1
|
Fior Ribeiro G, Priest EL, Heaney H, Richardson JP, Childers DS. Mannan is a context-dependent shield that modifies virulence in Nakaseomyces glabratus. Virulence 2025; 16:2491650. [PMID: 40233931 PMCID: PMC12001547 DOI: 10.1080/21505594.2025.2491650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/17/2025] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Fungal-host interaction outcomes are influenced by how the host recognizes fungal cell wall components. Mannan is a major cell wall carbohydrate and can be a glycoshield that blocks the inner cell wall β-1,3-glucan from activating pro-inflammatory immune responses. Disturbing this glycoshield in Candida albicans results in enhanced antifungal host responses and reduced fungal virulence. However, deletions affecting mannan synthesis can lead to systemic hypervirulence for Nakaseomyces glabratus (formerly Candida glabrata) suggesting that proper mannan architecture dampens virulence for this organism. N. glabratus is the second leading cause of invasive and superficial candidiasis, but little is known about how the cell wall affects N. glabratus pathogenesis. In order to better understand the importance of these species-specific cell wall adaptations in infection, we set out to investigate how the mannan polymerase II complex gene, MNN10, contributes to N. glabratus cell wall architecture, immune recognition, and virulence in reference strains BG2 and CBS138. mnn10Δ cells had thinner inner and outer cell wall layers and elevated mannan, chitin, and β-1,3-glucan exposure compared to wild-type cells. Consistent with these observations, mnn10Δ cells activated the β-1,3-glucan receptor in oral epithelial cells (OECs), EphA2, and caused less OEC damage than wild-type. mnn10Δ replication was also restricted in macrophages compared to wild-type controls. Yet, during systemic infection in Galleria mellonella larvae, mnn10Δ cells induced rapid larval melanization and BG2 mnn10Δ cells killed larvae significantly faster than wild-type. Thus, our data suggest that mannan plays context-dependent roles in N. glabratus pathogenesis, acting as a glycoshield in superficial disease models and modulating virulence during systemic infection.
Collapse
Affiliation(s)
- Gabriela Fior Ribeiro
- Institute of Medical Sciences, Aberdeen Fungal Group, University of Aberdeen, Aberdeen, UK
| | - Emily L. Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, UK
| | - Helen Heaney
- Institute of Medical Sciences, Aberdeen Fungal Group, University of Aberdeen, Aberdeen, UK
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, UK
| | - Delma S. Childers
- Institute of Medical Sciences, Aberdeen Fungal Group, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Musleh S, Alibay I, Biggin PC, Bryce RA. Analysis of Glycan Recognition by Concanavalin A Using Absolute Binding Free Energy Calculations. J Chem Inf Model 2024; 64:8063-8073. [PMID: 39413277 PMCID: PMC11523069 DOI: 10.1021/acs.jcim.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Carbohydrates are key biological mediators of molecular recognition and signaling processes. In this case study, we explore the ability of absolute binding free energy (ABFE) calculations to predict the affinities of a set of five related carbohydrate ligands for the lectin protein, concanavalin A, ranging from 27-atom monosaccharides to a 120-atom complex-type N-linked glycan core pentasaccharide. ABFE calculations quantitatively rank and estimate the affinity of the ligands in relation to microcalorimetry, with a mean signed error in the binding free energy of -0.63 ± 0.04 kcal/mol. Consequently, the diminished binding efficiencies of the larger carbohydrate ligands are closely reproduced: the ligand efficiency values from isothermal titration calorimetry for the glycan core pentasaccharide and its constituent trisaccharide and monosaccharide compounds are respectively -0.14, -0.22, and -0.41 kcal/mol per heavy atom. ABFE calculations predict these ligand efficiencies to be -0.14 ± 0.02, -0.24 ± 0.03, and -0.46 ± 0.06 kcal/mol per heavy atom, respectively. Consequently, the ABFE method correctly identifies the high affinity of the key anchoring mannose residue and the negligible contribution to binding of both β-GlcNAc arms of the pentasaccharide. While challenges remain in sampling the conformation and interactions of these polar, flexible, and weakly bound ligands, we nevertheless find that the ABFE method performs well for this lectin system. The approach shows promise as a quantitative tool for predicting and deconvoluting carbohydrate-protein interactions, with potential application to design of therapeutics, vaccines, and diagnostics.
Collapse
Affiliation(s)
- Sondos Musleh
- Division
of Pharmacy and Optometry, The University
of Manchester, Manchester M13 9PT, U.K.
- Department
of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Irfan Alibay
- Open Free
Energy, Open Molecular Software Foundation, Davis, California 95616, United States
- Structural
Bioinformatics and Computational Biochemistry, Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Philip C. Biggin
- Structural
Bioinformatics and Computational Biochemistry, Department of Biochemistry, The University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Richard A. Bryce
- Division
of Pharmacy and Optometry, The University
of Manchester, Manchester M13 9PT, U.K.
| |
Collapse
|
3
|
Herrera-González I, González-Cuesta M, Thépaut M, Laigre E, Goyard D, Rojo J, García Fernández JM, Fieschi F, Renaudet O, Nieto PM, Ortiz Mellet C. High-Mannose Oligosaccharide Hemimimetics that Recapitulate the Conformation and Binding Mode to Concanavalin A, DC-SIGN and Langerin. Chemistry 2024; 30:e202303041. [PMID: 37828571 DOI: 10.1002/chem.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
The "carbohydrate chemical mimicry" exhibited by sp2 -iminosugars has been utilized to develop practical syntheses for analogs of the branched high-mannose-type oligosaccharides (HMOs) Man3 and Man5 . In these compounds, the terminal nonreducing Man residues have been substituted with 5,6-oxomethylidenemannonojirimycin (OMJ) motifs. The resulting oligomannoside hemimimetic accurately reproduce the structure, configuration, and conformational behavior of the original mannooligosaccharides, as confirmed by NMR and computational techniques. Binding studies with mannose binding lectins, including concanavalin A, DC-SIGN, and langerin, by enzyme-linked lectin assay and surface plasmon resonance revealed significant variations in their ability to accommodate the OMJ unit in the mannose binding site. Intriguingly, OMJMan segments demonstrated "in line" heteromultivalent effects during binding to the three lectins. Similar to the mannobiose (Man2 ) branches in HMOs, the binding modes involving the external or internal monosaccharide unit at the carbohydrate binding-domain exist in equilibrium, facilitating sliding and recapture processes. This equilibrium, which influences the multivalent binding of HMOs, can be finely modulated upon incorporation of the OMJ sp2 -iminosugar caps. As a proof of concept, the affinity and selectivity towards DC-SIGN and langerin were adjustable by presenting the OMJMan epitope in platforms with diverse architectures and valencies.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
- Present address: DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| | - Michel Thépaut
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
| | - Eugénie Laigre
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - David Goyard
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Javier Rojo
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Franck Fieschi
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| | - Olivier Renaudet
- DCM, UMR 5250, Université Grenoble Alpes, CNRS, 570 Rue de la Chimie, 38000, Grenoble, France
| | - Pedro M Nieto
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Américo Vespucio 49, 41092, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Sevilla, Spain
| |
Collapse
|
4
|
Clark LC, Atkin KE, Whelan F, Brentnall AS, Harris G, Towell AM, Turkenburg JP, Liu Y, Feizi T, Griffiths SC, Geoghegan JA, Potts JR. Staphylococcal Periscope proteins Aap, SasG, and Pls project noncanonical legume-like lectin adhesin domains from the bacterial surface. J Biol Chem 2023; 299:102936. [PMID: 36702253 PMCID: PMC9999234 DOI: 10.1016/j.jbc.2023.102936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are frequently associated with medical device infections that involve establishment of a bacterial biofilm on the device surface. Staphylococcal surface proteins Aap, SasG, and Pls are members of the Periscope Protein class and have been implicated in biofilm formation and host colonization; they comprise a repetitive region ("B region") and an N-terminal host colonization domain within the "A region," predicted to be a lectin domain. Repetitive E-G5 domains (as found in Aap, SasG, and Pls) form elongated "stalks" that would vary in length with repeat number, resulting in projection of the N-terminal A domain variable distances from the bacterial cell surface. Here, we present the structures of the lectin domains within A regions of SasG, Aap, and Pls and a structure of the Aap lectin domain attached to contiguous E-G5 repeats, suggesting the lectin domains will sit at the tip of the variable length rod. We demonstrate that these isolated domains (Aap, SasG) are sufficient to bind to human host desquamated nasal epithelial cells. Previously, proteolytic cleavage or a deletion within the A domain had been reported to induce biofilm formation; the structures suggest a potential link between these observations. Intriguingly, while the Aap, SasG, and Pls lectin domains bind a metal ion, they lack the nonproline cis peptide bond thought to be key for carbohydrate binding by the lectin fold. This suggestion of noncanonical ligand binding should be a key consideration when investigating the host cell interactions of these bacterial surface proteins.
