1
|
Chao CJ, Zhang E, Trinh DN, Udofa E, Lin H, Silvers C, Huo J, He S, Zheng J, Cai X, Bao Q, Zhang L, Phan P, Elgendy SM, Shi X, Burdette JE, Lee SSY, Gao Y, Zhang P, Zhao Z. Integrating antigen capturing nanoparticles and type 1 conventional dendritic cell therapy for in situ cancer immunization. Nat Commun 2025; 16:4578. [PMID: 40379691 DOI: 10.1038/s41467-025-59840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
Eliciting a robust immune response against tumors is often hampered by the inadequate presence of effective antigen presenting cells and their suboptimal ability to present antigens within the immunosuppressive tumor microenvironment. Here, we report a cascade antigen relay strategy integrating antigen capturing nanoparticles (AC-NPs) and migratory type 1 conventional dendritic cells (cDC1s), named Antigen Capturing nanoparticle Transformed Dendritic Cell therapy (ACT-DC), to facilitate in situ immunization. AC-NPs are engineered to capture antigens directly from the tumor and facilitate their delivery to adoptively transferred migratory cDC1s, enhancing antigen presentation to the lymph nodes and reshaping the tumor microenvironment. Our findings suggest that ACT-DC improves in situ antigen collection, triggers a robust systemic immune response without the need for exogenous antigens, and transforms the tumor environment into a more "immune-hot" state. In multiple tumor models including colon cancer, melanoma, and glioma, ACT-DC in combination with immune checkpoint inhibitors eliminates primary tumors in 50-100% of treated mice and effectively rejects two separate tumor rechallenges. Collectively, ACT-DC could provide a broadly effective approach for in situ cancer immunization and tumor microenvironment modulation.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Duong N Trinh
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Edidiong Udofa
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Hanchen Lin
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Caylee Silvers
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jiawei Huo
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shan He
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Qing Bao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Luyu Zhang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Sara M Elgendy
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiangqian Shi
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Yu Gao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Peng Zhang
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Luri-Rey C, Teijeira Á, Wculek SK, de Andrea C, Herrero C, Lopez-Janeiro A, Rodríguez-Ruiz ME, Heras I, Aggelakopoulou M, Berraondo P, Sancho D, Melero I. Cross-priming in cancer immunology and immunotherapy. Nat Rev Cancer 2025; 25:249-273. [PMID: 39881005 DOI: 10.1038/s41568-024-00785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Cytotoxic T cell immune responses against cancer crucially depend on the ability of a subtype of professional antigen-presenting cells termed conventional type 1 dendritic cells (cDC1s) to cross-present antigens. Cross-presentation comprises redirection of exogenous antigens taken from other cells to the major histocompatibility complex class I antigen-presenting machinery. In addition, once activated and having sensed viral moieties or T helper cell cooperation via CD40-CD40L interactions, cDC1s provide key co-stimulatory ligands and cytokines to mount and sustain CD8+ T cell immune responses. This regulated process of cognate T cell activation is termed cross-priming. In cancer mouse models, CD8+ T cell cross-priming by cDC1s is crucial for the efficacy of most, if not all, immunotherapy strategies. In patients with cancer, the presence and abundance of cDC1s in the tumour microenvironment is markedly associated with the level of T cell infiltration and responsiveness to immune checkpoint inhibitors. Therapeutic strategies to increase the numbers of cDC1s using FMS-like tyrosine kinase 3 ligand (FLT3L) and/or their activation status show evidence of efficacy in cancer mouse models and are currently being tested in initial clinical trials with promising results so far.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Carlos de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Claudia Herrero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | - Ignacio Heras
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Departments of Immunology and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
3
|
Zhou Z, Guo F, Zhang J, Liao L, Jiang M, Huang Y, Liu Y, Lei L, Tao Z, Yu CY, Wei H. Facile integration of a binary nano-prodrug with αPD-L1 as a translatable technology for potent immunotherapy of TNBC. Acta Biomater 2025; 194:373-384. [PMID: 39870152 DOI: 10.1016/j.actbio.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Immune checkpoint blockers (ICBs)-based immunotherapy is a favorable approach for efficient triple-negative breast cancer (TNBC) treatment. However, the therapeutic efficacy of ICBs is greatly compromised by immunosuppressive tumor microenvironments (TMEs) and low expression levels of programmed cell death ligand-1 (PD-L1). Herein, we constructed an amphiphilic prodrug by linking a hydrophobic STING agonist, MSA-2 and a hydrophilic chemotherapeutic drug, gemcitabine (GEM) via an ester bond, which can self-assemble into GEM-MSA-2 (G-M) nanoparticles (NPs) with a tumor growth inhibition (TGI) value of 87.1 % in a murine 4T1 transplantation tumor model. Notably, the immunogenic cell death (ICD)-triggering effect of GEM together with the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation properties of MSA-2 enables efficient infiltration of non-exhausting T cells and repolarization of macrophages from M2 to M1 types in the tumor microenvironment for transforming a cold tumor to a hot one. Most importantly, G-M NPs treatment increases the PD-L1 expression levels, thus providing a unique opportunity for further integration with anti-PD-L1 monoclonal antibody (αPD-L1) for eliciting stronger immunity that ultimately leads to a TGI value of 98.0 % in the primary tumor and significantly protects against distal and disseminated tumor rechallenge. Overall, this study presents a minimalist nano-prodrug combined with αPD-L1 as a simple yet robust translatable nanotechnology for potent chemo-immunotherapy of TNBC. STATEMENT OF SIGNIFICANCE: Enhancing the therapeutic efficacy of αPD-L1 for tumor immunotherapy via a translatable technology remains a challenge. We report herein facile integration of a binary nano-prodrug with αPD-L1 for potent immunotherapy of TNBC. An amphiphilic prodrug is constructed by linking a hydrophobic STING agonist, MSA-2 and a hydrophilic chemotherapeutic drug, gemcitabine (GEM) via an ester bond. The resulting self-assembled GEM-MSA-2 (G-M) nanoparticles (NPs) show a tumor growth inhibition (TGI) value of 87.1 % in a murine 4T1 transplantation tumor model. Besides the induced immunogenic cell death (ICD) and activated cGAS-STING pathway, G-M NPs increase the PD-L1 expression levels, providing a unique opportunity for further integration with αPD-L1 to elicit stronger immunity that ultimately leads to a TGI value of 98.0 % in the primary tumor and significantly protects against distal and disseminated tumor rechallenge.
Collapse
Affiliation(s)
- Zongtao Zhou
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Fangru Guo
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Jinyan Zhang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Luanfeng Liao
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Mingchao Jiang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Yun Huang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Ying Liu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Longtianyang Lei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Zhenghao Tao
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China; Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Hua Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, MOE Key Lab of Rare Pediatric Disease, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
Saryglar RY, Lupatov AY, Vakhrushev IV, Karshieva SS, Bystrykh OA, Kuprin AV, Yarygin KN. Influence of the Breast Tumor Stromal Fibroblasts on Immunological Processes In Vitro. Bull Exp Biol Med 2025; 178:552-559. [PMID: 40156744 DOI: 10.1007/s10517-025-06372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 04/01/2025]
Abstract
The effects of stromal cell cultures isolated from breast cancer tissue on the differentiation and maturation of dendritic cells and proliferation of lymphocytes were studied in vitro. The derived cultures had the fibroblast-like morphology and carried mesenchymal markers CD73 and CD90 in the absence of epithelial (CD326, CD24) and macrophage (CD68) markers. The cells also expressed CD44, CD10, and CD29 and had low levels of HLA-ABC expression. Intracellular expression of fibroblast activation protein (FAP), tenascin C, and α-SMA indicated their activated state and stromal origin. Analysis of the functional properties of the cells revealed their ability to suppress differentiation of dendritic cells from monocytes, as well as the proliferation of T lymphocytes. However, they had no significant effect on DC maturation. The results demonstrate that fibroblasts in the tumor stroma of breast cancer may have a suppressive effect on important mechanisms of the adaptive immunity and can be involved in the process of tumor escape from the immunological control.
Collapse
Affiliation(s)
| | - A Yu Lupatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - S Sh Karshieva
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O A Bystrykh
- A. V. Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Kuprin
- A. V. Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - K N Yarygin
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Adam K, Butler SC, Workman CJ, Vignali DAA. Advances in LAG3 cancer immunotherapeutics. Trends Cancer 2025; 11:37-48. [PMID: 39603977 PMCID: PMC12047404 DOI: 10.1016/j.trecan.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Cancer treatment has entered the age of immunotherapy. Immune checkpoint inhibitor (ICI) therapy has shown robust therapeutic potential in clinical practice, with significant improvements in progression-free survival (PFS) and overall survival (OS). Recently, checkpoint blockade of the lymphocyte activation gene 3 (LAG3) inhibitory receptor (IR) in combination with programmed death protein 1 (PD1) inhibition has been FDA approved in patients with advanced melanoma. This has encouraged the clinical evaluation of new LAG3-directed biologics in combination with other checkpoint inhibitors. Several of these studies are evaluating bispecific antibodies that target exhausted T (TEX) cells expressing multiple IRs. This review discusses the current understanding of LAG3 in regulating antitumor immunity and the ongoing clinical testing of LAG3 inhibition in cancer.
Collapse
Affiliation(s)
- Kieran Adam
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel C Butler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Wang M, Sang J, Xu F, Wang S, Liu P, Ma J, Chen Z, Xie Q, Wei Z, Ye X. Microwave Ablation Combined with Flt3L Provokes Tumor-Specific Memory CD8 + T Cells-Mediated Antitumor Immunity in Response to PD-1 Blockade. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413181. [PMID: 39629989 PMCID: PMC11775548 DOI: 10.1002/advs.202413181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Indexed: 01/12/2025]
Abstract
For medically inoperable non-small cell lung cancer, microwave ablation (MWA) represents a super minimally invasive alternative treatment. However, tumor recurrence remains a concern. Here, it is demonstrated that the combination of MWA with Flt3L significantly inhibits tumor recurrence by CD8+ central memory T (TCM)-like cell-dependent antitumor immune responses within the tumor-draining lymph nodes (TdLN). TdLN-TCM-like cells encompassed both tumor-specific memory T (TTSM) and progenitor-exhausted T (TPEX) cells. The expansion of these cells markedly altered the differentiation of exhausted T cells within the tumor microenvironment (TME). TPEX predominantly differentiated into transitory effector-like exhausted T cells (TEX-int). The expansion of TTSM cells elicited by the combined therapy was reliant on conventional dendritic cells (cDCs) and was likely specifically dependent on the migratory cDC1s (Mig cDC1s) within the TdLN. The upregulation of ICOSL on migratory cDC1s was pivotal in initiating TTSM-like cell-mediated antitumor responses. Slc38a2 may be a critical gene responsible for the upregulation of ICOSL in Mig cDC1s following combined treatment. Finally, the combined treatment significantly enhanced the antitumor efficacy of immunotherapy based on PD-1 blockade. The research thereby afforded a novel strategic approach to forestall tumor recurrence after MWA therapy, while also providing the foundational proof-of-concept for impending clinical investigations.
