1
|
Fox JA, Reader SM, Guigueno MF, Barrett RDH. Developmental Behavioural Plasticity and DNA Methylation Patterns in Response to Predation Stress in Trinidadian Guppies. Mol Ecol 2025:e17831. [PMID: 40515452 DOI: 10.1111/mec.17831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/03/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025]
Abstract
Early-life experiences can predict the environments experienced later in life, giving individuals an opportunity to develop adaptive behaviour appropriate to a likely future environment. Epigenetic mechanisms such as DNA methylation (DNAm) have been implicated in developmental behavioural plasticity; however, studies investigating this possibility are limited in taxonomic breadth and ecological relevance. We investigated the impact of early-life exposure to predation stress on behaviour and DNAm in the brains of Trinidadian guppies (Poecilia reticulata). We exposed guppies throughout development to either an alarm cue (conspecific skin extract), inducing predation stress, or a control cue (water) for 8 weeks and then raised them to adulthood under identical conditions. Then, we conducted two behavioural assays, an open-field and a grouping test, before performing whole-genome bisulfite sequencing on whole brains. Guppies exposed to the alarm cue during development exhibited increased grouping (shoaling) in adulthood compared to those exposed to the control treatment, but there were no detectable impacts on activity, boldness, or exploratory behaviour. We also identified stable shifts in brain DNAm in response to developmental alarm cue exposure in genes involved in behavioural regulation. Some differentially methylated sites were significantly associated with shoaling propensity in both males and females. Additionally, males and females differed in the magnitude of DNAm responses and the genes impacted, suggesting distinct roles for DNAm between the sexes. This study shows how early-life predation stress can induce behavioural changes in adulthood and that shifts in neural DNAm could be an underlying mechanism responsible for these changes.
Collapse
Affiliation(s)
- Janay A Fox
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Simon M Reader
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
2
|
Heckwolf MJ, Gismann J, González‐Santoro M, Coulmance F, Fuß J, McMillan WO, Puebla O. Differences in Colour Pattern, Behaviour and Gene Expression in the Brain Suggest Divergent Camouflage Strategies in Sympatric Reef Fish Species. Mol Ecol 2025; 34:e17748. [PMID: 40298078 PMCID: PMC12100586 DOI: 10.1111/mec.17748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/11/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025]
Abstract
Camouflage is a critical survival strategy that helps to evade predation and increase hunting success. Background matching and disruptive colouration are different camouflage strategies that are subject to different selective pressures and can drive divergence in their associated traits such as colour pattern and behaviour. This study tested whether two closely related reef fish species (Hypoplectrus spp.) with distinct colour patterns exhibit different predator escape responses and differential gene expression in the brain indicative of divergent camouflage strategies. Combining field and laboratory experiments, we show that barred hamlets, characterised by disruptive colouration, are dynamic in their escape responses, while black hamlets, with their darker colouration, had a preference for hiding. The behavioural differences between these species seem to be limited to divergent predator escape responses since other behaviours such as activity or sociability did not differ. Importantly, the observed behavioural differences were accompanied by transcriptomic differences in their brains, particularly in regions associated with the perception of looming threats and less so in the region involved in conditioning. Differential expression in the diencephalon suggests enhanced neuronal plasticity in barred hamlets, which might allow for rapid adjustments in their escape response, while black hamlets exhibited upregulation in genes linked to immune response and oxygen transport in the optic tectum. Overall, our findings suggest that the two species utilise different camouflage strategies, which might contribute to the maintenance of colour pattern differences and thereby influence the speciation and diversification of these closely related sympatric reef fishes.
Collapse
Affiliation(s)
- M. J. Heckwolf
- Leibniz Center for Tropical Marine Research (ZMT)BremenGermany
- Smithsonian Tropical Research Institute (STRI)PanamaRepublic of Panama
| | - J. Gismann
- Groningen Institute for Evolutionary Life Sciences (GELIFES)University of GroningenGroningenthe Netherlands
| | - M. González‐Santoro
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - F. Coulmance
- Leibniz Center for Tropical Marine Research (ZMT)BremenGermany
- Smithsonian Tropical Research Institute (STRI)PanamaRepublic of Panama
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität OldenburgOldenburgGermany
| | - J. Fuß
- Institute of Clinical Molecular Biology, Christian Albrechts University of KielKielGermany
| | - W. O. McMillan
- Smithsonian Tropical Research Institute (STRI)PanamaRepublic of Panama
| | - O. Puebla
- Leibniz Center for Tropical Marine Research (ZMT)BremenGermany
- Smithsonian Tropical Research Institute (STRI)PanamaRepublic of Panama
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky Universität OldenburgOldenburgGermany
| |
Collapse
|
3
|
Kumar S, De T, Subramani J, Rangarajan A, Pal D. Combined analysis of somatic mutations and gene expression reveals nuclear speckles-associated enhanced stemness in gingivobuccal carcinoma under DNA damage response. Comput Biol Chem 2025; 119:108513. [PMID: 40424937 DOI: 10.1016/j.compbiolchem.2025.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/04/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Smokeless tobacco chewing habits in India lead to a high prevalence of Gingivobuccal oral squamous cell carcinoma (OSCC-GB). Cancer stem cells (CSCs) are a sub-population of cancer cells within a tumor with stem-like properties and are believed to contribute to tumor initiation, progression, increased resistance to drug therapy, and promote post-therapeutic cancer relapse. An RNA-sequencing data-based combined analysis of somatic mutations and gene expression was performed to explore the role of CSCs in disease progression using the novel Indian-origin OSCC-GB cell line 'IIOC019' from a patient with tobacco-chewing habit. The identified DNA damage-related known mutational signature (1 bp T/(A) nucleotide insertions and C>T mutations) indicates the impact of smokeless tobacco-related carcinogens in the IIOC019 cell line. The differentially expressed somatic variants, functional impact predictions, and survival analysis reveal the role of DNA damage response (DDR)-related genes in OSCC-GB, with the SON gene as a significant player. The study suggests that the loss-of-function in a somatic variant of the SON gene is linked to nuclear speckles-associated enhanced stemness and increased risk of disease progression in OSCC-GB under DDR conditions. The newly identified CSC-associated somatic variants appear to promote cancer spread, local recurrence, and resistance to chemotherapy or radiotherapy, contributing to the high mortality rates among Indian OSCC-GB patients.
Collapse
Affiliation(s)
- Sachendra Kumar
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, Karnataka 560 012, India; Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka 560 012, India
| | - Tamasa De
- Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560 012, India
| | - Janavi Subramani
- Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560 012, India
| | - Annapoorni Rangarajan
- Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka 560 012, India.
| | - Debnath Pal
- Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka 560 012, India.
| |
Collapse
|
4
|
Zhong X, Duan R, Hou S, Chen M, Tan X, Hess WR, Shi T. Transcriptome remodeling drives acclimation to iron availability in the marine N 2-fixing cyanobacterium Trichodesmium erythraeum IMS101. mSystems 2025; 10:e0149924. [PMID: 40243322 PMCID: PMC12090762 DOI: 10.1128/msystems.01499-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/17/2025] [Indexed: 04/18/2025] Open
Abstract
While enhanced phytoplankton growth as a result of iron (Fe) fertilization has been extensively characterized, our understanding of the underlying mechanisms remains incomplete. Here, we show in a laboratory setup mimicking Fe fertilization in the field that transcriptome remodeling is a primary driver of acclimation to Fe availability in the marine diazotrophic cyanobacterium Trichodesmium erythraeum IMS101. Fe supplementation promoted cell growth, photosynthesis and N2 fixation, and concomitant expression of the photosynthesis and N2 fixation genes. The expression of genes encoding major Fe-binding metalloproteins is tightly linked to cellular carbon and nitrogen metabolism and appears to be controlled by the ferric uptake regulator FurA, which is involved in regulating Fe uptake and homeostasis. This feedback loop is reinforced by substitutive expression of functionally equivalent or competitive genes depending on Fe availability, as well as co-expression of multiple Fe stress inducible isiA genes, an adaptive strategy evolved to elicit the Fe-responsive cascade. The study provides a genome-wide perspective on the acclimation of a prominent marine diazotroph to Fe availability, reveals an upgraded portfolio of indicator genes that can be used to better assess Fe status in the environment, and predicts scenarios of how marine diazotrophs may be affected in the future ocean.IMPORTANCEThe scarcity of trace metal iron (Fe) in global oceans has a great impact on phytoplankton growth. While enhanced primary productivity as a result of Fe fertilization has been extensively characterized, the underlying molecular mechanisms remain poorly understood. By subjecting the model marine diazotroph Trichodesmium erythraeum IMS101 to increasing concentrations of supplemented Fe, we demonstrate in it a comprehensively remodeled transcriptome that drives the mobilization of cellular Fe for coordinated carbon and nitrogen metabolism and reallocation of energy and resources. Our data provide broad genomic insight into marine diazotrophs acclimation to Fe availability, enabling the versatility and flexibility in choice of indicator genes for monitoring Fe status in the environment and having implications on how marine diazotrophs persist into the future ocean.
Collapse
Affiliation(s)
- Xin Zhong
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Ran Duan
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shengwei Hou
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Genetics and Experimental Bioinformatics, Institute of Biology III, University Freiburg, Freiburg, Germany
| | - Meng Chen
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Institute of Biology III, University Freiburg, Freiburg, Germany
| | - Tuo Shi
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Nachtigall PG, Hamilton BR, Kazandjian TD, Stincone P, Petras D, Casewell NR, Undheim EAB. The gene regulatory mechanisms shaping the heterogeneity of venom production in the Cape coral snake. Genome Biol 2025; 26:130. [PMID: 40390047 PMCID: PMC12087220 DOI: 10.1186/s13059-025-03602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Venoms and their associated glands and delivery structures have evolved numerous times among animals. Within these venom systems, the molecular, cellular, and morphological components interact and co-evolve to generate distinct, venom phenotypes that are increasingly recognized as models for studying adaptive evolution. However, toxins are often unevenly distributed across venom-producing tissues in patterns that are not necessarily adaptive but instead likely result from constraints associated with protein secretion. RESULTS We generate a high-quality draft genome of the Cape coral snake (Aspidelaps lubricus) and combine analyses of venom gland single-cell RNA-seq data with spatial venom gland in situ toxin distributions. Our results reveal that while different toxin families are produced by distinct populations of cells, toxin expression is fine-tuned by regulatory modules that result in further specialization of toxin production within each cell population. We also find that the evolution of regulatory elements closely mirrors the evolution of their associated toxin genes, resulting in spatial association of closely related and functionally similar toxins in the venom gland. While this compartmentalization is non-adaptive, the modularity of the underlying regulatory network likely facilitated the repeated evolution of defensive venom in spitting cobras. CONCLUSIONS Our results provide new insight into the variability of toxin regulation across snakes, reveal the molecular mechanisms underlying the heterogeneous toxin production in snake venom glands, and provide an example of how constraints can result in non-adaptive character states that appear to be adaptive, which may nevertheless facilitate evolutionary innovation and novelty.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo, 0316, Norway.
| | - Brett R Hamilton
- Centre for Microscopy and Microanalysis, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Taline D Kazandjian
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Paolo Stincone
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
| | - Daniel Petras
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen, 72076, Germany
- Department of Biochemistry, University of California Riverside, Riverside, 92507, CA, USA
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eivind A B Undheim
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo, 0316, Norway.
| |
Collapse
|
6
|
Ferreira MA, Teixeira RM, Brustolini OJB, Saia TFF, Jean-Baptiste J, Ribeiro NGA, Breves SS, Sampaio FR, Santos EGD, Leon BA, Oliveira CC, Duarte CEM, Lima LL, Oliveira LL, Ramos HJO, Reis PAB, Fontes EPB. The immune NIK1/RPL10/LIMYB signaling module regulates photosynthesis and translation under biotic and abiotic stresses. Nat Commun 2025; 16:4433. [PMID: 40360515 PMCID: PMC12075613 DOI: 10.1038/s41467-025-59571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Photosynthesis and translation are targets of metabolic control and development in plants, yet how stress signals coordinately regulate these opposing energy-producing and consuming processes remains enigmatic. Here, we unravel a growth control circuit that ties photosynthesis to translational control in response to biotic and abiotic signals. Our findings reveal that the L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), a key player of the NUCLEAR SHUTTLE PROTEIN-INTERACTING KINASE 1 (NIK1)/ RIBOSOMAL PROTEIN L10 (RPL10) antiviral signaling pathway, not only downregulates translation genes, but also represses photosynthesis-related genes and photosynthesis itself. LIMYB repressor activity, regulated by phosphorylation, is crucial for the decline in photosynthesis under stress. NIK1 activation by PAMPs or the phosphomimetic NIK1-T474D represses photosynthesis-related genes and photosynthesis in control but not in limyb lines. Furthermore, heat and osmotic stress also activate the NIK1/RPL10/LIMYB signaling circuit in wild type. These stresses induce NIK1 phosphorylation, but not marker gene repression, in limyb, indicating that LIMYB connects NIK1 activation to stress-mediated downregulation of translation- and photosynthesis-related genes. This coordinated repression via the NIK1/RPL10/LIMYB module may help plants adapt to changing environments.