Collapse
Affiliation(s)
- Laura C Clark
- Department of Biology, University of York, York, United Kingdom
| | - Kate E Atkin
- Department of Biology, University of York, York, United Kingdom
| | - Fiona Whelan
- Department of Biology, University of York, York, United Kingdom; Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, South Australia, Australia.
| | | | - Gemma Harris
- Department of Biology, University of York, York, United Kingdom
| | - Aisling M Towell
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | | | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ten Feizi
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland; Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jennifer R Potts
- Department of Biology, University of York, York, United Kingdom; School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia.
| |
Collapse
|
5
|
Jang H, Lee C, Hwang Y, Lee SJ. Concanavalin A: coordination diversity to xenobiotic metal ions and biological consequences. Dalton Trans 2021; 50:17817-17831. [PMID: 34806716 DOI: 10.1039/d1dt03501k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding ability of lectins has gained attention owing to the carbohydrate-specific interactions of these proteins. Such interactions can be applied to diverse fields of biotechnology, including the detection, isolation, and concentration of biological target molecules. The physiological aspects of the lectin concanavalin A (ConA) have been intensively studied through structural and functional investigations. X-ray crystallography studies have proven that ConA has two β-sheets and a short α-helix and that it exists in the form of a metalloprotein containing Mn2+ and Ca2+. These heterometals are coordinated with side chains located in a metal-coordinated domain (MCD), and they affect the structural environment in the carbohydrate-binding domain (CBD), which interacts with carbohydrates through hydrogen bonds. Recent studies have shown that ConA can regulate biophysical interactions with glycoproteins in virus envelopes because it specifically interacts with diverse polysaccharides through its CBD (Tyr, Asn, Asp, and Arg residues positioned next to the MCD). Owing to their protein-protein interaction abilities, ConA can form diverse self-assembled complexes including monomers, dimers, trimers, and tetramers, thus affording unique results in different applications. In this regard, herein, we present a review of the structural modifications in ConA through metal-ion coordination and their effect on complex formation. In recent approaches, ConA has been applied for viral protein detection, on the basis of the interactions of ConA. These aspects indicate that lectins should be thoroughly investigated with respect to their biophysical interactions, for avoiding unexpected changes in their interaction abilities.
Collapse
Affiliation(s)
- Hara Jang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Chaemin Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Yunha Hwang
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| | - Seung Jae Lee
- Department of Chemistry and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
6
|
Ogharandukun E, Tewolde W, Damtae E, Wang S, Ivanov A, Kumari N, Nekhai S, Chandran PL. Establishing Rules for Self-Adhesion and Aggregation of N-Glycan Sugars Using Virus Glycan Shields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13769-13783. [PMID: 33186493 PMCID: PMC7798417 DOI: 10.1021/acs.langmuir.0c01953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surfaces of cells and pathogens are covered with short polymers of sugars known as glycans. Complex N-glycans have a core of three mannose sugars with distal repeats of N-acetylglucosamine and galactose sugars terminating with sialic acid (SA). Long-range tough and short-range brittle self-adhesions were observed between SA and mannose residues, respectively, in ill-defined artificial monolayers. We investigated if and how these adhesions translate when the residues are presented in N-glycan architecture with SA at the surface and mannose at the core and with other glycan sugars. Two pseudotyped viruses with complex N-glycan shields were brought together in force spectroscopy (FS). At higher ramp rates, slime-like adhesions were observed between the shields, whereas Velcro-like adhesions were observed at lower rates. The higher approach rates compress the virus as a whole, and the self-adhesion between the surface SA is sampled. At the lower ramp rates, however, the complex glycan shield is penetrated and adhesion from the mannose core is accessed. The slime-like and Velcro-like adhesions were lost when SA and mannose were cleaved, respectively. While virus self-adhesion in forced contact was modulated by glycan penetrability, the self-aggregation of the freely diffusing virus was only determined by the surface sugar. Mannose-terminal viruses self-aggregated in solution, and SA-terminal ones required Ca2+ ions to self-aggregate. Viruses with galactose or N-acetylglucosamine surfaces did not self-aggregate, irrespective of whether or not a mannose core was present below the N-acetylglucosamine surface. Well-defined rules appear to govern the self-adhesion and -aggregation of N-glycosylated surfaces, regardless of whether the sugars are presented in an ill-defined monolayer, or N-glycan, or even polymer architecture.
Collapse
|
7
|
Poskanzer SA, Schultz MJ, Turgeon CT, Vidal-Folch N, Liedtke K, Oglesbee D, Gavrilov DK, Tortorelli S, Matern D, Rinaldo P, Bennett JT, Thies JM, Chang IJ, Beck AE, Raymond K, Allenspach EJ, Lam C. Immune dysfunction in MGAT2-CDG: A clinical report and review of the literature. Am J Med Genet A 2020; 185:213-218. [PMID: 33044030 DOI: 10.1002/ajmg.a.61914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 11/11/2022]
Abstract
Glycosylation is a critical post/peri-translational modification required for the appropriate development and function of the immune system. As an example, abnormalities in glycosylation can cause antibody deficiency and reduced lymphocyte signaling, although the phenotype can be complex given the diverse roles of glycosylation. Human MGAT2 encodes N-acetylglucosaminyltransferase II, which is a critical enzyme in the processing of oligomannose to complex N-glycans. Complex N-glycans are essential for immune system functionality, but only one individual with MGAT2-CDG has been described to have an abnormal immunologic evaluation. MGAT2-CDG (CDG-IIa) is a congenital disorder of glycosylation (CDG) associated with profound global developmental disability, hypotonia, early onset epilepsy, and other multisystem manifestations. Here, we report a 4-year old female with MGAT2-CDG due to a novel homozygous pathogenic variant in MGAT2, a 4-base pair deletion, c.1006_1009delGACA. In addition to clinical features previously described in MGAT2-CDG, she experienced episodic asystole, persistent hypogammaglobulinemia, and defective ex vivo mitogen and antigen proliferative responses, but intact specific vaccine antibody titers. Her infection history has been mild despite the testing abnormalities. We compare this patient to the 15 previously reported patients in the literature, thus expanding both the genotypic and phenotypic spectrum for MGAT2-CDG.
Collapse
Affiliation(s)
- Sheri A Poskanzer
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Matthew J Schultz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Coleman T Turgeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Noemi Vidal-Folch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kris Liedtke
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dimitar K Gavrilov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Silvia Tortorelli
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dietrich Matern
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Piero Rinaldo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James T Bennett
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jenny M Thies
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Irene J Chang
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Anita E Beck
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Kimiyo Raymond
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric J Allenspach
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Division of Immunology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Christina Lam
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| |
Collapse
|
8
|
Coff L, Chan J, Ramsland PA, Guy AJ. Identifying glycan motifs using a novel subtree mining approach. BMC Bioinformatics 2020; 21:42. [PMID: 32019496 PMCID: PMC7001330 DOI: 10.1186/s12859-020-3374-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Background Glycans are complex sugar chains, crucial to many biological processes. By participating in binding interactions with proteins, glycans often play key roles in host–pathogen interactions. The specificities of glycan-binding proteins, such as lectins and antibodies, are governed by motifs within larger glycan structures, and improved characterisations of these determinants would aid research into human diseases. Identification of motifs has previously been approached as a frequent subtree mining problem, and we extend these approaches with a glycan notation that allows recognition of terminal motifs. Results In this work, we customised a frequent subtree mining approach by altering the glycan notation to include information on terminal connections. This allows specific identification of terminal residues as potential motifs, better capturing the complexity of glycan-binding interactions. We achieved this by including additional nodes in a graph representation of the glycan structure to indicate the presence or absence of a linkage at particular backbone carbon positions. Combining this frequent subtree mining approach with a state-of-the-art feature selection algorithm termed minimum-redundancy, maximum-relevance (mRMR), we have generated a classification pipeline that is trained on data from a glycan microarray. When applied to a set of commonly used lectins, the identified motifs were consistent with known binding determinants. Furthermore, logistic regression classifiers trained using these motifs performed well across most lectins examined, with a median AUC value of 0.89. Conclusions We present here a new subtree mining approach for the classification of glycan binding and identification of potential binding motifs. The Carbohydrate Classification Accounting for Restricted Linkages (CCARL) method will assist in the interpretation of glycan microarray experiments and will aid in the discovery of novel binding motifs for further experimental characterisation.