Collapse
Affiliation(s)
- Meixiang Wang
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalShandong Provincial Lab for Clinical Immunology Translational Medicine in UniversitiesShandong Lung Cancer Institute16766 Jingshi RoadJinan250014P. R. China
| | - Jing Sang
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalShandong Provincial Lab for Clinical Immunology Translational Medicine in UniversitiesShandong Lung Cancer Institute16766 Jingshi RoadJinan250014P. R. China
- Department of PathologyShandong Provincial Third Hospital11 Wuyingshan Zhonglu RoadJinan250100P. R. China
| | - Fengkuo Xu
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalShandong Provincial Lab for Clinical Immunology Translational Medicine in UniversitiesShandong Lung Cancer Institute16766 Jingshi RoadJinan250014P. R. China
| | - Shulong Wang
- Shandong Academy of Preventive MedicineShandong Center for Disease Control and Prevention16992 Jingshi RoadJinan250014P. R. China
| | - Peng Liu
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalShandong Provincial Lab for Clinical Immunology Translational Medicine in UniversitiesShandong Lung Cancer Institute16766 Jingshi RoadJinan250014P. R. China
| | - Ji Ma
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalShandong Provincial Lab for Clinical Immunology Translational Medicine in UniversitiesShandong Lung Cancer Institute16766 Jingshi RoadJinan250014P. R. China
| | - Zhengtao Chen
- School of Laboratory Animal & Shandong Laboratory Animal CenterShandong First Medical University & Shandong Academy of Medical Sciences6699 Qingdao RoadJinan250014P. R. China
| | - Qi Xie
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalShandong Provincial Lab for Clinical Immunology Translational Medicine in UniversitiesShandong Lung Cancer Institute16766 Jingshi RoadJinan250014P. R. China
| | - Zhigang Wei
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalShandong Provincial Lab for Clinical Immunology Translational Medicine in UniversitiesShandong Lung Cancer Institute16766 Jingshi RoadJinan250014P. R. China
- Cheeloo College of MedicineShandong University27 Shanda Nanlu RoadJinan250100P. R. China
| | - Xin Ye
- Department of OncologyThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalShandong Provincial Lab for Clinical Immunology Translational Medicine in UniversitiesShandong Lung Cancer Institute16766 Jingshi RoadJinan250014P. R. China
| |
Collapse
|
7
|
Ahmad I, Altameemi KKA, Hani MM, Ali AM, Shareef HK, Hassan ZF, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Redhee AH. Shifting cold to hot tumors by nanoparticle-loaded drugs and products. Clin Transl Oncol 2025; 27:42-69. [PMID: 38922537 DOI: 10.1007/s12094-024-03577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | - Mohaned Mohammed Hani
- Department of Medical Instrumentation Engineering Techniques, Imam Ja'afar Al-Sadiq University, Al Muthanna, Iraq
| | - Afaq Mahdi Ali
- Department of Pharmaceutics, Al-Turath University College, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | | | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
8
|
Chun D, Park J, Lee S, Kim HJ, Park JE, Kang SJ. Flt3L enhances clonal diversification and selective expansion of intratumoral CD8 + T cells while differentiating into effector-like cells. Cell Rep 2024; 43:115023. [PMID: 39616612 DOI: 10.1016/j.celrep.2024.115023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
PD-1 blockade enhances anti-tumoral CD8+ T cell responses via type 1 conventional dendritic cells (cDC1s), but how cDC1s change the properties of intratumoral CD8+ T cells remains to be determined. Here, we identified two populations of intratumoral CD8+ T cells distinguished by their expression of asialo-ganglio-N-tetraosylceramide (asGM1). asGM1neg and asGM1posCD8+ T cells show enriched expression of genes characteristic for precursor exhausted T (Tpex) cells and terminally exhausted T (Tex) cells, respectively. The in situ expression of Flt3L or inhibition of PD-1 each promote the differentiation of asGM1negCD8+ T cells into asGM1posCD8+ T cells via interleukin-12 (IL-12) while also increasing the expression of Tpex and effector-like T cell-associated genes and their effector functions. Both interventions selectively expand CD8+ T cells, but only Flt3L expression broadens their T cell receptor (TCR) repertoire. These data indicate the distinct role of Flt3L in diversifying the TCR repertoire, offering potential solutions for immune checkpoint blockade-resistant cancers.
Collapse
Affiliation(s)
- Dongmin Chun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jiyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyo Jae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
Cao J, Su B, Zhang C, Peng R, Tu D, Deng Q, Jiang G, Jin S, Wang Q, Bai DS. Degradation of PARP1 by MARCHF3 in tumor cells triggers cCAS-STING activation in dendritic cells to regulate antitumor immunity in hepatocellular carcinoma. J Immunother Cancer 2024; 12:e010157. [PMID: 39608977 PMCID: PMC11605840 DOI: 10.1136/jitc-2024-010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/26/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitors (ICIs) significantly limits the efficacy of immunotherapy in patients with hepatocellular carcinoma (HCC). However, the mechanisms underlying immunotherapy resistance remain poorly understood. Our aim was to clarify the role of membrane-associated ring-CH-type finger 3 (MARCHF3) in HCC within the framework of anti-programmed cell death protein-1 (PD-1) therapy. METHODS MARCHF3 was identified in the transcriptomic profiles of HCC tumors exhibiting different responses to ICIs. In humans, the correlation between MARCHF3 expression and the tumor microenvironment (TME) was assessed via multiplex immunohistochemistry. In addition, MARCHF3 expression in tumor cells and immune cell infiltration were assessed by flow cytometry. RESULTS MARCHF3 was significantly upregulated in tumors from patients who responded to ICIs. Increased MARCHF3 expression in HCC cells promoted dendritic cell (DC) maturation and stimulated CD8+ T-cell activation, thereby augmenting tumor control. Mechanistically, we identified MARCHF3 as a pivotal regulator of the DNA damage response. It directly interacted with Poly(ADP-Ribose) Polymerase 1 (PARP1) via K48-linked ubiquitination, leading to PARP1 degradation. This process promoted the release of double-strand DNA and activated cCAS-STING in DCs, thereby initiating DC-mediated antigen cross-presentation and CD8+ T-cell activation. Additionally, ATF4 transcriptionally regulated MARCHF3 expression. Notably, the PARP1 inhibitor olaparib augmented the efficacy of anti-PD-1 immunotherapy in both subcutaneous and orthotopic HCC mouse models. CONCLUSIONS MARCHF3 has emerged as a pivotal regulator of the immune landscape in the HCC TME and is a potent predictive biomarker for HCC. Combining interventions targeting the DNA damage response with ICIs is a promising treatment strategy for HCC.
Collapse
Affiliation(s)
- Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
- General Surgery Institute, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
- General Surgery Institute, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Qiangwei Deng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Qian Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou City, Jiangsu Province, China
- General Surgery Institute, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province, China
| |
Collapse
|
10
|
Karimi-Googheri M, Gholipourmalekabadi M, Madjd Z, Shabani Z, Rostami Z, Kazemi Arababadi M, Kiani J. The mechanisms of B-cell acute lymphoblastic leukemia relapsing following chimeric antigen receptor-T cell therapy; the plausible future strategies. Mol Biol Rep 2024; 51:1135. [PMID: 39514017 DOI: 10.1007/s11033-024-10061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Research has demonstrated the high mortality and morbidity associated with B-Acute lymphoblastic lymphoma (B-ALL). Researchers have developed several therapeutic approaches to combat the disorder. Recently, researchers developed chimeric antigen receptors (CARs)-T cells, which recognize antigens independently of major histocompatibility complexes (MHCs) and activate at a higher level with additional persistence. However, relapsing B-ALL has been reported in several cases. This review article was aimed to collecting recent information regarding the mechanisms used by B-ALL-related lymphocytes to escape from CAR-T cells and the plausible resolution projects.
Collapse
Affiliation(s)
- Masoud Karimi-Googheri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ziba Shabani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zhila Rostami
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Departmant of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Shi WQ, Chen DX, Du ZS, Liu CP, Zhai TT, Pan F, Chen HL, Liao WN, Wang SH, Fu JH, Qiu SQ, Wu ZY. CD74 is a potential biomarker predicting the response to immune checkpoint blockade. Cancer Cell Int 2024; 24:340. [PMID: 39402601 PMCID: PMC11476377 DOI: 10.1186/s12935-024-03524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has been improving the patient outcome in multiple cancer types. However, not all patients respond to ICB. Biomarkers are needed for selecting appropriate patients to receive ICB. CD74 is an important chaperone that regulates antigen presentation for immune response. However, the relationship between CD74 expression and ICB response remains elusive. METHODS The unified normalized pan-cancer dataset was downloaded from the UCSC database. Wilcoxon Rank Sum Rank Tests were used to analyze the expression differences between normal and tumor samples in each tumor type. Then, the prognostic value of CD74 was determined using univariable Cox proportional hazards regression analysis. The STRING database was utilized to construct the protein-protein interaction (PPI) network of CD74 and the signal pathways were analyzed as well. The correlation of CD74 expression with immune cells and immune regulating genes was investigated in the TIMER database. The TIDE framework was utilized to evaluate the relationship between CD74 expression and the response to immunotherapy. Moreover, the localization of CD74 in the tumor immune microenvironment was verified using multiplex immunohistochemistry. Clinically annotated samples from 38 patients with esophageal cancer treated with neoadjuvant chemotherapy combined with ICB were analyzed for CD74 expression using immunohistochemistry. RESULTS In this study, we investigated the prognostic and predictive value of CD74 in different types of cancer. Compared with normal tissue, the expression of CD74 was higher in tumor tissue in various cancers. High expression of CD74 was associated with improved patient prognosis in the majority of cancers. CD74 and its interacting proteins were mainly enriched in the immune-related pathways. The expression of CD74 was significantly positively correlated with B cells, CD4 T-cells, CD8 T-cells, neutrophils, macrophages and dendritic cells. TIDE analysis showed that tumors with high CD74 expression may have better responses to immunotherapy and improved patient survival. In patients with esophageal cancer who had received ICB, higher intratumoral CD74 expression was associated with improved response to ICB. CONCLUSIONS The findings of this study suggest that the high expression of CD74 may be a potential predictive biomarker of response to ICB.
