1
|
Pun J, Evans C, Chasekwa B, Church JA, Gough E, Mutasa K, Rukobo S, Govha M, Mushayanembwa P, Majo FD, Tavengwa NV, Humphrey JH, Kirkpatrick BD, Kosek M, Ntozini R, Prendergast AJ. Associations Between Histo-blood Group Antigen Status in Mother-Infant Dyads and Infant Oral Rotavirus Vaccine Immunogenicity in Rural Zimbabwe. J Infect Dis 2025; 231:e225-e233. [PMID: 39352457 PMCID: PMC11793023 DOI: 10.1093/infdis/jiae456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/28/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Histo-blood group antigen (HBGA) phenotypes may contribute to poor oral rotavirus vaccine (RVV) immunogenicity, since rotavirus binds intestinal epithelial HBGA glycans, while maternal HBGA status shapes breastmilk composition, which influences the composition of the infant microbiome. We investigated associations between maternal/infant HBGA phenotypes and RVV immunogenicity in rural Zimbabwe. METHODS We undertook salivary FUT2/FUT3 phenotyping in mother-infant pairs. Serum anti-rotavirus immunoglobulin A was measured by enzyme-linked immunosorbent assay. We explored adjusted associations between FUT2/FUT3 status and RVV seroconversion (primary outcome, n = 322) and seropositivity and geometric mean titer (secondary outcomes, n = 776). RESULTS Infants of FUT2- or FUT3-positive women were less likely to seroconvert post-RVV than infants of FUT2- or FUT3-negative women (FUT2 positive [20.1%] vs FUT2 negative [27.5%]: adjusted relative risk [aRR], 0.47; 95% CI, .26-.82; P = .008; FUT3 positive [18.1%] vs FUT3 negative [30.0%]: aRR, 0.45; 95% CI, .25-.78; P = .005). When compared with FUT2-positive infants with FUT2-positive mothers, FUT2-positive infants with FUT2-negative mothers were twice as likely to seroconvert (36.8% vs 21.9%; aRR, 2.12; 95% CI, 1.23-3.63; P = .006). When compared with FUT3-positive infants with FUT3-positive mothers, FUT3-positive infants with FUT3-negative mothers were 3 times as likely to seroconvert (48.3% vs 18.2%; aRR, 2.99; 95% CI, 1.82-4.90; P < .001). CONCLUSIONS Maternal and infant FUT2 and FUT3 status influences infant RVV immunogenicity.
Collapse
Affiliation(s)
- Joshua Pun
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, United Kingdom
| | - Ceri Evans
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, United Kingdom
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - James A Church
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ethan Gough
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Jean H Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington
| | - Margaret Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Andrew J Prendergast
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, United Kingdom
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| |
Collapse
|
2
|
Burke RM, Ramani S, Lynch J, Cooper LV, Cho H, Bandyopadhyay AS, Kirkwood CD, Steele AD, Kang G. Geographic disparities impacting oral vaccine performance: Observations and future directions. Clin Exp Immunol 2025; 219:uxae124. [PMID: 39774633 PMCID: PMC11773816 DOI: 10.1093/cei/uxae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/01/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Oral vaccines have several advantages compared with parenteral administration: they can be relatively cheap to produce in high quantities, easier to administer, and induce intestinal mucosal immunity that can protect against infection. These characteristics have led to successful use of oral vaccines against rotavirus, polio, and cholera. Unfortunately, oral vaccines for all three diseases have demonstrated lower performance in the highest-burden settings where they are most needed. Rotavirus vaccines are estimated to have >85% effectiveness against hospitalization in children <12 months in countries with low child mortality, but only ~65% effectiveness in countries with high child mortality. Similarly, oral polio vaccines have lower immunogenicity in developing country settings compared with high-resource settings. Data are more limited for oral cholera vaccines, but suggest lower titers among children compared with adults, and, for some vaccines, lower efficacy in endemic settings compared with non-endemic settings. These disparities are likely multifactorial, and available evidence suggests a role for maternal factors (e.g. transplacental antibodies, breastmilk), host factors (e.g. genetic polymorphisms-with the best evidence for rotavirus-or previous infection), and environmental factors (e.g. gut microbiome, co-infections). Overall, these data highlight the rather ambiguous and often contradictory nature of evidence on factors affecting oral vaccine response, cautioning against broad extrapolation of outcomes based on one population or one vaccine type. Meaningful impact on performance of oral vaccines will likely only be possible with a suite of interventions, given the complex and multifactorial nature of the problem, and the degree to which contributing factors are intertwined.
Collapse
Affiliation(s)
- Rachel M Burke
- Global Development Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Julia Lynch
- Office of the Director General, International Vaccine Institute, Seoul, Republic of Korea
| | - Laura V Cooper
- School of Public Health, Imperial College London, London, UK
| | - Haeun Cho
- Department of Data Science and Innovation, International Vaccine Institute, Seoul, Republic of Korea
| | | | - Carl D Kirkwood
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - A Duncan Steele
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Gagandeep Kang
- Global Health Division, Bill & Melinda Gates Foundation, Seattle, WA, USA
| |
Collapse
|
3
|
Burke RM, Payne DC, McNeal M, Conrey SC, Burrell AR, Mattison CP, Casey-Moore MC, Mijatovic-Rustempasic S, Gautam R, Esona MD, Thorman AW, Bowen MD, Parashar UD, Tate JE, Morrow AL, Staat MA. Correlates of Rotavirus Vaccine Shedding and Seroconversion in a US Cohort of Healthy Infants. J Infect Dis 2024; 230:754-762. [PMID: 38330312 DOI: 10.1093/infdis/jiae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Rotavirus is a leading cause of severe pediatric gastroenteritis; 2 highly effective vaccines are used in the United States (US). We aimed to identify correlates of immune response to rotavirus vaccination in a US cohort. METHODS Pediatric Respiratory and Enteric Virus Acquisition and Immunogenesis Longitudinal (PREVAIL) is a birth cohort of 245 mother-child pairs enrolled in 2017-2018 and followed for 2 years. Infant stool samples and symptom information were collected weekly. Shedding was defined as reverse-transcription polymerase chain reaction detection of rotavirus vaccine virus in stools collected 4-28 days after dose 1. Seroconversion was defined as a 3-fold rise in immunoglobulin A between the 6-week and 6-month blood draws. Correlates were analyzed using generalized estimating equations and logistic regression. RESULTS Prevaccination immunoglobulin G (IgG) (odds ratio [OR], 0.84 [95% confidence interval {CI}, .75-.94] per 100-unit increase) was negatively associated with shedding. Shedding was also less likely among infants with a single-nucleotide polymorphism inactivating FUT2 antigen secretion ("nonsecretors") with nonsecretor mothers, versus all other combinations (OR, 0.37 [95% CI, .16-.83]). Of 141 infants with data, 105 (74%) seroconverted; 78 (77%) had shed vaccine virus following dose 1. Prevaccination IgG and secretor status were significantly associated with seroconversion. Neither shedding nor seroconversion significantly differed by vaccine product. CONCLUSIONS In this US cohort, prevaccination IgG and maternal and infant secretor status were associated with rotavirus vaccine response.
Collapse
Affiliation(s)
- Rachel M Burke
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Daniel C Payne
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
| | - Shannon C Conrey
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Allison R Burrell
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Claire P Mattison
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
- Cherokee Nation Assurance, Arlington, Virginia
| | - Mary C Casey-Moore
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Rashi Gautam
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mathew D Esona
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alexander W Thorman
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael D Bowen
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline E Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ardythe L Morrow
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mary A Staat
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center
| |
Collapse
|
4
|
Mitsi E, Nikolaou E, Goncalves A, Blizard A, Hill H, Farrar M, Hyder-Wright A, Akeju O, Hamilton J, Howard A, Elterish F, Solorzano C, Robinson R, Reiné J, Collins AM, Gordon SB, Moxon RE, Weiser JN, Bogaert D, Ferreira DM. RSV and rhinovirus increase pneumococcal carriage acquisition and density, whereas nasal inflammation is associated with bacterial shedding. Cell Host Microbe 2024; 32:1608-1620.e4. [PMID: 39181126 DOI: 10.1016/j.chom.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Epidemiological studies report the impact of co-infection with pneumococcus and respiratory viruses upon disease rates and outcomes, but their effect on pneumococcal carriage acquisition and bacterial load is scarcely described. Here, we assess this by combining natural viral infection with controlled human pneumococcal infection in 581 healthy adults screened for upper respiratory tract viral infection before intranasal pneumococcal challenge. Across all adults, respiratory syncytial virus (RSV) and rhinovirus asymptomatic infection confer a substantial increase in secondary infection with pneumococcus. RSV also has a major impact on pneumococcal density up to 9 days post challenge. We also study rates and kinetics of bacterial shedding through the nose and oral route in a subset. High levels of pneumococcal colonization density and nasal inflammation are strongly correlated with increased odds of nasal shedding as opposed to cough shedding. Protection against respiratory viral infections and control of pneumococcal density may contribute to preventing pneumococcal disease and reducing bacterial spread.
