2021] [Indexed: 12/05/2022]
Abstract
Trimethylamine N-oxide (TMAO) is a biomarker of cardiovascular risk and may enhance the progression of atherosclerosis. The aim of the study was to determine whether there are sex-specific differences in TMAO concentrations before and after cardiac rehabilitation in acute myocardial infarction (AMI) patients. A total of 56 participants [45/56 (80.4 %) males, 11/56 (19.6 %) females] were drawn from AMI inpatients hospitalized at the Division of Cardiology, Medical University of Graz, Austria. For the assessment of TMAO, serum samples were collected within the first day after hospital admission due to AMI and at the start and end of cardiac rehabilitation. Shortly after hospital admission due to AMI, females had significantly higher TMAO blood concentrations than males. These initially high TMAO levels remained almost unchanged in the female AMI patients until the start of cardiac rehabilitation and only reached the lower TMAO concentrations observed in the male patients after rehabilitation [female patients: TMAO (acute myocardial infarction) = 5.93 μmol/L (SE = 1.835); TMAO (start of rehabilitation) = 5.68 μmol/L (SE = 1.217); TMAO (end of rehabilitation) = 3.89 μmol/L (SE = 0.554); male patients: TMAO (acute myocardial infarction) = 3.02 μmol/L (SE = 0.255), TMAO (start of rehabilitation) = 3.91 μmol/L (SE = 0.346), TMAO (end of rehabilitation) = 4.04 μmol/L (SE = 0.363)]. After AMI, women might be at higher cardiovascular risk due to persistently higher levels of TMAO. High TMAO levels in women might decrease after cardiac rehabilitation due to cardiac rehabilitation-associated lifestyle modifications. These lifestyle modifications after AMI might also prevent increases in TMAO concentrations in men.
Collapse
Affiliation(s)
- Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hans-Bernd Rothenhäusler
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | | | - Hanns Harpf
- ZARG Zentrum für ambulante Rehabilitation GmbH, Graz, Austria
| | - Leonhard Harpf
- ZARG Zentrum für ambulante Rehabilitation GmbH, Graz, Austria
| | - Heimo Traninger
- ZARG Zentrum für ambulante Rehabilitation GmbH, Graz, Austria
| | - Ronald Hödl
- Ordination Hödl, Ordinationszentrum Privatklinik Graz Ragnitz, Berthold-Linder-Weg 15, 8047 Graz, Austria
| | - Birgit M. Harb
- Pensionsversicherungsanstalt, SKA-RZ St. Radegund für Herz-Kreislauferkrankungen, St. Radegund, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Endocrinology Lab Platform, Medical University of Graz, Graz, Austria
| | - Melanie Schweinzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Celine K. Braun
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Graz, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
29
|
Hu Y, Sun Q. Reply: Plant-Based Diet, Gut Microbiota, and Bioavailability of Lignans. J Am Coll Cardiol 2021; 78:e313. [PMID: 34886975 DOI: 10.1016/j.jacc.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
|
30
|
Chen Z, Wang B, Dong J, Li Y, Zhang S, Zeng X, Xiao H, Fan S, Cui M. Gut Microbiota-Derived l-Histidine/Imidazole Propionate Axis Fights against the Radiation-Induced Cardiopulmonary Injury. Int J Mol Sci 2021; 22:ijms222111436. [PMID: 34768867 PMCID: PMC8584084 DOI: 10.3390/ijms222111436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Radiation-induced cardiopulmonary injuries are the most common and intractable side effects that are entwined with radiotherapy for thorax cancers. However, the therapeutic options for such complications have yielded disappointing results in clinical applications. Here, we reported that gut microbiota-derived l-Histidine and its secondary metabolite imidazole propionate (ImP) fought against radiation-induced cardiopulmonary injury in an entiric flora-dependent manner in mouse models. Local chest irradiation decreased the level of l-Histidine in fecal pellets, which was increased following fecal microbiota transplantation. l-Histidine replenishment via an oral route retarded the pathological process of lung and heart tissues and improved lung respiratory and heart systolic function following radiation exposure. l-Histidine preserved the gut bacterial taxonomic proportions shifted by total chest irradiation but failed to perform radioprotection in gut microbiota-deleted mice. ImP, the downstream metabolite of l-Histidine, accumulated in peripheral blood and lung tissues following l-Histidine replenishment and protected against radiation-induced lung and heart toxicity. Orally gavaged ImP could not enter into the circulatory system in mice through an antibiotic cocktail treatment. Importantly, ImP inhibited pyroptosis to nudge lung cell proliferation after radiation challenge. Together, our findings pave a novel method of protection against cardiopulmonary complications intertwined with radiotherapy in pre-clinical settings and underpin the idea that gut microbiota-produced l-Histidine and ImP are promising radioprotective agents.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Z.C.); (B.W.); (J.D.); (Y.L.); (S.Z.); (X.Z.); (S.F.)
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Z.C.); (B.W.); (J.D.); (Y.L.); (S.Z.); (X.Z.); (S.F.)
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Z.C.); (B.W.); (J.D.); (Y.L.); (S.Z.); (X.Z.); (S.F.)
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Z.C.); (B.W.); (J.D.); (Y.L.); (S.Z.); (X.Z.); (S.F.)
| | - Shuqin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Z.C.); (B.W.); (J.D.); (Y.L.); (S.Z.); (X.Z.); (S.F.)
| | - Xiaozhou Zeng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Z.C.); (B.W.); (J.D.); (Y.L.); (S.Z.); (X.Z.); (S.F.)
| | - Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence: (H.X.); (M.C.)