Collapse
Affiliation(s)
- Marco Aurélio Ferreira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Ruan M Teixeira
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Otávio J B Brustolini
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Laboratory for Scientific Computing (LNCC), Petrópolis, RJ, Brazil
| | - Thainá F F Saia
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - James Jean-Baptiste
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Nathalia G A Ribeiro
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sâmera S Breves
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Fellipe R Sampaio
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eulálio G D Santos
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Borys A Leon
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Celio C Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Christiane E M Duarte
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Laboratório de Investigação Biológica, Department of Biomedical Sciences and Health, Universidade do Estado de Minas Gerais, Passos, Brazil
| | - Lucas L Lima
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leandro L Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Humberto J O Ramos
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Pedro A B Reis
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Elizabeth P B Fontes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Kvach AY, Kutyumov VA, Starunov VV, Ostrovsky AN. Transcriptomic Landscape of Polypide Development in the Freshwater Bryozoan Cristatella mucedo: From Budding to Degeneration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:119-135. [PMID: 39831659 DOI: 10.1002/jez.b.23285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/26/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Colonial invertebrates consist of iterative semi-autonomous modules (usually termed zooids) whose lifespan is significantly shorter than that of the entire colony. Typically, module development begins with budding and ends with degeneration. Most studies on the developmental biology of colonial invertebrates have focused on blastogenesis, whereas the changes occurring throughout the entire zooidal life were examined only for a few tunicates. Here we provide the first description of transcriptomic changes during polypide development in the freshwater bryozoan Cristatella mucedo. For the first time for Bryozoa, we performed bulk RNA sequencing of six polypide stages in C. mucedo (buds, juvenile polypides, three mature stages, and degeneration stage) and generated a high-quality de novo reference transcriptome. Based on these data, we analyzed clusters of differentially expressed genes for enriched pathways and biological processes that may be involved in polypide budding, growth, active functioning, and degradation. Although stem cells have never been described in Bryozoa, our analysis revealed the expression of conservative "stemness" markers in developing buds and juvenile polypides. Our data also indicate that polypide degeneration is a complex regulated process involving autophagy and other types of programmed cell death. We hypothesize that the mTOR signaling pathway plays an important role in regulating the polypide lifespan.
Collapse
Affiliation(s)
- A Yu Kvach
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - V A Kutyumov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - V V Starunov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Laboratory of Evolutionary Morphology, Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - A N Ostrovsky
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Fox JA, Reader SM, Barrett RDH. Rapid Neural DNA Methylation Responses to Predation Stress in Trinidadian Guppies. Mol Ecol 2025; 34:e17774. [PMID: 40277378 PMCID: PMC12051733 DOI: 10.1111/mec.17774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
DNA methylation (DNAm) is a well-studied epigenetic mechanism implicated in environmentally induced phenotypes and phenotypic plasticity. However, few studies investigate the timescale of DNAm shifts. Thus, it is uncertain whether DNAm can change on timescales relevant for rapid phenotypic shifts, such as during the expression of short-term behavioural plasticity. DNAm could be especially reactive in the brain, potentially increasing its relevance for behavioural plasticity. Most research investigating neural changes in methylation has been conducted in mammalian systems, on isolated individuals, and using stressors that are less ecologically relevant, reducing their generalisability to other natural systems. We exposed pairs of male and female Trinidadian guppies (Poecilia reticulata) to alarm cue, conspecific skin extract that reliably induces anti-predator behaviour, or a control cue. Whole-genome bisulphite sequencing on whole brains at various time points following cue exposure (0.5, 1, 4, 24, and 72 h) allowed us to uncover the timescale of neural DNAm responses. Males and females both showed rapid shifts in DNAm in as little as 0.5 h. However, males and females differed in the time course of their responses: both sexes showed a peak in the number of loci showing significant responses at 4 h, but males showed an additional peak at 72 h. We suggest that this finding could be due to the differing longer-term plastic responses between the sexes. This study shows that DNAm can be rapidly induced by an ecologically relevant stressor in fish and suggests that DNAm could be involved in short-term behavioural plasticity.
Collapse
Affiliation(s)
- Janay A. Fox
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | | | |
Collapse
|
9
|
Jyoti J, Gronau I, Cakir E, Hütt MT, Lerchl A, Meyer V. 5G-exposed human skin cells do not respond with altered gene expression and methylation profiles. PNAS NEXUS 2025; 4:pgaf127. [PMID: 40365161 PMCID: PMC12070386 DOI: 10.1093/pnasnexus/pgaf127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025]
Abstract
Due to the ever-increasing wirelessly transmitted data, the development of new transmission standards and higher frequencies in the 5G band is required. Despite basic biophysical considerations that argue against health effects, there is public concern about this technology. Because the skin penetration depth at these frequencies is only 1 mm or less, we exposed fibroblasts and keratinocytes to electromagnetic fields up to ten times the permissible limits, for 2 and 48 h in a fully blinded experimental design. Sham-exposed cells served as negative, and UV-exposed cells as positive controls. Differences in gene expression and methylation due to exposure were small and not higher than expected by chance. These data strongly support the assessment that there is no evidence for exposure-induced damage to human skin cells.
Collapse
Affiliation(s)
- Jyoti Jyoti
- School of Science, Constructor University, Bremen 28759, Germany
| | - Isabel Gronau
- School of Science, Constructor University, Bremen 28759, Germany
| | - Eda Cakir
- School of Science, Constructor University, Bremen 28759, Germany
| | | | - Alexander Lerchl
- School of Science, Constructor University, Bremen 28759, Germany
| | - Vivian Meyer
- School of Science, Constructor University, Bremen 28759, Germany
- Department of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg 26129, Germany
| |
Collapse
|
10
|
Feugere L, Silva De Freitas C, Bates A, Storey KB, Beltran-Alvarez P, Wollenberg Valero KC. Social context prevents heat hormetic effects against mutagens during fish development. FEBS Lett 2025. [PMID: 40265659 DOI: 10.1002/1873-3468.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Since stress can be transmitted to congeners via social metabolites, it is paramount to understand how the social context of abiotic stress influences aquatic organisms' responses to global changes. Here, we integrated the transcriptomic and phenotypic responses of zebrafish embryos to a UV damage/repair assay following scenarios of heat stress, its social context and their combination. Heat stress preceding UV exposure had a hormetic effect through the cellular stress response and DNA repair, rescuing and/or protecting embryos from UV damage. However, experiencing heat stress within a social context negated this molecular hormetic effect and lowered larval fitness. We discuss the molecular basis of interindividual chemical transmission within animal groups as another layer of complexity to organisms' responses to environmental stressors.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
| | | | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
| | | | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull, UK
| | - Katharina C Wollenberg Valero
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
- School of Biology and Environmental Science, University College Dublin, Ireland
- Conway Institute, University College Dublin, Ireland
| |
Collapse
|
11
|
Cai Y, Wang Z, Wan W, Qi J, Liu XF, Wang Y, Lyu Y, Li T, Dong S, Huang S, Zhou S. Time-course dual RNA-seq analyses and gene identification during early stages of plant-Phytophthora infestans interactions. PLANT PHYSIOLOGY 2025; 197:kiaf112. [PMID: 40112880 DOI: 10.1093/plphys/kiaf112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 03/22/2025]
Abstract
Late blight caused by Phytophthora infestans is a major threat to global potato and tomato production. Sustainable management of late blight requires the development of resistant crop cultivars. This process can be facilitated by high-throughput identification of functional genes involved in late blight pathogenesis. In this study, we generated a high-quality transcriptomic time-course dataset focusing on the initial 24 h of contact between P. infestans and 3 solanaceous plant species, tobacco (Nicotiana benthamiana), tomato (Solanum lycopersicum), and potato (Solanum tuberosum). Our results demonstrate species-specific transcriptional regulation in early stages of the infection. Transient silencing of putative RIBOSE-5-PHOSPHATE ISOMERASE and HMG-CoA REDUCTASE genes in N. benthamiana lowered plant resistance against P. infestans. Furthermore, heterologous expression of a putative tomato Golgi-localized nucleosugar transporter-encoding gene exacerbated P. infestans infection of N. benthamiana. In comparison, bioassays using transgenic tomato lines showed that the quantitative disease resistance genes were required but insufficient for late blight resistance; genetic knock-out of the susceptibility gene enhanced resistance. The same RNA-seq dataset was exploited to examine the transcriptional landscape of P. infestans and revealed host-specific gene expression patterns in the pathogen. This temporal transcriptomic diversity, in combination with genomic distribution features, identified the P. infestans IPI-B family GLYCINE-RICH PROTEINs as putative virulence factors that promoted disease severity or induced plant tissue necrosis when transiently expressed in N. benthamiana. These functional genes underline the effectiveness of functional gene-mining through a time-course dual RNA-seq approach and provide insight into the molecular interactions between solanaceous plants and P. infestans.
Collapse
Affiliation(s)
- Yanling Cai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Zhiqing Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Wei Wan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Feng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yantao Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yaqing Lyu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Tao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Suomeng Dong
- Department of Plant Pathology, Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
12
|
Choi YJ, Rosa BA, Fernandez-Baca MV, Ore RA, Martin J, Ortiz P, Hoban C, Cabada MM, Mitreva M. Independent origins and non-parallel selection signatures of triclabendazole resistance in Fasciola hepatica. Nat Commun 2025; 16:2996. [PMID: 40148292 PMCID: PMC11950404 DOI: 10.1038/s41467-025-57796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Triclabendazole (TCBZ) is the primary treatment for fascioliasis, a global foodborne zoonosis caused by Fasciola hepatica. Widespread resistance to TCBZ (TCBZ-R) in livestock and a rapid rise in resistant human infections are significant concerns. To understand the genetic basis of TCBZ-R, we sequenced the genomes of 99 TCBZ-sensitive (TCBZ-S) and 210 TCBZ-R adult flukes from 146 bovine livers in Cusco, Peru. We identify genomic regions of high differentiation (FST outliers above the 99.9th percentile) that encod genes involved in the EGFR-PI3K-mTOR-S6K pathway and microtubule function. Transcript expression differences are observed in microtubule-related genes between TCBZ-S and -R flukes, both without drug treatment and in response to treatment. Using only 30 SNPs, it is possible to differentiate between TCBZ-S and -R parasites with ≥75% accuracy. Our outlier loci are distinct from the previously reported TCBZ-R-associated QTLs in the UK, suggesting an independent evolution of resistance alleles. Effective genetics-based TCBZ-R surveillance must consider the heterogeneity of loci under selection across diverse geographical populations.
Collapse
Affiliation(s)
- Young-Jun Choi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Martha V Fernandez-Baca
- Sede Cusco, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Cusco, Peru
| | - Rodrigo A Ore
- Sede Cusco, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Cusco, Peru
| | - John Martin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pedro Ortiz
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Cristian Hoban
- Laboratorio de Inmunología, Facultad de Ciencias Veterinarias, Universidad Nacional de Cajamarca, Cajamarca, Peru
| | - Miguel M Cabada
- Sede Cusco, Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Cusco, Peru.