Collapse
Affiliation(s)
- Lachlan Coff
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Jeffrey Chan
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Paul A Ramsland
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.,Department of Immunology, Monash University, 3004, Melbourne, Australia.,Department of Surgery Austin Health, University of Melbourne, 3084, Heidelberg, Australia
| | - Andrew J Guy
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.
| |
Collapse
|
9
|
Schmidt S, Paul TJ, Strzelczyk AK. Interactive Polymer Gels as Biomimetic Sensors for Carbohydrate Interactions and Capture–Release Devices for Pathogens. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stephan Schmidt
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf Universitätsstraße 1 40225 Dusseldorf Germany
| | - Tanja Janine Paul
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf Universitätsstraße 1 40225 Dusseldorf Germany
| | - Alexander Klaus Strzelczyk
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf Universitätsstraße 1 40225 Dusseldorf Germany
| |
Collapse
|
10
|
Brinkø A, Risinger C, Lambert A, Blixt O, Grandjean C, Jensen HH. Combining Click Reactions for the One-Pot Synthesis of Modular Biomolecule Mimetics. Org Lett 2019; 21:7544-7548. [PMID: 31502847 DOI: 10.1021/acs.orglett.9b02811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report on the first combined one-pot use of the two so-called "click reactions": the thiol-ene coupling and the copper-catalyzed alkyne-azide cycloaddition. These reactions were employed in an alternating and one-pot fashion to combine appropriately functionalized monomeric carbohydrate building blocks to create mimics of trisaccharides and tetrasaccharides as single anomers, with only minimal purification necessary. The deprotected oligosaccharide mimics were found to bind both plant lectins and human galectin-3.
Collapse
Affiliation(s)
- Anne Brinkø
- Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C, Denmark
| | - Christian Risinger
- Department of Chemistry, Chemical Biology , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg C, Denmark
| | - Annie Lambert
- Faculté des Sciences et des Techniques, Unité Fonctionnalité et Ingénierie des Protéines (UFIP) , Université de Nantes , UMR CNRS 6286, 2, rue de la Houssinière , BP92208, 44322 Nantes Cedex 3, France
| | - Ola Blixt
- Department of Chemistry, Chemical Biology , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg C, Denmark
| | - Cyrille Grandjean
- Faculté des Sciences et des Techniques, Unité Fonctionnalité et Ingénierie des Protéines (UFIP) , Université de Nantes , UMR CNRS 6286, 2, rue de la Houssinière , BP92208, 44322 Nantes Cedex 3, France
| | - Henrik H Jensen
- Department of Chemistry , Aarhus University , Langelandsgade 140 , 8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Cavada BS, Osterne VJS, Lossio CF, Pinto-Junior VR, Oliveira MV, Silva MTL, Leal RB, Nascimento KS. One century of ConA and 40 years of ConBr research: A structural review. Int J Biol Macromol 2019; 134:901-911. [DOI: 10.1016/j.ijbiomac.2019.05.100] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 01/30/2023]
|
12
|
Camaleño de la Calle A, Gerke C, Chang XJ, Grafmüller A, Hartmann L, Schmidt S. Multivalent Interactions of Polyamide Based Sequence‐Controlled Glycomacromolecules with Concanavalin A. Macromol Biosci 2019; 19:e1900033. [DOI: 10.1002/mabi.201900033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Alberto Camaleño de la Calle
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf, Universitatsstraße 1 40225 Dusseldorf Germany
| | - Christoph Gerke
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf, Universitatsstraße 1 40225 Dusseldorf Germany
| | - Xi Jeffrey Chang
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf, Universitatsstraße 1 40225 Dusseldorf Germany
| | - Andrea Grafmüller
- Department of Theory and Bio‐SystemsMax Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14478 Potsdam Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf, Universitatsstraße 1 40225 Dusseldorf Germany
| | - Stephan Schmidt
- Institute of Organic and Macromolecular ChemistryHeinrich‐Heine‐University Düsseldorf, Universitatsstraße 1 40225 Dusseldorf Germany
| |
Collapse
|
13
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
14
|
Naphatsamon U, Ohashi T, Misaki R, Fujiyama K. The Production of Human β-Glucocerebrosidase in Nicotiana benthamiana Root Culture. Int J Mol Sci 2018; 19:E1972. [PMID: 29986415 PMCID: PMC6073899 DOI: 10.3390/ijms19071972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023] Open
Abstract
Gaucher disease is caused by a deficiency of the enzyme glucocerebrosidase (GCase). Currently, enzyme-replacement therapy using recombinant GCase produced in mammalian cells is considered the most effective treatment. Plants are an attractive alternative host for recombinant protein production due to the low cost of large-scale production and lack of risk of contamination by human pathogens. Compared to whole plants, root cultures can grow faster. Therefore, this study aimed to produce recombinant GCase in a Nicotiana benthamiana root culture. Root culture of a GCase-producing transgenic plant was induced by indole-3-acetic acid at the concentration of 1 mg/L. Recombinant GCase was successfully produced in roots as a functional protein with an enzyme activity equal to 81.40 ± 17.99 units/mg total protein. Crude proteins were extracted from the roots. Recombinant GCase could be purified by concanavalin A and phenyl 650C chromatography. The productivity of GCase was approximately 1 µg/g of the root. A N-glycan analysis of purified GCase was performed using nano LC/MS. The Man₃XylFucGlcNAc₂ structure was predominant in purified GCase with two plant-specific glycan residues. This study presents evidence for a new, safe and efficient system of recombinant GCase production that might be applied to other recombinant proteins.
Collapse
Affiliation(s)
- Uthailak Naphatsamon
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan.
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan.
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan.
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Yu J, Grant OC, Pett C, Strahl S, Stahl S, Woods RJ, Westerlind U. Induction of Antibodies Directed Against Branched Core O-Mannosyl Glycopeptides-Selectivity Complimentary to the ConA Lectin. Chemistry 2017; 23:3466-3473. [PMID: 28079948 PMCID: PMC5548291 DOI: 10.1002/chem.201605627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Indexed: 01/31/2023]
Abstract
Mammalian protein O-mannosylation, initiated by attachment of α-mannopyranose to Ser or Thr residues, comprise a group of post-translational modifications (PTMs) involved in muscle and brain development. Recent advances in glycoproteomics methodology and the "SimpleCell" strategy have enabled rapid identification of glycoproteins and specific glycosylation sites. Despite the enormous progress made, the biological impact of the mammalian O-mannosyl glycoproteome remains largely unknown to date. Tools are still needed to investigate the structure, role, and abundance of O-mannosyl glycans. Although O-mannosyl branching has been shown to be of relevance in integrin-dependent cell migration, and also plays a role in demyelinating diseases, such as multiple sclerosis, a broader understanding of the biological roles of branched O-mannosyl glycans is lacking in part due to the paucity of detection tools. In this work, a glycopeptide vaccine construct was synthesized and used to generate antibodies against branched O-mannosyl glycans. Glycopeptide microarray screening revealed high selectivity of the induced antibodies for branched glycan core structures presented on different peptide backbones, with no cross-reactivity observed with related linear glycans. For comparison, microarray screening of the mannose-binding lectin concanavalin A (ConA), which is commonly used in glycoproteomics workflows to enrich tryptic O-mannosyl peptides, showed that the ConA lectin did not recognize branched O-mannosyl glycans. The binding preference of ConA for short linear O-mannosyl glycans was rationalized in terms of molecular structure using crystallographic data augmented by molecular modeling. The contrast between the ConA binding specificity and that of the new antibodies indicates a novel role for the antibodies in studies of protein O-mannosylation.