Collapse
Affiliation(s)
- Wen-Qi Shi
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Dan-Xun Chen
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China
| | - Ze-Sen Du
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - Chun-Peng Liu
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Tian-Tian Zhai
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515031, China
| | - Feng Pan
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China
| | - Hai-Lu Chen
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China
| | - Wei-Nan Liao
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, 515041, China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, China
| | - Jun-Hui Fu
- Department of Surgical Oncology, Shantou Central Hospital, Shantou, 515041, China.
| | - Si-Qi Qiu
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China.
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China.
| | - Zhi-Yong Wu
- Clinical Research Center, Shantou Central Hospital, Shantou, 515041, China.
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, 515041, China.
| |
Collapse
|
12
|
Kara E, Jackson TL, Jones C, Sison R, McGee Ii RL. Mathematical modeling insights into improving CAR T cell therapy for solid tumors with bystander effects. NPJ Syst Biol Appl 2024; 10:105. [PMID: 39341801 PMCID: PMC11439013 DOI: 10.1038/s41540-024-00435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
As an adoptive cellular therapy, Chimeric Antigen Receptor T cell (CAR T cell) therapy has shown remarkable success in hematological malignancies but only limited efficacy against solid tumors. Compared with blood cancers, solid tumors present a series of challenges that ultimately combine to neutralize the function of CAR T cells. These challenges include, but are not limited to, antigen heterogeneity - variability in the expression of the antigen on tumor cells, as well as trafficking and infiltration into the solid tumor tissue. A critical question for solving the heterogeneity problem is whether CAR T therapy induces bystander effects, such as antigen spreading. Antigen spreading occurs when CAR T cells activate other endogenous antitumor CD8 T cells against antigens that were not originally targeted. In this work, we develop a mathematical model of CAR T cell therapy for solid tumors that considers both antigen heterogeneity and bystander effects. Our model is based on in vivo treatment data that includes a mixture of target antigen-positive and target antigen-negative tumor cells. We use our model to simulate large cohorts of virtual patients to better understand the relationship involving bystander killing. We also investigate several strategies for enhancing bystander effects, thus increasing CAR T cell therapy's overall efficacy for solid tumors.
Collapse
Affiliation(s)
- Erdi Kara
- Department of Mathematics, Spelman College, Atlanta, GA, USA
| | | | - Chartese Jones
- Department of Mathematics, University of Missouri, Columbia, MO, USA
| | - Rockford Sison
- Department of Mathematics, Spelman College, Atlanta, GA, USA.
| | - Reginald L McGee Ii
- Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA, USA
| |
Collapse
|
13
|
Fernández-García F, Fernández-Rodríguez A, Fustero-Torre C, Piñeiro-Yáñez E, Wang H, Lechuga CG, Callejas S, Álvarez R, López-García A, Esteban-Burgos L, Salmón M, San Román M, Guerra C, Ambrogio C, Drosten M, Santamaría D, Al-Shahrour F, Dopazo A, Barbacid M, Musteanu M. Type I interferon signaling pathway enhances immune-checkpoint inhibition in KRAS mutant lung tumors. Proc Natl Acad Sci U S A 2024; 121:e2402913121. [PMID: 39186651 PMCID: PMC11388366 DOI: 10.1073/pnas.2402913121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. KRAS oncogenes are responsible for at least a quarter of lung adenocarcinomas, the main subtype of lung cancer. After four decades of intense research, selective inhibitors of KRAS oncoproteins are finally reaching the clinic. Yet, their effect on overall survival is limited due to the rapid appearance of drug resistance, a likely consequence of the high intratumoral heterogeneity characteristic of these tumors. In this study, we have attempted to identify those functional alterations that result from KRAS oncoprotein expression during the earliest stages of tumor development. Such functional changes are likely to be maintained during the entire process of tumor progression regardless of additional co-occurring mutations. Single-cell RNA sequencing analysis of murine alveolar type 2 cells expressing a resident Kras oncogene revealed impairment of the type I interferon pathway, a feature maintained throughout tumor progression. This alteration was also present in advanced murine and human tumors harboring additional mutations in the p53 or LKB1 tumor suppressors. Restoration of type I interferon (IFN) signaling by IFN-β or constitutive active stimulator of interferon genes (STING) expression had a profound influence on the tumor microenvironment, switching them from immunologically "cold" to immunologically "hot" tumors. Therefore, enhancement of the type I IFN pathway predisposes KRAS mutant lung tumors to immunotherapy treatments, regardless of co-occurring mutations in p53 or LKB1.
Collapse
Affiliation(s)
- Fernando Fernández-García
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Ana Fernández-Rodríguez
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Coral Fustero-Torre
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Haiyun Wang
- School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Carmen G. Lechuga
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Sergio Callejas
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid28029, Spain
| | - Rebeca Álvarez
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid28029, Spain
| | - Alejandra López-García
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Laura Esteban-Burgos
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Marina Salmón
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Marta San Román
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Carmen Guerra
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino10126, Italy
| | - Matthias Drosten
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid28029, Spain
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca37007, Spain
| | - David Santamaría
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca, Salamanca37007, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
| | - Ana Dopazo
- Genomic Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, Madrid28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid28029, Spain
| | - Monica Musteanu
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, Madrid28029, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid28040, Spain
- Cancer and Obesity Group, Health Research Institute of San Carlos, Madrid28040, Spain
| |
Collapse
|
14
|
Zhang S, Liu Y, Xie Y, Ding C, Zuo R, Guo Z, Qi S, Fu T, Chen W. Fe 3O 4@R837 Nanoplatform Enhances Chemical Dynamic Therapy and Immunotherapy: Integrated Transcriptomic Analysis Reveals Key Genes in Breast Cancer Prognosis. ACS Biomater Sci Eng 2024; 10:5274-5289. [PMID: 39056174 DOI: 10.1021/acsbiomaterials.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Breast cancer represents a substantial contributor to mortality rates among women with cancer. Chemical dynamic therapy is a promising anticancer strategy that utilizes the Fenton reaction to transform naturally occurring hydrogen peroxide (H2O2) into hydroxyl radicals (•OH). Additionally, cancer immunotherapy using immune drugs, such as imiquimod (R837), has shown promise in activating T cells to kill tumor cells. In this study, we proposed a Fe3O4@R837 smart nanoplatform that can trigger the Fenton reaction and induce immune responses in breast cancer treatment. Furthermore, we performed transcriptome sequencing on breast cancer samples and used the R package (limma) to analyze differential expression profiles and select differentially expressed genes (DEGs). We obtained clinical information and RNA expression matrix data from The Cancer Genome Atlas database to perform survival analysis and identify prognostic-related genes (PRGs) and molecular subtypes with distinct prognoses. We used the TIMER 2.0 web and other methods to determine the tumor immune microenvironment and immune status of different prognostic subtypes. We identified DPGs by taking the intersection of DEGs and PRGs and performed functional analyses, including gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, to elucidate potential mechanisms. Subsequently, we constructed a protein-protein interaction network using the STRING database to visualize the interactions between the DPGs. We screened hub genes from the DPGs using the Cytoscape plugin and identified six hub genes: CD3E, GZMK, CD27, SH2D1A, ZAP70, and TIGIT. Our results indicate that these six key genes regulate immune cell recruitment to increase T-cell cytotoxicity and kill tumors. Targeting these key genes can enhance immunotherapy and improve the breast cancer prognosis.
Collapse
Affiliation(s)
- Shichao Zhang
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Yijiang Liu
- First Affiliate Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| | - Yuhan Xie
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Chenchun Ding
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| | - Renjie Zuo
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P. R. China
| | - Shiyong Qi
- The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Tingting Fu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Weibin Chen
- Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, P. R. China
| |
Collapse
|
15
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
16
|
Mahasa KJ, Ouifki R, de Pillis L, Eladdadi A. A Role of Effector CD 8 + T Cells Against Circulating Tumor Cells Cloaked with Platelets: Insights from a Mathematical Model. Bull Math Biol 2024; 86:89. [PMID: 38884815 DOI: 10.1007/s11538-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Cancer metastasis accounts for a majority of cancer-related deaths worldwide. Metastasis occurs when the primary tumor sheds cells into the blood and lymphatic circulation, thereby becoming circulating tumor cells (CTCs) that transverse through the circulatory system, extravasate the circulation and establish a secondary distant tumor. Accumulating evidence suggests that circulating effector CD 8 + T cells are able to recognize and attack arrested or extravasating CTCs, but this important antitumoral effect remains largely undefined. Recent studies highlighted the supporting role of activated platelets in CTCs's extravasation from the bloodstream, contributing to metastatic progression. In this work, a simple mathematical model describes how the primary tumor, CTCs, activated platelets and effector CD 8 + T cells participate in metastasis. The stability analysis reveals that for early dissemination of CTCs, effector CD 8 + T cells can present or keep secondary metastatic tumor burden at low equilibrium state. In contrast, for late dissemination of CTCs, effector CD 8 + T cells are unlikely to inhibit secondary tumor growth. Moreover, global sensitivity analysis demonstrates that the rate of the primary tumor growth, intravascular CTC proliferation, as well as the CD 8 + T cell proliferation, strongly affects the number of the secondary tumor cells. Additionally, model simulations indicate that an increase in CTC proliferation greatly contributes to tumor metastasis. Our simulations further illustrate that the higher the number of activated platelets on CTCs, the higher the probability of secondary tumor establishment. Intriguingly, from a mathematical immunology perspective, our simulations indicate that if the rate of effector CD 8 + T cell proliferation is high, then the secondary tumor formation can be considerably delayed, providing a window for adjuvant tumor control strategies. Collectively, our results suggest that the earlier the effector CD 8 + T cell response is enhanced the higher is the probability of preventing or delaying secondary tumor metastases.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | | | - Amina Eladdadi
- Division of Mathematical Sciences, The National Science Foundation, Alexandria, VA, USA
| |
Collapse
|
17
|
Wang C, Gu B, Qi S, Hu S, Wang Y. Boosted photo-immunotherapy via near-infrared light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes. NANOSCALE ADVANCES 2024; 6:2075-2087. [PMID: 38633053 PMCID: PMC11019502 DOI: 10.1039/d4na00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Phototherapy is a promising modality that could eradicate tumor and trigger immune responses via immunogenic cell death (ICD) to enhance anti-tumor immunity. However, due to the lack of deep-tissue-excitable phototherapeutic agents and appropriate excitation strategies, the utility of phototherapy for efficient activation of the immune system is challenging. Herein, we report functionalized ICG nanoparticles (NPs) with the capture capability of tumor-associated antigens (TAAs). Under near-infrared (NIR) light excitation, the ICG NPs exhibited high-performance phototherapy, i.e., synergistic photothermal therapy and photodynamic therapy, thereby efficiently eradicating primary solid tumor and inducing ICD and subsequently releasing TAAs. The ICG NPs also captured TAAs and delivered them to sentinel lymph nodes, and then the sentinel lymph nodes were activated with NIR light to trigger efficient T-cell immune responses through activation of dendritic cells with the assistance of ICG NP generated reactive oxygen species, inhibiting residual primary tumor recurrence and controlling distant tumor growth. The strategy of NIR light excited phototherapy in tumor sites and photo-activation in sentinel lymph nodes provides a powerful platform for active immune systems for anti-tumor photo-immunotherapy.