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Zhuang QKW, Bauermeister K, Galvez JH, Alogayil N, Batdorj E, de Villena FPM, Taketo T, Bourque G, Naumova AK. Survey of gene, lncRNA and transposon transcription patterns in four mouse organs highlights shared and organ-specific sex-biased regulation. Genome Biol 2025; 26:74. [PMID: 40140847 PMCID: PMC11948892 DOI: 10.1186/s13059-025-03547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Sex-biased gene regulation is the basis of sexual dimorphism in phenotypes and has been studied across different cell types and different developmental stages. However, sex-biased expression of transposable elements (TEs), which represent nearly half of the mammalian genome and have the potential of influencing genome integrity and regulation, remains underexplored. RESULTS We report a survey of gene, lncRNA, and TE expression in four organs from mice with different combinations of gonadal and genetic sex. The data show remarkable variability among organs with respect to the impact of gonadal sex on transcription with the strongest effects observed in the liver. In contrast, the X-chromosome dosage alone had a modest influence on sex-biased transcription across organs, albeit interaction between X-dosage and gonadal sex cannot be ruled out. The presence of the Y-chromosome influences TE, but not gene or lncRNA, expression in the liver. Notably, 90% of sex-biased TEs (sDETEs) reside in clusters. Moreover, 54% of these clusters overlap or reside less than 100 kb from sex-biased genes or lncRNAs, share the same sex bias, and also have higher expression levels than sDETE clusters that do not co-localize with other types of sex-biased transcripts. We test the heterochromatic sink hypothesis that predicts higher expression of TEs in XX individuals finding no evidence to support it. CONCLUSIONS Our data show that sex-biased expression of TEs varies among organs with the highest numbers of sDETEs found in the liver following trends observed for genes and lncRNAs. It is enhanced by proximity to other types of sex-biased transcripts.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan
| | - Klara Bauermeister
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada
| | - Najla Alogayil
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Enkhjin Batdorj
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan.
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada.
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
14
|
Ostovar T, Landis JB, McCarthy EW, Sierro N, Litt A. Differential Gene Expression and Unbalanced Homeolog Expression Bias in 4 Million-Year-Old Allopolyploids of Nicotiana Section Repandae. Genome Biol Evol 2025; 17:evaf029. [PMID: 39973064 PMCID: PMC11890095 DOI: 10.1093/gbe/evaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Allopolyploidy, a phenomenon prevalent in angiosperms involving hybridization and whole-genome duplication, results in species with multiple subgenomes, altering genome structure and gene expression, leading to novel phenotypes. Allopolyploids often experience unbalanced homeolog expression bias, the preferential expression of homeologs from one of the two progenitor genomes. To explore the consequences of allopolyploidy and unbalanced homeolog expression bias, we investigate global gene expression and the fate of homeologs in Nicotiana (Solanaceae). We focus on Nicotiana section Repandae, including three allotetraploid species, Nicotiana nudicaulis, N. repanda, and N. stocktonii, derived from diploid progenitors N. sylvestris and N. obtusifolia ∼4.3 Ma. We identify genes with differential expression and investigate expression of candidate genes for flower size variation. Our results show expression differences with the allopolyploids intermediate between the two progenitor species, with a slight bias toward N. obtusifolia. Moreover, we demonstrate unbalanced homeolog expression bias toward the N. obtusifolia subgenome across developmental stages in the allopolyploids, with a stronger bias in N. nudicaulis. In contrast, unbalanced homeolog expression bias shifts toward N. sylvestris for flower size genes in N. nudicaulis, showing that genes involved in particular phenotypes can display different patterns of unbalanced homeolog expression than the overall transcriptome. We also see differential expression of several known flower size genes across corolla developmental stages. Our results highlight the role of unbalanced homeolog expression bias in shaping the evolutionary trajectory of Nicotiana species and provide a foundation for future research into the ecological and evolutionary implications of allopolyploidy in flowering plants.
Collapse
Affiliation(s)
- Talieh Ostovar
- SDSU/UCR Joint Doctoral Program in Evolutionary Biology, San Diego State University, San Diego, CA 92182, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Jacob B Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | | | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Neuchâtel CH-2000, Switzerland
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
15
|
Rai A, Skårn MN, Elameen A, Tengs T, Amundsen MR, Bjorå OS, Haugland LK, Yakovlev IA, Brurberg MB, Thorstensen T. CRISPR-Cas9-mediated deletions of FvMYB46 in Fragaria vesca reveal its role in regulation of fruit set and phenylpropanoid biosynthesis. BMC PLANT BIOLOGY 2025; 25:256. [PMID: 40000946 PMCID: PMC11853751 DOI: 10.1186/s12870-024-06041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/31/2024] [Indexed: 02/27/2025]
Abstract
The phenylpropanoid pathway, regulated by transcription factors of the MYB family, produces secondary metabolites that play important roles in fertilization and early phase of fruit development. The MYB46 transcription factor is a key regulator of secondary cell wall structure, lignin and flavonoid biosynthesis in many plants, but little is known about its activity in flowers and berries in F. vesca. For functional analysis of FvMYB46, we designed a CRISPR-Cas9 construct with an endogenous F. vesca-specific U6 promoter for efficient and specific expression of two gRNAs targeting the first exon of FvMYB46. This generated mutants with an in-frame 81-bp deletion of the first conserved MYB domain or an out-of-frame 82-bp deletion potentially knocking out gene function. In both types of mutant plants, pollen germination and fruit set were significantly reduced compared to wild type. Transcriptomic analysis of flowers revealed that FvMYB46 positively regulates the expression of genes involved in processes like xylan biosynthesis and metabolism, homeostasis of reactive oxygen species (ROS) and the phenylpropanoid pathway, including secondary cell wall biosynthesis and flavonoid biosynthesis. Genes regulating carbohydrate metabolism and signalling were also deregulated, suggesting that FvMYB46 might regulate the crosstalk between carbohydrate metabolism and phenylpropanoid biosynthesis. In the FvMYB46-mutant flowers, the flavanol and flavan-3-ol contents, especially epicatechin, quercetin-glucoside and kaempferol-3-coumaroylhexoside, were reduced, and we observed a local reduction in the lignin content in the anthers. Together, these results suggest that FvMYB46 controls fertility and efficient fruit set by regulating the cell wall structure, flavonoid biosynthesis, carbohydrate metabolism, and sugar and ROS signalling in flowers and early fruit development in F. vesca.
Collapse
Affiliation(s)
- Arti Rai
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Magne Nordang Skårn
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Abdelhameed Elameen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Torstein Tengs
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Mathias Rudolf Amundsen
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Oskar S Bjorå
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Lisa K Haugland
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Igor A Yakovlev
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - May Bente Brurberg
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Tage Thorstensen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway.
| |
Collapse
|
16
|
Marshall KL, Stadtmauer DJ, Maziarz J, Wagner GP, Lesch BJ. Evolutionary innovations in germline biology of placental mammals identified by transcriptomics of first-wave spermatogenesis in opossum. Dev Cell 2025; 60:646-664.e8. [PMID: 39536760 PMCID: PMC11859772 DOI: 10.1016/j.devcel.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/26/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Mammalian spermatogenesis is a highly stereotyped and conserved developmental process that is essential for fitness. At the same time, gene expression in spermatogenic cells is rapidly evolving. This combination of features has been suggested to drive rapid fixation of new gene expression patterns. Using a high-resolution dataset comprising bulk and single-cell data from juvenile and adult testes of the opossum Monodelphis domestica, a model marsupial, we define the developmental timing of the spermatogenic first wave in opossum and delineate conserved and divergent gene expression programs across the placental-marsupial split by comparison to equivalent data from mouse, a model placental mammal. Epigenomic data confirmed divergent regulation at the level of transcription, and comparison to data from four additional amniote species identified hundreds of genes with evidence of rapid fixation of expression. This gene set encompasses known and previously undescribed regulators of spermatogenic development.
Collapse
Affiliation(s)
- Kira L Marshall
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, USA; Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
17
|
Wang J, Chang J, Wang K, Liang B, Zhu Y, Liu Z, Liang X, Chen J, Peng Y, Agnarsson I, Li D, Liu J. Blue light restores functional circadian clocks in eyeless cave spiders. SCIENCE ADVANCES 2025; 11:eadr2802. [PMID: 39937902 PMCID: PMC11817938 DOI: 10.1126/sciadv.adr2802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
Evolution in profound darkness often leads to predictable, convergent traits, such as the loss of vision. Yet, the consequences of such repeated evolutionary experiments remain obscure, especially regarding fundamental regulatory behaviors like circadian rhythms. We studied circadian clocks of blind cave spiders and their sighted relatives. In the field, cave spiders exhibit low per expression and maintain constant activity levels. Curiously, their clocks are not permanently lost; exposure to monochromatic blue light restores both circadian gene expression and behavioral rhythms. Conversely, blocking blue light in sighted relatives induces an arrhythmic "cave phenotype." Our RNA interference experiments suggest that clock genes regulate the rhythmicity of the huddle response, establishing a link between circadian gene networks and this behavioral rhythm. We demonstrate that circadian regulation is readily toggled and may play a latent role, even in constant darkness. Overall, our study expands understanding of circadian clock variations and paves the way for future research on the maintenance of silent phenotypes.
Collapse
Affiliation(s)
- Jinhui Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
- Arachnid Resource Centre of Hubei & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jian Chang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
- Arachnid Resource Centre of Hubei & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Kai Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
- Arachnid Resource Centre of Hubei & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Bing Liang
- Arachnid Resource Centre of Hubei & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yang Zhu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhihua Liu
- Arachnid Resource Centre of Hubei & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xitong Liang
- Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Jian Chen
- Arachnid Resource Centre of Hubei & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ingi Agnarsson
- Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, Reykjavik, Iceland
| | - Daiqin Li
- Arachnid Resource Centre of Hubei & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jie Liu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, Hubei 430062, China
- Arachnid Resource Centre of Hubei & Centre for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| |
Collapse
|
18
|
Charles S, Jackson-Holmes E, Sun G, Zhou Y, Siciliano B, Niu W, Han H, Nikitina A, Kemp ML, Wen Z, Lu H. Non-Invasive Quality Control of Organoid Cultures Using Mesofluidic CSTR Bioreactors and High-Content Imaging. ADVANCED MATERIALS TECHNOLOGIES 2025; 10:2400473. [PMID: 40248044 PMCID: PMC12002419 DOI: 10.1002/admt.202400473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Indexed: 04/19/2025]
Abstract
Human brain organoids produce anatomically relevant cellular structures and recapitulate key aspects of in vivo brain function, which holds great potential to model neurological diseases and screen therapeutics. However, the long growth time of 3D systems complicates the culturing of brain organoids and results in heterogeneity across samples hampering their applications. We developed an integrated platform to enable robust and long-term culturing of 3D brain organoids. We designed a mesofluidic bioreactor device based on a reaction-diffusion scaling theory, which achieves robust media exchange for sufficient nutrient delivery in long-term culture. We integrated this device with longitudinal tracking and machine learning-based classification tools to enable non-invasive quality control of live organoids. This integrated platform allows for sample pre-selection for downstream molecular analysis. Transcriptome analyses of organoids revealed that our mesofluidic bioreactor promoted organoid development while reducing cell death. Our platform thus offers a generalizable tool to establish reproducible culture standards for 3D cellular systems for a variety of applications beyond brain organoids.