Collapse
Affiliation(s)
- Elena Mitsi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| | - Elissavet Nikolaou
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Andre Goncalves
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Annie Blizard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Helen Hill
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Madlen Farrar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Angela Hyder-Wright
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Oluwasefunmi Akeju
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Josh Hamilton
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ashleigh Howard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Filora Elterish
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Carla Solorzano
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ryan Robinson
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jesus Reiné
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andrea M Collins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Stephen B Gordon
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; Malawi Liverpool Wellcome-Trust Programme, Queen Elizabeth Central Hospital Campus, P.O. Box 30096, Blantyre, Malawi
| | - Richard E Moxon
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Debby Bogaert
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, the Netherlands
| | - Daniela M Ferreira
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, UK; Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|
5
|
Donato CM, Handley A, Byars SG, Bogdanovic-Sakran N, Lyons EA, Watts E, Ong DS, Pavlic D, At Thobari J, Satria CD, Nirwati H, Soenarto Y, Bines JE. Vaccine Take of RV3-BB Rotavirus Vaccine Observed in Indonesian Infants Regardless of HBGA Status. J Infect Dis 2024; 229:1010-1018. [PMID: 37592804 PMCID: PMC11011179 DOI: 10.1093/infdis/jiad351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Histo-blood group antigen (HBGA) status may affect vaccine efficacy due to rotavirus strains binding to HBGAs in a P genotype-dependent manner. This study aimed to determine if HBGA status affected vaccine take of the G3P[6] neonatal vaccine RV3-BB. METHODS DNA was extracted from stool samples collected in a subset (n = 164) of the RV3-BB phase IIb trial in Indonesian infants. FUT2 and FUT3 genes were amplified and sequenced, with any single-nucleotide polymorphisms analyzed to infer Lewis and secretor status. Measures of positive cumulative vaccine take were defined as serum immune response (immunoglobulin A or serum-neutralizing antibody) and/or stool excretion of RV3-BB virus. Participants were stratified by HBGA status and measures of vaccine take. RESULTS In 147 of 164 participants, Lewis and secretor phenotype were determined. Positive vaccine take was recorded for 144 (97.9%) of 147 participants with the combined phenotype determined. Cumulative vaccine take was not significantly associated with secretor status (relative risk, 1.00 [95% CI, .94-1.06]; P = .97) or Lewis phenotype (relative risk, 1.03 [95% CI, .94-1.14]; P = .33), nor was a difference observed when analyzed by each component of vaccine take. CONCLUSIONS The RV3-BB vaccine produced positive cumulative vaccine take, irrespective of HBGA status in Indonesian infants.
Collapse
Affiliation(s)
- Celeste M Donato
- Enteric Diseases Group, Murdoch Children's Research Institute
- Department of Paediatrics, The University of Melbourne, Parkville
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne
| | - Amanda Handley
- Enteric Diseases Group, Murdoch Children's Research Institute
- Medicines Development for Global Health, Southbank
| | - Sean G Byars
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | | | - Eleanor A Lyons
- Enteric Diseases Group, Murdoch Children's Research Institute
| | - Emma Watts
- Enteric Diseases Group, Murdoch Children's Research Institute
| | - Darren S Ong
- Enteric Diseases Group, Murdoch Children's Research Institute
| | - Daniel Pavlic
- Enteric Diseases Group, Murdoch Children's Research Institute
| | | | | | - Hera Nirwati
- Center for Child Health
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada
| | - Yati Soenarto
- Center for Child Health
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr Sardjito Hospital, Yogyakarta, Indonesia
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children's Research Institute
- Department of Paediatrics, The University of Melbourne, Parkville
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
6
|
Lee B, Kader MA, Alam M, Dickson DM, Harvey P, Colgate ER, Taniuchi M, Petri WA, Haque R, Kirkpatrick BD. Infant Non-Secretor Histoblood Group Antigen Phenotype Reduces Susceptibility to Both Symptomatic and Asymptomatic Rotavirus Infection. Pathogens 2024; 13:223. [PMID: 38535566 PMCID: PMC10974866 DOI: 10.3390/pathogens13030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 04/01/2024] Open
Abstract
The infant non-secretor histoblood group antigen phenotype is associated with reduced risk of symptomatic rotavirus diarrhea, one of the leading global causes of severe pediatric diarrheal disease and mortality. However, little is known regarding the role of secretor status in asymptomatic rotavirus infections. Therefore, we performed a nested case-control study within a birth cohort study previously conducted in Dhaka, Bangladesh, to determine the association between infant secretor phenotype and the odds of asymptomatic rotavirus infection, in addition to the risk of rotavirus diarrhea, in unvaccinated infants. In the parent cohort, infants were enrolled in the first week of life and followed through the first two years of life with multiple clinic visits and active surveillance for diarrheal illness. Secretor phenotyping was performed on saliva. Eleven surveillance stools collected over the first year of life were tested for rotavirus by real-time RT-PCR, followed by conventional PCR and amplicon sequencing to identify the infecting P-type of positive specimens. Similar to findings for symptomatic diarrhea, infant non-secretors experienced significantly fewer primary episodes of asymptomatic rotavirus infection through the first year of life in a likely rotavirus P-genotype-dependent manner. These data suggest that non-secretors experienced reduced risk from rotavirus due to decreased susceptibility to infection rather than reduced infection severity.
Collapse
Affiliation(s)
- Benjamin Lee
- Department of Pediatrics, Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Md Abdul Kader
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh; (M.A.K.); (M.A.); (R.H.)
| | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh; (M.A.K.); (M.A.); (R.H.)
| | - Dorothy M. Dickson
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (D.M.D.); (P.H.); (E.R.C.); (B.D.K.)
| | - Patrick Harvey
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (D.M.D.); (P.H.); (E.R.C.); (B.D.K.)
| | - E. Ross Colgate
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (D.M.D.); (P.H.); (E.R.C.); (B.D.K.)
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22903, USA; (M.T.); (W.A.P.J.)
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22903, USA; (M.T.); (W.A.P.J.)
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh; (M.A.K.); (M.A.); (R.H.)
| | - Beth D. Kirkpatrick
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center and Translational Global Infectious Diseases Research Center, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; (D.M.D.); (P.H.); (E.R.C.); (B.D.K.)
| |
Collapse
|
7
|
Reyes Y, St Jean DT, Bowman NM, González F, Mijatovic-Rustempasic S, Becker-Dreps S, Svensson L, Nordgren J, Bucardo F, Vielot NA. Nonsecretor Phenotype Is Associated With Less Risk of Rotavirus-Associated Acute Gastroenteritis in a Vaccinated Nicaraguan Birth Cohort. J Infect Dis 2023; 228:1739-1747. [PMID: 37279878 PMCID: PMC10733742 DOI: 10.1093/infdis/jiad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Histo-blood group antigens (HBGAs) have been associated with rotavirus vaccine take; but the effect of these HBGAs on rotavirus incidence and risk remains poorly explored in vaccinated populations. METHODS Rotavirus-associated acute gastroenteritis (AGE) was assessed in 444 Nicaraguan children followed from birth until 3 years of age. AGE episodes were tested for rotavirus by reverse-transcription quantitative polymerase chain reaction, and saliva or blood was used to determine HBGA phenotypes. Cox proportional hazards models were used to estimate the relative hazard of rotavirus AGE by HBGA phenotypes. RESULTS Rotavirus was detected in 109 (7%) stool samples from 1689 AGE episodes over 36 months of observation between June 2017 and July 2021. Forty-six samples were successfully genotyped. Of these, 15 (35%) were rotavirus vaccine strain G1P[8], followed by G8P[8] or G8P[nt] (11 [24%]) and equine-like G3P[8] (11 [24%]). The overall incidence of rotavirus-associated AGE was 9.2 per 100 child-years, and was significantly higher in secretor than nonsecretor children (9.8 vs 3.5/100 child-years, P = .002). CONCLUSIONS The nonsecretor phenotype was associated with decreased risk of clinical rotavirus vaccine failure in a vaccinated Nicaraguan birth cohort. These results show the importance of secretor status on rotavirus risk, even in vaccinated children.
Collapse
Affiliation(s)
- Yaoska Reyes
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, Nicaragua
- Division of Molecular Medicine and Virology, Linköping University, Sweden
| | | | - Natalie M Bowman
- Division of Infectious Diseases, University of North Carolina at Chapel Hill
| | - Fredman González
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, Nicaragua
| | | | - Sylvia Becker-Dreps
- Department of Epidemiology
- Department of Family Medicine, University of North Carolina at Chapel Hill
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Linköping University, Sweden
- Division of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Linköping University, Sweden
| | - Filemón Bucardo
- Department of Microbiology and Parasitology, National Autonomous University of Nicaragua–León, Nicaragua
| | - Nadja A Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
8
|
Chauwa A, Bosomprah S, Laban NM, Phiri B, Chibuye M, Chilyabanyama ON, Munsaka S, Simuyandi M, Mwape I, Mubanga C, Chobe MC, Chisenga C, Chilengi R. Maternal and Infant Histo-Blood Group Antigen (HBGA) Profiles and Their Influence on Oral Rotavirus Vaccine (Rotarix TM) Immunogenicity among Infants in Zambia. Vaccines (Basel) 2023; 11:1303. [PMID: 37631871 PMCID: PMC10458424 DOI: 10.3390/vaccines11081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Live-attenuated, oral rotavirus vaccines have significantly reduced rotavirus-associated diarrhoea morbidity and infant mortality. However, vaccine immunogenicity is diminished in low-income countries. We investigated whether maternal and infant intrinsic susceptibility to rotavirus infection via histo-blood group antigen (HBGA) profiles influenced rotavirus (ROTARIX®) vaccine-induced responses in Zambia. We studied 135 mother-infant pairs under a rotavirus vaccine clinical trial, with infants aged 6 to 12 weeks at pre-vaccination up to 12 months old. We determined maternal and infant ABO/H, Lewis, and secretor HBGA phenotypes, and infant FUT2 HBGA genotypes. Vaccine immunogenicity was measured as anti-rotavirus IgA antibody titres. Overall, 34 (31.3%) children were seroconverted at 14 weeks, and no statistically significant difference in seroconversion was observed across the various HBGA profiles in early infant life. We also observed a statistically significant difference in rotavirus-IgA titres across infant HBGA profiles at 12 months, though no statistically significant difference was observed between the study arms. There was no association between maternal HBGA profiles and infant vaccine immunogenicity. Overall, infant HBGAs were associated with RV vaccine immunogenicity at 12 months as opposed to in early infant life. Further investigation into the low efficacy of ROTARIX® and appropriate intervention is key to unlocking the full vaccine benefits for U5 children.