Collapse
Affiliation(s)
- Chen Wang
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Bobo Gu
- Med-X Research Institute & School of Biomedical Engineering, Shanghai Jiao Tong University 1954 Huashan Road Shanghai 200030 China
| | - Shuhong Qi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan Hubei 430074 China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology Wuhan Hubei 430074 China
| | - Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences Suzhou 215163 China
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University Shanghai 200092 China
| |
Collapse
|
18
|
Heras-Murillo I, Adán-Barrientos I, Galán M, Wculek SK, Sancho D. Dendritic cells as orchestrators of anticancer immunity and immunotherapy. Nat Rev Clin Oncol 2024; 21:257-277. [PMID: 38326563 DOI: 10.1038/s41571-024-00859-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting innate immune cells that regulate adaptive immunity, including against cancer. Therefore, understanding the precise activities of DCs in tumours and patients with cancer is important. The classification of DC subsets has historically been based on ontogeny; however, single-cell analyses are now additionally revealing a diversity of functional states of DCs in cancer. DCs can promote the activation of potent antitumour T cells and immune responses via numerous mechanisms, although they can also be hijacked by tumour-mediated factors to contribute to immune tolerance and cancer progression. Consequently, DC activities are often key determinants of the efficacy of immunotherapies, including immune-checkpoint inhibitors. Potentiating the antitumour functions of DCs or using them as tools to orchestrate short-term and long-term anticancer immunity has immense but as-yet underexploited therapeutic potential. In this Review, we outline the nature and emerging complexity of DC states as well as their functions in regulating adaptive immunity across different cancer types. We also describe how DCs are required for the success of current immunotherapies and explore the inherent potential of targeting DCs for cancer therapy. We focus on novel insights on DCs derived from patients with different cancers, single-cell studies of DCs and their relevance to therapeutic strategies.
Collapse
Affiliation(s)
- Ignacio Heras-Murillo
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Irene Adán-Barrientos
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Galán
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Stefanie K Wculek
- Innate Immune Biology Laboratory, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
19
|
Wang H, An N, Pei A, Sun Y, Li S, Chen S, Zhang N. Exploration of signature based on T cell-related genes in stomach adenocarcinoma by analysis of single cell sequencing data. Aging (Albany NY) 2024; 16:6035-6053. [PMID: 38536020 PMCID: PMC11042963 DOI: 10.18632/aging.205687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 04/23/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a leading reason for the death of cancer around the world. The immune microenvironment counts a great deal in immunotherapy of advanced tumors, in which T cells exert an indispensable function. METHODS Single-cell RNA sequencing data were utilized to characterize the expression profile of T cells, followed by T cell-related genes (TCRGs) to construct signature and measure differences in survival time, enrichment pathways, somatic mutation status, immune status, and immunotherapy between groups. RESULTS The complex tumor microenvironment was analyzed by scRNA-seq data of GC patients. We screened for these T cell signature expression genes and the TCRGs-based signature was successfully constructed and relied on the riskscore grouping. In gene set enrichment analysis, it was shown that pro-tumor and suppressive immune pathways were more abundant in the higher risk group. We also found different infiltration of immune cells in two groups, and that the higher risk samples had a poorer response to immunotherapy. CONCLUSION Our study established a prognostic model, in which different groups had different prognosis, immune status, and enriched features. These results have provided additional insights into prognostic evaluation and the development of highly potent immunotherapies in GC.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Nan An
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Aiyue Pei
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yongxiao Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Shuo Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Si Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, Yan L, Luo Y, Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol 2024; 128:111548. [PMID: 38244518 DOI: 10.1016/j.intimp.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Dendritic cells (DCs) are asserted as the most potent antigen-presenting cells (APCs) that orchestrate both innate and adaptive immunity, being extremely effective in the induction of robust anti-cancer T cell responses. Hence, the modulation of DCs function represents an attractive target for improving cancer immunotherapy efficacy. A better understanding of the immunobiology of DCs, the interaction among DCs, immune effector cells and tumor cells in tumor microenvironment (TME) and the latest advances in biomedical engineering technology would be required for the design of optimal DC-based immunotherapy. In this review, we focus on elaborating the immunobiology of DCs in healthy and cancer environments, the recent advances in the development of enhancing endogenous DCs immunocompetence via immunomodulators as well as DC-based vaccines. The rapidly developing field of applying nanotechnology to improve DC-based immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Department of Medical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Zhang YP, Chen HJ, Hu Y, Lin L, Wen HY, Pang DW, Zhang S, Wang ZG, Liu SL. Accurate Cancer Screening and Prediction of PD-L1-Guided Immunotherapy Efficacy Using Quantum Dot Nanosphere Self-Assembly and Machine Learning. NANO LETTERS 2024; 24:1816-1824. [PMID: 38270101 DOI: 10.1021/acs.nanolett.3c05060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Accurate quantification of exosomal PD-L1 protein in tumors is closely linked to the response to immunotherapy, but robust methods to achieve high-precision quantitative detection of PD-L1 expression on the surface of circulating exosomes are still lacking. In this work, we developed a signal amplification approach based on aptamer recognition and DNA scaffold hybridization-triggered assembly of quantum dot nanospheres, which enables bicolor phenotyping of exosomes to accurately screen for cancers and predict PD-L1-guided immunotherapeutic effects through machine learning. Through DNA-mediated assembly, we utilized two aptamers for simultaneous ultrasensitive detection of exosomal antigens, which have synergistic roles in tumor diagnosis and treatment prediction, and thus, we achieved better sample classification and prediction through machine-learning algorithms. With a drop of blood, we can distinguish between different cancer patients and healthy individuals and predict the outcome of immunotherapy. This approach provides valuable insights into the development of personalized diagnostics and precision medicine.
Collapse
Affiliation(s)
- Yu-Peng Zhang
- Technology Center, Shanghai Tobacco Group Co., Ltd., Shanghai 201315, P. R. China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yusi Hu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Leping Lin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dai-Wen Pang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shiwu Zhang
- Tianjin Union Medical Center, Tianjin 300121, P. R. China
| | - Zhi-Gang Wang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
22
|
Montico B, Nigro A, Lamberti MJ, Martorelli D, Mastorci K, Ravo M, Giurato G, Steffan A, Dolcetti R, Casolaro V, Dal Col J. Phospholipid scramblase 1 is involved in immunogenic cell death and contributes to dendritic cell-based vaccine efficiency to elicit antitumor immune response in vitro. Cytotherapy 2024; 26:145-156. [PMID: 38099895 DOI: 10.1016/j.jcyt.2023.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AIMS Whole tumor cell lysates (TCLs) obtained from cancer cells previously killed by treatments able to promote immunogenic cell death (ICD) can be efficiently used as a source of tumor-associated antigens for the development of highly efficient dendritic cell (DC)-based vaccines. Herein, the potential role of the interferon (IFN)-inducible protein phospholipid scramblase 1 (PLSCR1) in influencing immunogenic features of dying cancer cells and in enhancing DC-based vaccine efficiency was investigated. METHODS PLSCR1 expression was evaluated in different mantle-cell lymphoma (MCL) cell lines following ICD induction by 9-cis-retinoic acid (RA)/IFN-α combination, and commercial kinase inhibitor was used to identify the signaling pathway involved in its upregulation. A Mino cell line ectopically expressing PLSCR1 was generated to investigate the potential involvement of this protein in modulating ICD features. Whole TCLs obtained from Mino overexpressing PLSCR1 were used for DC loading, and loaded DCs were employed for generation of tumor antigen-specific cytotoxic T lymphocytes. RESULTS The ICD inducer RA/IFN-α combination promoted PLSCR1 expression through STAT1 activation. PLSCR1 upregulation favored pro-apoptotic effects of RA/IFN-α treatment and enhanced the exposure of calreticulin on cell surface. Moreover, DCs loaded with TCLs obtained from Mino ectopically expressing PLSCR1 elicited in vitro greater T-cell-mediated antitumor responses compared with DCs loaded with TCLs derived from Mino infected with empty vector or the parental cell line. Conversely, PLSCR1 knock-down inhibited the stimulating activity of DCs loaded with RA/IFN-α-treated TCLs to elicit cyclin D1 peptide-specific cytotoxic T lymphocytes. CONCLUSIONS Our results indicate that PLSCR1 improved ICD-associated calreticulin exposure induced by RA/IFN-α and was clearly involved in DC-based vaccine efficiency as well, suggesting a potential contribution in the control of pathways associated to DC activation, possibly including those involved in antigen uptake and concomitant antitumor immune response activation.
Collapse
Affiliation(s)
- Barbara Montico
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| | - Maria Julia Lamberti
- Departamento de Biología Molecular, INBIAS, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina.