Collapse
Affiliation(s)
- Seleipiri Charles
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Emily Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Ying Zhou
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Benjamin Siciliano
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, 615 Michael Street, Atlanta, GA, 30322, U.S.A
| | - Weibo Niu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Haejun Han
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Arina Nikitina
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Melissa L Kemp
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| |
Collapse
|
19
|
Tan X, Testoni G, Sullivan MA, López-Soldado I, Vilaplana F, Gilbert RG, Guinovart JJ, Schulz BL, Duran J. Glycogenin is dispensable for normal liver glycogen metabolism and body glucose homeostasis. Int J Biol Macromol 2025; 291:139084. [PMID: 39716709 DOI: 10.1016/j.ijbiomac.2024.139084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Glycogen is a glucose-storage polysaccharide molecule present in animals, fungi and bacteria. The enzyme glycogenin can self-glycosylate, forming an oligosaccharide chain that primes glycogen synthesis. This priming role of glycogenin was first believed to be essential for glycogen synthesis, but glycogen was then found in the skeletal muscle, heart, liver and brain of glycogenin-knockout mice (Gyg KO), thereby showing that glycogen can be synthesized without glycogenin. Within the liver, glycogen is present in the form of individual glycogen particles, called β particles, and larger composite aggregates of linked β particles, called α particles. Previous studies suggested that liver glycogenin plays a role in linking β particles into α particles and thus participating in glucose homeostasis, which implies that α particles would be absent in Gyg KO mice liver. Here we test this through targeted characterization of glycogen structure and through proteomic and metabolic studies on Gyg KO mice. The results show that, contrary to what had been believed, glycogenin is not necessary for normal liver-glycogen metabolism.
Collapse
Affiliation(s)
- Xinle Tan
- Centre for Animal Science and Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Giorgia Testoni
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Mitchell A Sullivan
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Iliana López-Soldado
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, and Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Joan J Guinovart
- Institute for Research in Biomedicine of Barcelona (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jordi Duran
- Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona 08017, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| |
Collapse
|
20
|
Tsoi L, Dong Y, Patrick M, Sarkar M, Zhang H, Bogle R, Zhang Z, Dand N, Paulsen M, Ljungman M, Betz RC, Petukhova L, Christiano A, Simpson M, Modlin R, Khanna D, Barker J, Budunova I, Gharaee-Kermani M, Billi A, Elder J, Kahlenberg JM, Gudjonsson J. IL-1 signaling enrichment in inflammatory skin disease loci with higher-risk allele frequencies in African ancestry. RESEARCH SQUARE 2025:rs.3.rs-5724270. [PMID: 39975900 PMCID: PMC11838759 DOI: 10.21203/rs.3.rs-5724270/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Inflammatory skin diseases (ISDs) exhibit varying prevalence across different ancestry background and geographical regions. Genetic research for complex ISDs has predominantly centered on European Ancestry (EurA) populations and genetic effects on immune cell responses but generally failed to consider contributions from other cell types in skin. Here, we utilized 273 genetic signals from seven different ISDs: acne, alopecia areata (AA), atopic dermatitis (AD), psoriasis, systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and vitiligo, to demonstrate enriched IL1 signaling in keratinocytes, particularly in signals with higher risk allele frequencies in the African ancestry. Using a combination of ATAC-seq, Bru-seq, and promoter capture Hi-C, we revealed potential regulatory mechanisms of the acne locus on chromosome 2q13. We further demonstrated differential responses in keratinocytes upon IL1β stimulation, including the pro-inflammatory mediators CCL5, IL36G, and CXCL8. Taken together, our findings highlight IL1 signaling in epidermal keratinocytes as a contributor to ancestry-related differences in ISDs.
Collapse
Affiliation(s)
| | | | | | | | | | - Rachael Bogle
- Department of Dermatology, INSERM 1098, Franche comté university, Besançon university hospital
| | | | | | | | | | | | | | | | | | - Robert Modlin
- University of California Los Angeles, David Geffen School of Medicine
| | | | | | | | | | | | - James Elder
- Department of Dermatology, University of Michigan, 1500 East Medical Center
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
21
|
Wehbe F, Adams L, Babadoudou J, Yuen S, Kim YS, Tanaka Y. Inferring disease progression stages in single-cell transcriptomics using a weakly supervised deep learning approach. Genome Res 2025; 35:135-146. [PMID: 39622637 PMCID: PMC11789631 DOI: 10.1101/gr.278812.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Application of single-cell/nucleus genomic sequencing to patient-derived tissues offers potential solutions to delineate disease mechanisms in humans. However, individual cells in patient-derived tissues are in different pathological stages, and hence, such cellular variability impedes subsequent differential gene expression analyses. To overcome such a heterogeneity issue, we present a novel deep learning approach, scIDST, that infers disease progression levels of individual cells with weak supervision framework. The disease progression-inferred cells display significant differential expression of disease-relevant genes, which cannot be detected by comparative analysis between patients and healthy donors. In addition, we demonstrate that pretrained models by scIDST are applicable to multiple independent data resources and are advantageous to infer cells related to certain disease risks and comorbidities. Taken together, scIDST offers a new strategy of single-cell sequencing analysis to identify bona fide disease-associated molecular features.
Collapse
Affiliation(s)
- Fabien Wehbe
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada
| | - Levi Adams
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
- Department of Biology, Bates College, Lewiston, Maine 04240, USA
| | - Jordan Babadoudou
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada
| | - Samantha Yuen
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Yoshiaki Tanaka
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada;
| |
Collapse
|
22
|
Burc E, Girard-Tercieux C, Metz M, Cazaux E, Baur J, Koppik M, Rêgo A, Hart AF, Berger D. Life-history adaptation under climate warming magnifies the agricultural footprint of a cosmopolitan insect pest. Nat Commun 2025; 16:827. [PMID: 39827176 PMCID: PMC11743133 DOI: 10.1038/s41467-025-56177-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Climate change is affecting population growth rates of ectothermic pests with potentially dire consequences for agriculture and global food security. However, current projection models of pest impact typically overlook the potential for rapid genetic adaptation, making current forecasts uncertain. Here, we predict how climate change adaptation in life-history traits of insect pests affects their growth rates and impact on agricultural yields by unifying thermodynamics with classic theory on resource acquisition and allocation trade-offs between foraging, reproduction, and maintenance. Our model predicts that warming temperatures will favour resource allocation towards maintenance coupled with increased resource acquisition through larval foraging, and the evolution of this life-history strategy results in both increased population growth rates and per capita host consumption, causing a double-blow on agricultural yields. We find support for these predictions by studying thermal adaptation in life-history traits and gene expression in the wide-spread insect pest, Callosobruchus maculatus; with 5 years of evolution under experimental warming causing an almost two-fold increase in its predicted agricultural footprint. These results show that pest adaptation can offset current projections of agricultural impact and emphasize the need for integrating a mechanistic understanding of life-history evolution into forecasts of pest impact under climate change.
Collapse
Affiliation(s)
- Estelle Burc
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Agronomy Institute Rennes-Angers (IARA), Graduate school of agronomy, 35000, Rennes, France
| | - Camille Girard-Tercieux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Moa Metz
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Elise Cazaux
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Université de Toulouse, Toulouse INP-ENSAT, 31326, Castanet-Tolosan, France
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Mareike Koppik
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexandre Rêgo
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Alex F Hart
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology. Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.
| |
Collapse
|
23
|
Figueroa-Valdés AI, Luz-Crawford P, Herrera-Luna Y, Georges-Calderón N, García C, Tobar HE, Araya MJ, Matas J, Donoso-Meneses D, de la Fuente C, Cuenca J, Parra E, Lillo F, Varela C, Cádiz MI, Vernal R, Ortloff A, Nardocci G, Castañeda V, Adasme-Vidal C, Kunze-Küllmer M, Hidalgo Y, Espinoza F, Khoury M, Alcayaga-Miranda F. Clinical-grade extracellular vesicles derived from umbilical cord mesenchymal stromal cells: preclinical development and first-in-human intra-articular validation as therapeutics for knee osteoarthritis. J Nanobiotechnology 2025; 23:13. [PMID: 39806427 PMCID: PMC11730155 DOI: 10.1186/s12951-024-03088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Osteoarthritis (OA) is a joint disease characterized by articular cartilage degradation. Persistent low-grade inflammation defines OA pathogenesis, with crucial involvement of pro-inflammatory M1-like macrophages. While mesenchymal stromal cells (MSC) and their small extracellular vesicles (sEV) hold promise for OA treatment, achieving consistent clinical-grade sEV products remains a significant challenge. This study aims to develop fully characterized, reproducible, clinical-grade batches of sEV derived from umbilical cord (UC)-MSC for the treatment of OA while assessing its efficacy and safety. Initially, a standardized, research-grade manufacturing protocol was established to ensure consistent sEV production. UC-MSC-sEV characterization under non-cGMP conditions showed consistent miRNA and protein profiles, suggesting their potential for standardized manufacturing. In vitro studies evaluated the efficacy, safety, and potency of sEV; animal studies confirmed their effectiveness and safety. In vitro, UC-MSC-sEV polarized macrophages to an anti-inflammatory M2b-like phenotype, through STAT1 modulation, indicating their potential to create an anti-inflammatory environment in the affected joints. In silico studies confirmed sEV's immunosuppressive signature through miRNA and proteome analysis. In an OA mouse model, sEV injected intra-articularly (IA) induced hyaline cartilage regeneration, validated by histological and μCT analyses. The unique detection of sEV signals within the knee joint over time highlights its safety profile by confirming the retention of sEV in the joint. The product development of UC-MSC-sEV involved refining, standardizing, and validating processes in compliance with GMP standards. The initial assessment of the safety of the clinical-grade product via IA administration in a first-in-human study showed no adverse effects after a 12 month follow-up period. These results support the progress of this sEV-based therapy in an early-phase clinical trial, the details of which are presented and discussed in this work. This study provides data on using UC-MSC-sEV as local therapy for OA, highlighting their regenerative and anti-inflammatory properties and safety in preclinical and a proof-of-principle clinical application.
Collapse
Affiliation(s)
- Aliosha I Figueroa-Valdés
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Nicolás Georges-Calderón
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Hugo E Tobar
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - José Matas
- Centro de Terapia Celular, Clínica Universidad de los Andes, Santiago, Chile
- Departmento de Cirugía Ortopédica, Clínica Universidad de los Andes, Santiago, Chile
| | - Darío Donoso-Meneses
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Jimena Cuenca
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Eliseo Parra
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Fernando Lillo
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Cristóbal Varela
- Departmento de Radiología, Clínica Universidad de los Andes, Santiago, Chile
| | - María Ignacia Cádiz
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
| | - Rolando Vernal
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Gino Nardocci
- Laboratorio de Biología Molecular y Bioinformática, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Verónica Castañeda
- Laboratorio de Biología Molecular y Bioinformática, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Catalina Adasme-Vidal
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Maximiliano Kunze-Küllmer
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Cells for Cells, Santiago, Chile
- EVast Bio, Miami, FL, USA
| | - Yessia Hidalgo
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Francisco Espinoza
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Centro de Terapia Celular, Clínica Universidad de los Andes, Santiago, Chile
- Departmento de Reumatología, Clínica Universidad de los Andes, Santiago, Chile
| | - Maroun Khoury
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Cells for Cells, Santiago, Chile.
- EVast Bio, Miami, FL, USA.
| | - Francisca Alcayaga-Miranda
- Laboratorio de Medicina Nano-Regenerativa, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
- Consorcio REGENERO, Chilean Consortium for Regenerative Medicine, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Cells for Cells, Santiago, Chile.
| |
Collapse
|
24
|
Vea IM, de la Filia AG, Jaron KS, Barlow SEJ, Herbette M, Mongue AJ, Nelson R, Ruiz-Ruano FJ, Ross L. The B Chromosome of Pseudococcus viburni: A Selfish Chromosome that Exploits Whole-Genome Meiotic Drive. Genome Biol Evol 2025; 17:evae257. [PMID: 39878751 PMCID: PMC11776215 DOI: 10.1093/gbe/evae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 01/31/2025] Open
Abstract
Meiosis is generally a fair process: each chromosome has a 50% chance of being included into each gamete. However, meiosis can become aberrant with some chromosomes having a higher chance of making it into gametes than others. Yet, why and how such systems evolve remains unclear. Here, we study the unusual reproductive genetics of mealybugs, where only maternal-origin chromosomes are included in gametes during male meiosis, while paternal chromosomes are eliminated. One species-Pseudococcus viburni-has a segregating B chromosome that drives by escaping paternal genome elimination. We present whole genome and gene expression data from lines with and without B chromosomes. We identify B-linked sequences including 204 protein-coding genes and a satellite repeat that makes up a significant proportion of the chromosome. The few paralogs between the B and the core genome are distributed throughout the genome, arguing against a simple, or at least recent, chromosomal duplication of one of the autosomes to create the B. We do, however, find one 373 kb region containing 146 genes that appears to be a recent translocation. Finally, we show that while many B-linked genes are expressed during meiosis, most of these are encoded on the recently translocated region. Only a small number of B-exclusive genes are expressed during meiosis. Of these, only one was overexpressed during male meiosis, which is when the drive occurs: an acetyltransferase involved in H3K56Ac, which has a putative role in meiosis and is, therefore, a promising candidate for further studies.