Collapse
Affiliation(s)
- Adriace Chauwa
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia;
| | - Samuel Bosomprah
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Biostatistics, School of Public Health, University of Ghana, Accra P.O. Box LG13, Ghana
| | - Natasha Makabilo Laban
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Bernard Phiri
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Mwelwa Chibuye
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
- Department of Global Health, Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Obvious Nchimunya Chilyabanyama
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia;
| | - Michelo Simuyandi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Innocent Mwape
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Cynthia Mubanga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Masuzyo Chirwa Chobe
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Caroline Chisenga
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| | - Roma Chilengi
- Enteric Disease and Vaccine Research Unit, Centre for Infectious Disease Research in Zambia, Lusaka P.O. Box 34681, Zambia; (S.B.); (N.M.L.); (B.P.); (M.C.); (O.N.C.); (M.S.); (I.M.); (C.M.); (M.C.C.); (C.C.); (R.C.)
| |
Collapse
|
9
|
Malamba-Banda C, Mhango C, Benedicto-Matambo P, Mandolo JJ, Chinyama E, Kumwenda O, Barnes KG, Cunliffe NA, Iturriza-Gomara M, Jambo KC, Jere KC. Acute rotavirus infection is associated with the induction of circulating memory CD4 + T cell subsets. Sci Rep 2023; 13:9001. [PMID: 37268634 PMCID: PMC10238530 DOI: 10.1038/s41598-023-35681-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Strong CD4+ T cell-mediated immune protection following rotavirus infection has been observed in animal models, but its relevance in humans remains unclear. Here, we characterized acute and convalescent CD4+ T cell responses in children who were hospitalized with rotavirus-positive and rotavirus-negative diarrhoea in Blantyre, Malawi. Children presenting with laboratory-confirmed rotavirus infection had higher proportions of effector and central memory T helper 2 cells during acute infection i.e., at disease presentation compared to convalescence, 28 days post-infection defined by a follow-up 28 days after acute infection. However, circulating cytokine-producing (IFN-γ and/or TNF-α) rotavirus-specific VP6-specific CD4+ T cells were rarely detectable in children with rotavirus infection at both acute and convalescent stages. Moreover, following whole blood mitogenic stimulation, the responding CD4+ T cells were predominantly non-cytokine producers of IFN-γ and/or TNF-α. Our findings demonstrate limited induction of anti-viral IFN-γ and/or TNF-α-producing CD4+ T cells in rotavirus-vaccinated Malawian children following the development of laboratory-confirmed rotavirus infection.
Collapse
Affiliation(s)
- Chikondi Malamba-Banda
- Biological Sciences Departments, Malawi University of Science and Technology, Thyolo, Malawi
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Profession, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Chimwemwe Mhango
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
| | - Prisca Benedicto-Matambo
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Profession, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jonathan J Mandolo
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - End Chinyama
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
| | - Orpha Kumwenda
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
| | - Kayla G Barnes
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Harvard TH Chan School of Public Health, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
- University of Glasgow, Glasgow, UK
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- National Institute for Health and Care Research, Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Miren Iturriza-Gomara
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kondwani C Jambo
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Khuzwayo C Jere
- Malawi Liverpool Wellcome Research Programme (MLW), Blantyre, Malawi.
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Profession, Kamuzu University of Health Sciences, Blantyre, Malawi.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- National Institute for Health and Care Research, Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.
| |
Collapse
|
10
|
Middleton BF, Danchin M, Cunliffe NA, Jones MA, Boniface K, Kirkwood CD, Gallagher S, Kirkham LA, Granland C, McNeal M, Donato C, Bogdanovic-Sakran N, Handley A, Bines JE, Snelling TL. Histo-blood group antigen profile of Australian Aboriginal children and seropositivity following oral rotavirus vaccination. Vaccine 2023:S0264-410X(23)00525-X. [PMID: 37179162 DOI: 10.1016/j.vaccine.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Histo-blood group antigens (HBGAs) may influence immune responses to rotavirus vaccination. METHODS HBGA phenotyping was determined by detection of antigens A, B, H and Lewis a and b in saliva using enzyme-linked immunosorbent assay. Secretor status was confirmed by lectin antigen assay if A, B and H antigens were negative or borderline (OD ± 0.1 of threshold of detection). PCR-RFLP analysis was used to identify the FUT2 'G428A' mutation in a subset. Rotavirus seropositivity was defined as serum anti-rotavirus IgA ≥ 20 AU/mL. RESULTS Of 156 children, 119 (76 %) were secretors, 129 (83 %) were Lewis antigen positive, and 105 (67 %) were rotavirus IgA seropositive. Eighty-seven of 119 (73 %) secretors were rotavirus seropositive, versus 4/9 (44 %) weak secretors and 13/27 (48 %) non-secretors. CONCLUSIONS Most Australian Aboriginal children were secretor and Lewis antigen positive. Non-secretor children were less likely to be seropositive to rotavirus antibodies following vaccination, but this phenotype was less common. HBGA status is unlikely to fully explain underperformance of rotavirus vaccines among Australian Aboriginal children.
Collapse
Affiliation(s)
- Bianca F Middleton
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.
| | - Margie Danchin
- Vaccine Uptake Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Department of General Medicine, Royal Children's Hospital, Melbourne, Australia
| | - Nigel A Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Mark A Jones
- Health and Clinical Analytics, School of Public Health, University of Sydney, Sydney, Australia
| | - Karen Boniface
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Australia
| | - Carl D Kirkwood
- Enteric and Diarrheal Diseases, Bill and Melinda Gates Foundation, Seattle, USA
| | - Sarah Gallagher
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Lea-Ann Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia; Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Caitlyn Granland
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Australia
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA; Division of Infectious Disease, Cincinnati Children's Hospital Medical Centre, Cincinnati, USA
| | - Celeste Donato
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Australia
| | | | - Amanda Handley
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Australia
| | - Julie E Bines
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Australia; Department of Gastroenterology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Thomas L Snelling
- Health and Clinical Analytics, School of Public Health, University of Sydney, Sydney, Australia; Division of Infectious Disease, Cincinnati Children's Hospital Medical Centre, Cincinnati, USA; School of Public Health, Curtin University, Perth, Australia
| |
Collapse
|
11
|
Dudley MZ, Gerber JE, Budigan Ni H, Blunt M, Holroyd TA, Carleton BC, Poland GA, Salmon DA. Vaccinomics: A scoping review. Vaccine 2023; 41:2357-2367. [PMID: 36803903 PMCID: PMC10065969 DOI: 10.1016/j.vaccine.2023.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND This scoping review summarizes a key aspect of vaccinomics by collating known associations between heterogeneity in human genetics and vaccine immunogenicity and safety. METHODS We searched PubMed for articles in English using terms covering vaccines routinely recommended to the general US population, their effects, and genetics/genomics. Included studies were controlled and demonstrated statistically significant associations with vaccine immunogenicity or safety. Studies of Pandemrix®, an influenza vaccine previously used in Europe, were also included, due to its widely publicized genetically mediated association with narcolepsy. FINDINGS Of the 2,300 articles manually screened, 214 were included for data extraction. Six included articles examined genetic influences on vaccine safety; the rest examined vaccine immunogenicity. Hepatitis B vaccine immunogenicity was reported in 92 articles and associated with 277 genetic determinants across 117 genes. Thirty-three articles identified 291 genetic determinants across 118 genes associated with measles vaccine immunogenicity, 22 articles identified 311 genetic determinants across 110 genes associated with rubella vaccine immunogenicity, and 25 articles identified 48 genetic determinants across 34 genes associated with influenza vaccine immunogenicity. Other vaccines had fewer than 10 studies each identifying genetic determinants of their immunogenicity. Genetic associations were reported with 4 adverse events following influenza vaccination (narcolepsy, GBS, GCA/PMR, high temperature) and 2 adverse events following measles vaccination (fever, febrile seizure). CONCLUSION This scoping review identified numerous genetic associations with vaccine immunogenicity and several genetic associations with vaccine safety. Most associations were only reported in one study. This illustrates both the potential of and need for investment in vaccinomics. Current research in this field is focused on systems and genetic-based studies designed to identify risk signatures for serious vaccine reactions or diminished vaccine immunogenicity. Such research could bolster our ability to develop safer and more effective vaccines.
Collapse
Affiliation(s)
- Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jennifer E Gerber
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Survey Research Division, RTI International, Washington, DC, USA
| | - Haley Budigan Ni
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Office of Health Equity, California Department of Public Health, Richmond, CA, USA
| | - Madeleine Blunt
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Taylor A Holroyd
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; International Vaccine Access Center, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Gregory A Poland
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA; Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Department of Health, Behavior & Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
12
|
The Association between Symptomatic Rotavirus Infection and Histo-Blood Group Antigens in Young Children with Diarrhea in Pretoria, South Africa. Viruses 2022; 14:v14122735. [PMID: 36560739 PMCID: PMC9782691 DOI: 10.3390/v14122735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Recently, histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors of several viral pathogens. Among rotaviruses, HBGAs interact with the outer viral protein, VP4, which has been identified as a potential susceptibility factor, although the findings are inconsistent throughout populations due to HBGA polymorphisms. We investigated the association between HBGA phenotypes and rotavirus infection in children with acute gastroenteritis in northern Pretoria, South Africa. METHODS Paired diarrheal stool and saliva samples were collected from children aged ≤ 59 months (n = 342) with acute moderate to severe diarrhea, attending two health care facilities. Rotaviruses in the stool samples were detected by commercial EIA and the rotavirus strains were characterized by RT-PCR targeting the outer capsid VP7 (G-type) and VP4 (P-type) antigens for genotyping. Saliva-based ELISAs were performed to determine A, B, H, and Lewis antigens for blood group typing. RESULTS Blood type O was the most common blood group (62.5%) in this population, followed by groups A (26.0%), B (9.3%), and AB (2.2%). The H1-based secretors were common (82.7%) compared to the non-secretors (17.3%), and the Lewis antigen positive phenotypes (Le(a+b+)) were predominant (54.5%). Blood type A children were more likely to be infected by rotavirus (38.8%) than any other blood types. P[4] rotaviruses (21/49; 42.9%) infected only secretor individuals, whereas P[6] rotaviruses (3/49; 6.1%) only infected Le(a-b-), although the numbers were very low. On the contrary, P[8] rotaviruses infected children with a wide range of blood group phenotypes, including Le(a-b-) and non-secretors. CONCLUSIONS Our findings demonstrated that Lewis antigens, or the lack thereof, may serve as susceptibility factors to rotaviral infection by specific VP4 genotypes as observed elsewhere. Potentially, the P[8] strains remain the predominant human VP4 genotype due to their ability to bind to a variety of HBGA phenotypes.