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Katy Mastorci
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Maria Ravo
- Genomix4Life Srl, Baronissi, Salerno, Italy.
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Salerno, Italy.
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Riccardo Dolcetti
- Centre for Cancer Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia; Faculty of Medicine, The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia.
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| |
Collapse
|
23
|
Luri-Rey C, Gomis G, Glez-Vaz J, Manzanal A, Martinez Riaño A, Rodriguez Ruiz ME, Teijeira A, Melero I. Cytotoxicity as a form of immunogenic cell death leading to efficient tumor antigen cross-priming. Immunol Rev 2024; 321:143-151. [PMID: 37822051 DOI: 10.1111/imr.13281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Antigen cross-priming of CD8+ T cells is a critical process necessary for the effective expansion and activation of CD8+ T cells endowed with the ability to recognize and destroy tumor cells. The cross-presentation of tumor antigens to cross-prime CD8+ T cells is mainly mediated, if not only, by a subset of professional antigen-presenting cells termed type-1 conventional dendritic cells (cDC1). The demise of malignant cells can be immunogenic if it occurs in the context of premortem stress. These ways of dying are termed immunogenic cell death (ICD) and are associated with biochemical features favoring cDC1 for the efficient cross-priming of tumor antigens. Immunosurveillance and the success of immunotherapies heavily rely on the ability of cytotoxic immune cells, primarily CD8+ T cells and NK cells, to detect and eliminate tumor cells through mechanisms collectively known as cytotoxicity. Recent studies have revealed the significance of NK- and CTL-mediated cytotoxicity as a prominent form of immunogenic cell death, resulting in mechanisms that promote and sustain antigen-specific immune responses. This review focuses on the mechanisms underlying the cross-presentation of antigens released during tumor cell killing by cytotoxic immune cells, with an emphasis on the role of cDC1 cells. Indeed, cDC1s are instrumental in the effectiveness of most immunotherapies, underscoring the significance of tumor antigen cross-priming in contexts of immunogenic cell death. The notion of the potent immunogenicity of cell death resulting from NK or cytotoxic T lymphocyte (CTL)-mediated cytotoxicity has far-reaching implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Gabriel Gomis
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Almudena Manzanal
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Ana Martinez Riaño
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | | | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clinica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
24
|
Musella M, Manduca N, Maccafeo E, Ruggiero E, Sistigu A. In Vitro Evaluation of Cancer Cell Immunogenicity and Antigen-Specific T-Cell Cytotoxicity by Flow Cytometry. Methods Mol Biol 2024; 2748:13-28. [PMID: 38070104 DOI: 10.1007/978-1-0716-3593-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
A cardinal principle of oncoimmunology is that cancer cells can be eliminated by tumor-infiltrating cytotoxic CD8 T lymphocytes. This has been widely demonstrated during the last 20 years and also recently harnessed for therapy. However, emerging evidence indicates that even neoplasms showing striking initial responses to conventional and targeted (immuno)therapies often acquire resistance, resulting in tumor relapse, increased aggressiveness, and metastatization. Indeed, tumors are complex ecosystems whose malignant and nonmalignant cells, constituting the tumor microenvironment, constantly interact and evolve in space and time. Together with patient's own genetic factors, such environmental interplays may curtail antitumor immune responses leading to cancer immune evasion and natural/acquired (immuno)therapy resistance. In this context, cancer stem cells (CSCs) are thought to be the roots of therapy failure. Flow cytometry is a powerful technology that finds extensive applications in cancer biology. It offers several unique advantages as it allows the rapid, quantitative, and multiparametric analysis of cell populations or functions at the single-cell level. In this chapter, we discuss a two-color flow cytometric protocol to evaluate cancer cell immunogenicity by analyzing the proliferative and tumor-killing potential of ovalbumin (OVA)-specific CD8 OT-1 T cells exposed to OVA-expressing MCA205 sarcoma cells and their CSC counterparts.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
25
|
Heck AG, Stickdorn J, Rosenberger LJ, Scherger M, Woller J, Eigen K, Bros M, Grabbe S, Nuhn L. Polymerizable 2-Propionic-3-methylmaleic Anhydrides as a Macromolecular Carrier Platform for pH-Responsive Immunodrug Delivery. J Am Chem Soc 2023; 145:27424-27436. [PMID: 38054646 DOI: 10.1021/jacs.3c08511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The design of functional polymers coupled with stimuli-triggered drug release mechanisms is a promising achievement to overcome various biological barriers. pH trigger methods yield significant potential for controlled targeting and release of therapeutics due to their simplicity and relevance, especially upon cell internalization. Here, we introduce reactive polymers that conjugate primary or secondary amines and release potential drugs under acidic conditions. For that purpose, we introduced methacrylamide-based monomers with pendant 2-propionic-3-methylmaleic anhydride groups. Such groups allow the conjugation of primary and secondary amines but are resistant to radical polymerization conditions. We, therefore, polymerized 2-propionic-3-methylmaleic anhydride amide-based methacrylates via reversible addition-fragmentation chain transfer (RAFT) polymerization. Their amine-reactive anhydrides could sequentially be derivatized by primary or secondary amines into hydrophilic polymers. Acidic pH-triggered drug release from the polymeric systems was fine-tuned by comparing different amines. Thereby, the conjugation of primary amines led to the formation of irreversible imide bonds in dimethyl sulfoxide, while secondary amines could quantitatively be released upon acidification. In vitro, this installed pH-responsiveness can contribute to an effective release of conjugated immune stimulatory drugs under endosomal pH conditions. Interestingly, the amine-modified polymers generally showed no toxicity and a high cellular uptake. Furthermore, secondary amine-modified immune stimulatory drugs conjugated to the polymers yielded better receptor activity and immune cell maturation than their primary amine derivatives due to their pH-sensitive drug release mechanism. Consequently, 2-propionic-3-methylmaleic anhydride-based polymers can be considered as a versatile platform for pH-triggered delivery of various (immuno)drugs, thus enabling new strategies in macromolecule-assisted immunotherapy.
Collapse
Affiliation(s)
- Alina G Heck
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | | | - Laura J Rosenberger
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | | | - Jonas Woller
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Katharina Eigen
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg 97070, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg 97070, Germany
| |
Collapse
|
26
|
Li P, Chen Z, Xia F, Wang N, Zhao J, Hu X, Zhu M, Yu S, Ling D, Li F. Leveraging Coupling Effect-Enhanced Surface Plasmon Resonance of Ruthenium Nanocrystal-Decorated Mesoporous Silica Nanoparticles for Boosted Photothermal Immunotherapy. Adv Healthc Mater 2023; 12:e2302111. [PMID: 37699592 DOI: 10.1002/adhm.202302111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Photothermal immunotherapy (PTI) has emerged as a promising approach for cancer treatment, while its efficacy is often hindered by the immunosuppressive tumor microenvironment (TME). Here, this work presents a multifunctional platform for tumor PTI based on ruthenium nanocrystal-decorated mesoporous silica nanoparticles (RuNC-MSN). By precisely regulating the distance between RuNC on MSN, this work achieves a remarkable enhancement in surface plasmon resonance of RuNC, leading to a significant improvement in the photothermal efficiency of RuNC-MSN. Furthermore, the inherent catalase-like activity of RuNC-MSN enables effective modulation of the immunosuppressive TME, thereby facilitating an enhanced immune response triggered by the photothermal effect-mediated immunogenic cell death (ICD). As a result, RuNC-MSN exhibits superior PTI performance, resulting in pronounced inhibition of primary tumor and metastasis. This study highlights the rational design of PTI agents with coupling effect-enhanced surface plasmon resonance, enabling simultaneous induction of ICD and regulation of the immunosuppressive TME, thereby significantly boosting PTI efficacy.
Collapse
Affiliation(s)
- Pin Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Nan Wang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Mingjian Zhu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyi Yu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, State Key Laboratory of Oncogenes and Related Genes, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, China
| |
Collapse
|
27
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
28
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
29
|
Liu K, Yuan S, Wang C, Zhu H. Resistance to immune checkpoint inhibitors in gastric cancer. Front Pharmacol 2023; 14:1285343. [PMID: 38026944 PMCID: PMC10679741 DOI: 10.3389/fphar.2023.1285343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. In the past decade, with the development of early diagnostic techniques, a clear decline in GC incidence has been observed, but its mortality remains high. The emergence of new immunotherapies such as immune checkpoint inhibitors (ICIs) has changed the treatment of GC patients to some extent. However, only a small number of patients with advanced GC have a durable response to ICI treatment, and the efficacy of ICIs is very limited. Existing studies have shown that the failure of immunotherapy is mainly related to the development of ICI resistance in patients, but the understanding of the resistance mechanism is still insufficient. Therefore, clarifying the mechanism of GC immune resistance is critical to improve its treatment and clinical benefit. In this review, we focus on summarizing the mechanisms of primary or acquired resistance to ICI immunotherapy in GC from both internal and external aspects of the tumor. At the same time, we also briefly discuss some other possible resistance mechanisms in light of current studies.