Collapse
Affiliation(s)
- Isabelle M Vea
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- School of Biological Sciences, Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrés G de la Filia
- School of Biological Sciences, Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kamil S Jaron
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Scott E J Barlow
- School of Biological Sciences, Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Marion Herbette
- School of Biological Sciences, Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Andrew J Mongue
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32608, USA
| | - Ross Nelson
- School of Biological Sciences, Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Francisco J Ruiz-Ruano
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Laura Ross
- School of Biological Sciences, Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
25
|
Liu M, Li E, Mu H, Zhao Z, Chen X, Gao J, Gao D, Liu Z, Han J, Zhong L, Cao S. LncRNA XLOC-040580 targeted by TPRA1 coordinate zygotic genome activation during porcine embryonic development. Cell Transplant 2025; 34:9636897251332527. [PMID: 40245181 PMCID: PMC12035016 DOI: 10.1177/09636897251332527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/19/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are crucial in porcine preimplantation embryonic development, yet their regulatory role during zygote genome activation (ZGA) is poorly understood. We analyzed transcriptome data from porcine fetal fibroblasts (PEF), induced pluripotent stem cells (iPS), and preimplantation embryos, identifying ZGA-specific lncRNAs like XLOC-040580, and further predicted its potentially interacting genes TPRA1 and BCL2L1 via co-expression network. XLOC-040580 was knocked down by siRNA microinjection and the expression of ZGA-related genes was detected by qRT-PCR. After microinjecting siRNA targeting TPRA1 and BCL2L1 at the one-cell stage, we counted the blastocyst development rate. The blastocyst development rate was consistent with the results from si-XLOC-040580 after si-TPRA1. Through dual-luciferase reporter assays, we found that XLOC-040580 was a downstream target of TPRA1. To further elucidate the mechanism of XLOC-040580, Single-cell mRNA sequencing after XLOC-040580 knockdown revealed its regulatory network involved in embryonic developmental defects. Transcriptome analysis revealed that XLOC-040580 was specifically expressed during zygote activation. Knockdown of XLOC-040580 decreased the blastocyst development rate and reduced both the total blastocyst cell number and TE cell number. TPRA1 and BCL2L1 were specifically co-expressed with XLOC-040580 during ZGA stage, and TPRA1 could interact with the promoter region of XLOC-040580 and regulate its expression. Knockdown of TPRA1 or XLOC-040580 blocked porcine embryonic development by affecting the expression of ZGA-related genes. We found and validated that lncRNA XLOC-040580 played a key role in the ZGA process, which was regulated by TPRA1. These results implied that the functional axis of TPRA1-XLOC-040580-downstream genes involved in ZGA-related functions also coordinated early embryonic development in porcine.
Collapse
Affiliation(s)
- Mengxin Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Enhong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haiyuan Mu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zimo Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinze Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyu Liu
- National-Local Associated Engineering Laboratory for Personalized Cell Therapy, Shenzhen, China
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liang Zhong
- Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, The Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
26
|
Wong Y, Rosa BA, Becker L, Camberis M, LeGros G, Zhan B, Bottazzi ME, Fujiwara RT, Ritmejeryte E, Laha T, Chaiyadet S, Taweethavonsawat P, Brindley PJ, Bracken BK, Giacomin PR, Mitreva M, Loukas A. Proteomic characterization and comparison of the infective and adult life stage secretomes from Necator americanus and Ancylostoma ceylanicum. PLoS Negl Trop Dis 2025; 19:e0012780. [PMID: 39832284 PMCID: PMC11745416 DOI: 10.1371/journal.pntd.0012780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
More than 470 million people globally are infected with the hookworms Ancylostoma ceylanicum and Necator americanus, resulting in an annual loss of 2.1 to 4 million disability-adjusted-life-years. Current infection management approaches are limited by modest drug efficacy, the costs associated with frequent mass drug administration campaigns, and the risk of reinfection and burgeoning drug resistance. Subunit vaccines based on proteins excreted and secreted (ES) by hookworms that reduce worm numbers and associated disease burden are a promising management strategy to overcome these limitations. However, studies on the ES proteomes of hookworms have mainly described proteins from the adult life stage which may preclude the opportunity to target the infective larva. Here, we employed high resolution mass spectrometry to identify 103 and 57 ES proteins from the infective third larvae stage (L3) as well as 106 and 512 ES proteins from the adult N. americanus and A. ceylanicum respectively. Comparisons between these developmental stages identified 91 and 41 proteins uniquely expressed in the L3 ES products of N. americanus and A. ceylanicum, respectively. We characterized these proteins based on functional annotation, KEGG pathway analysis, InterProScan signature and gene ontology. We also performed reciprocal BLAST analysis to identify orthologs across species for both the L3 and adult stages and identified five orthologous proteins in both life stages and 15 proteins that could be detected only in the L3 stage of both species. Last, we performed a three-way reciprocal BLAST on the L3 proteomes from both hookworm species together with a previously reported L3 proteome from the rodent hookworm Nippostrongylus brasiliensis, and identified eight L3 proteins that could be readily deployed for testing using well established rodent models. This novel characterization of L3 proteins and taxonomic conservation across hookworm species provides a raft of potential candidates for vaccine discovery for prevention of hookworm infection and disease.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, Australia
| | - Bruce A. Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Luke Becker
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham LeGros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ricardo T. Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edita Ritmejeryte
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Chaiyadet
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyanan Taweethavonsawat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C., United States of America
| | - Bethany K. Bracken
- Charles River Analytics, Cambridge, Massachusetts, United States of America
| | - Paul R. Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
- Macrobiome Therapeutics Pty Ltd, Cairns, Australia
| |
Collapse
|
27
|
Chen A, Covitz RM, Folsom AA, Mu X, Peck RF, Noh S. Symbiotic T6SS affects horizontal transmission of Paraburkholderia bonniea among Dictyostelium discoideum amoeba hosts. ISME COMMUNICATIONS 2025; 5:ycaf005. [PMID: 40046898 PMCID: PMC11882306 DOI: 10.1093/ismeco/ycaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 03/09/2025]
Abstract
Three species of Paraburkholderia are able to form facultative symbiotic relationships with the amoeba, Dictyostelium discoideum. These symbiotic Paraburkholderia share a type VI secretion system (T6SS) that is absent in other close relatives. We tested the phenotypic and transcriptional effect of tssH ATPase gene disruption in P. bonniea on its symbiosis with D. discoideum. We hypothesized that the ∆tssH mutant would have a significantly reduced ability to affect host fitness or transmit itself from host to host. We found that the T6SS does not directly affect host fitness. Instead, wildtype P. bonniea had significantly higher rates of horizontal transmission compared to ∆tssH. In addition, we observed significant differences in the range of infection prevalence achieved by wildtype vs. ∆tssH symbionts over multiple host social stages in the absence of opportunities for environmental symbiont acquisition. Successful symbiont transmission significantly contributes to sustained symbiotic association. Therefore, the shared T6SS appears necessary for a long-term evolutionary relationship between D. discoideum and its Paraburkholderia symbionts. The lack of difference in host fitness outcomes was confirmed by indistinguishable host gene expression patterns between hosts infected by wildtype or ∆tssH P. bonniea in an RNA-seq time series. These data also provided insight into how Paraburkholderia symbionts may evade phagocytosis by its amoeba host. Most significantly, cellular oxidant detoxification and lysosomal hydrolase delivery appear to be subject to the push and pull of host-symbiont crosstalk.
Collapse
Affiliation(s)
- Anna Chen
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Rachel M Covitz
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
- School of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15213, United States
| | - Abigail A Folsom
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Xiangxi Mu
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Ronald F Peck
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| | - Suegene Noh
- Biology Department, Colby College, 5717 Mayflower Hill, Waterville, ME 04901, United States
| |
Collapse
|
28
|
Liao C, Walters BW, DiStasio M, Lesch BJ. Human-specific epigenomic states in spermatogenesis. Comput Struct Biotechnol J 2024; 23:577-588. [PMID: 38274996 PMCID: PMC10809009 DOI: 10.1016/j.csbj.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/27/2024] Open
Abstract
Infertility is becoming increasingly common, affecting one in six people globally. Half of these cases can be attributed to male factors, many driven by abnormalities in the process of sperm development. Emerging evidence from genome-wide association studies, genetic screening of patient cohorts, and animal models highlights an important genetic contribution to spermatogenic defects, but comprehensive identification and characterization of the genes critical for male fertility remain lacking. High divergence of gene regulation in spermatogenic cells across species poses challenges for delineating the genetic pathways required for human spermatogenesis using common model organisms. In this study, we leveraged post-translational histone modification and gene transcription data for 15,491 genes in four mammalian species (human, rhesus macaque, mouse, and opossum), to identify human-specific patterns of gene regulation during spermatogenesis. We combined H3K27me3 ChIP-seq, H3K4me3 ChIP-seq, and RNA-seq data to define epigenetic states for each gene at two stages of spermatogenesis, pachytene spermatocytes and round spermatids, in each species. We identified 239 genes that are uniquely active, poised, or dynamically regulated in human spermatogenic cells distinct from the other three species. While some of these genes have been implicated in reproductive functions, many more have not yet been associated with human infertility and may be candidates for further molecular and epidemiologic studies. Our analysis offers an example of the opportunities provided by evolutionary and epigenomic data for broadly screening candidate genes implicated in reproduction, which might lead to discoveries of novel genetic targets for diagnosis and management of male infertility and male contraception.
Collapse
Affiliation(s)
- Caiyun Liao
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | | | - Marcello DiStasio
- Department of Pathology, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
- Department of Opthamology & Visual Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| | - Bluma J. Lesch
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
- Department of Genetics, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
- Yale Cancer Center, Yale School of Medicine, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
29
|
Payne C, Bovio R, Powell DL, Gunn TR, Banerjee SM, Grant V, Rosenthal GG, Schumer M. Genomic insights into variation in thermotolerance between hybridizing swordtail fishes. Mol Ecol 2024; 33:e16489. [PMID: 35510780 DOI: 10.1111/mec.16489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Understanding how organisms adapt to changing environments is a core focus of research in evolutionary biology. One common mechanism is adaptive introgression, which has received increasing attention as a potential route to rapid adaptation in populations struggling in the face of ecological change, particularly global climate change. However, hybridization can also result in deleterious genetic interactions that may limit the benefits of adaptive introgression. Here, we used a combination of genome-wide quantitative trait locus mapping and differential gene expression analyses between the swordtail fish species Xiphophorus malinche and X. birchmanni to study the consequences of hybridization on thermotolerance. While these two species are adapted to different thermal environments, we document a complicated architecture of thermotolerance in hybrids. We identify a region of the genome that contributes to reduced thermotolerance in individuals heterozygous for X. malinche and X. birchmanni ancestry, as well as widespread misexpression in hybrids of genes that respond to thermal stress in the parental species, particularly in the circadian clock pathway. We also show that a previously mapped hybrid incompatibility between X. malinche and X. birchmanni contributes to reduced thermotolerance in hybrids. Together, our results highlight the challenges of understanding the impact of hybridization on complex ecological traits and its potential impact on adaptive introgression.