Collapse
|
13
|
Saikia K, Saharia N, Singh CS, Borah PP, Namsa ND. Association of histo-blood group antigens and predisposition to gastrointestinal diseases. J Med Virol 2022; 94:5149-5162. [PMID: 35882942 DOI: 10.1002/jmv.28028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/26/2022] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
Infectious gastroenteritis is a common illness afflicting people worldwide. The two most common etiological agents of viral gastroenteritis, rotavirus and norovirus are known to recognize histo-blood group antigens (HBGAs) as attachment receptors. ABO, Lewis, and secretor HBGAs are distributed abundantly on mucosal epithelia, red blood cell membranes, and also secreted in biological fluids, such as saliva, intestinal content, milk, and blood. HBGAs are fucosylated glycans that have been implicated in the attachment of some enteric pathogens such as bacteria, parasites, and viruses. Single nucleotide polymorphisms in the genes encoding ABO (H), fucosyltransferase gene FUT2 (Secretor/Se), FUT3 (Lewis/Le) have been associated with changes in enzyme expression and HBGAs production. The highly polymorphic HBGAs among different populations and races influence genotype-specific susceptibility or resistance to enteric pathogens and its epidemiology, and vaccination seroconversion. Therefore, there is an urgent need to conduct population-based investigations to understand predisposition to enteric infections and gastrointestinal diseases. This review focuses on the relationship between HBGAs and predisposition to common human gastrointestinal illnesses caused by viral, bacterial, and parasitic agents.
Collapse
Affiliation(s)
- Kasturi Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Niruprabha Saharia
- Department of Paediatrics, Tezpur Medical College and Hospital, Bihaguri, Tezpur, Assam, India
| | - Chongtham S Singh
- Department of Paediatrics, Regional Institute of Medical Sciences, Imphal, India
| | - Partha P Borah
- Department of Paediatrics and Neonatology, Pratiksha Hospital, Guwahati, Assam, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India.,Centre for Multi-disciplinary Research, Tezpur University, Napaam, Assam, India
| |
Collapse
|
14
|
El-Heneidy A, Cheung C, Lambert SB, Wang CYT, Whiley DM, Sly PD, Ware RS, Grimwood K. Histo-blood group antigens and rotavirus vaccine virus shedding in Australian infants. Pathology 2022; 54:928-934. [PMID: 35817636 DOI: 10.1016/j.pathol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022]
Abstract
Rotavirus vaccine performance varies between high and low income countries. One possible explanation is inherited histo-blood group antigens (HBGAs) the expression of which differs between populations. HBGAs are polymorphic glycans on mucosal surfaces. Their presence indicates the secretor phenotype, while their absence identifies a non-secretor status. HBGAs can act as rotavirus receptors and might influence live-attenuated rotavirus vaccine virus replication and shedding. Studies in low and middle income countries of the human rotavirus vaccine Rotarix (RV1), suggest HBGA secretor phenotype is important for vaccine immunogenicity. We investigated in a high income country the association between HBGA phenotype (secretor and Lewis) and the bovine-human reassortment vaccine RotaTeq (RV5) vaccine shedding in the stools of infants following each vaccine dose. Eighty-two infants from an Australian birth cohort provided saliva and weekly stool samples after RV5 vaccination doses. Lewis and secretor HBGA phenotyping was identified from saliva samples and confirmed by genotyping. Vaccine virus strains were detected by real-time polymerase chain reaction assays. No significant association between secretor status and vaccine virus shedding was identified. The proportion of infants who shed rotavirus following the first RV5 dose for secretor and non-secretor infants was 57/64 (89%) and 17/18 (94%), respectively, decreasing to 24/64 (33%) and 9/18 (50%) after the second dose and 26/64 (42%) and 8/18 (44%) following the third vaccine dose, respectively. Similarly, no significant differences were observed in vaccine virus shedding by Lewis, or combined Lewis and secretor status, after each vaccine dose. We found HBGAs were not associated with RV5 vaccine virus shedding in Australian infants.
Collapse
Affiliation(s)
- Asmaa El-Heneidy
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Qld, Australia.
| | - Catherine Cheung
- Children's Health Queensland Hospital and Health Service, South Brisbane, Qld, Australia; Child Heath Research Centre, The University of Queensland, South Brisbane, Qld, Australia
| | - Stephen B Lambert
- Child Heath Research Centre, The University of Queensland, South Brisbane, Qld, Australia
| | - Claire Y T Wang
- Children's Health Queensland Hospital and Health Service, South Brisbane, Qld, Australia; Child Heath Research Centre, The University of Queensland, South Brisbane, Qld, Australia
| | - David M Whiley
- The University of Queensland Centre for Clinical Research, and Pathology Queensland Central Laboratory, Herston, Qld, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld, Australia
| | - Robert S Ware
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Qld, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Qld, Australia; Departments of Paediatrics and Infectious Diseases, Gold Coast Health, Southport, Qld, Australia
| |
Collapse
|
15
|
Witte D, Handley A, Jere KC, Bogandovic-Sakran N, Mpakiza A, Turner A, Pavlic D, Boniface K, Mandolo J, Ong DS, Bonnici R, Justice F, Bar-Zeev N, Iturriza-Gomara M, Ackland J, Donato CM, Cowley D, Barnes G, Cunliffe NA, Bines JE. Neonatal rotavirus vaccine (RV3-BB) immunogenicity and safety in a neonatal and infant administration schedule in Malawi: a randomised, double-blind, four-arm parallel group dose-ranging study. THE LANCET. INFECTIOUS DISEASES 2022; 22:668-678. [PMID: 35065683 PMCID: PMC9021029 DOI: 10.1016/s1473-3099(21)00473-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022]
Abstract
Background Rotavirus vaccines reduce rotavirus-related deaths and hospitalisations but are less effective in high child mortality countries. The human RV3-BB neonatal G3P[6] rotavirus vaccine administered in a neonatal schedule was efficacious in reducing severe rotavirus gastroenteritis in Indonesia but had not yet been evaluated in African infants. Methods We did a phase 2, randomised, double-blind, parallel group dose-ranging study of three doses of oral RV3-BB rotavirus vaccine in infants in three primary health centres in Blantyre, Malawi. Healthy infants less than 6 days of age with a birthweight 2·5 to 4·0 kg were randomly assigned (1:1:1:1) into one of four treatment groups: neonatal vaccine group, which included high-titre (1·0 × 107 focus-forming unit [FFU] per mL), mid-titre (3·0 × 106 FFU per mL), or low-titre (1·0 × 106 FFU per mL); and infant vaccine group, which included high-titre (1·0 × 107 FFU per mL) using a computer generated code (block size of four), stratified by birth (singleton vs multiple). Neonates received their three doses at 0–5 days to 10 weeks and infants at 6–14 weeks. Investigators, participant families, and laboratory staff were masked to group allocation. Anti-rotavirus IgA seroconversion and vaccine take (IgA seroconversion and stool shedding) were evaluated. Safety was assessed in all participants who received at least one dose of vaccine or placebo. The primary outcome was the cumulative IgA seroconversion 4 weeks after three doses of RV3-BB in the neonatal schedule in the high-titre, mid-titre, and low-titre groups in the per protocol population, with its 95% CI. With the high-titre group as the active control group, we did a non-inferiority analysis of the proportion of participants with IgA seroconversion in the mid-titre and low-titre groups, using a non-inferiority margin of less than 20%. This trial is registered at ClinicalTrials.gov (NCT03483116). Findings Between Sept 17, 2018, and Jan 27, 2020, 711 participants recruited were randomly assigned into four treatment groups (neonatal schedule high titre n=178, mid titre n=179, low titre n=175, or infant schedule high titre n=179). In the neonatal schedule, cumulative IgA seroconversion 4 weeks after three doses of RV3-BB was observed in 79 (57%) of 139 participants in the high-titre group, 80 (57%) of 141 participants in the mid-titre group, and 57 (41%) of 138 participants in the low-titre group and at 18 weeks in 100 (72%) of 139 participants in the high-titre group, 96 (67%) of 143 participants in the mid-titre group, and 86 (62%) of 138 of participants in the low-titre. No difference in cumulative IgA seroconversion 4 weeks after three doses of RV3-BB was observed between high-titre and mid-titre groups in the neonatal schedule (difference in response rate 0·001 [95%CI −0·115 to 0·117]), fulfilling the criteria for non-inferiority. In the infant schedule group 82 (59%) of 139 participants had a cumulative IgA seroconversion 4 weeks after three doses of RV3-BB at 18 weeks. Cumulative vaccine take was detected in 483 (85%) of 565 participants at 18 weeks. Three doses of RV3-BB were well tolerated with no difference in adverse events among treatment groups: 67 (39%) of 170 participants had at least one adverse event in the high titre group, 68 (40%) of 172 participants had at least one adverse event in the mid titre group, and 69 (41%) of 169 participants had at least one adverse event in the low titre group. Interpretation RV3-BB was well tolerated and immunogenic when co-administered with Expanded Programme on Immunisation vaccines in a neonatal or infant schedule. A lower titre (mid-titre) vaccine generated similar IgA seroconversion to the high-titre vaccine presenting an opportunity to enhance manufacturing capacity and reduce costs. Neonatal administration of the RV3-BB vaccine has the potential to improve protection against rotavirus disease in children in a high-child mortality country in Africa. Funding Bill & Melinda Gates Foundation, Australian Tropical Medicine Commercialisation Grant.