Collapse
Affiliation(s)
- Kai Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Shiman Yuan
- The Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hong Zhu
- Cancer Center, Department of Medical Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Hu X, Jiang C, Gao Y, Xue X. Human dendritic cell subsets in the glioblastoma-associated microenvironment. J Neuroimmunol 2023; 383:578147. [PMID: 37643497 DOI: 10.1016/j.jneuroim.2023.578147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of glioma (Grade IV). The presence of cytotoxic T lymphocyte (CTLs) has been associated with improved outcomes in patients with GBM, and it is believed that the activation of CTLs by dendritic cells may play a critical role in controlling the growth of GBM. DCs are professional antigen-presenting cells (APC) that orchestrate innate and adaptive anti-GBM immunity. DCs can subsequently differentiate into plasmacytoid DCs (pDC), conventional DC1 (cDC1), conventional (cDC2), and monocyte-derived DCs (moDC) depending on environmental exposure. The different subsets of DCs exhibit varying functional capabilities in antigen presentation and T cell activation in producing an antitumor response. In this review, we focus on recent studies describing the phenotypic and functional characteristics of DC subsets in humans and their respective antitumor immunity and immunotolerance roles in the GBM-associated microenvironment. The critical components of crosstalk between DC subsets that contribute significantly to GBM-specific immune responses are also highlighted in this review with reference to the latest literature. Since DCs could be prime targets for therapeutic intervention, it is worth summarizing the relevance of DC subsets with respect to GBM-associated immunologic tolerance and their therapeutic potential.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China; Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yang Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
31
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
32
|
Wang S, Li M, Jiang Y, Sun C, Wu G, Yang C, Liu W, Pan Y. Transcriptome analysis reveals immune regulation in the spleen of koi carp (Cyprinus carpio Koi) during Aeromonas hydrophila infection. Mol Immunol 2023; 162:11-20. [PMID: 37633251 DOI: 10.1016/j.molimm.2023.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
A. hydrophila (Aeromonas hydrophila) is one of the most hazardous pathogenic microorganisms threatening the aquaculture industry and exhibits zoonotic-like characteristics. This study was designed to investigate the differential gene expression and pathway enrichment in the spleen of koi carp (Cyprinus carpio koi) upon A. hydrophila infection. The Illumina NovaSeq 6000 sequencing platform was used to identify 252 DEGs (differentially expressed genes), including 112 upregulated genes and 140 downregulated genes, in the spleens of koi carp challenged with A. hydrophila compared to those in the spleens of koi carp treated with PBS (phosphate-buffered saline). DEGs were shown to be involved in 133 pathways by KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Numerous immunological disease-related pathways, such as the immune defense network for IgA production, Staphylococcus aureus infection, and antigen processing and presentation, were enriched in the DEGs. In addition, the expression levels of 10 randomly screened DEGs, including the inflammatory factor nlrp3 (NOD-like receptor family pyrin domain containing 3), cytokine il-8 (interleukin-8), c2 (complement c2), c3 (complement c3), and the lipid mediator cox1 (cyclooxygenase-1), were compared by qPCR. The results showed that six genes, including il-8, cox1, and nlrp3, were upregulated according to both RNA-seq and qPCR validation, while four, including c2 and c3, showed downregulated expression. This result verified a strong correlation between the RNA-seq and qPCR datasets at the expression level. Moreover, this study provided splenic transcriptome data for koi carp during A. hydrophila infection and provided theoretical support for future drug development.
Collapse
Affiliation(s)
- Shuang Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Mei Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China; University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China; Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China.
| | - Yu Jiang
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Chang Sun
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Gongqing Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Chengyong Yang
- Guangdong Ascendas Genomics Technology Co., Ltd., Zhongshan, Guangdong 528437, China
| | - Wenli Liu
- University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan, Guangdong 528402, China
| | - Yufang Pan
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
33
|
Yang K, Halima A, Chan TA. Antigen presentation in cancer - mechanisms and clinical implications for immunotherapy. Nat Rev Clin Oncol 2023; 20:604-623. [PMID: 37328642 DOI: 10.1038/s41571-023-00789-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, the emergence of effective immunotherapies has revolutionized the clinical management of many types of cancers. However, long-term durable tumour control is only achieved in a fraction of patients who receive these therapies. Understanding the mechanisms underlying clinical response and resistance to treatment is therefore essential to expanding the level of clinical benefit obtained from immunotherapies. In this Review, we describe the molecular mechanisms of antigen processing and presentation in tumours and their clinical consequences. We examine how various aspects of the antigen-presentation machinery (APM) shape tumour immunity. In particular, we discuss genomic variants in HLA alleles and other APM components, highlighting their influence on the immunopeptidomes of both malignant cells and immune cells. Understanding the APM, how it is regulated and how it changes in tumour cells is crucial for determining which patients will respond to immunotherapy and why some patients develop resistance. We focus on recently discovered molecular and genomic alterations that drive the clinical outcomes of patients receiving immune-checkpoint inhibitors. An improved understanding of how these variables mediate tumour-immune interactions is expected to guide the more precise administration of immunotherapies and reveal potentially promising directions for the development of new immunotherapeutic approaches.
Collapse
Affiliation(s)
- Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmed Halima
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA.
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA.
- National Center for Regenerative Medicine, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
34
|
Peng JM, Su YL. Lymph node metastasis and tumor-educated immune tolerance: Potential therapeutic targets against distant metastasis. Biochem Pharmacol 2023; 215:115731. [PMID: 37541450 DOI: 10.1016/j.bcp.2023.115731] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Lymph node metastasis has been shown to positively associated with the prognosis of many cancers. However, in clinical treatment, lymphadenectomy is not always successful, suggesting that immune cells in the tumor and sentinel lymph nodes still play a pivotal role in tumor immunosuppression. Recent studies had shown that tumors can tolerate immune cells through multiple strategies, including tumor-induced macrophage reprogramming, T cells inactivation, production of B cells pathogenic antibodies and activation of regulatory T cells to promote tumor colonization, growth, and metastasis in lymph nodes. We reviewed the bidirectional effect of immune cells on anti-tumor or promotion of cancer cell metastasis during lymph node metastasis, and the mechanisms by which malignant cancer cells modify immune cells to create a more favorable environment for the growth and survival of cancer cells. Research and treatment strategies focusing on the immune system in lymph nodes and potential immune targets in lymph node metastasis were also be discussed.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung, 83301, Taiwan.
| |
Collapse
|
35
|
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, Cammer M, Wang K, Al-Santli W, Ciantra Z, Guo Q, You J, Sengupta D, Boukhris A, Zhang H, Liu C, Cresswell P, Dahia PLM, Pagano M, Aifantis I, Wang J. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell 2023; 186:3903-3920.e21. [PMID: 37557169 PMCID: PMC10961051 DOI: 10.1016/j.cell.2023.07.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Immune-checkpoint blockade has revolutionized cancer treatment, but some cancers, such as acute myeloid leukemia (AML), do not respond or develop resistance. A potential mode of resistance is immune evasion of T cell immunity involving aberrant major histocompatibility complex class I (MHC-I) antigen presentation (AP). To map such mechanisms of resistance, we identified key MHC-I regulators using specific peptide-MHC-I-guided CRISPR-Cas9 screens in AML. The top-ranked negative regulators were surface protein sushi domain containing 6 (SUSD6), transmembrane protein 127 (TMEM127), and the E3 ubiquitin ligase WWP2. SUSD6 is abundantly expressed in AML and multiple solid cancers, and its ablation enhanced MHC-I AP and reduced tumor growth in a CD8+ T cell-dependent manner. Mechanistically, SUSD6 forms a trimolecular complex with TMEM127 and MHC-I, which recruits WWP2 for MHC-I ubiquitination and lysosomal degradation. Together with the SUSD6/TMEM127/WWP2 gene signature, which negatively correlates with cancer survival, our findings define a membrane-associated MHC-I inhibitory axis as a potential therapeutic target for both leukemia and solid cancers.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jia Liu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Audrey Lasry
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Zhengxi Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Baoling Lai
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gergely Rona
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jiangyan Zhang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Wafa Al-Santli
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Zoe Ciantra
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qianjin Guo
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jia You
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ahmad Boukhris
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | | | - Cheng Liu
- Eureka Therapeutics Inc., Emeryville, CA 94608, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Patricia L M Dahia
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michele Pagano
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
36
|
Zhang J, Wang S, Zhang D, He X, Wang X, Han H, Qin Y. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Front Immunol 2023; 14:1230893. [PMID: 37600822 PMCID: PMC10435760 DOI: 10.3389/fimmu.2023.1230893] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Immunotherapy has developed rapidly in solid tumors, especially in the areas of blocking inhibitory immune checkpoints and adoptive T-cell transfer for immune regulation. Many patients benefit from immunotherapy. However, the response rate of immunotherapy in the overall population are relatively low, which depends on the characteristics of the tumor and individualized patient differences. Moreover, the occurrence of drug resistance and adverse reactions largely limit the development of immunotherapy. Recently, the emergence of nanodrug delivery systems (NDDS) seems to improve the efficacy of immunotherapy by encapsulating drug carriers in nanoparticles to precisely reach the tumor site with high stability and biocompatibility, prolonging the drug cycle of action and greatly reducing the occurrence of toxic side effects. In this paper, we mainly review the advantages of NDDS and the mechanisms that enhance conventional immunotherapy in solid tumors, and summarize the recent advances in NDDS-based therapeutic strategies, which will provide valuable ideas for the development of novel tumor immunotherapy regimen.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daidi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin He
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Wang
- Academy of Medical Science, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Zhao Z, Zhao Q, Chen H, Chen F, Wang F, Tang H, Xia H, Zhou Y, Sun Y. Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials. Int J Oral Sci 2023; 15:31. [PMID: 37532700 PMCID: PMC10397189 DOI: 10.1038/s41368-023-00234-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Collapse
Affiliation(s)
- Zifan Zhao
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hu Chen
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Fanfan Chen
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Feifei Wang
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hua Tang
- Institute of Infection and Immunity, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yongsheng Zhou
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Yuchun Sun
- Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
38
|
Xiao Z, Wang R, Wang X, Yang H, Dong J, He X, Yang Y, Guo J, Cui J, Zhou Z. Impaired function of dendritic cells within the tumor microenvironment. Front Immunol 2023; 14:1213629. [PMID: 37441069 PMCID: PMC10333501 DOI: 10.3389/fimmu.2023.1213629] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Dendritic cells (DCs), a class of professional antigen-presenting cells, are considered key factors in the initiation and maintenance of anti-tumor immunity due to their powerful ability to present antigen and stimulate T-cell responses. The important role of DCs in controlling tumor growth and mediating potent anti-tumor immunity has been demonstrated in various cancer models. Accordingly, the infiltration of stimulatory DCs positively correlates with the prognosis and response to immunotherapy in a variety of solid tumors. However, accumulating evidence indicates that DCs exhibit a significantly dysfunctional state, ultimately leading to an impaired anti-tumor immune response due to the effects of the immunosuppressive tumor microenvironment (TME). Currently, numerous preclinical and clinical studies are exploring immunotherapeutic strategies to better control tumors by restoring or enhancing the activity of DCs in tumors, such as the popular DC-based vaccines. In this review, an overview of the role of DCs in controlling tumor progression is provided, followed by a summary of the current advances in understanding the mechanisms by which the TME affects the normal function of DCs, and concluding with a brief discussion of current strategies for DC-based tumor immunotherapy.