Collapse
Affiliation(s)
- Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Richard Bovio
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Daniel L Powell
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Theresa R Gunn
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Shreya M Banerjee
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Victoria Grant
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, University of Padua, Italy
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
- Department of Biology, University of Padua, Italy
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Stanford, California, USA
| |
Collapse
|
30
|
Huang T, Niu S, Zhang F, Wang B, Wang J, Liu G, Yao M. Correlating gene expression levels with transcription factor binding sites facilitates identification of key transcription factors from transcriptome data. Front Genet 2024; 15:1511456. [PMID: 39678374 PMCID: PMC11638204 DOI: 10.3389/fgene.2024.1511456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Identification of key transcription factors from transcriptome data by correlating gene expression levels with transcription factor binding sites is important for transcriptome data analysis. In a typical scenario, we always set a threshold to filter the top ranked differentially expressed genes and top ranked transcription factor binding sites. However, correlation analysis of filtered data can often result in spurious correlations. In this study, we tested four methods for creating the gene expression inputs (ranked gene list) in the correlation analysis: star coordinate map transformation (START), expression differential score (ED), preferential expression measure (PEM), and the specificity measure (SPM). Then, Kendall's tau correlation statistical algorithms implementing the standard (STD), LINEAR, MIX-LINEAR, DENSITY-CURVE, and MIXED-DENSITY-CURVE weighting methods were used to identify key transcription factors. ED was identified as the optimal method for creating a ranked gene list from filtered expression data, which can address the "unable to detect negative correlation" fallacy presented by other methods. The MIXED-DENSITY-CURVE was the most sensitive for identifying transcription factors from the gene set and list in which only the top proportion was correlated. Ultimately, 644 transcription factor candidates were identified from the transcriptome data of 1,206 cell lines, six of which were validated by wet lab experiments. The Jinzer and Flaver software implementing these methods can be obtained from http://www.thua45/cn/flaver under a free academic license.
Collapse
Affiliation(s)
- Tinghua Huang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Siqi Niu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Fanghong Zhang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Binyu Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Jianwu Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Min Yao
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| |
Collapse
|
31
|
Xu S, Hu E, Cai Y, Xie Z, Luo X, Zhan L, Tang W, Wang Q, Liu B, Wang R, Xie W, Wu T, Xie L, Yu G. Using clusterProfiler to characterize multiomics data. Nat Protoc 2024; 19:3292-3320. [PMID: 39019974 DOI: 10.1038/s41596-024-01020-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/13/2024] [Indexed: 07/19/2024]
Abstract
With the advent of multiomics, software capable of multidimensional enrichment analysis has become increasingly crucial for uncovering gene set variations in biological processes and disease pathways. This is essential for elucidating disease mechanisms and identifying potential therapeutic targets. clusterProfiler stands out for its comprehensive utilization of databases and advanced visualization features. Importantly, clusterProfiler supports various biological knowledge, including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, through performing over-representation and gene set enrichment analyses. A key feature is that clusterProfiler allows users to choose from various graphical outputs to visualize results, enhancing interpretability. This protocol describes innovative ways in which clusterProfiler has been used for integrating metabolomics and metagenomics analyses, identifying and characterizing transcription factors under stress conditions, and annotating cells in single-cell studies. In all cases, the computational steps can be completed within ~2 min. clusterProfiler is released through the Bioconductor project and can be accessed via https://bioconductor.org/packages/clusterProfiler/ .
Collapse
Affiliation(s)
- Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Division of Laboratory Medicine, Microbiome Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Erqiang Hu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yantong Cai
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenli Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bingdong Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianzhi Wu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Division of Laboratory Medicine, Microbiome Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Escuer P, Guirao-Rico S, Arnedo MA, Sánchez-Gracia A, Rozas J. Population Genomics of Adaptive Radiations: Exceptionally High Levels of Genetic Diversity and Recombination in an Endemic Spider From the Canary Islands. Mol Ecol 2024; 33:e17547. [PMID: 39400446 DOI: 10.1111/mec.17547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The spider genus Dysdera has undergone a remarkable diversification in the oceanic archipelago of the Canary Islands, with ~60 endemic species having originated during the 20 million years since the origin of the archipelago. This evolutionary radiation has been accompanied by substantial dietary shifts, often characterised by phenotypic modifications encompassing morphological, metabolic and behavioural changes. Hence, these endemic spiders represent an excellent model for understanding the evolutionary drivers and to pinpoint the genomic determinants underlying adaptive radiations. Recently, we achieved the first chromosome-level genome assembly of one of the endemic species, D. silvatica, providing a high-quality reference sequence for evolutionary genomics studies. Here, we conducted a low coverage-based resequencing study of a natural population of D. silvatica from La Gomera island. Taking advantage of the new high-quality genome, we characterised genome-wide levels of nucleotide polymorphism, divergence and linkage disequilibrium, and inferred the demographic history of this population. We also performed comprehensive genome-wide scans for recent positive selection. Our findings uncovered exceptionally high levels of nucleotide diversity and recombination in this geographically restricted endemic species, indicative of large historical effective population sizes. We also identified several candidate genomic regions that are potentially under positive selection, highlighting relevant biological processes, such as vision and nitrogen extraction as potential adaptation targets. These processes may ultimately drive species diversification in this genus. This pioneering study of spiders that are endemic to an oceanic archipelago lays the groundwork for broader population genomics analyses aimed at understanding the genetic mechanisms driving adaptive radiation in island ecosystems.
Collapse
Affiliation(s)
- Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sara Guirao-Rico
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miquel A Arnedo
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Fu Q, Nguyen T, Kumar B, Azadi P, Zheng YG. Identification of the Regulatory Elements and Protein Substrates of Lysine Acetoacetylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621296. [PMID: 39554048 PMCID: PMC11565915 DOI: 10.1101/2024.10.31.621296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Short chain fatty acylations establish connections between cell metabolism and regulatory pathways. Lysine acetoacetylation (Kacac) was recently identified as a new histone mark. However, regulatory elements, substrate proteins, and epigenetic functions of Kacac remain unknown, hindering further in-depth understanding of acetoacetate modulated (patho)physiological processes. Here, we created a chemo-immunological approach for reliable detection of Kacac, and demonstrated that acetoacetate serves as the primary precursor for histone Kacac. We report the enzymatic addition of the Kacac mark by the acyltransferases GCN5, p300, and PCAF, and its removal by deacetylase HDAC3. Furthermore, we establish acetoacetyl-CoA synthetase (AACS) as a key regulator of cellular Kacac levels. A comprehensive proteomic analysis has identified 139 Kacac sites on 85 human proteins. Bioinformatics analysis of Kacac substrates and RNA-seq data reveal the broad impacts of Kacac on multifaceted cellular processes. These findings unveil pivotal regulatory mechanisms for the acetoacetate-mediated Kacac pathway, opening a new avenue for further investigation into ketone body functions in various pathophysiological states.
Collapse
Affiliation(s)
- Qianyun Fu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Y. George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
34
|
Turek C, Ölbei M, Stirling T, Fekete G, Tasnádi E, Gul L, Bohár B, Papp B, Jurkowski W, Ari E. mulea: An R package for enrichment analysis using multiple ontologies and empirical false discovery rate. BMC Bioinformatics 2024; 25:334. [PMID: 39425047 PMCID: PMC11490090 DOI: 10.1186/s12859-024-05948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024] Open
Abstract
Traditional gene set enrichment analyses are typically limited to a few ontologies and do not account for the interdependence of gene sets or terms, resulting in overcorrected p-values. To address these challenges, we introduce mulea, an R package offering comprehensive overrepresentation and functional enrichment analysis. mulea employs a progressive empirical false discovery rate (eFDR) method, specifically designed for interconnected biological data, to accurately identify significant terms within diverse ontologies. mulea expands beyond traditional tools by incorporating a wide range of ontologies, encompassing Gene Ontology, pathways, regulatory elements, genomic locations, and protein domains. This flexibility enables researchers to tailor enrichment analysis to their specific questions, such as identifying enriched transcriptional regulators in gene expression data or overrepresented protein domains in protein sets. To facilitate seamless analysis, mulea provides gene sets (in standardised GMT format) for 27 model organisms, covering 22 ontology types from 16 databases and various identifiers resulting in almost 900 files. Additionally, the muleaData ExperimentData Bioconductor package simplifies access to these pre-defined ontologies. Finally, mulea's architecture allows for easy integration of user-defined ontologies, or GMT files from external sources (e.g., MSigDB or Enrichr), expanding its applicability across diverse research areas. mulea is distributed as a CRAN R package downloadable from https://cran.r-project.org/web/packages/mulea/ and https://github.com/ELTEbioinformatics/mulea . It offers researchers a powerful and flexible toolkit for functional enrichment analysis, addressing limitations of traditional tools with its progressive eFDR and by supporting a variety of ontologies. Overall, mulea fosters the exploration of diverse biological questions across various model organisms.
Collapse
Affiliation(s)
- Cezary Turek
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Márton Ölbei
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Tamás Stirling
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Ervin Tasnádi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Doctoral School of Computer Science, University of Szeged, Árpád Tér 2, 6720, Szeged, Hungary
| | - Leila Gul
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Balázs Bohár
- Department of Metabolism, Digestion and Reproduction, Imperial College London, The Commonwealth Building, The Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. Stny. 1/C, 1117, Budapest, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary
| | | | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
- HCEMM-BRC Metabolic Systems Biology Research Group, Temesvári Krt. 62, 6726, Szeged, Hungary.
- Department of Genetics, ELTE Eötvös Loránd University, Pázmány P. Stny. 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
35
|
Du R, Gao Y, Yan C, Ren X, Qi S, Liu G, Guo X, Song X, Wang H, Rao J, Zang Y, Zheng M, Li J, Huang H. Sirtuin 1/sirtuin 3 are robust lysine delactylases and sirtuin 1-mediated delactylation regulates glycolysis. iScience 2024; 27:110911. [PMID: 39351192 PMCID: PMC11440250 DOI: 10.1016/j.isci.2024.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Lysine lactylation (Kla), an epigenetic mark triggered by lactate during glycolysis, including the Warburg effect, bridges metabolism and gene regulation. Enzymes such as p300 and HDAC1/3 have been pivotal in deciphering the regulatory dynamics of Kla, though questions about additional regulatory enzymes, their specific Kla substrates, and the underlying functional mechanisms persist. Here, we identify SIRT1 and SIRT3 as key "erasers" of Kla, shedding light on their selective regulation of both histone and non-histone proteins. Proteomic analysis in SIRT1/SIRT3 knockout HepG2 cells reveals distinct substrate specificities toward Kla, highlighting their unique roles in cellular signaling. Notably, we highlight the role of specific Kla modifications, such as those on the M2 splice isoform of pyruvate kinase (PKM2), in modulating metabolic pathways and cell proliferation, thereby expanding Kla's recognized functions beyond epigenetics. Therefore, this study deepens our understanding of Kla's functional mechanisms and broadens its biological significance.
Collapse
Affiliation(s)
- Runhua Du
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanmei Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cong Yan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shankang Qi
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guobin Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinlong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohan Song
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanmin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingxin Rao
- State Key Laboratory of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Zang
- Lingang Laboratory, Shanghai 201203, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - He Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
36
|
Kataruka S, Malla AB, Rainsford SR, Lesch BJ. ISWI chromatin remodeler SMARCA5 is essential for meiotic gene expression and male fertility in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618292. [PMID: 39464039 PMCID: PMC11507727 DOI: 10.1101/2024.10.14.618292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Regulation of the transcriptome to promote meiosis is important for sperm development and fertility. However, how chromatin remodeling directs the transcriptome during meiosis in male germ cells is largely unknown. Here, we demonstrate that the ISWI family ATP-dependent chromatin remodeling factor SMARCA5 (SNF2H) plays a critical role in regulating meiotic prophase progression during spermatogenesis. Males with germ cell-specific depletion of SMARCA5 are infertile and unable to form sperm. Loss of Smarca5 results in failure of meiotic progression with abnormal spermatocytes beginning at the pachytene stage and an aberrant global increase in chromatin accessibility, especially at genes important for meiotic prophase.