Collapse
Affiliation(s)
- Jin Yu
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Christian Pett
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | | | - Sabine Stahl
- Centre for Organismal Studies (COS), Cell Chemistry, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Ulrika Westerlind
- Gesellschaft zur Förderung der Analytischen Wissenschaften e.V., ISAS-Leibniz Institute for Analytical Sciences, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| |
Collapse
|
16
|
Bhattarai JK, Tan YH, Pandey B, Fujikawa K, Demchenko AV, Stine KJ. Electrochemical Impedance Spectroscopy Study of Concanavalin A Binding to Self-Assembled Monolayers of Mannosides on Gold Wire Electrodes. J Electroanal Chem (Lausanne) 2016; 780:311-320. [PMID: 28413372 DOI: 10.1016/j.jelechem.2016.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interactions of the lectin Concanavalin A (Con A) with self-assembled monolayers (SAMs) of thiolated mono-, di-, and tri-mannosides were studied on the surface of gold wires using electrochemical impedance spectroscopy (EIS). The SAMs of mannosides were prepared either pure or along with thiolated triethylene glycol (TEG) at different molar ratios (1:1, 1:2, 1:4, 1:9, and 1:19) to better understand and optimize the interaction conditions. The charge-transfer resistance of the [Fe(CN)6]3-/4- redox probe was compared before and after the interaction at different concentrations of Con A to determine the equilibrium dissociation constant (Kd) and limit of detection (LOD). Values of Kd were found in the nanomolar range showing multivalent interactions between mannosides and Con A, and LOD was found ranging from 4-13 nM depending on the type of mannoside SAM used. Analysis using the Hill equation suggests negative cooperativity in the binding behavior. Peanut agglutinin was used as a negative control, and cyclic voltammetry was used to further support the experiments. We have found that neither the pure nor the widely dispersed monolayers of mannosides provide the conditions for optimal binding of Con A. The binding of Con A to these SAMs is sensitive to the molar ratio of the mannoside used to prepare the SAM and to the structure of the mannoside. A simple cleaning method has also been shown to regenerate the used gold wire electrodes. The results from these experiments contribute to the development of simple, cheap, selective, and sensitive EIS-based bioassays, especially for lectin-carbohydrate interactions.
Collapse
Affiliation(s)
- Jay K Bhattarai
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Yih Horng Tan
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Binod Pandey
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Kohki Fujikawa
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, Saint Louis, MO 63121, USA
| |
Collapse
|
17
|
François-Heude M, Méndez-Ardoy A, Cendret V, Lafite P, Daniellou R, Ortiz Mellet C, García Fernández JM, Moreau V, Djedaïni-Pilard F. Synthesis of High-Mannose Oligosaccharide Analogues through Click Chemistry: True Functional Mimics of Their Natural Counterparts Against Lectins? Chemistry 2014; 21:1978-91. [DOI: 10.1002/chem.201405481] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Indexed: 01/17/2023]
|
18
|
Nagae M, Soga K, Morita-Matsumoto K, Hanashima S, Ikeda A, Yamamoto K, Yamaguchi Y. Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a common legume lectin fold. Glycobiology 2014; 24:368-78. [DOI: 10.1093/glycob/cwu004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Sattelle BM, Almond A. Shaping up for structural glycomics: a predictive protocol for oligosaccharide conformational analysis applied to N-linked glycans. Carbohydr Res 2013; 383:34-42. [PMID: 24252626 PMCID: PMC3909462 DOI: 10.1016/j.carres.2013.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/28/2022]
Abstract
Aqueous 10 μs simulations of N-linked mannosyl cores and sialyl Lewis (sLe) antennae are validated. Sequence dependent glycosidic linkage and pyranose ring μs motions are implicated in bioactivity. Stacked pyranoses in sLea and sLex are predicted to be atypically rigid on μs timescales. In a 25 μs simulation of sLex, all known conformers were sampled within the initial 10 μs of dynamics. Unbiased 10 μs simulations are proposed as a route to systematic and accurate glycomic 3D-analysis.
The human glycome comprises a vast untapped repository of 3D-structural information that holds the key to glycan recognition and a new era of rationally designed mimetic chemical probes, drugs, and biomaterials. Toward routine prediction of oligosaccharide conformational populations and exchange rates at thermodynamic equilibrium, we apply hardware-accelerated aqueous molecular dynamics to model μs motions in N-glycans that underpin inflammation and immunity. In 10 μs simulations, conformational equilibria of mannosyl cores, sialyl Lewis (sLe) antennae, and constituent sub-sequences agreed with prior refinements (X-ray and NMR). Glycosidic linkage and pyranose ring flexing were affected by branching, linkage position, and secondary structure, implicating sequence dependent motions in glycomic functional diversity. Linkage and ring conformational transitions that have eluded precise quantification by experiment and conventional (ns) simulations were predicted to occur on μs timescales. All rings populated non-chair shapes and the stacked galactose and fucose pyranoses of sLea and sLex were rigidified, suggesting an exploitable 3D-signature of cell adhesion protein binding. Analyses of sLex dynamics over 25 μs revealed that only 10 μs were sufficient to explore all aqueous conformers. This simulation protocol, which yields conformational ensembles that are independent of initial 3D-structure, is proposed as a route to understanding oligosaccharide recognition and structure–activity relationships, toward development of carbohydrate-based novel chemical entities.
Collapse
Affiliation(s)
- Benedict M Sattelle
- Faculty of Life Sciences, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Andrew Almond
- Faculty of Life Sciences, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
20
|
Zhang JT, Chao X, Liu X, Asher SA. Two-dimensional array Debye ring diffraction protein recognition sensing. Chem Commun (Camb) 2013; 49:6337-9. [DOI: 10.1039/c3cc43396j] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
21
|
Formosa C, Grare M, Jauvert E, Coutable A, Regnouf-de-Vains JB, Mourer M, Duval RE, Dague E. Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain. Sci Rep 2012; 2:575. [PMID: 22893853 PMCID: PMC3418629 DOI: 10.1038/srep00575] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/30/2012] [Indexed: 12/02/2022] Open
Abstract
Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the resistance of the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force Microscopy (AFM), the behavior of a reference strain and of a multidrug resistant clinical strain, submitted to two antibiotics and to an innovative antibacterial drug (CX1). We measured the morphology, surface roughness and elasticity of the bacteria under physiological conditions and exposed to the antibacterial molecules. To go further in the molecules action mechanism, we explored the bacterial cell wall nanoscale organization using functionalized AFM tips. We have demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly long molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by the results on artificial phospholipidic membranes and on the resistant strain.
Collapse
Affiliation(s)
- C Formosa
- Centre National de la Recherche Scientifique, Laboratoire d’Analyse et d’Architecture des Systèmes-LAAS, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Benevides RG, Ganne G, Simões RDC, Schubert V, Niemietz M, Unverzagt C, Chazalet V, Breton C, Varrot A, Cavada BS, Imberty A. A lectin from Platypodium elegans with unusual specificity and affinity for asymmetric complex N-glycans. J Biol Chem 2012; 287:26352-64. [PMID: 22692206 DOI: 10.1074/jbc.m112.375816] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lectin activity with specificity for mannose and glucose has been detected in the seed of Platypodium elegans, a legume plant from the Dalbergieae tribe. The gene of Platypodium elegans lectin A has been cloned, and the resulting 261-amino acid protein belongs to the legume lectin family with similarity with Pterocarpus angolensis agglutinin from the same tribe. The recombinant lectin has been expressed in Escherichia coli and refolded from inclusion bodies. Analysis of specificity by glycan array evidenced a very unusual preference for complex type N-glycans with asymmetrical branches. A short branch consisting of one mannose residue is preferred on the 6-arm of the N-glycan, whereas extensions by GlcNAc, Gal, and NeuAc are favorable on the 3-arm. Affinities have been obtained by microcalorimetry using symmetrical and asymmetrical Asn-linked heptasaccharides prepared by the semi-synthetic method. Strong affinity with K(d) of 4.5 μm was obtained for both ligands. Crystal structures of Platypodium elegans lectin A complexed with branched trimannose and symmetrical complex-type Asn-linked heptasaccharide have been solved at 2.1 and 1.65 Å resolution, respectively. The lectin adopts the canonical dimeric organization of legume lectins. The trimannose bridges the binding sites of two neighboring dimers, resulting in the formation of infinite chains in the crystal. The Asn-linked heptasaccharide binds with the 6-arm in the primary binding site with extensive additional contacts on both arms. The GlcNAc on the 6-arm is bound in a constrained conformation that may rationalize the higher affinity observed on the glycan array for N-glycans with only a mannose on the 6-arm.