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Z.C.); (B.W.); (J.D.); (Y.L.); (S.Z.); (X.Z.); (S.F.)
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (Z.C.); (B.W.); (J.D.); (Y.L.); (S.Z.); (X.Z.); (S.F.)
- Correspondence: (H.X.); (M.C.)
| |
Collapse
|
31
|
Hu Y, Li Y, Sampson L, Wang M, Manson JE, Rimm E, Sun Q. Lignan Intake and Risk of Coronary Heart Disease. J Am Coll Cardiol 2021; 78:666-678. [PMID: 34384548 PMCID: PMC8432598 DOI: 10.1016/j.jacc.2021.05.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Evidence regarding lignan consumption in relation to coronary heart disease (CHD) risk remains limited and mixed. OBJECTIVES The aim of this study was to prospectively examine associations between lignan intake and CHD risk in U.S. men and women. METHODS We prospectively followed 214,108 men and women in 3 cohorts who did not have cardiovascular disease or cancer at baseline. Diet was repeatedly assessed using a validated food frequency questionnaire every 2-4 years since baseline. RESULTS During 5,517,225 person-years of follow-up, we documented 10,244 CHD cases, including 6,283 nonfatal myocardial infarction and 3,961 fatal CHD cases. In multivariable-adjusted analyses, comparing extreme quintiles, the pooled hazard ratios of CHD were 0.85 (95% CI: 0.79-0.92) for total lignans, 0.76 (95% CI: 0.71-0.82) for matairesinol, 0.87 (95% CI: 0.81-0.93) for secoisolariciresinol, 0.89 (95% CI: 0.83-0.95) for pinoresinol, and 0.89 (95% CI: 0.83-0.95) for lariciresinol (all P values for trend ≤0.003). Nonlinear relationships were found for total lignan, matairesinol, and secoisolariciresinol: the risk reduction plateaued at intakes above approximately 300 μg/d, 10 μg/d, and 100 μg/d, respectively (P < 0.01 for all nonlinearity). The inverse associations for total lignan intake appeared to be more apparent among participants with higher total fiber intake (P = 0.04 for interaction). In addition, lignan intake was more strongly associated with plasma concentrations of enterolactone when fiber intake was higher. CONCLUSIONS Increased long-term intake of lignans was associated with a significantly lower risk of total CHD in both men and women. Possible synergistic effects may exist between lignan and fiber intake in relation to CHD risk reduction, possibly through enhancing the production of enterolignans.
Collapse
Affiliation(s)
- Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Laura Sampson
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - JoAnn E Manson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Joslin Diabetes Center, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Kocyigit D, Zimetti F, Gurses KM, Zanotti I, Marchi C, Ståhlman M, Borén J, Canpinar H, Soyal MF, Guc D, Hazirolan T, Ozer N, Tokgozoglu L. Cholesterol efflux promoting function of high-density lipoproteins in calcific aortic valve stenosis. ATHEROSCLEROSIS PLUS 2021; 44:18-24. [PMID: 36644669 PMCID: PMC9833266 DOI: 10.1016/j.athplu.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023]
Abstract
Background and aims Cholesterol efflux capacity is a functional property of high-density lipoproteins (HDL) reflecting the efficiency of the atheroprotective reverse cholesterol transport process in humans. Its relationship with calcific aortic valve stenosis (CAVS) has not been fully assessed yet. Methods We evaluated HDL-CEC in a patient population with varying degrees of aortic valvular calcific disease, assessed using echocardiography and cardiac computed tomography. Measurement of biomarkers that reflect osteogenic and tissue remodeling, along with dietary and gut microbiota-derived metabolites were performed. Results Patients with moderate-severe CAVS had significantly lower HDL-CEC compared to both control and aortic sclerosis subjects (mean: 6.09%, 7.32% and 7.26%, respectively). HDL-CEC displayed negative correlations with peak aortic jet velocity and aortic valve calcium score, indexes of CAVS severity (ρ = -0.298, p = 0.002 and ρ = -0.358, p = 0.005, respectively). In multivariable regression model, HDL-CEC had independent association with aortic valve calcium score (B: -0.053, SE: 0.014, p < 0.001), GFR (B: -0.034, SE: 0.012, p = 0.007), as well as with levels of total cholesterol (B: 0.018, SE: 0.005, p = 0.002). Conclusion These results indicate an impairment of HDL-CEC in moderate-severe CAVS and may contribute to identify potential novel targets for CAVS management.
Collapse
Affiliation(s)
- Duygu Kocyigit
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Corresponding author. Department of Cardiology, Hacettepe University Faculty of Medicine, 06100, Ankara, Turkey.
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, Parma, Italy
- Corresponding author.
| | - Kadri M. Gurses
- Department of Basic Medical Sciences, Adnan Menderes University Faculty of Medicine, Aydin, Turkey
| | - Ilaria Zanotti
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Cinzia Marchi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, University of Gothenburg Institute of Medicine, Göteborg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg Institute of Medicine, Göteborg, Sweden
| | - Hande Canpinar
- Department of Basic Oncology, Hacettepe University Institute of Oncology, Ankara, Turkey
| | - Mehmet F.T. Soyal
- Department of Cardiovascular Surgery, Medicana International Ankara Hospital, Ankara, Turkey
| | - Dicle Guc
- Department of Basic Oncology, Hacettepe University Institute of Oncology, Ankara, Turkey
| | - Tuncay Hazirolan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Necla Ozer
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|