Collapse
Affiliation(s)
- Zhihua Xiao
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xuyan Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Haikui Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiamei Dong
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xin He
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiahao Guo
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiawen Cui
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiling Zhou
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
39
|
Pundkar C, Antony F, Kang X, Mishra A, Babu RJ, Chen P, Li F, Suryawanshi A. Targeting Wnt/β-catenin signaling using XAV939 nanoparticles in tumor microenvironment-conditioned macrophages promote immunogenicity. Heliyon 2023; 9:e16688. [PMID: 37313143 PMCID: PMC10258387 DOI: 10.1016/j.heliyon.2023.e16688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
The aberrant activation of Wnt/β-catenin signaling in tumor cells and immune cells in the tumor microenvironment (TME) promotes malignant transformation, metastasis, immune evasion, and resistance to cancer treatments. The increased Wnt ligand expression in TME activates β-catenin signaling in antigen (Ag)-presenting cells (APCs) and regulates anti-tumor immunity. Previously, we showed that activation of Wnt/β-catenin signaling in dendritic cells (DCs) promotes induction of regulatory T cell responses over anti-tumor CD4+ and CD8+ effector T cell responses and promotes tumor progression. In addition to DCs, tumor-associated macrophages (TAMs) also serve as APCs and regulate anti-tumor immunity. However, the role of β-catenin activation and its effect on TAM immunogenicity in TME is largely undefined. In this study, we investigated whether inhibiting β-catenin in TME-conditioned macrophages promotes immunogenicity. Using nanoparticle formulation of XAV939 (XAV-Np), a tankyrase inhibitor that promotes β-catenin degradation, we performed in vitro macrophage co-culture assays with melanoma cells (MC) or melanoma cell supernatants (MCS) to investigate the effect on macrophage immunogenicity. We show that XAV-Np-treatment of macrophages conditioned with MC or MCS significantly upregulates the cell surface expression of CD80 and CD86 and suppresses the expression of PD-L1 and CD206 compared to MC or MCS-conditioned macrophages treated with control nanoparticle (Con-Np). Further, XAV-Np-treated macrophages conditioned with MC or MCS significantly increased IL-6 and TNF-α production, with reduced IL-10 production compared to Con-Np-treated macrophages. Moreover, the co-culture of MC and XAV-Np-treated macrophages with T cells resulted in increased CD8+ T cell proliferation compared to Con-Np-treated macrophages. These data suggest that targeted β-catenin inhibition in TAMs represents a promising therapeutic approach to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
40
|
Wang S, Li H, Chen T, Zhou H, Zhang W, Lin N, Yu X, Lou Y, Li B, Yinwang E, Wang Z, Wang K, Xue Y, Qu H, Lin P, Sun H, Teng W, Mou H, Chai X, Cai Z, Ye Z. Human γδ T cells induce CD8 + T cell antitumor responses via antigen-presenting effect through HSP90-MyD88-mediated activation of JNK. Cancer Immunol Immunother 2023; 72:1803-1821. [PMID: 36680568 PMCID: PMC10198898 DOI: 10.1007/s00262-023-03375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Human Vγ9Vδ2 T cells have attracted considerable attention as novel alternative antigen-presenting cells (APCs) with the potential to replace dendritic cells in antitumor immunotherapy owing to their high proliferative capacity and low cost. However, the utility of γδ T cells as APCs to induce CD8+ T cell-mediated antitumor immune response, as well as the mechanism by which they perform APC functions, remains unexplored. In this study, we found that activated Vγ9Vδ2 T cells were capable of inducing robust CD8+ T cell responses in osteosarcoma cells. Activated γδ T cells also effectively suppressed osteosarcoma growth by priming CD8+ T cells in xenograft animal models. Mechanistically, we further revealed that activated γδ T cells exhibited increased HSP90 production, which fed back to upregulate MyD88, followed by JNK activation and a subsequent improvement in CCL5 secretion, leading to enhanced CD8+ T cell cross-priming. Thus, our study suggests that Vγ9Vδ2 T cells represent a promising alternative APC for the development of γδ T cell-based tumor immunotherapy.
Collapse
Affiliation(s)
- Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Nong Lin
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaohua Yu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yu Lou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Binghao Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Eloy Yinwang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Zenan Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Keyi Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hao Qu
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Peng Lin
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Hangxiang Sun
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wangsiyuan Teng
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Haochen Mou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xupeng Chai
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Zhijian Cai
- Institute of Immunology and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China.
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
41
|
García-Ferreras R, Osuna-Pérez J, Ramírez-Santiago G, Méndez-Pérez A, Acosta-Moreno AM, Del Campo L, Gómez-Sánchez MJ, Iborra M, Herrero-Fernández B, González-Granado JM, Sánchez-Madrid F, Carrasco YR, Boya P, Martínez-Martín N, Veiga E. Bacteria-instructed B cells cross-prime naïve CD8 + T cells triggering effective cytotoxic responses. EMBO Rep 2023:e56131. [PMID: 37184882 DOI: 10.15252/embr.202256131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
In addition to triggering humoral responses, conventional B cells have been described in vitro to cross-present exogenous antigens activating naïve CD8+ T cells. Nevertheless, the way B cells capture these exogenous antigens and the physiological roles of B cell-mediated cross-presentation remain poorly explored. Here, we show that B cells capture bacteria by trans-phagocytosis from previously infected dendritic cells (DC) when they are in close contact. Bacterial encounter "instructs" the B cells to acquire antigen cross-presentation abilities, in a process that involves autophagy. Bacteria-instructed B cells, henceforth referred to as BacB cells, rapidly degrade phagocytosed bacteria, process bacterial antigens and cross-prime naïve CD8+ T cells which differentiate into specific cytotoxic cells that efficiently control bacterial infections. Moreover, a proof-of-concept experiment shows that BacB cells that have captured bacteria expressing tumor antigens could be useful as novel cellular immunotherapies against cancer.
Collapse
Affiliation(s)
- Raquel García-Ferreras
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Jesús Osuna-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Guillermo Ramírez-Santiago
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Almudena Méndez-Pérez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Andrés M Acosta-Moreno
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Lara Del Campo
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Odontología, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Gómez-Sánchez
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
- Department of Immunology, School of Medicine, Complutense University of Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Marta Iborra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Beatriz Herrero-Fernández
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - José M González-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Sánchez-Madrid
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
| | - Yolanda R Carrasco
- Department of Immunology & Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| | - Patricia Boya
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | | | - Esteban Veiga
- Department of Molecular & Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain
| |
Collapse
|
42
|
Yin M, Dong J, Sun C, Liu X, Liu Z, Liu L, Kuang Z, Zhang N, Xiao D, Zhou X, Deng H. Raddeanin A Enhances Mitochondrial DNA-cGAS/STING Axis-Mediated Antitumor Immunity by Targeting Transactive Responsive DNA-Binding Protein 43. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206737. [PMID: 36876644 PMCID: PMC10161045 DOI: 10.1002/advs.202206737] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/29/2023] [Indexed: 05/06/2023]
Abstract
Immune checkpoint therapies (ICT) have achieved unprecedented efficacy in multiple cancer treatments, but are still limited by low clinical response rates. Identification of immunogenic cell death (ICD)-inducing drugs that can induce tumor cell immunogenicity and reprogram the tumor microenvironment is an attractive approach to enhance antitumor immunity. In the present study, Raddeanin A (RA), an oleanane class triterpenoid saponin isolated from Anemone raddeana Regel, is uncovered as a potent ICD inducer through an ICD reporter assay combined with a T cell activation assay. RA significantly increases high-mobility group box 1 release in tumor cells and promotes dendritic cell (DC) maturation and CD8+ T cell activation for tumor control. Mechanistically, RA directly binds to transactive responsive DNA-binding protein 43 (TDP-43) and induces TDP-43 localization to mitochondria and mtDNA leakage, leading to cyclic GMP-AMP synthase/stimulator of interferon gene-dependent upregulation of nuclear factor κB and type I interferon signaling, thereby potentiating the DC-mediated antigen cross-presentation and T cell activation. Moreover, combining RA with anti-programmed death 1 antibody effectively enhances the efficacy of ICT in animals. These findings highlight the importance of TDP-43 in ICD drug-induced antitumor immunity and reveal a potential chemo-immunotherapeutic role of RA in enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Cuicui Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Xiaojia Liu
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, P. R. China
| | - Zhirui Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Lu Liu
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, 266034, P. R. China
| | - Zean Kuang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P. R. China
| |
Collapse
|
43
|
Garate-Soraluze E, Serrano-Mendioroz I, Rodriguez-Ruiz M. Methods to assess radiation induced abscopal responses in mice. Methods Cell Biol 2023; 180:81-92. [PMID: 37890934 DOI: 10.1016/bs.mcb.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Radiotherapy (RT) can work together with the immune system to eliminate cancer. It can cause immunogenic cell death and facilitate tumor neoantigen presentation and thereby the cross-priming of tumor-specific T-lymphocytes, turning irradiated tumors into in-situ vaccines. Accumulating preclinical and clinical evidence indicates that RT in conjunction with ICB leads to systemic anti-tumor immune responses, thus stimulating interest in using ICB to overcome primary and acquired cancer resistance to radiotherapy. However, the systemic effects (abscopal effects) obtained to date are far from being acceptable for clinical translation. In this context, multiple preclinical mouse models have demonstrated that a variety of immunotherapy agents can be delivered locally to enhance antitumor immunity both in a local and systemic fashion. Using two slightly asynchronous and anatomically distant subcutaneous B16OVA tumors in syngeneic immunocompetent hosts (C57BL/6), we describe the feasibility of a local immunotherapy treatment given in combination with external beam irradiation, which exerts immune-mediated antitumor effects in mice and humans upon intratumoral delivery. With minor variations, the same technique can be easily applied to a variety of mouse transplantable tumors.