Collapse
Affiliation(s)
- Raquel Guimarães Benevides
- Centre de Recherche sur les Macromolécules Végétales-CNRS (affiliated with Université Joseph Fourier and Institut de Chimie Moléculaire de Grenoble), 38041 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maupin KA, Liden D, Haab BB. The fine specificity of mannose-binding and galactose-binding lectins revealed using outlier motif analysis of glycan array data. Glycobiology 2011; 22:160-9. [PMID: 21875884 DOI: 10.1093/glycob/cwr128] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Glycan-binding proteins are commonly used as analytical reagents to detect the levels of specific glycan structures in biological samples. A detailed knowledge of the specificities of glycan-binding proteins is required for properly interpreting their binding data. A powerful technology for characterizing glycan-binding specificity is the glycan array. However, the interpretation of glycan-array data can be difficult due to the complex fine specificities of certain glycan-binding proteins. We developed a systematic approach, called outlier-motif analysis, for extracting fine-specificity information from glycan-array data, and we applied the method to the study of four commonly used lectins: two mannose binders (concanavalin A and Lens culinaris) and two galactose binders (Bauhinia purpurea and peanut agglutinin). The study confirmed the known, primary specificity of each lectin and also revealed new insights into their binding preferences. Lens culinaris's main specificity may be non-terminal, α-linked mannose with a single linkage at its 2' carbon, which is more restricted than previous definitions. We found broader specificity for bauhinea purpurea (BPL) than previously reported, showing that BPL can bind terminal N-acetylgalactosamine (GalNAc) and penultimate β-linked galactose under certain limitations. Peanut agglutinin may bind terminal Galβ1,3Gal, a glycolipid motif, in addition to terminal Galβ1,3GalNAc, a common O-linked glycoprotein motif. These results could be used to more accurately interpret data obtained using these well-studied lectins. Furthermore, this study demonstrates a systematic and general approach for extracting fine-specificity information from glycan-array data.
Collapse
Affiliation(s)
- Kevin A Maupin
- Van Andel Research Institute, 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | | | | |
Collapse
|
24
|
Agostino M, Sandrin MS, Thompson PE, Farrugia W, Ramsland PA, Yuriev E. Carbohydrate-mimetic peptides: structural aspects of mimicry and therapeutic implications. Expert Opin Biol Ther 2011; 11:211-24. [DOI: 10.1517/14712598.2011.542140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Gilboa-Garber N, Zinger-Yosovich KD, Sudakevitz D, Lerrer B, Imberty A, Wimmerova M, Wu AM, Garber NC. The five bacterial lectins (PA-IL, PA-IIL, RSL, RS-IIL, and CV-IIL): interactions with diverse animal cells and glycoproteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:155-211. [PMID: 21618109 DOI: 10.1007/978-1-4419-7877-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nechama Gilboa-Garber
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Iiguni Y, Watarai H. Dynamic electromagnetophoretic force analysis of a single binding interaction between lectin and mannan polysaccharide on yeast cell surface. Analyst 2010; 135:1426-32. [DOI: 10.1039/b924339a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Salisburg AM, Deline AL, Lexa KW, Shields GC, Kirschner KN. Ramachandran-type plots for glycosidic linkages: Examples from molecular dynamic simulations using the Glycam06 force field. J Comput Chem 2009; 30:910-21. [DOI: 10.1002/jcc.21099] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Kadirvelraj R, Foley BL, Dyekjær JD, Woods RJ. Involvement of water in carbohydrate-protein binding: concanavalin A revisited. J Am Chem Soc 2008; 130:16933-42. [PMID: 19053475 PMCID: PMC2626182 DOI: 10.1021/ja8039663] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ordered water molecules bound to protein surfaces, or in protein-ligand interfaces, are frequently observed by crystallography. The investigation of the impact of such conserved water molecules on protein stability and ligand affinity requires detailed structural, dynamic, and thermodynamic analyses. Several crystal structures of the legume lectin concanavalin A (Con A) bound to closely related carbohydrate ligands show the presence of a conserved water molecule that mediates ligand binding. Experimental thermodynamic and theoretical studies have examined the role of this conserved water in the complexation of Con A with a synthetic analog of the natural trisaccharide, in which a hydroxyethyl side chain replaces the hydroxyl group at the C-2 position in the central mannosyl residue. Molecular modeling earlier indicated (Clarke, C.; Woods, R. J.; Glushka, J.; Cooper, A.; Nutley, M. A.; Boons, G.-J. J. Am. Chem. Soc. 2001, 123, 12238-12247) that the hydroxyl group in this synthetic side chain could occupy a position equivalent to that of the conserved water, and thus might displace it. An interpretation of the experimental thermodynamic data, which was consistent with the displacement of the conserved water, was also presented. The current work reports the crystal structure of Con A with this synthetic ligand and shows that even though the position and interactions of the conserved water are distorted, this key water is not displaced by the hydroxyethyl moiety. This new structural data provides a firm basis for molecular dynamics simulations and thermodynamic integration calculations whose results indicate that differences in van der Waals contacts (insertion energy), rather than electrostatic interactions (charging energy) are fundamentally responsible for the lower affinity of the synthetic ligand. When combined with the new crystallographic data, this study provides a straightforward interpretation for the lower affinity of the synthetic analog; specifically, that it arises primarily from weaker interactions with the protein via the positionally perturbed conserved water. This interpretation is fully consistent with the experimental observations that the free energy of binding is enthalpy driven, that there is both less enthalpic gain and less entropic penalty for binding the synthetic ligand, relative to the natural trisaccharide, and that the entropic component does not arise from releasing an ordered water molecule from the protein surface to the bulk solvent.
Collapse
Affiliation(s)
- Renuka Kadirvelraj
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | - B. Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | | | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| |
Collapse
|
29
|
Moreno FBMB, de Oliveira TM, Martil DE, Viçoti MM, Bezerra GA, Abrego JRB, Cavada BS, Filgueira de Azevedo W. Identification of a new quaternary association for legume lectins. J Struct Biol 2008; 161:133-43. [DOI: 10.1016/j.jsb.2007.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/27/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
|
30
|
Johnson MA, Pinto BM. Structural and functional studies of Peptide-carbohydrate mimicry. Top Curr Chem (Cham) 2008; 273:55-116. [PMID: 23605459 DOI: 10.1007/128_2007_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Certain peptides act as molecular mimics of carbohydrates in that they are specifically recognizedby carbohydrate-binding proteins. Peptides that bind to anti-carbohydrate antibodies, carbohydrate-processingenzymes, and lectins have been identified. These peptides are potentially useful as vaccines andtherapeutics; for example, immunologically functional peptide molecular mimics (mimotopes) can strengthenor modify immune responses induced by carbohydrate antigens. However, peptides that bind specificallyto carbohydrate-binding proteins may not necessarily show the corresponding biological activity, andfurther selection based on biochemical studies is always required. The degree of structural mimicryrequired to generate the desired biological activity is therefore an interesting question. This reviewwill discuss recent structural studies of peptide-carbohydrate mimicry employing NMR spectroscopy,X-ray crystallography, and molecular modeling, as well as relevant biochemical data. These studiesprovide insights into the basis of mimicry at the molecular level. Comparisons with other carbohydrate-mimeticcompounds, namely proteins and glycopeptides, will be drawn. Finally, implications for the designof new therapeutic compounds will also be presented.
Collapse
Affiliation(s)
- Margaret A Johnson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB-44, 92037, La Jolla, CA, USA,
| | | |
Collapse
|
31
|
Hong PWP, Nguyen S, Young S, Su SV, Lee B. Identification of the optimal DC-SIGN binding site on human immunodeficiency virus type 1 gp120. J Virol 2007; 81:8325-36. [PMID: 17522223 PMCID: PMC1951277 DOI: 10.1128/jvi.01765-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (gp120) binding to DC-SIGN, a C-type lectin that can facilitate HIV infection in cis and in trans, is largely dependent on high-mannose-content moieties. Here, we delineate the N-linked glycosylation (N-glycan) sites in gp120 that contribute to optimal DC-SIGN binding. Soluble DC-SIGN was able to block 2G12 binding to gp120, but not vice versa, suggesting that DC-SIGN binds to a more flexible combination of N-glycans than 2G12. Consistent with this observation, HIV strain JRCSF gp120 prebound to 2G12 was 10-fold more sensitive to mannan competition than gp120 that was not prebound in a DC-SIGN cell surface binding assay. The analysis of multiple mutant forms of the 2G12 epitope revealed one triple glycosylation mutant form, termed 134mut (carrying N293Q, N382Q, and N388Q mutations), that exhibited a significant increase in sensitivity to both mannan competition and endoglycosidase H digestion compared to that of the 124mut form (carrying N293Q, N328Q, and N388Q mutations) and wild-type gp120 in a DC-SIGN binding assay. Importantly, no such differences were observed when binding to Galanthus nivalis was assessed. The 134mut form of gp120 also exhibited decreased binding to DC-SIGN in the context of native envelope spikes on a virion, and virus bearing 134mut exhibited less efficient DC-SIGN-mediated infection in trans. Significantly, 124mut and 134mut differed by only one glycosylation site mutation in each construct, and both 124mut and 134mut viruses exhibited wild-type levels of infectivity when used in a direct infection assay. In summary, while DC-SIGN can bind to a flexible combination of N-glycans on gp120, its optimal binding site overlaps with specific N-glycans within the 2G12 epitope. Conformationally intact envelopes that are DC-SIGN binding deficient can be used to probe the in vivo biological functions of DC-SIGN.