Collapse
Affiliation(s)
- Desiree Witte
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Amanda Handley
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Medicines Development for Global Health, Southbank, VIC, Australia
| | - Khuzwayo C Jere
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Ashley Mpakiza
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Ann Turner
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Daniel Pavlic
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Karen Boniface
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Jonathan Mandolo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | - Rhian Bonnici
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Frances Justice
- Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Naor Bar-Zeev
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Miren Iturriza-Gomara
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK; Centre for Vaccine Innovation and Access, Program for Appropriate Technology in Health, Seattle, WA, USA
| | - Jim Ackland
- Global BioSolutions, Melbourne, VIC, Australia
| | - Celeste M Donato
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel Cowley
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Graeme Barnes
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Nigel A Cunliffe
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Julie E Bines
- Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
16
|
Chandwe K, Zyambo K, Mulenga C, Haritunians T, Amadi B, Kosek M, Heimburger DC, McGovern D, Kelly P. Histo-Blood Group Antigens, Enteropathogen Carriage and Environmental Enteropathy in Stunted Zambian Children. J Pediatr Gastroenterol Nutr 2022; 74:529-534. [PMID: 34724448 PMCID: PMC9046470 DOI: 10.1097/mpg.0000000000003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Stunting, the most common form of childhood undernutrition, is associated with environmental enteropathy (EE). Enteric infections are believed to play a role in the pathophysiology of EE and stunting though the exact mechanism remains undetermined. The FUT2 (secretor) and FUT3 (Lewis) genes have been shown to be associated with some symptomatic enteric infections in both children and adults. These genes are responsible for the presence of histo-blood group antigens (HBGAs) in various secretions and epithelial surfaces.We evaluated whether the secretor and Lewis status influences asymptomatic enteric infections and thus EE severity on duodenal biopsies of stunted children. METHODS In this case-control study, we used saliva samples to determine the secretor and Lewis status of stunted children (cases, n = 113) enrolled in a nutritional rehabilitation program and from their well-nourished counterparts (controls, n = 42). Where available, saliva was also collected from the mothers. Baseline stool samples were used to detect asymptomatic enteropathogen carriage. Duodenal biopsies were collected from a subgroup of stunted children (n = 77) who had an upper gastrointestinal endoscopy done as part of the evaluation process for their non-response to nutritional therapy. RESULTS The proportion of secretors was similar between the cases and the controls (82% vs 81%, P = 0.81). The stunted children had significantly higher rates of carrying multiple enteropathogens, but this was not associated with their secretor status nor that of their mothers. The secretor status was also not associated with mucosal morphometry of duodenal biopsies. CONCLUSION This case-control analysis in Zambian children does not support the hypothesis that fucosylation status determines asymptomatic enteropathogen carriage in stunting.
Collapse
Affiliation(s)
- Kanta Chandwe
- University of Zambia School of Medicine, Lusaka, Zambia
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
| | - Kanekwa Zyambo
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
| | - Chola Mulenga
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Beatrice Amadi
- University of Zambia School of Medicine, Lusaka, Zambia
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
| | | | - Douglas C. Heimburger
- University of Zambia School of Medicine, Lusaka, Zambia
- Vanderbilt University Medical Center
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Paul Kelly
- Tropical Gastroenterology & Nutrition group, Lusaka, Zambia
- Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Benedicto-Matambo P, Bines JE, Malamba-Banda C, Shawa IT, Barnes K, Kamng’ona AW, Hungerford D, Jambo KC, Iturriza-Gomara M, Cunliffe NA, Flanagan KL, Jere KC. Leveraging Beneficial Off-Target Effects of Live-Attenuated Rotavirus Vaccines. Vaccines (Basel) 2022; 10:418. [PMID: 35335050 PMCID: PMC8948921 DOI: 10.3390/vaccines10030418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Following the introduction of live-attenuated rotavirus vaccines in many countries, a notable reduction in deaths and hospitalisations associated with diarrhoea in children <5 years of age has been reported. There is growing evidence to suggest that live-attenuated vaccines also provide protection against other infections beyond the vaccine-targeted pathogens. These so called off-target effects of vaccination have been associated with the tuberculosis vaccine Bacille Calmette Guérin (BCG), measles, oral polio and recently salmonella vaccines, and are thought to be mediated by modified innate and possibly adaptive immunity. Indeed, rotavirus vaccines have been reported to provide greater than expected reductions in acute gastroenteritis caused by other enteropathogens, that have mostly been attributed to herd protection and prior underestimation of rotavirus disease. Whether rotavirus vaccines also alter the immune system to reduce non targeted gastrointestinal infections has not been studied directly. Here we review the current understanding of the mechanisms underlying off-target effects of vaccines and propose a mechanism by which the live-attenuated neonatal rotavirus vaccine, RV3-BB, could promote protection beyond the targeted pathogen. Finally, we consider how vaccine developers may leverage these properties to improve health outcomes in children, particularly those in low-income countries where disease burden and mortality is disproportionately high relative to developed countries.
Collapse
Affiliation(s)
- Prisca Benedicto-Matambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital and Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia;
| | - Chikondi Malamba-Banda
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- Department of Biological Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Blantyre 312225, Malawi
| | - Isaac T. Shawa
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Kayla Barnes
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Harvard School of Public Health, Boston, MA 02115, USA
| | - Arox W. Kamng’ona
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Health Profession, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
| | - Daniel Hungerford
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Kondwani C. Jambo
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
- Centre for Vaccine Innovation and Access, Program for Appropriate Technology in Health (PATH), 1218 Geneva, Switzerland
| | - Nigel A. Cunliffe
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Katie L. Flanagan
- School of Medicine, University of Tasmania, Hobart, TAS 7005, Australia;
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC 3083, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Khuzwayo C. Jere
- Virology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi; (P.B.-M.); (C.M.-B.); (I.T.S.); (K.B.); (A.W.K.); (K.C.J.)
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (D.H.); (M.I.-G.); (N.A.C.)
- Department of Medical Laboratory Sciences, Faculty of Biomedical Sciences and Health Professions, College of Medicine, Kamuzu University of Health Sciences, Blantyre 312225, Malawi
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
18
|
Cates J, Tate JE, Parashar U. Rotavirus vaccines: progress and new developments. Expert Opin Biol Ther 2022; 22:423-432. [PMID: 34482790 PMCID: PMC10839819 DOI: 10.1080/14712598.2021.1977279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Rotavirus is the primary cause of severe acute gastroenteritis among children under the age of five globally, leading to 128,500 to 215,000 vaccine-preventable deaths annually. There are six licensed oral, live-attenuated rotavirus vaccines: four vaccines pre-qualified for global use by WHO, and two country-specific vaccines. Expansion of rotavirus vaccines into national immunization programs worldwide has led to a 59% decrease in rotavirus hospitalizations and 36% decrease in diarrhea deaths due to rotavirus in vaccine-introducing countries. AREAS COVERED This review describes the current rotavirus vaccines in use, global coverage, vaccine efficacy from clinical trials, and vaccine effectiveness and impact from post-licensure evaluations. Vaccine safety, particularly as it relates to the risk of intussusception, is also summarized. Additionally, an overview of candidate vaccines in the pipeline is provided. EXPERT OPINION Considerable evidence over the past decade has demonstrated high effectiveness (80-90%) of rotavirus vaccines at preventing severe rotavirus disease in high-income countries, although the effectiveness has been lower (40-70%) in low-to-middle-income countries. Surveillance and research should continue to explore modifiable factors that influence vaccine effectiveness, strengthen data to better evaluate newer rotavirus vaccines, and aid in the development of future vaccines that can overcome the limitations of current vaccines.
Collapse
Affiliation(s)
- Jordan Cates
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jacqueline E. Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Umesh Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
19
|
Pollock L, Bennett A, Jere KC, Mandolo J, Dube Q, Bar-Zeev N, Heyderman RS, Cunliffe NA, Iturriza-Gomara M. Plasma rotavirus-specific IgA and risk of rotavirus vaccine failure in infants in Malawi. Clin Infect Dis 2021; 75:41-46. [PMID: 34788820 DOI: 10.1093/cid/ciab895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Rotavirus vaccine efficacy is reduced in low-income populations, but efforts to improve vaccine performance are limited by lack of clear correlates of protection. While plasma rotavirus (RV)-specific IgA appears strongly associated with protection against rotavirus gastroenteritis in high-income countries, weaker association has been observed in low-income countries. We tested the hypothesis that lower RV-specific IgA is associated with rotavirus vaccine failure in Malawian infants. METHODS In a case-control study we recruited infants presenting with severe rotavirus gastroenteritis following monovalent oral rotavirus vaccination (RV1 vaccine failures). Conditional logistic regression was used to determine the odds of rotavirus seronegativity (RV-specific IgA<20 U/mL) in these cases compared 1:1 with age-matched, vaccinated, asymptomatic community controls. Plasma RV-specific IgA was determined by ELISA for all participants at recruitment, and for cases at 10 days post symptom onset. Rotavirus infection and genotype were determined by antigen testing and RT-PCR respectively. RESULTS In 116 age-matched pairs, infants with RV1 vaccine failure were more likely to be RV-specific IgA seronegative than controls: OR 3.1 (95%CI 1.6-5.9), p=0.001. In 60 infants with convalescent serology, 42/45 (93%, 95%CI 81-98%) infants seronegative at baseline became seropositive. Median rise in RV-specific IgA concentration following acute infection was 112.8 (IQR 19.1-380.6) fold. CONCLUSIONS In this vaccinated population with high residual burden of rotavirus disease, RV1 vaccine failure was associated with lower RV-specific IgA, providing further evidence of RV-specific IgA as a marker of protection. Robust convalescent RV-specific IgA response in vaccine failures suggests differences in wild-type and vaccine-induced immunity, which informs future vaccine development.