Collapse
Affiliation(s)
| | - Aushaq B Malla
- Department of Genetics, Yale School of Medicine, New Haven CT USA 06510
| | | | - Bluma J Lesch
- Department of Genetics, Yale School of Medicine, New Haven CT USA 06510
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven CT USA 06510
- Yale Cancer Center, Yale School of Medicine, New Haven CT USA 06510
| |
Collapse
|
37
|
Cicconardi F, Morris BJ, Martelossi J, Ray DA, Montgomery SH. Novel Sex-Specific Genes and Diverse Interspecific Expression in the Antennal Transcriptomes of Ithomiine Butterflies. Genome Biol Evol 2024; 16:evae218. [PMID: 39373182 PMCID: PMC11500719 DOI: 10.1093/gbe/evae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
The olfactory sense is crucial for organisms, facilitating environmental recognition and interindividual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviors, but also because they show convergent evolution of specialized structures within the antennal lobe, called macroglomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of, information from various types of pheromones. In this study, we investigate chemosensory evolution across six Ithomiini species and identify possible links between expression profiles and neuroanatomical. To enable this, we sequenced four new high-quality genome assemblies and six sex-specific antennal transcriptomes for three of these species with different MGC morphologies. With extensive genomic analyses, we found that the expression of antennal transcriptomes across species exhibit profound divergence, and identified highly expressed ORs, which we hypothesize may be associated to MGCs, as highly expressed ORs are absent in Methona, an Ithomiini lineage which also lacks MGCs. More broadly, we show how antennal sexual dimorphism is prevalent in both chemosensory genes and non-chemosensory genes, with possible relevance for behavior. As an example, we show how lipid-related genes exhibit consistent sexual dimorphism, potentially linked to lipid transport or host selection. In this study, we investigate the antennal chemosensory adaptations, suggesting a link between genetic diversity, ecological specialization, and sensory perception with the convergent evolution of MCGs. Insights into chemosensory gene evolution, expression patterns, and potential functional implications enhance our knowledge of sensory adaptations and sexual dimorphisms in butterflies, laying the foundation for future investigations into the genetic drivers of insect behavior, adaptation, and speciation.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| | - Billy J Morris
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK
| |
Collapse
|
38
|
Kim T, Lee K, Cheon M, Yu W. GAN-WGCNA: Calculating gene modules to identify key intermediate regulators in cocaine addiction. PLoS One 2024; 19:e0311164. [PMID: 39361596 PMCID: PMC11449371 DOI: 10.1371/journal.pone.0311164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Understanding time-series interplay of genes is essential for diagnosis and treatment of disease. Spatio-temporally enriched NGS data contain important underlying regulatory mechanisms of biological processes. Generative adversarial networks (GANs) have been used to augment biological data to describe hidden intermediate time-series gene expression profiles during specific biological processes. Developing a pipeline that uses augmented time-series gene expression profiles is needed to provide an unbiased systemic-level map of biological processes and test for the statistical significance of the generated dataset, leading to the discovery of hidden intermediate regulators. Two analytical methods, GAN-WGCNA (weighted gene co-expression network analysis) and rDEG (rescued differentially expressed gene), interpreted spatiotemporal information and screened intermediate genes during cocaine addiction. GAN-WGCNA enables correlation calculations between phenotype and gene expression profiles and visualizes time-series gene module interplay. We analyzed a transcriptome dataset of two weeks of cocaine self-administration in C57BL/6J mice. Utilizing GAN-WGCNA, two genes (Alcam and Celf4) were selected as missed intermediate significant genes that showed high correlation with addiction behavior. Their correlation with addictive behavior was observed to be notably significant in aspect of statistics, and their expression and co-regulation were comprehensively mapped in terms of time, brain region, and biological process.
Collapse
Affiliation(s)
- Taehyeong Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Kyoungmin Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| | - Mookyung Cheon
- Dementia Research Group, Korean Brain Research Institute, Daegu, South Korea
| | - Wookyung Yu
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, South Korea
| |
Collapse
|
39
|
Siachisumo C, Luzzi S, Aldalaqan S, Hysenaj G, Dalgliesh C, Cheung K, Gazzara MR, Yonchev ID, James K, Kheirollahi Chadegani M, Ehrmann IE, Smith GR, Cockell SJ, Munkley J, Wilson SA, Barash Y, Elliott DJ. An anciently diverged family of RNA binding proteins maintain correct splicing of a class of ultra-long exons through cryptic splice site repression. eLife 2024; 12:RP89705. [PMID: 39356106 PMCID: PMC11446547 DOI: 10.7554/elife.89705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.
Collapse
Affiliation(s)
- Chileleko Siachisumo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Sara Luzzi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Saad Aldalaqan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Gerald Hysenaj
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Caroline Dalgliesh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Kathleen Cheung
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Matthew R Gazzara
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - Ivaylo D Yonchev
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Katherine James
- School of Computing, Newcastle UniversityNewcastleUnited Kingdom
| | | | - Ingrid E Ehrmann
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Simon J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Jennifer Munkley
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| | - Stuart A Wilson
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhildelphiaUnited States
| | - David J Elliott
- Biosciences Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastleUnited Kingdom
| |
Collapse
|
40
|
Zhang J, Jin H, Chen Y, Jiang Y, Gu L, Lin G, Lin C, Wang Q. The eukaryotic translation initiation factor eIF4E regulates flowering and circadian rhythm in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:123-138. [PMID: 39145515 DOI: 10.1111/tpj.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Translation initiation is a critical, rate-limiting step in protein synthesis. The eukaryotic translation initiation factor 4E (eIF4E) plays an essential role in this process. However, the mechanisms by which eIF4E-dependent translation initiation regulates plant growth and development remain not fully understood. In this study, we found that Arabidopsis eIF4E proteins are distributed in both the nucleus and cytoplasm, with only the cytoplasmic eIF4E being involved in the control of photoperiodic flowering. Genome-wide translation profiling using Ribo-tag sequencing reveals that eIF4E may regulate plant flowering by maintaining the homeostatic translation of components in the photoperiodic flowering pathway. eIF4E not only regulates the translation of flowering genes such as FLOWERING LOCUS T (FT) and FLOWERING LOCUS D (FLD) but also influences the translation of circadian genes like CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9). Consistently, our results show that the eIF4E modulates the rhythmic oscillation of the circadian clock. Together, our study provides mechanistic insights into how the protein translation regulates multiple developmental processes in Arabidopsis, including the circadian clock and photoperiodic flowering.
Collapse
Affiliation(s)
- Jing Zhang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huanhuan Jin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yadi Chen
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yonghong Jiang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
41
|
Ai Y, Ding Q, Wan Z, Tyagi S, Indeglia A, Murphy M, Tian B. Regulation of alternative polyadenylation isoforms of Timp2 is an effector event of RAS signaling in cell transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.613909. [PMID: 39386512 PMCID: PMC11463442 DOI: 10.1101/2024.09.26.613909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Alternative polyadenylation (APA) generates mRNA isoforms with different lengths of the 3' untranslated region (3' UTR). The tissue inhibitor of metalloproteinase 2 (TIMP2) plays a key role in extracellular matrix remodeling under various developmental and disease conditions. Both human and mouse genes encoding TIMP2 contain two highly conserved 3'UTR APA sites, leading to mRNA isoforms that differ substantially in 3'UTR size. APA of Timp2 is one of the most significantly regulated events in multiple cell differentiation lineages. Here we show that Timp2 APA is highly regulated in transformation of NIH3T3 cells by the oncogene HRAS G12V . Perturbations of isoform expression with long 3'UTR isoform-specific knockdown or genomic removal of the alternative UTR (aUTR) region indicate that the long 3'UTR isoform contributes to the secreted Timp2 protein much more than the short 3'UTR isoform. The short and long 3'UTR isoforms differ in subcellular localization to endoplasmic reticulum (ER). Strikingly, Timp2 aUTR enhances secreted protein expression but no effect on intracellular proteins in reporter assays. Furthermore, downregulation of Timp2 long isoform mitigates gene expression changes elicited by HRAS G12V . Together, our data indicate that regulation of Timp2 protein expression through APA isoform changes is an integral part of RAS-mediated cell transformation and 3'UTR isoforms of Timp2 can have distinct impacts on expression of secreted vs. intracellular proteins.
Collapse
|
42
|
Guvenek A, Parikshak N, Zamolodchikov D, Gelfman S, Moscati A, Dobbyn L, Stahl E, Shuldiner A, Coppola G. Transcriptional profiling in microglia across physiological and pathological states identifies a transcriptional module associated with neurodegeneration. Commun Biol 2024; 7:1168. [PMID: 39294270 PMCID: PMC11411103 DOI: 10.1038/s42003-024-06684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/06/2024] [Indexed: 09/20/2024] Open
Abstract
Microglia are the resident immune cells of the central nervous system and are involved in brain development, homeostasis, and disease. New imaging and genomics technologies are revealing microglial complexity across developmental and functional states, brain regions, and diseases. We curated a set of publicly available gene expression datasets from human microglia spanning disease and health to identify sets of genes reflecting physiological and pathological microglial states. We also integrated multiple human microglial single-cell RNA-seq datasets in Alzheimer's disease (AD), multiple sclerosis (MS), and Parkinson's disease, and identified a distinct microglial transcriptional signature shared across diseases. Analysis of germ-line DNA identified genes with variants associated with AD and MS that are overrepresented in microglial gene sets, including the disease-associated transcriptional signature. This work points to genes that are dysregulated in disease states and provides a resource for the analysis of diseases in which microglia are implicated by genetic evidence.
Collapse
Affiliation(s)
- Aysegul Guvenek
- Regeneron Genetics Center, Tarrytown, NY, USA
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | | | | | | | - Lee Dobbyn
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | |
Collapse
|
43
|
Wu X, Teo YV, Neretti N, Wu Z. Mouse blood cells types and aging prediction using penalized Latent Dirichlet Allocation. BMC Genomics 2024; 23:866. [PMID: 39294566 PMCID: PMC11409595 DOI: 10.1186/s12864-024-10763-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/02/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Aging is a complex, heterogeneous process that has multiple causes. Knowledge on genomic, epigenomic and transcriptomic changes during the aging process shed light on understanding the aging mechanism. A recent breakthrough in biotechnology, single cell RNAseq, is revolutionizing aging study by providing gene expression profile of the entire transcriptome of individual cells. Many interesting information could be inferred from this new type of data with the help of novel computational methods. RESULTS In this manuscript a novel statistical method, penalized Latent Dirichlet Allocation (pLDA), is applied to an aging mouse blood scRNA-seq data set. A pipeline is built for cell type and aging prediction. The sequence of models in the pipeline take scRNA-seq expression counts as input, preprocess the data using pLDA and predict the cell type and aging status. CONCLUSIONS pLDA learns a dimension reduced representation of the expression profile. This representation allows identification of cell types and has predictability of the age of cells.
Collapse
Affiliation(s)
- Xiaotian Wu
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biolgy, and Biochemistry, Brown University, Providence, RI, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biolgy, and Biochemistry, Brown University, Providence, RI, USA
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI, USA.
| |
Collapse
|
44
|
Volpato M, Hull M, Carr IM. GOTermViewer: Visualization of Gene Ontology Enrichment in Multiple Differential Gene Expression Analyses. Bioinform Biol Insights 2024; 18:11779322241271550. [PMID: 39315117 PMCID: PMC11418229 DOI: 10.1177/11779322241271550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/29/2024] [Indexed: 09/25/2024] Open
Abstract
Gene ontology phrases are a widely used set of hierarchical terms that describe the biological properties of genes. These terms are then used to annotate individual genes, making it possible to determine the likely physiological properties of groups of genes such as a list of differentially expressed genes. Consequently, their ability to predict changes in biological features and functions based on alterations in gene expression has made gene ontology terms popular in the wide range of bioinformatic fields, such as differential gene expression and evolutionary biology. However, while they make the analysis easier, it is seldom easy to convey the results in a readily understandable manner. A number of applications have been developed to visualize gene ontology (GO) term enrichment; however, these solutions tend to focus on the display of aggregated results from a single analysis, making them unsuitable for the analysis of a series of experiments such as a time course or response to different drug treatments. As multiple pair wise comparisons are becoming a common feature of RNA profiling experiments, the absence of a mechanism to easily compare them is a significant problem. Consequently, to overcome this obstacle, we have developed GOTermViewer, an application that displays GO term enrichment data as determined by GOstats such that changes in physiological response across a number of individual analyses across a time course or range of drug treatments can be visualized.