Collapse
Affiliation(s)
- Patrick W-P Hong
- Department of Microbiology, Immunology, and Molecular Genetics, 3825 MSB, UCLA, 609 Charles E. Young Dr. East, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
32
|
Honey and royal jelly, like human milk, abrogate lectin-dependent infection-preceding Pseudomonas aeruginosa adhesion. ISME JOURNAL 2007; 1:149-55. [DOI: 10.1038/ismej.2007.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Natchiar SK, Suguna K, Surolia A, Vijayan M. Peanut agglutinin, a lectin with an unusual quaternary structure and interesting ligand binding properties. CRYSTALLOGR REV 2007. [DOI: 10.1080/08893110701382087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Iiguni Y, Watarai H. Electromagnetophoretic Force Measurement of a Single Binding Interaction between Lectin and Yeast Cell Surfaces. ANAL SCI 2007; 23:121-6. [PMID: 17213636 DOI: 10.2116/analsci.23.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel measurement method of the binding force between a micrometer-sized particle and a solid surface in an electrolyte solution has been established by using the electromagnetophoretic buoyancy on the particle. By this method, we investigated the binding force between a yeast cell surface and an oligosaccharide-binding protein, concanavalin A (Con A), fixed on a silica capillary wall. The force measurement was carried out up to 60 pN. In a lower surface concentration of Con A, yeast cells could be desorbed by a force less than 60 pN. However, in a higher surface concentration after treated by 1 mg ml(-1) solution, yeast cells were adsorbed with a force stronger than 60 pN. In this case, the addition of 10 mg ml(-1) D-mannose solution to the medium reduced the binding force to less than 60 pN. The observed adsorption force of yeast cells ranged within 30 - 40 pN, regardless of the interfacial amount of Con A. This force was thought to be the single binding force between a mannose group of the cell surface and an active site of Con A. Moreover, the dissociation rate constant of the single binding of yeast cell and Con A complex was determined as 4.6 x 10(-3) s(-1) and the increment of the binding distance at the transition state as 0.33 nm from the desorption kinetic experiments of yeast cell under the constant pulling conditions of 10, 20 and 30 pN. Such satisfactory results demonstrate the novel advantages of the present method.
Collapse
Affiliation(s)
- Yoshinori Iiguni
- Department of Chemistry, Graduate School of Science, Osaka University, Japan
| | | |
Collapse
|
35
|
Dong C, Beis K, Nesper J, Brunkan AL, Clarke BR, Whitfield C, Naismith JH. Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 2006; 444:226-9. [PMID: 17086202 PMCID: PMC3315050 DOI: 10.1038/nature05267] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/21/2006] [Indexed: 11/09/2022]
Abstract
Many types of bacteria produce extracellular polysaccharides (EPSs). Some are secreted polymers and show only limited association with the cell surface, whereas others are firmly attached to the cell surface and form a discrete structural layer, the capsule, which envelopes the cell and allows the bacteria to evade or counteract the host immune system. EPSs have critical roles in bacterial colonization of surfaces, such as epithelia and medical implants; in addition some EPSs have important industrial and biomedical applications in their own right. Here we describe the 2.26 A resolution structure of the 340 kDa octamer of Wza, an integral outer membrane lipoprotein, which is essential for group 1 capsule export in Escherichia coli. The transmembrane region is a novel alpha-helical barrel. The bulk of the Wza structure is located in the periplasm and comprises three novel domains forming a large central cavity. Wza is open to the extracellular environment but closed to the periplasm. We propose a route and mechanism for translocation of the capsular polysaccharide. This work may provide insight into the export of other large polar molecules such as DNA and proteins.
Collapse
Affiliation(s)
- Changjiang Dong
- Centre for Biomolecular Sciences, EaStChem, The University, St Andrews, KY16 9RH
| | - Konstantinos Beis
- Centre for Biomolecular Sciences, EaStChem, The University, St Andrews, KY16 9RH
| | - Jutta Nesper
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Anne L. Brunkan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Bradley R. Clarke
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - James H. Naismith
- Centre for Biomolecular Sciences, EaStChem, The University, St Andrews, KY16 9RH
| |
Collapse
|
36
|
Buts L, Garcia-Pino A, Imberty A, Amiot N, Boons GJ, Beeckmans S, Versées W, Wyns L, Loris R. Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin. FEBS J 2006; 273:2407-20. [PMID: 16704415 DOI: 10.1111/j.1742-4658.2006.05248.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of Pterocarpus angolensis lectin is determined in its ligand-free state, in complex with the fucosylated biantennary complex type decasaccharide NA2F, and in complex with a series of smaller oligosaccharide constituents of NA2F. These results together with thermodynamic binding data indicate that the complete oligosaccharide binding site of the lectin consists of five subsites allowing the specific recognition of the pentasaccharide GlcNAc beta(1-2)Man alpha(1-3)[GlcNAc beta(1-2)Man alpha(1-6)]Man. The mannose on the 1-6 arm occupies the monosaccharide binding site while the GlcNAc residue on this arm occupies a subsite that is almost identical to that of concanavalin A (con A). The core mannose and the GlcNAc beta(1-2)Man moiety on the 1-3 arm on the other hand occupy a series of subsites distinct from those of con A.
Collapse
Affiliation(s)
- Lieven Buts
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
We have a limited understanding of the details of molecular recognition of carbohydrates by proteins, which is critical to a multitude of biological processes. Furthermore, carbohydrate-modifying proteins such as glycosyl hydrolases and phosphorylases are of growing importance as potential drug targets. Interactions between proteins and carbohydrates have complex thermodynamics, and in general the specific positioning of only a few hydroxyl groups determines their binding affinities. A thorough understanding of both carbohydrate and protein structures is thus essential to predict these interactions. An atomic-level view of carbohydrate recognition through structures of carbohydrate-active enzymes complexed with transition-state inhibitors reveals some of the distinctive molecular features unique to protein-carbohydrate complexes. However, the inherent flexibility of carbohydrates and their often water-mediated hydrogen bonding to proteins makes simulation of their complexes difficult. Nonetheless, recent developments such as the parameterization of specific force fields and docking scoring functions have greatly improved our ability to predict protein-carbohydrate interactions. We review protein-carbohydrate complexes having defined molecular requirements for specific carbohydrate recognition by proteins, providing an overview of the different computational techniques available to model them.
Collapse
Affiliation(s)
- Alain Laederach
- Department of Chemical Engineering, Iowa State University, Ames, Iowa 50011-2230, USA
| | | |
Collapse
|
38
|
Garcia-Pino A, Loris R, Wyns L, Buts L. Crystallization and preliminary X-ray analysis of the Man(alpha1-2)Man-specific lectin from Bowringia mildbraedii in complex with its carbohydrate ligand. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:931-4. [PMID: 16511199 PMCID: PMC1991310 DOI: 10.1107/s174430910502854x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 09/12/2005] [Indexed: 11/10/2022]
Abstract
The lectin from Bowringia mildbraedii seeds crystallizes in the presence of the disaccharide Man(alpha1-2)Man. The best crystals grow at 293 K within four weeks after a pre-incubation at 277 K to induce nucleation. A complete data set was collected to a resolution of 1.90 A using synchrotron radiation. The crystals belong to space group I222, with unit-cell parameters a = 66.06, b = 86.35, c = 91.76 A, and contain one lectin monomer in the asymmetric unit.