Collapse
Affiliation(s)
- Louisa Pollock
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,Malawi Liverpool Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Aisleen Bennett
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,Malawi Liverpool Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Khuzwayo C Jere
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,Malawi Liverpool Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.,Department of Biomedical Sciences, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Jonathan Mandolo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Queen Dube
- Department of Paediatrics, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Naor Bar-Zeev
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.,International Vaccine Access Center, Dept. International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Robert S Heyderman
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.,Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| | - Nigel A Cunliffe
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections at University of Liverpool
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,National Institute for Health Research Health Protection Research Unit in Gastrointestinal Infections at University of Liverpool
| |
Collapse
|
20
|
Abstract
Histo-blood group antigen contains oligosaccharides that serve as receptors for norovirus (NoV) and rotavirus (RV). The receptors are only present on the surface of intestinal mucosal epithelial cells of secretors; therefore, secretors are susceptible to NoV and RV diarrhea and nonsecretors are resistant. The prevalence of secretors in different countries varies between 50% and 90%. Secretor rates evolved in response to environmental pressures such as infectious diseases.
Collapse
|
21
|
Sharma S, Nordgren J. Effect of Infant and Maternal Secretor Status on Rotavirus Vaccine Take-An Overview. Viruses 2021; 13:1144. [PMID: 34198720 PMCID: PMC8232156 DOI: 10.3390/v13061144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Histo-blood group antigens, which are present on gut epithelial surfaces, function as receptors or attachment factors and mediate susceptibility to rotavirus infection. The major determinant for susceptibility is a functional FUT2 enzyme which mediates the presence of α-1,2 fucosylated blood group antigens in mucosa and secretions, yielding the secretor-positive phenotype. Secretors are more susceptible to infection with predominant rotavirus genotypes, as well as to the commonly used live rotavirus vaccines. Difference in susceptibility to the vaccines is one proposed factor for the varying degree of efficacy observed between countries. Besides infection susceptibility, secretor status has been found to modulate rotavirus specific antibody levels in adults, as well as composition of breastmilk in mothers and microbiota of the infant, which are other proposed factors affecting rotavirus vaccine take. Here, the known and possible effects of secretor status in both infant and mother on rotavirus vaccine take are reviewed and discussed.
Collapse
Affiliation(s)
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Clinical and Biomedical Sciences, Linköping University, 58183 Linköping, Sweden;
| |
Collapse
|
22
|
Rossouw E, Brauer M, Meyer P, du Plessis NM, Avenant T, Mans J. Virus Etiology, Diversity and Clinical Characteristics in South African Children Hospitalised with Gastroenteritis. Viruses 2021; 13:v13020215. [PMID: 33573340 PMCID: PMC7911269 DOI: 10.3390/v13020215] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Viral gastroenteritis remains a major cause of hospitalisation in young children. This study aimed to determine the distribution and diversity of enteric viruses in children ≤5 years, hospitalised with gastroenteritis at Kalafong Provincial Tertiary Hospital, Pretoria, South Africa, between July 2016 and December 2017. METHODS Stool specimens (n = 205) were screened for norovirus GI and GII, rotavirus, sapovirus, astrovirus and adenovirus by multiplex RT-PCR. HIV exposure and FUT2 secretor status were evaluated. Secretor status was determined by FUT2 genotyping. RESULTS At least one gastroenteritis virus was detected in 47% (96/205) of children. Rotavirus predominated (46/205), followed by norovirus (32/205), adenovirus (15/205), sapovirus (9/205) and astrovirus (3/205). Norovirus genotypes GI.3, GII.2, GII.3, GII.4, GII.7, GII.12, GII.21, and rotavirus strains G1P[8], G2P[4], G2P[6], G3P[4], G3P[8], G8P[4], G8P[6], G9P[6], G9P[8] and sapovirus genotypes GI.1, GI.2, GII.1, GII.4, GII.8 were detected; norovirus GII.4[P31] and rotavirus G3P[4] predominated. Asymptomatic norovirus infection (GI.3, GI.7, GII.4, GII.6, GII.13) was detected in 22% of 46 six-week follow up stools. HIV exposure (30%) was not associated with more frequent or severe viral gastroenteritis hospitalisations compared to unexposed children. Rotavirus preferentially infected secretor children (p = 0.143) and norovirus infected 78% secretors and 22% non-secretors. CONCLUSION Rotavirus was still the leading cause of gastroenteritis hospitalisations, but norovirus caused more severe symptoms.
Collapse
Affiliation(s)
- Esmari Rossouw
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Marieke Brauer
- Immunology Laboratory, Ampath, Pretoria 0001, South Africa;
| | - Pieter Meyer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa or
- National Health Laboratory Service, Tshwane Academic Division, Pretoria 0001, South Africa
| | - Nicolette M. du Plessis
- Department of Paediatrics, Kalafong Provincial Tertiary Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (N.M.d.P.); (T.A.)
| | - Theunis Avenant
- Department of Paediatrics, Kalafong Provincial Tertiary Hospital, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (N.M.d.P.); (T.A.)
| | - Janet Mans
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Correspondence: ; Tel.: +27-12-319-2660
| |
Collapse
|
23
|
Lee B. Update on rotavirus vaccine underperformance in low- to middle-income countries and next-generation vaccines. Hum Vaccin Immunother 2020; 17:1787-1802. [PMID: 33327868 PMCID: PMC8115752 DOI: 10.1080/21645515.2020.1844525] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the decade since oral rotavirus vaccines (ORV) were recommended by the World Health Organization for universal inclusion in all national immunization programs, significant yet incomplete progress has been made toward reducing the burden of rotavirus in low- to middle-income countries (LMIC). ORVs continue to demonstrate effectiveness and impact in LMIC, yet numerous factors hinder optimal performance and evaluation of these vaccines. This review will provide an update on ORV performance in LMIC, the increasing body of literature regarding factors that affect ORV response, and the status of newer and next-generation rotavirus vaccines as of early 2020. Fully closing the gap in rotavirus prevention between LMIC and high-income countries will likely require a multifaceted approach accounting for biological and methodological challenges and evaluation and roll-out of newer and next-generation vaccines.
Collapse
Affiliation(s)
- Benjamin Lee
- Vaccine Testing Center and Translational Global Infectious Diseases Research Center, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
24
|
Church JA, Rukobo S, Govha M, Lee B, Carmolli MP, Chasekwa B, Ntozini R, Mutasa K, McNeal MM, Majo FD, Tavengwa NV, Moulton LH, Humphrey JH, Kirkpatrick BD, Prendergast AJ. The Impact of Improved Water, Sanitation, and Hygiene on Oral Rotavirus Vaccine Immunogenicity in Zimbabwean Infants: Substudy of a Cluster-randomized Trial. Clin Infect Dis 2020; 69:2074-2081. [PMID: 30770931 PMCID: PMC6880336 DOI: 10.1093/cid/ciz140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/11/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Oral vaccines have lower efficacy in developing compared to developed countries. Poor water, sanitation, and hygiene (WASH) may contribute to reduced oral vaccine immunogenicity. METHODS We conducted a cluster-randomized 2 × 2 factorial trial in rural Zimbabwe. Pregnant women and their infants were eligible if they lived in clusters randomized to (1) standard of care (52 clusters); (2) improved infant feeding (53 clusters); (3) WASH: ventilated improved pit latrine, 2 hand-washing stations, liquid soap, chlorine, infant play space, and hygiene counseling (53 clusters); or (4) feeding plus WASH (53 clusters). This substudy compared oral rotavirus vaccine (RVV) seroconversion (primary outcome), and seropositivity and geometric mean titer (GMT) (secondary outcomes), in WASH vs non-WASH infants by intention-to-treat analysis. RESULTS We included 801 infants with documented RVV receipt and postvaccine titer measurements (329 from 84 WASH clusters; 472 from 102 non-WASH clusters); 328 infants with prevaccination titers were included in the primary outcome. Thirty-three of 109 (30.3%) infants in the WASH group seroconverted following rotavirus vaccination, compared to 43 of 219 (19.6%) in the non-WASH group (absolute difference, 10.6% [95% confidence interval {CI}, .54%-20.7%]; P = .031). In the WASH vs non-WASH groups, 90 of 329 (27.4%) vs 107 of 472 (22.7%) were seropositive postvaccination (absolute difference, 4.7% [95% CI, -1.4% to 10.8%]; P = .130), and antirotavirus GMT was 18.4 (95% CI, 15.6-21.7) U/mL vs 14.9 (95% CI, 13.2-16.8) U/mL (P = .072). CONCLUSIONS Improvements in household WASH led to modest but significant increases in seroconversion to RVV in rural Zimbabwean infants. CLINICAL TRIALS REGISTRATION NCT01824940.