Collapse
Affiliation(s)
- Eneko Garate-Soraluze
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - Irantzu Serrano-Mendioroz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain
| | - María Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
44
|
Olivera I, Bolaños E, Gonzalez-Gomariz J, Hervas-Stubbs S, Mariño KV, Luri-Rey C, Etxeberria I, Cirella A, Egea J, Glez-Vaz J, Garasa S, Alvarez M, Eguren-Santamaria I, Guedan S, Sanmamed MF, Berraondo P, Rabinovich GA, Teijeira A, Melero I. mRNAs encoding IL-12 and a decoy-resistant variant of IL-18 synergize to engineer T cells for efficacious intratumoral adoptive immunotherapy. Cell Rep Med 2023; 4:100978. [PMID: 36933554 PMCID: PMC10040457 DOI: 10.1016/j.xcrm.2023.100978] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023]
Abstract
Interleukin-12 (IL-12) gene transfer enhances the therapeutic potency of adoptive T cell therapies. We previously reported that transient engineering of tumor-specific CD8 T cells with IL-12 mRNA enhanced their systemic therapeutic efficacy when delivered intratumorally. Here, we mix T cells engineered with mRNAs to express either single-chain IL-12 (scIL-12) or an IL-18 decoy-resistant variant (DRIL18) that is not functionally hampered by IL-18 binding protein (IL-18BP). These mRNA-engineered T cell mixtures are repeatedly injected into mouse tumors. Pmel-1 T cell receptor (TCR)-transgenic T cells electroporated with scIL-12 or DRIL18 mRNAs exert powerful therapeutic effects in local and distant melanoma lesions. These effects are associated with T cell metabolic fitness, enhanced miR-155 control on immunosuppressive target genes, enhanced expression of various cytokines, and changes in the glycosylation profile of surface proteins, enabling adhesiveness to E-selectin. Efficacy of this intratumoral immunotherapeutic strategy is recapitulated in cultures of tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T cells on IL-12 and DRIL18 mRNA electroporation.
Collapse
Affiliation(s)
- Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Jose Gonzalez-Gomariz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Josune Egea
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires 1428, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires 1428, Argentina
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
45
|
Liu Y, Zhang M, Wang X, Yang F, Cao Z, Wang L, Liu J. Dressing Bacteria With a Hybrid Immunoactive Nanosurface to Elicit Dual Anticancer and Antiviral Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210949. [PMID: 36564893 DOI: 10.1002/adma.202210949] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Approaches capable of simultaneously treating cancer and protecting susceptible patients from lethal infections such as coronavirus disease 2019, are highly desirable but prove to be difficult. Here, dressing bacteria with a hybrid immunoactive nanosurface is reported to elicit dual anticancer and antiviral immunity. A combination of a checkpoint blocking antibody and a virus-specific antigen is covalently conjugated to polydopamine nanoparticles, which can be anchored onto bacterial surface, by a one-step in situ polymerization of dopamine under a cell-friendly condition. By virtue of the ability to colonize and penetrate deep tumor tissue, dressed bacteria enable sustained release and expanded exposure of carried immunoactivators to stimulate immune cells. In addition to a carrier role, bacteria are able to further provoke innate immunity due to the native immunogenicity of the pathogen-associated molecular patterns. Immunization with dressed bacteria promotes the maturation, and activation of antigen-presenting cells, which induces robust humoral and cellular immune responses in tumor-bearing mice. As evidenced by efficient production of viral-antigen-specific immunoglobulin G antibody in serum and significantly suppressed tumor growth in different models, dressing bacteria with a hybrid immunoactive nanosurface paves an avenue to prepare next-generation therapeutics for synergistic treatment and prevention.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengmeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyue Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fengmin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenping Cao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
46
|
A photoactive injectable antibacterial hydrogel to support chemo-immunotherapeutic effect of antigenic cell membrane and sorafenib by near-infrared light mediated tumor ablation. Mater Today Bio 2023; 19:100609. [PMID: 36969694 PMCID: PMC10034508 DOI: 10.1016/j.mtbio.2023.100609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Intravenously administered nanocarriers suffer from off-target distribution, pre-targeting drug leakage, and rapid clearance, limiting their efficiency in tumor eradication. To bypass these challenges, an injectable hydrogel with time- and temperature-dependent viscosity enhancement behavior and self-healing property are reported to assist in the retention of the hydrogel in the tumor site after injection. The cancer cell membrane (CCM) and sorafenib are embedded into the hydrogel to elicit local tumor-specific immune responses and induce cancer cell apoptosis, respectively. In addition, hyaluronic acid (HA) coated Bi2S3 nanorods (BiH) are incorporated within the hydrogel to afford prolonged multi-cycle local photothermal therapy (PTT) due to the reduced diffusion of the nanorods to the surrounding tissues as a result of HA affinity toward cancer cells. The results show the promotion of immunostimulatory responses by both CCM and PTT through the release of inflammatory cytokines from immune cells, which allows localized and complete ablation of the breast tumor in an animal model by a single injection of the hydrogel. Moreover, the BiH renders strong antibacterial activity to the hydrogel, which is crucial for the clinical translation of injectable hydrogels as it minimizes the risk of infection in the post-cancer lesion formed by PTT-mediated cancer therapy.
Collapse
|
47
|
Identification of a novel Immune-Related prognostic model for patients with colorectal cancer based on 3 subtypes. Immunobiology 2023; 228:152352. [PMID: 36827833 DOI: 10.1016/j.imbio.2023.152352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND The mechanism of immunity in the development of colorectal cancer (CRC) has been studied in-depth, but knowledge of its role in the treatment of CRC is limited. OBJECTIVE This study aimed to classify CRC based on immunology and construct an immune-related prognostic model. METHODS Nine expression profile datasets of CRC, comprising 1640 samples, were downloaded from the NCBI GEO database. Immune infiltration of CRC was estimated using 5 algorithms. Based on the relative infiltration level of immune cells, immune score, and stromal score, immunosubtype analysis of tumors was conducted. Differentially expressed genes (DEGs) between the two subtypes were screened, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Hematoxylin eosin (HE) staining, immunohistochemical (IHC) staining and qPCR were used to verify the correlation between DEGs and differentiation degree of cancer and the expression of Ki67. Subsequently, a risk signature was constructed based on the least absolute shrinkage and selection operator (LASSO) model. RESULTS Based on the infiltration level, immune score, and stromal score of each immune cell, CRC was divided into three immune cell subtypes. Most immune checkpoint genes showed highly significant differences among the three cell subtypes, and most of the co-stimulatory and co-inhibitory molecules were lower in cluster 1 and the highest in cluster 3. Next, 50 common DEGs were determined from the intersections of the different subtypes. Among these common DEGs, 25 were identified to be relevant to the prognosis of CRC patients. The mRNA expressions of C5orf46, CYP1B1, MIR100HG, SFRP2 and CXCL13 was related to clinical prognostic indicators. Finally, these 5 DEGs were included in a prognostic risk signature model, which effectively identified high-risk groups among CRC patients in both the training and validation sets. CONCLUSION In this study, CRCs were divided into three subtypes based on immunology, and the different subtypes led to different prognosis. Additionally, a prognostic model was constructed based on five immune-related DEGs to distinguish the three subtypes.
Collapse
|
48
|
Sherman MH, Beatty GL. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. ANNUAL REVIEW OF PATHOLOGY 2023; 18:123-148. [PMID: 36130070 PMCID: PMC9877114 DOI: 10.1146/annurev-pathmechdis-031621-024600] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a prominent stromal microenvironment with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. Recent advances in tissue imaging capabilities, single-cell analytics, and disease modeling have shed light on organizing principles that shape the stromal complexity of PDAC tumors. These insights into the functional and spatial dependencies that coordinate cancer cell biology and the relationships that exist between cells and extracellular matrix components present in tumors are expected to unveil therapeutic vulnerabilities. We review recent advances in the field and discuss current understandings of mechanisms by which the tumor microenvironment shapes PDAC pathogenesis and therapy resistance.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental and Cancer Biology; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
| | - Gregory L Beatty
- Abramson Cancer Center; and Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
49
|
Sakref C, Bendriss-Vermare N, Valladeau-Guilemond J. Phenotypes and Functions of Human Dendritic Cell Subsets in the Tumor Microenvironment. Methods Mol Biol 2023; 2618:17-35. [PMID: 36905506 DOI: 10.1007/978-1-0716-2938-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells (DCs) play a key role in the antitumor immunity, as they are at the interface of innate and adaptive immunity. This important task can only be performed thanks to the broad range of mechanisms that DCs can perform to activate other immune cells. As DCs are well known for their outstanding capacity to prime and activate T cells through antigen presentation, DCs were intensively investigated during the past decades. Numerous studies have identified new DC subsets, leading to a large variety of subsets commonly separated into cDC1, cDC2, pDCs, mature DCs, Langerhans cells, monocyte-derived DCs, Axl-DCs, and several other subsets. Here, we review the specific phenotypes, functions, and localization within the tumor microenvironment (TME) of human DC subsets thanks to flow cytometry and immunofluorescence but also with the help of high-output technologies such as single-cell RNA sequencing and imaging mass cytometry (IMC).
Collapse
Affiliation(s)
- Candice Sakref
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
| | - Nathalie Bendriss-Vermare
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- LabEx DEVweCAN, Lyon, France
- Laboratoire d'Immunothérapie des Cancers de Lyon (LICL), Lyon, France
| | - Jenny Valladeau-Guilemond
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.
- LabEx DEVweCAN, Lyon, France.
| |
Collapse
|
50
|
Li J, Li J, Peng Y, Du Y, Yang Z, Qi X. Dendritic cell derived exosomes loaded neoantigens for personalized cancer immunotherapies. J Control Release 2023; 353:423-433. [PMID: 36470333 DOI: 10.1016/j.jconrel.2022.11.053] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Despite the promising potential of cancer vaccine, their efficacy has been limited in clinical trials and improved methods are urgently needed. Here we designed a nanovaccine platform that contains dendritic cell derived exosomes carriers and patient-specific neoantigens for individualized immunotherapies. The nanovaccine exhibited convenient cargo loading and prolonged cargo transportation to the lymph nodes, followed by eliciting potent antigen specific broad-spectrum T-cell and B-cell-mediated immune responses with great biosafety and biocompatibility. Strikingly, delivery of neoantigen-exosome nanovaccine significantly prohibited tumor growth, prolonged survival, delayed tumor occurrences with long-term memory, eliminated the lung metastasis in the therapeutic, prophylactic and metastatic B16F10 melanoma as well as therapeutic MC-38 models, respectively. Additionally, exosome-based nanovaccine demonstrated synergistic antitumor response superior to liposomal formulation due to presence of exosomal proteins. Collectively, our research indicated improved strategies for cell free vaccines and suggested exosome-based nanoplatform for cancer immunotherapy and personalized nanotechnology. These findings represent a powerful pathway to generate individualized nanovaccine rapidly for clinical application.
Collapse
Affiliation(s)
- Ji Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Jiajia Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yitian Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|