Collapse
Affiliation(s)
- Abel Garcia-Pino
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Remy Loris
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Lode Wyns
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Lieven Buts
- Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
39
|
Suriano R, Ghosh SK, Ashok BT, Mittelman A, Chen Y, Banerjee A, Tiwari RK. Differences in Glycosylation Patterns of Heat Shock Protein, gp96: Implications for Prostate Cancer Prevention. Cancer Res 2005; 65:6466-75. [PMID: 16024652 DOI: 10.1158/0008-5472.can-04-4639] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat shock protein gp96 induces a tumor-specific protective immunity in a variety of experimental tumor models. Because the primary sequences of the glycoprotein, gp96 are identical between tumor and normal tissues, the peptides associated with gp96 and/or the posttranslational modifications of gp96, determine its immunogenicity. Gp96-associated peptides constitute the antigenic repertoire of the source tissue; thus, purified gp96-peptide complexes have clinical significance as autologous cancer vaccines. However, the role of altered glycosylation and its contribution in the biological as well as immunologic activity of gp96 still remains uncharacterized. We examined the cancer-specific glycosylation patterns of gp96. To this end, monosaccharide compositions of gp96 were compared between normal rat prostate and two cancerous rat prostate tissues, nonmetastatic/androgen-dependent Dunning G and metastatic/androgen-independent MAT-LyLu, as well as two human nonmetastatic prostate cancer cell lines, androgen-dependent LnCaP and androgen-independent DU145. Marked differences were observed between the gp96 monosaccharide compositions of the normal and cancerous tissues. Furthermore, gp96 molecules from more aggressive cellular transformations were found to carry decreasing quantities of several monosaccharides as well as sum total content of neutral and amino sugars. We believe that the unique glycosylation patterns contribute to cellular phenotype and that the posttranslational modifications of gp96 may affect its functional attributes.
Collapse
Affiliation(s)
- Robert Suriano
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Pashov A, MacLeod S, Saha R, Perry M, VanCott TC, Kieber-Emmons T. Concanavalin A binding to HIV envelope protein is less sensitive to mutations in glycosylation sites than monoclonal antibody 2G12. Glycobiology 2005; 15:994-1001. [PMID: 15917430 DOI: 10.1093/glycob/cwi083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many mannose-binding proteins inhibit divergent strains of human immunodeficiency virus type 1 (HIV-1) in in vitro models of viral infectivity, suggesting that targeting mannose residues in vaccine applications might offset the strain restriction typically observed in antibody responses to HIV vaccine preparations. Concanavalin A (ConA) behaves like neutralizing antibodies that do not interfere with CD4 binding of gp120 but rather with later events in virus entry. The design of mannose-based vaccines, therefore, depends on understanding the mode of binding of ConA to the envelope protein in comparison with other mannose-binding proteins. Here, we further compare the binding affinity and fine specificity of ConA for the envelope protein to that of the human antibody 2G12. The 2G12 antibody is of unusual structure recognizing a cluster of 12 linked mannose residues associated with Man9GlcNAc2. Molecular structure comparison for Man9GlcNAc2 recognition by ConA and 2G12 indicates that 2G12 has a more restricted specificity to high mannose glycans of gp120 which correlates with kinetic analysis assessed by surface plasmon resonance (SPR) and ConA inhibits 2G12 binding to gp120 but 2G12 does not inhibit ConA binding to gp120. ConA binding to Env proteins from four different HIV strains proves significantly less sensitive to mutations in the glycosylation sites than 2G12 binding to the proteins. Thus, antibodies directed toward mannose epitopes reactive with ConA may prove to be more effective in the long run to thwart HIV infection and transmission.
Collapse
Affiliation(s)
- Anastas Pashov
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | |
Collapse
|
41
|
Botos I, Wlodawer A. Proteins that bind high-mannose sugars of the HIV envelope. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:233-82. [PMID: 15572157 DOI: 10.1016/j.pbiomolbio.2004.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A broad range of proteins bind high-mannose carbohydrates found on the surface of the envelope protein gp120 of the human immunodeficiency virus and thus interfere with the viral life cycle, providing a potential new way of controlling HIV infection. These proteins interact with the carbohydrate moieties in different ways. A group of them interacts as typical C-type lectins via a Ca2+ ion. Another group interacts with specific single, terminal sugars, without the help of a metal cation. A third group is involved in more intimate interactions, with multiple carbohydrate rings and no metal ion. Finally, there is a group of lectins for which the interaction mode has not yet been elucidated. This review summarizes, principally from a structural point of view, the current state of knowledge about these high-mannose binding proteins and their mode of sugar binding.
Collapse
Affiliation(s)
- Istvan Botos
- Macromolecular Crystallography Laboratory, National Cancer Institute, NCI-Frederick, Building 536, Room 5, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
42
|
Laederach A, Reilly PJ. Specific empirical free energy function for automated docking of carbohydrates to proteins. J Comput Chem 2003; 24:1748-57. [PMID: 12964193 DOI: 10.1002/jcc.10288] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present an automated docking protocol specifically optimized to predict the structure and affinity of a protein-carbohydrate complex. A scoring function was developed based on a training set of 30 protein-carbohydrate complexes of known structure and affinity. Combinations of several models for hydrogen bonding, torsional entropy loss, and solvation were tested for their ability to fit the training set data, and the best model was used with AutoDock. The electrostatic empirical coefficient is larger than in a previously obtained model using a training set comprised of various types of protein-ligand complexes, indicating that electrostatic interactions play a more important role in determining the affinity between a carbohydrate and a protein. The differences in the relative weighting of the empirical coefficients in the model yields predicted free energies for the training set with a standard error of 1.403 kcal/mol. The new scoring function was tested on 17 Aspergillus niger glucoamylase inhibitors for which binding energies had been determined experimentally. Free energies of complex formation were predicted with a residual standard error of 1.101 kcal/mol. The new scoring function therefore provides a robust method for predicting free energies of formation and optimal conformations of carbohydrate-protein complexes.
Collapse
Affiliation(s)
- Alain Laederach
- Department of Chemical Engineering, Iowa State University, 2114 Sweeney Hall, Ames, IA 50011, USA
| | | |
Collapse
|
43
|
Dam TK, Brewer CF. Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem Rev 2002; 102:387-429. [PMID: 11841248 DOI: 10.1021/cr000401x] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarun K Dam
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
44
|
Alonso-Plaza JM, Canales MA, Jiménez M, Roldán JL, García-Herrero A, Iturrino L, Asensio JL, Cañada FJ, Romero A, Siebert HC, André S, Solís D, Gabius HJ, Jiménez-Barbero J. NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and beta-galactosyl xyloses to mistletoe lectin and galectin-1. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:225-36. [PMID: 11786229 DOI: 10.1016/s0304-4165(01)00224-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hallmark of oligosaccharides is their often limited spatial flexibility, allowing them to access a distinct set of conformers in solution. Viewing each individual or even the complete ensemble of conformations as potential binding partner(s) for lectins in protein-carbohydrate interactions, it is pertinent to address the question on the characteristics of bound state conformation(s) in solution. Also, it is possible that entering the lectin's binding site distorts the low-energy topology of a glycosidic linkage. As a step to delineate the strategy of ligand selection for galactosides, a common physiological docking point, we have performed a NMR study on two non-homologous lectins showing identical monosaccharide specificity. Thus, the conformation of lactose analogues bound to bovine heart galectin-1 and to mistletoe lectin in solution has been determined by transferred nuclear Overhauser effect measurements. It is demonstrated that the lectins select the syn conformation of lactose and various structural analogues (Galbeta(1-->4)Xyl, Galbeta(1-->3)Xyl, Galbeta(1-->2)Xyl, and Galbeta(1-->3)Glc) from the ensemble of presented conformations. No evidence for conformational distortion was obtained. Docking of the analogues to the modeled binding sites furnishes explanations, in structural terms, for exclusive recognition of the syn conformer despite the non-homologous design of the binding sites.
Collapse
|
45
|
Bryce RA, Hillier IH, Naismith JH. Carbohydrate-protein recognition: molecular dynamics simulations and free energy analysis of oligosaccharide binding to concanavalin A. Biophys J 2001; 81:1373-88. [PMID: 11509352 PMCID: PMC1301617 DOI: 10.1016/s0006-3495(01)75793-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Carbohydrate ligands are important mediators of biomolecular recognition. Microcalorimetry has found the complex-type N-linked glycan core pentasaccharide beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man to bind to the lectin, Concanavalin A, with almost the same affinity as the trimannoside, Man-alpha-(1-->6)-[Man-alpha-(1-->3)]-Man. Recent determination of the structure of the pentasaccharide complex found a glycosidic linkage psi torsion angle to be distorted by 50 degrees from the NMR solution value and perturbation of some key mannose-protein interactions observed in the structures of the mono- and trimannoside complexes. To unravel the free energy contributions to binding and to determine the structural basis for this degeneracy, we present the results of a series of nanosecond molecular dynamics simulations, coupled to analysis via the recently developed MM-GB/SA approach (Srinivasan et al., J. Am. Chem. Soc. 1998, 120:9401-9409). These calculations indicate that the strength of key mannose-protein interactions at the monosaccharide site is preserved in both the oligosaccharides. Although distortion of the pentasaccharide is significant, the principal factor in reduced binding is incomplete offset of ligand and protein desolvation due to poorly matched polar interactions. This analysis implies that, although Concanavalin A tolerates the additional 6 arm GlcNAc present in the pentasaccharide, it does not serve as a key recognition determinant.