Collapse
Affiliation(s)
- James A Church
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.,Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, United Kingdom
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Benjamin Lee
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington.,Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington
| | - Marya P Carmolli
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Ohio
| | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jean H Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Larner College of Medicine, University of Vermont, Burlington.,Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.,Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, United Kingdom.,Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Ohio
| |
Collapse
|
25
|
Cantelli CP, Velloso AJ, Assis RMSD, Barros JJ, Mello FCDA, Cunha DCD, Brasil P, Nordgren J, Svensson L, Miagostovich MP, Leite JPG, Moraes MTBD. Rotavirus A shedding and HBGA host genetic susceptibility in a birth community-cohort, Rio de Janeiro, Brazil, 2014-2018. Sci Rep 2020; 10:6965. [PMID: 32332841 PMCID: PMC7181595 DOI: 10.1038/s41598-020-64025-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/19/2020] [Indexed: 11/18/2022] Open
Abstract
Recent studies have investigated whether the human histo-blood group antigen (HBGAs) could affect the effectiveness of the oral rotavirus vaccines, suggesting secretor positive individuals develop a more robust response. We investigated the Rotavirus A (RVA) shedding in association with the host susceptibility profile in children from a birth community-cohort in Rio de Janeiro, Brazil, from 2014 to 2018. A total of 132 children were followed-up between 0 to 11-month-old, stool samples were collected before/after the 1st/2nd RV1 vaccination doses and saliva samples were collected during the study. RVA shedding was screened by RT-qPCR and G/P genotypes determined by multiplex RT-PCR and/or Sanger nucleotide sequencing. The sequencing indicated an F167L amino acid change in the RV1 VP8* P[8] in 20.5% of shedding follow-ups and these mutant subpopulations were quantified by pyrosequencing. The HBGA/secretor status was determined and 80.3% of the children were secretors. Twenty-one FUT2 gene SNPs were identified and two new mutations were observed. The mutant F167L RV1 VP8* P[8] was detected significantly more in Le (a+b+) secretors (90.5%) compared to non-secretors and even to secretors Le (a-b+) (9.5%). The study highlights the probable association between RV1 shedding and HBGAs as a marker for evaluating vaccine strain host susceptibility.
Collapse
Affiliation(s)
- Carina Pacheco Cantelli
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - Alvaro Jorge Velloso
- Immunobiological Technology Institute/Bio-Manguinhos, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Rosane Maria Santos de Assis
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - José Júnior Barros
- Laboratory of Molecular Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | | | - Denise Cotrim da Cunha
- Sérgio Arouca National School of Public Health, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Patricia Brasil
- Evandro Chagas National Institute of Infectious Diseases, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 581 85, Linköping, Sweden
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil.
| | - José Paulo Gagliardi Leite
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Epidemiology and HBGA-susceptibility investigation of a G9P[8] rotavirus outbreak in a school in Lechang, China. Arch Virol 2020; 165:1311-1320. [PMID: 32253617 DOI: 10.1007/s00705-020-04608-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
Rotaviruses cause severe gastroenteritis in infants, in which the viruses interact with human histo-blood group antigens (HBGAs) as attachment and host susceptibility factors. While gastroenteritis outbreaks caused by rotaviruses are uncommon in adolescents, we reported here one that occurred in a middle school in China. Rectal swabs and saliva samples were collected from symptomatic and asymptomatic students, and samples were also collected from the environment. Using PCR, followed by DNA sequencing, a single G9P[8] rotavirus strain was identified as the causative agent. The attack rate of the outbreak was 13.5% for boarders, which was significantly higher than that of day students (1.8%). Person-to-person transmission was the most plausible transmission mode. The HBGA phenotypes of the individuals in the study were determined by enzyme immunoassay, using saliva samples, while recombinant VP8* protein of the causative rotavirus strain was produced for HBGA binding assays to evaluate the host susceptibility. Our data showed that secretor individuals had a significantly higher risk of infection than nonsecretors. Accordingly, the VP8* protein bound nearly all secretor saliva samples, but not those of nonsecretors, explaining the observed infection of secretor individuals only. This is the first single-outbreak-based investigation showing that P[8] rotavirus infected only secretors. Our investigation also suggests that health education of school students is an important countermeasure against an outbreak of communicable disease.
Collapse
|
27
|
Sun X, Dang L, Li D, Qi J, Wang M, Chai W, Zhang Q, Wang H, Bai R, Tan M, Duan Z. Structural Basis of Glycan Recognition in Globally Predominant Human P[8] Rotavirus. Virol Sin 2020; 35:156-170. [PMID: 31620994 PMCID: PMC7198667 DOI: 10.1007/s12250-019-00164-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/21/2019] [Indexed: 10/25/2022] Open
Abstract
Rotavirus (RV) causes acute gastroenteritis in infants and children worldwide. Recent studies showed that glycans such as histo-blood group antigens (HBGAs) function as cell attachment factors affecting RV host susceptibility and prevalence. P[8] is the predominant RV genotype in humans, but the structural basis of how P[8] RVs interact with glycan ligands remains elusive. In this study, we characterized the interactions between P[8] VP8*s and glycans which showed that VP8*, the RV glycan binding domain, recognized both mucin core 2 and H type 1 antigens according to the ELISA-based oligosaccharide binding assays. Importantly, we determined the structural basis of P[8] RV-glycans interaction from the crystal structures of a Rotateq P[8] VP8* in complex with core 2 and H type 1 glycans at 1.8 Å and 2.3 Å, respectively, revealing a common binding pocket and similar binding mode. Structural and sequence analysis demonstrated that the glycan binding site is conserved among RVs in the P[II] genogroup, while genotype-specific amino acid variations determined different glycan binding preference. Our data elucidated the detailed structural basis of the interactions between human P[8] RVs and different host glycan factors, shedding light on RV infection, epidemiology, and development of anti-viral agents.
Collapse
Affiliation(s)
- Xiaoman Sun
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Lei Dang
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
- Inner Mongolia Medical University, Huhehaote, 010059, China
| | - Dandi Li
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Jianxun Qi
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengxuan Wang
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Wengang Chai
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Qing Zhang
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Hong Wang
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Ruixia Bai
- Inner Mongolia Medical University, Huhehaote, 010059, China
| | - Ming Tan
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zhaojun Duan
- National Health Commission Key Laboratory for Medical Virology and Viral Diseases, Beijing, 102206, China.
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China.
| |
Collapse
|
28
|
The Impact of Human Genetic Polymorphisms on Rotavirus Susceptibility, Epidemiology, and Vaccine Take. Viruses 2020; 12:v12030324. [PMID: 32192193 PMCID: PMC7150750 DOI: 10.3390/v12030324] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022] Open
Abstract
Innate resistance to viral infections can be attributed to mutations in genes involved in the immune response, or to the receptor/ligand. A remarkable example of the latter is the recently described Mendelian trait resistance to clinically important and globally predominating genotypes of rotavirus, the most common agent of severe dehydrating gastroenteritis in children worldwide. This resistance appears to be rotavirus genotype-dependent and is mainly mediated by histo-blood group antigens (HBGAs), which function as a receptor or attachment factors on gut epithelial surfaces. HBGA synthesis is mediated by fucosyltransferases and glycosyltransferases under the genetic control of the FUT2 (secretor), FUT3 (Lewis), and ABO (H) genes on chromosome 19. Significant genotypic and phenotypic diversity of HBGA expression exists between different human populations. This genetic diversity has an effect on genotype-specific susceptibility, molecular epidemiology, and vaccine take. Here, we will discuss studies on genetic susceptibility to rotavirus infection and place them in the context of population susceptibility, rotavirus epidemiology, vaccine take, and public health impact.
Collapse
|
29
|
Church JA, Chasekwa B, Rukobo S, Govha M, Lee B, Carmolli MP, Ntozini R, Mutasa K, McNeal MM, Majo FD, Tavengwa NV, Kirkpatrick BD, Moulton LH, Humphrey JH, Prendergast AJ. Predictors of oral rotavirus vaccine immunogenicity in rural Zimbabwean infants. Vaccine 2020; 38:2870-2878. [PMID: 32088018 PMCID: PMC7065039 DOI: 10.1016/j.vaccine.2020.01.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Oral rotavirus vaccines (RVV) have poor immunogenicity in low-income countries, for reasons that remain unclear. This study identified the determinants of RVV immunogenicity among infants in rural Zimbabwe. METHODS Anti-rotavirus IgA titres were measured among a sub-group of infants enrolled in the Sanitation Hygiene Infant Nutrition Efficacy (SHINE) trial (NCT01824940). SHINE was a cluster-randomized trial of improved infant and young child feeding, and improved water, sanitation and hygiene (WASH) in two rural Zimbabwean districts. Infants received RVV as part of the national immunisation programme. Among HIV-unexposed infants in the non-WASH trial arms, we evaluated associations between potential risk factors (vaccine schedule and dose, maternal and infant nutritional status, infant diarrhoea, and household environment) and RVV immunogenicity (seroconversion, seropositivity and geometric mean titres) using multivariable regression. RESULTS Among 219 infants with seroconversion data, 43 (20%) successfully seroconverted and 176 (80%) failed to seroconvert to RVV. Seroconversion was positively associated with a higher length-for-age Z-score (LAZ) around the time of vaccination (adjusted RR 1.27 (95% CI 1.04, 1.55), P = 0.021), and negatively associated with concurrent OPV and RVV administration (adjusted RR 0.36 (0.19, 0.71), P = 0.003). Among 472 infants with post-vaccination titres, a higher LAZ score was associated with increased seropositivity (aRR 1.21 (95% CI 1.06, 1.38), P = 0.004), and higher birthweight was associated with increased IgA titres (0.45 (95%CI 0.18, 1.09) U/mL greater per 100 g gain in birthweight; P = 0.001). CONCLUSIONS Infant ponderal and linear growth were positively associated with RVV immunogenicity, while concurrent administration of OPV was negatively associated with RVV immunogenicity. Together, these findings suggest that improving foetal growth and separating RVV and OPV administration are plausible approaches to increasing RVV immunogenicity.
Collapse
Affiliation(s)
- James A Church
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, UK.