Collapse
Affiliation(s)
| | - Mark Hull
- School of Medicine, University of Leeds, Leeds, UK
| | - Ian M Carr
- School of Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
45
|
Singh KA, Soukar J, Zulkifli M, Kersey A, Lokhande G, Ghosh S, Murali A, Garza NM, Kaur H, Keeney JN, Banavath R, Ceylan Koydemir H, Sitcheran R, Singh I, Gohil VM, Gaharwar AK. Atomic vacancies of molybdenum disulfide nanoparticles stimulate mitochondrial biogenesis. Nat Commun 2024; 15:8136. [PMID: 39289340 PMCID: PMC11408498 DOI: 10.1038/s41467-024-52276-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Diminished mitochondrial function underlies many rare inborn errors of energy metabolism and contributes to more common age-associated metabolic and neurodegenerative disorders. Thus, boosting mitochondrial biogenesis has been proposed as a potential therapeutic approach for these diseases; however, currently we have a limited arsenal of compounds that can stimulate mitochondrial function. In this study, we designed molybdenum disulfide (MoS2) nanoflowers with predefined atomic vacancies that are fabricated by self-assembly of individual two-dimensional MoS2 nanosheets. Treatment of mammalian cells with MoS2 nanoflowers increased mitochondrial biogenesis by induction of PGC-1α and TFAM, which resulted in increased mitochondrial DNA copy number, enhanced expression of nuclear and mitochondrial-DNA encoded genes, and increased levels of mitochondrial respiratory chain proteins. Consistent with increased mitochondrial biogenesis, treatment with MoS2 nanoflowers enhanced mitochondrial respiratory capacity and adenosine triphosphate production in multiple mammalian cell types. Taken together, this study reveals that predefined atomic vacancies in MoS2 nanoflowers stimulate mitochondrial function by upregulating the expression of genes required for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Kanwar Abhay Singh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - John Soukar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Anna Kersey
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Giriraj Lokhande
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - Sagnika Ghosh
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Aparna Murali
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Natalie M Garza
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Harman Kaur
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Justin N Keeney
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Ramu Banavath
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Raquel Sitcheran
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Irtisha Singh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA.
| | - Vishal M Gohil
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA.
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA.
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
46
|
Begnis M, Duc J, Offner S, Grun D, Sheppard S, Rosspopoff O, Trono D. Clusters of lineage-specific genes are anchored by ZNF274 in repressive perinucleolar compartments. SCIENCE ADVANCES 2024; 10:eado1662. [PMID: 39270011 PMCID: PMC11397430 DOI: 10.1126/sciadv.ado1662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
Long known as the site of ribosome biogenesis, the nucleolus is increasingly recognized for its role in shaping three-dimensional (3D) genome organization. Still, the mechanisms governing the targeting of selected regions of the genome to nucleolus-associated domains (NADs) remain enigmatic. Here, we reveal the essential role of ZNF274, a SCAN-bearing member of the Krüppel-associated box (KRAB)-containing zinc finger protein (KZFP) family, in sequestering lineage-specific gene clusters within NADs. Ablation of ZNF274 triggers transcriptional activation across entire genomic neighborhoods-encompassing, among others, protocadherin and KZFP-encoding genes-with loss of repressive chromatin marks, altered the 3D genome architecture and de novo CTCF binding. Mechanistically, ZNF274 anchors target DNA sequences at the nucleolus and facilitates their compartmentalization via a previously uncharted function of the SCAN domain. Our findings illuminate the mechanisms underlying NAD organization and suggest that perinucleolar entrapment into repressive hubs constrains the activation of tandemly arrayed genes to enable selective expression and modulate cell differentiation programs during development.
Collapse
Affiliation(s)
- Martina Begnis
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Delphine Grun
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shaoline Sheppard
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olga Rosspopoff
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
47
|
Maltby CJ, Krans A, Grudzien SJ, Palacios Y, Muiños J, Suárez A, Asher M, Willey S, Van Deynze K, Mumm C, Boyle AP, Cortese A, Ndayisaba A, Khurana V, Barmada SJ, Dijkstra AA, Todd PK. AAGGG repeat expansions trigger RFC1-independent synaptic dysregulation in human CANVAS neurons. SCIENCE ADVANCES 2024; 10:eadn2321. [PMID: 39231235 PMCID: PMC11373605 DOI: 10.1126/sciadv.adn2321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recessively inherited neurodegenerative disorder caused by intronic biallelic, nonreference CCCTT/AAGGG repeat expansions within RFC1. To investigate how these repeats cause disease, we generated patient induced pluripotent stem cell-derived neurons (iNeurons). CCCTT/AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway function. In reporter assays, AAGGG repeats are translated into pentapeptide repeat proteins. However, these proteins and repeat RNA foci were not detected in iNeurons, and overexpression of these repeats failed to induce neuronal toxicity. CANVAS iNeurons exhibit defects in neuronal development and diminished synaptic connectivity that is rescued by CRISPR deletion of a single expanded AAGGG allele. These deficits were neither replicated by RFC1 knockdown in control iNeurons nor rescued by RFC1 reprovision in CANVAS iNeurons. These findings support a repeat-dependent but RFC1 protein-independent cause of neuronal dysfunction in CANVAS, with implications for therapeutic development in this currently untreatable condition.
Collapse
Affiliation(s)
- Connor J. Maltby
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Amy Krans
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yomira Palacios
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Muiños
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- UM SMART Undergraduate Summer Program, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Suárez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Postbaccalaureate Research Education Program, University of Michigan, Ann Arbor, MI, USA
| | - Melissa Asher
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Willey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kinsey Van Deynze
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Camille Mumm
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alan P. Boyle
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Andrea Cortese
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Brain and Behaviour Sciences, University of Pavia, Pavia 27100, Italy
| | - Alain Ndayisaba
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vikram Khurana
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sami J. Barmada
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Anke A. Dijkstra
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Peter K. Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Bruschi M, Bozzoli M, Ratti C, Sciara G, Goudemand E, Devaux P, Ormanbekova D, Forestan C, Corneti S, Stefanelli S, Castelletti S, Fusari E, Novi JB, Frascaroli E, Salvi S, Perovic D, Gadaleta A, Rubies-Autonell C, Sanguineti MC, Tuberosa R, Maccaferri M. Dissecting the genetic basis of resistance to Soil-borne cereal mosaic virus (SBCMV) in durum wheat by bi-parental mapping and GWAS. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:213. [PMID: 39222129 PMCID: PMC11369050 DOI: 10.1007/s00122-024-04709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Soil-borne cereal mosaic virus (SBCMV), the causative agent of wheat mosaic, is a Furovirus challenging wheat production all over Europe. Differently from bread wheat, durum wheat shows greater susceptibility and stronger yield penalties, so identification and genetic characterization of resistance sources are major targets for durum genetics and breeding. The Sbm1 locus providing high level of resistance to SBCMV was mapped in bread wheat to the 5DL chromosome arm (Bass in Genome 49:1140-1148, 2006). This excluded the direct use of Sbm1 for durum wheat improvement. Only one major QTL has been mapped in durum wheat, namely QSbm.ubo-2B, on the 2BS chromosome region coincident with Sbm2, already known in bread wheat as reported (Bayles in HGCA Project Report, 2007). Therefore, QSbm.ubo-2B = Sbm2 is considered a pillar for growing durum in SBCMV-affected areas. Herein, we report the fine mapping of Sbm2 based on bi-parental mapping and GWAS, using the Infinium 90 K SNP array and high-throughput KASP®. Fine mapping pointed out a critical haploblock of 3.2 Mb defined by concatenated SNPs successfully converted to high-throughput KASP® markers coded as KUBO. The combination of KUBO-27, wPt-2106-ASO/HRM, KUBO-29, and KUBO-1 allows unequivocal tracing of the Sbm2-resistant haplotype. The interval harbors 52 high- and 41 low-confidence genes, encoding 17 cytochrome p450, three receptor kinases, two defensins, and three NBS-LRR genes. These results pave the way for Sbm2 positional cloning. Importantly, the development of Sbm2 haplotype tagging KASP® provides a valuable case study for improving efficacy of the European variety testing system and, ultimately, the decision-making process related to varietal characterization and choice.
Collapse
Affiliation(s)
- Martina Bruschi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Matteo Bozzoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Giuseppe Sciara
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Ellen Goudemand
- S.A.S. Florimond-Desprez Veuve and Fils, BP41, 59242, Cappelle-en-Pévèle, France
| | - Pierre Devaux
- S.A.S. Florimond-Desprez Veuve and Fils, BP41, 59242, Cappelle-en-Pévèle, France
| | - Danara Ormanbekova
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Cristian Forestan
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Simona Corneti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Sandra Stefanelli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Sara Castelletti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Elena Fusari
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Jad B Novi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Elisabetta Frascaroli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institut (JKI), Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Agata Gadaleta
- Department of Soil, Plant and Food Science (Di.S.S.P.A.), University of Bari 'Aldo Moro', 70126, Bari, Italy
| | - Concepcion Rubies-Autonell
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Maria Corinna Sanguineti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, 40127, Bologna, Italy.
| |
Collapse
|
49
|
Zhao H, Ge M, Zhang F, Du D, Zhao Z, Shen C, Hao Q, Xiao M, Shi X, Wang J, Fan M. Integrated morphological, physiological and transcriptomic analyses reveal the responses of Toona sinensis seedlings to low-nitrogen stress. Genomics 2024; 116:110899. [PMID: 39047875 DOI: 10.1016/j.ygeno.2024.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Nitrogen is one of the most essential elements for plant growth and development. In this study, the growth, physiology, and transcriptome of Toona sinensis (A. Juss) Roem seedlings were compared between low-nitrogen (LN) and normal-nitrogen (NN) conditions. These results indicate that LN stress adversely influences T. sinensis seedling growth. The activities of key enzymes related to nitrogen assimilation and phytohormone contents were altered by LN stress. A total of 2828 differentially expressed genes (DEGs) in roots and 1547 in leaves were identified between the LN and NN treatments. A differential enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways indicated that nitrogen and sugar metabolism, flavonoid biosynthesis, plant hormone signal transduction, and ABC transporters, were strongly affected by LN stress. In summary, this research provides information for further understanding the response of T. sinensis to LN stress.
Collapse
Affiliation(s)
- Hu Zhao
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China.
| | - Miaomiao Ge
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Fengzhe Zhang
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Didi Du
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Zilu Zhao
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Cheng Shen
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Qingping Hao
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Min Xiao
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Xiaopu Shi
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China.
| | - Juan Wang
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| | - Mingqin Fan
- Biology and Food Engineering College, Fuyang Normal University, Anhui 236037, People's Republic of China
| |
Collapse
|
50
|
Guo Y, Yao L, Chen X, Xu X, Sang YL, Liu LJ. The transcription factor PagLBD4 represses cell differentiation and secondary cell wall biosynthesis in Populus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108924. [PMID: 38991593 DOI: 10.1016/j.plaphy.2024.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
LBD (LATERAL ORGAN BOUNDARIES DOMAIN) transcription factors are key regulators of plant growth and development. In this study, we functionally characterized the PagLBD4 gene in Populus (Populus alba × Populus glandulosa). Overexpression of PagLBD4 (PagLBD4OE) significantly repressed secondary xylem differentiation and secondary cell wall (SCW) deposition, while CRISPR/Cas9-mediated PagLBD4 knockout (PagLBD4KO) significantly increased secondary xylem differentiation and SCW deposition. Consistent with the functional analysis, gene expression analysis revealed that SCW biosynthesis pathways were significantly down-regulated in PagLBD4OE plants but up-regulated in PagLBD4KO plants. We also performed DNA affinity purification followed by sequencing (DAP-seq) to identify genes bound by PagLBD4. Integration of RNA sequencing (RNA-seq) and DAP-seq data identified 263 putative direct target genes (DTGs) of PagLBD4, including important regulatory genes for SCW biosynthesis, such as PagMYB103 and PagIRX12. Together, our results demonstrated that PagLBD4 is a repressor of secondary xylem differentiation and SCW biosynthesis in Populus, which possibly lead to the dramatic growth repression in PagLBD4OE plants.
Collapse
Affiliation(s)
- Ying Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Lijuan Yao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Xiaoman Chen
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Xiaoqi Xu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Ya Lin Sang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China.
| | - Li-Jun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|