Collapse
Affiliation(s)
- R A Bryce
- School of Pharmacy and Pharmaceutical Sciences, United Kingdom.
| | | | | |
Collapse
|
46
|
Cunto-Amesty G, Dam TK, Luo P, Monzavi-Karbassi B, Brewer CF, Van Cott TC, Kieber-Emmons T. Directing the immune response to carbohydrate antigens. J Biol Chem 2001; 276:30490-8. [PMID: 11384987 DOI: 10.1074/jbc.m103257200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptide mimetics may substitute for carbohydrate antigens in vaccine design applications. At present, the structural and immunological aspects of antigenic mimicry, which translate into immunologic mimicry, as well as the functional correlates of each, are unknown. In contrast to screening peptide display libraries, we demonstrate the feasibility of a structure-assisted vaccine design approach to identify functional mimeotopes. By using concanavalin A (ConA), as a recognition template, peptide mimetics reactive with ConA were identified. Designed peptides were observed to compete with synthetic carbohydrate probes for ConA binding, as demonstrated by enzyme-linked immunosorbent assay and isothermal titration calorimetry (ITC) analysis. ITC measurements indicate that a multivalent form of one particular mimetic binds to ConA with similar affinity as does trimannoside. Splenocytes from mimeotope-immunized mice display a peptide-specific cellular response, confirming a T-cell-dependent nature for the mimetic. As ConA binds to the Envelope protein of the human immunodeficiency virus, type 1 (HIV-1), we observed that mimeotope-induced serum also binds to HIV-1-infected cells, as assessed by flow cytometry, and could neutralize T-cell line adapted HIV-1 isolates in vitro, albeit at low titers. These studies emphasize that mimicry is based more upon functional rather than structural determinants that regulate mimeotope-induced T-dependent antibody responses to polysaccharide and emphasize that rational approaches can be employed to develop further vaccine candidates.
Collapse
Affiliation(s)
- G Cunto-Amesty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Sanders DA, Moothoo DN, Raftery J, Howard AJ, Helliwell JR, Naismith JH. The 1.2 A resolution structure of the Con A-dimannose complex. J Mol Biol 2001; 310:875-84. [PMID: 11453694 DOI: 10.1006/jmbi.2001.4806] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complex between concanavalin A (Con A) and alpha1-2 mannobiose (mannose alpha1-2 mannose) has been refined to 1.2 A resolution. This is the highest resolution structure reported for any sugar-lectin complex. As the native structure of Con A to 0.94 A resolution is already in the database, this gives us a unique opportunity to examine sugar-protein binding at high resolution. These data have allowed us to model a number of hydrogen atoms involved in the binding of the sugar to Con A, using the difference density map to place the hydrogen atoms. This map reveals the presence of the protonated form of Asp208 involved in binding. Asp208 is not protonated in the 0.94 A native structure. Our results clearly show that this residue is protonated and hydrogen bonds to the sugar. The structure accounts for the higher affinity of the alpha1-2 linked sugar when compared to other disaccharides. This structure identifies different interactions to those predicted by previous modelling studies. We believe that the additional data presented here will enable significant improvements to be made to the sugar-protein modelling algorithms.
Collapse
Affiliation(s)
- D A Sanders
- Biomolecular Sciences, The University, St. Andrews, KY16 9ST, Scotland
| | | | | | | | | | | |
Collapse
|
48
|
Kelleher DJ, Karaoglu D, Gilmore R. Large-scale isolation of dolichol-linked oligosaccharides with homogeneous oligosaccharide structures: determination of steady-state dolichol-linked oligosaccharide compositions. Glycobiology 2001; 11:321-33. [PMID: 11358881 DOI: 10.1093/glycob/11.4.321] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dolichol-linked oligosaccharide donor (Glc(3)Man(9)GlcNAc(2)-PP-Dol) for N-linked glycosylation of proteins is assembled in a series of reactions that initiate on the cytoplasmic face of the rough endoplasmic reticulum and terminate within the lumen. The biochemical analysis of the oligosaccharyltransferase and the glycosyltransferases that mediate assembly of dolichol-linked oligosaccharides (OS-PP-Dol) has been hindered by the lack of structurally homogeneous substrate preparations. We have developed an improved method for the preparative-scale isolation of dolichol-linked oligosaccharides from vertebrate tissues and yeast cells. Preparations that were highly enriched in either Glc(3)Man(9)GlcNAc(2)-PP-Dol or Man(9)GlcNAc(2)-PP-Dol were obtained from porcine pancreas and a Man(5)GlcNAc(2)-PP-Dol preparation was obtained from an alg3 yeast culture. Chromatography of the OS-PP-Dol preparations on an aminopropyl silica column was used to obtain dolichol-linked oligosaccharides with defined structures. A single chromatography step could achieve near-baseline resolution of dolichol-linked oligosaccharides that differed by one sugar residue. A sensitive oligosaccharyltransferase endpoint assay was used to determine the concentration and composition of the OS-PP-Dol preparations. Typical yields of Glc(3)Man(9)GlcNAc(2)-PP-Dol, Man(9)GlcNAc(2)-PP-Dol, and Man(5)GlcNAc(2)-PP-Dol ranged between 5 and 15 nmol per chromatographic run. The homogeneity of these preparations ranged between 85 and 98% with respect to oligosaccharide composition. Purification of dolichol-linked oligosaccharides from cultures of alg mutant yeast strains provides a general method to obtain authentic OS-PP-Dol assembly intermediates of high purity. The analytical methods described here can be used to accurately evaluate the steady-state dolichol-linked oligosaccharide compositions of wild-type and mutant cell lines.
Collapse
Affiliation(s)
- D J Kelleher
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655-0103, USA
| | | | | |
Collapse
|
49
|
Blankenfeldt W, Asuncion M, Lam JS, Naismith JH. The structural basis of the catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). EMBO J 2000; 19:6652-63. [PMID: 11118200 PMCID: PMC305900 DOI: 10.1093/emboj/19.24.6652] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2000] [Revised: 10/26/2000] [Accepted: 10/27/2000] [Indexed: 11/14/2022] Open
Abstract
The synthesis of deoxy-thymidine di-phosphate (dTDP)-L-rhamnose, an important component of the cell wall of many microorganisms, is a target for therapeutic intervention. The first enzyme in the dTDP-L-rhamnose biosynthetic pathway is glucose-1-phosphate thymidylyltransferase (RmlA). RmlA is inhibited by dTDP-L-rhamnose thereby regulating L-rhamnose production in bacteria. The structure of Pseudomonas aeruginosa RmlA has been solved to 1.66 A resolution. RmlA is a homotetramer, with the monomer consisting of three functional subdomains. The sugar binding and dimerization subdomains are unique to RmlA-like enzymes. The sequence of the core subdomain is found not only in sugar nucleotidyltransferases but also in other nucleotidyltransferases. The structures of five distinct enzyme substrate- product complexes reveal the enzyme mechanism that involves precise positioning of the nucleophile and activation of the electrophile. All the key residues are within the core subdomain, suggesting that the basic mechanism is found in many nucleotidyltransferases. The dTDP-L-rhamnose complex identifies how the protein is controlled by its natural inhibitor. This work provides a platform for the design of novel drugs against pathogenic bacteria.
Collapse
Affiliation(s)
- W Blankenfeldt
- The Centre for Biomolecular Sciences, The University, St Andrews, KY16 9ST, UK
| | | | | | | |
Collapse
|
50
|
Imberty A, Pérez S. Structure, conformation, and dynamics of bioactive oligosaccharides: theoretical approaches and experimental validations. Chem Rev 2000; 100:4567-88. [PMID: 11749358 DOI: 10.1021/cr990343j] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A Imberty
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS, affiliated with Joseph Fourier Université), 601 rue de la Chimie, BP 53, F-38041 Grenoble Cedex 9
| | | |
Collapse
|