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Benjamin Lee
- Vaccine Testing Center, Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marya P Carmolli
- Vaccine Testing Center, Department of Microbiology & Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology & Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jean H Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, UK; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
30
|
Boniface K, Byars SG, Cowley D, Kirkwood CD, Bines JE. Human Neonatal Rotavirus Vaccine (RV3-BB) Produces Vaccine Take Irrespective of Histo-Blood Group Antigen Status. J Infect Dis 2020; 221:1070-1078. [PMID: 31763671 PMCID: PMC7075413 DOI: 10.1093/infdis/jiz333] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND VP4 [P] genotype binding specificities of rotaviruses and differential expression of histo-blood group antigens (HBGAs) between populations may contribute to reduced efficacy against severe rotavirus disease. P[6]-based rotavirus vaccines could broaden protection in such settings, particularly in Africa, where the Lewis-negative phenotype and P[6] rotavirus strains are common. METHODS The association between HBGA status and G3P[6] rotavirus vaccine (RV3-BB) take was investigated in a phase 2A study of RV3-BB vaccine involving 46 individuals in Dunedin, New Zealand, during 2012-2014. FUT2 and FUT3 genotypes were determined from DNA extracted from stool specimens, and frequencies of positive cumulative vaccine take, defined as an RV3-BB serum immune response (either immunoglobulin A or serum neutralizing antibody) and/or stool excretion of the vaccine strain, stratified by HBGA status were determined. RESULTS RV3-BB produced positive cumulative vaccine take in 29 of 32 individuals (91%) who expressed a functional FUT2 enzyme (the secretor group), 13 of 13 (100%) who were FUT2 null (the nonsecretor group), and 1 of 1 with reduced FUT2 activity (i.e., a weak secretor); in 37 of 40 individuals (93%) who expressed a functional FUT3 enzyme (the Lewis-positive group) and 3 of 3 who were FUT3 null (the Lewis-negative group); and in 25 of 28 Lewis-positive secretors (89%), 12 of 12 Lewis-positive nonsecretors (100%), 2 of 2 Lewis-negative secretors, and 1 of 1 Lewis-negative weak secretor. CONCLUSIONS RV3-BB produced positive cumulative vaccine take irrespective of HBGA status. RV3-BB has the potential to provide an improved level of protection in settings where P[6] rotavirus disease is endemic, irrespective of the HBGA profile of the population.
Collapse
Affiliation(s)
- Karen Boniface
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
| | - Sean G Byars
- Melbourne School of Population and Global Health, Seattle, Washington
| | - Daniel Cowley
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Melbourne, Seattle, Washington
| | - Carl D Kirkwood
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Melbourne, Seattle, Washington
- Bill and Melinda Gates Foundation, Seattle, Washington
| | - Julie E Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Seattle, Washington
- Department of Pediatrics, University of Melbourne, Seattle, Washington
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital, Parkville, Australia
| |
Collapse
|
31
|
Williams FB, Kader A, Colgate ER, Dickson DM, Carmolli M, Uddin MI, Sharmin S, Islam S, Bhuiyan TR, Alam M, Nayak U, Mychaleckyj JC, Petri WA, Haque R, Qadri F, Kirkpatrick BD, Lee B. Maternal Secretor Status Affects Oral Rotavirus Vaccine Response in Breastfed Infants in Bangladesh. J Infect Dis 2020; 224:1147-1151. [PMID: 32157282 PMCID: PMC8561252 DOI: 10.1093/infdis/jiaa101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Secretor status controls mucosal histoblood group antigen expression and is associated with susceptibility to rotavirus diarrhea, with non-secretors less susceptible to symptomatic infection. The role of breast milk secretor status on oral live-attenuated rotavirus vaccine response in breastfed infants has not been explored. In a monovalent G1P[8] rotavirus vaccine (RotarixTM) trial in Bangladesh, rotavirus-specific plasma IgA antibody seroconversion rates were higher among infants of maternal non-secretors (39% vs 23%, P=0.001). Maternal status remained a significant predictor when correcting for infant status (P=0.002). Maternal secretor status should be considered when interpreting oral rotavirus vaccine responses in low- and middle-income settings.
Collapse
Affiliation(s)
- Frank B Williams
- The University of Vermont Vaccine Testing Center, Larner College of Medicine, University of Vermont; Burlington, VT, USA
| | - Abdul Kader
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - E Ross Colgate
- The University of Vermont Vaccine Testing Center, Larner College of Medicine, University of Vermont; Burlington, VT, USA
| | - Dorothy M Dickson
- The University of Vermont Vaccine Testing Center, Larner College of Medicine, University of Vermont; Burlington, VT, USA
| | - Marya Carmolli
- The University of Vermont Vaccine Testing Center, Larner College of Medicine, University of Vermont; Burlington, VT, USA
| | | | - Salma Sharmin
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Shahidul Islam
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | | | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Uma Nayak
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia; Charlottesville, VA, USA
| | - Josyf C Mychaleckyj
- Department of Public Health Sciences and Center for Public Health Genomics, University of Virginia; Charlottesville, VA, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia; Charlottesville, VA, USA
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh; Dhaka, Bangladesh
| | - Beth D Kirkpatrick
- The University of Vermont Vaccine Testing Center, Larner College of Medicine, University of Vermont; Burlington, VT, USA
| | - Benjamin Lee
- The University of Vermont Vaccine Testing Center, Larner College of Medicine, University of Vermont; Burlington, VT, USA
| |
Collapse
|
32
|
Lee B, Dickson DM, Alam M, Afreen S, Kader A, Afrin F, Ferdousi T, Damon CF, Gullickson SK, McNeal MM, Bak DM, Tolba M, Carmolli MP, Taniuchi M, Haque R, Kirkpatrick BD. The effect of increased inoculum on oral rotavirus vaccine take among infants in Dhaka, Bangladesh: A double-blind, parallel group, randomized, controlled trial. Vaccine 2019; 38:90-99. [PMID: 31607603 DOI: 10.1016/j.vaccine.2019.09.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Oral, live-attenuated rotavirus vaccines suffer from impaired immunogenicity and efficacy in low-income countries. Increasing the inoculum of vaccine might improve vaccine response, but this approach has been inadequately explored in low-income countries. METHODS We performed a double-blind, parallel group, randomized controlled trial from June 2017 through June 2018 in the urban Mirpur slum of Dhaka, Bangladesh to compare vaccine take (primary outcome) among healthy infants randomized to receive either the standard dose or double the standard dose of oral Rotarix (GlaxoSmithKline) vaccine at 6 and 10 weeks of life. Infants with congenital malformations, birth or enrollment weight <2000 gm, known immunocompromising condition, enrollment in another vaccine trial, or other household member enrolled in the study were excluded. Infants were randomized using random permuted blocks. Vaccine take was defined as detection of post-vaccination fecal vaccine shedding by real-time reverse transcription polymerase chain reaction with sequence confirmation or plasma rotavirus-specific immunoglobulin A (RV-IgA) seroconversion 4 weeks following the second dose. RESULTS 220 infants were enrolled and randomized (110 per group). 97 standard-dose and 92 high-dose infants completed the study per-protocol. For the primary outcome, no significant difference was observed between groups: vaccine take occurred in 62 (67%) high-dose infants versus 69 (71%) standard-dose infants (RR 0.92, 95% CI 0.67-1.24). However, in post-hoc analysis, children with confirmed vaccine replication had significantly increased RV-IgA responses, independent of the intervention. No significant adverse events related to study participation were detected. CONCLUSIONS Administration of double the standard dose of an oral, live-attenuated rotavirus vaccine (Rotarix) did not improve vaccine take among infants in urban Dhaka, Bangladesh. However, improved immunogenicity in children with vaccine replication irrespective of initial inoculum provides further evidence for the need to promote in-host replication and improved gut health to improve oral vaccine response in low-income settings. ClinicalTrials.gov: NCT02992197.
Collapse
Affiliation(s)
- Benjamin Lee
- UVM Vaccine Testing Center and Department of Pediatrics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA.
| | - Dorothy M Dickson
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Masud Alam
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Sajia Afreen
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Abdul Kader
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Faria Afrin
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Tania Ferdousi
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Christina F Damon
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Soyeon K Gullickson
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel M Bak
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Mona Tolba
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Marya P Carmolli
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Rashidul Haque
- Centre for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Beth D Kirkpatrick
- UVM Vaccine Testing Center and Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| |
Collapse
|
33
|
Bucardo F, Reyes Y, Rönnelid Y, González F, Sharma S, Svensson L, Nordgren J. Histo-blood group antigens and rotavirus vaccine shedding in Nicaraguan infants. Sci Rep 2019; 9:10764. [PMID: 31341254 PMCID: PMC6656718 DOI: 10.1038/s41598-019-47166-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
ABO, Lewis and secretor histo-blood group antigens (HBGA) are susceptibility factors for rotavirus in a P-genotype dependent manner and can influence IgA seroconversion rates following rotavirus vaccination. To investigate the association between HBGA phenotypes and rotavirus vaccine shedding fecal samples (n = 304) from a total of 141 infants vaccinated with Rotarix (n = 71) and RotaTeq (n = 70) were prospectively sampled in three time frames (≤3, 4–7 and ≥8 days) after first vaccination dose. Rotavirus was detected with qPCR and genotypes determined by G/P multiplex PCR and/or sequencing. HBGAs were determined by hemagglutination and saliva based ELISA. Low shedding rates were observed, with slightly more children vaccinated with RotaTeq (19%) than Rotarix (11%) shedding rotavirus at ≥4 days post vaccination (DPV). At ≥4 DPV no infant of Lewis A (n = 6) or nonsecretor (n = 9) phenotype in the Rotarix cohort shed rotavirus; the same observation was made for Lewis A infants (n = 7) in the RotaTeq cohort. Putative in-vivo gene reassortment among RotaTeq strains occurred, yielding mainly G1P[8] strains. The bovine derived P[5] genotype included in RotaTeq was able to replicate and be shed at long time frames (>13 DPV). The results of this study are consistent with that HBGA phenotype influences vaccine strain shedding as similarly observed for natural infections. Due to the low overall shedding rates observed, additional studies are however warranted.
Collapse
Affiliation(s)
- Filemón Bucardo
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua.
| | - Yaoska Reyes
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Ylva Rönnelid
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Fredman González
- Department of Microbiology, Faculty of Medical Science, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Sumit Sharma
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lennart Svensson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Johan Nordgren
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|