1
|
Shang E, Tu Q, Yu Z, Ding Z. Cell wall dynamic changes and signaling during plant lateral root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:632-648. [PMID: 39878232 DOI: 10.1111/jipb.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Lateral roots (LRs), are an important component of plant roots, playing a crucial role in anchoring the plant in the soil and facilitating the uptake of water and nutrients. As post-embryonic organs, LRs originate from the pericycle cells of the primary root, and their formation is characterized by precise regulation of cell division and complex intercellular interactions, both of which are closely tied to cell wall regulation. Considering the rapid advances in molecular techniques over the past three decades, we reframe the understanding of the dynamic change in cell wall during LR development by summarizing the factors that precipitate these changes and their effects, as well as the regulated signals involved. Additionally, we discuss current challenges in this field and propose potential solutions.
Collapse
Affiliation(s)
- Erlei Shang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Quintana-Escobar AO, Méndez-Hernández HA, De-la-Peña C, Loyola-Vargas VM. Beyond the surface: the plant secretome as a bridge between the cell and its environment. PLANTA 2025; 261:67. [PMID: 40000454 DOI: 10.1007/s00425-025-04648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
MAIN CONCLUSIONS We describe the biological importance of proteins secreted in plants under different conditions and biological processes, the secretion mechanisms, methodologies for obtaining and identifying these proteins, and future perspectives. Molecule secretion inside and outside the cell is relevant to all areas of plant biology. Protein secretion, in particular, has intriguing possibilities due to the different secretion pathways that the cell uses to send biochemical messages. The secretion of proteins-secretomes-into extracellular space in response to different stimuli or stress situations, in vitro or in planta conditions, has been studied in plants and plant tissues. Proteomics has allowed the quantitative and qualitative analysis of this process and the measurement of proteins associated with the cellular development of different tissues. This has provided the means of evaluating a more precise biochemical state of the cells and the changes that occur during their growth. With the development of new techniques in proteomics, such as mass spectrometry, sequencing, and bioinformatics, it is now possible to elucidate the main proteins secreted, with all their posttranslational modifications, in different plant species and under different specific conditions. This review presents the different pathways of protein secretion in plants, highlighting the well-known importance of signal peptides. The advances and disadvantages of in planta and in vitro systems used for proteomic purposes are discussed. The principal proteomic techniques to better understand the biological function of the secretome are summarized.
Collapse
Affiliation(s)
- Ana O Quintana-Escobar
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Hugo A Méndez-Hernández
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Clelia De-la-Peña
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Víctor M Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Biología Integrativa, Calle 43 #130 X 32 y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México.
| |
Collapse
|
3
|
Bhandari DD, Brandizzi F. Linking secretion and cytoskeleton in immunity- a case for Arabidopsis TGNap1. Bioessays 2024; 46:e2400150. [PMID: 39302180 DOI: 10.1002/bies.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
In plants, robust defense depends on the efficient and resilient trafficking supply chains to the site of pathogen attack. Though the importance of intracellular trafficking in plant immunity has been well established, a lack of clarity remains regarding the contribution of the various trafficking pathways in transporting immune-related proteins. We have recently identified a trans-Golgi network protein, TGN-ASSOCIATED PROTEIN 1 (TGNap1), which functionally links post-Golgi vesicles with the cytoskeleton to transport immunity-related proteins in the model plant species Arabidopsis thaliana. We propose new hypotheses on the various functional implications of TGNap1 and then elaborate on the surprising heterogeneity of TGN vesicles during immunity revealed by the discovery of TGNap1 and other TGN-associated proteins in recent years.
Collapse
Affiliation(s)
- Deepak D Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Hoffmann N, McFarlane HE. Xyloglucan side chains enable polysaccharide secretion to the plant cell wall. Dev Cell 2024; 59:2609-2625.e8. [PMID: 38971156 DOI: 10.1016/j.devcel.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Plant cell walls are essential for growth. The cell wall hemicellulose xyloglucan (XyG) is produced in the Golgi apparatus before secretion. Loss of the Arabidopsis galactosyltransferase MURUS3 (MUR3) decreases XyG d-galactose side chains and causes intracellular aggregations and dwarfism. It is unknown how changing XyG synthesis can broadly impact organelle organization and growth. We show that intracellular aggregations are not unique to mur3 and are found in multiple mutant lines with reduced XyG D-galactose side chains. mur3 aggregations disrupt subcellular trafficking and induce formation of intracellular cell-wall-like fragments. Addition of d-galacturonic acid onto XyG can restore growth and prevent mur3 aggregations. These results indicate that the presence, but not the composition, of XyG side chains is essential, likely by ensuring XyG solubility. Our results suggest that XyG polysaccharides are synthesized in a highly substituted form for efficient secretion and then later modified by cell-wall-localized enzymes to fine-tune cell wall properties.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
5
|
Ricardi MM, Wallmeroth N, Cermesoni C, Mehlhorn DG, Richter S, Zhang L, Mittendorf J, Godehardt I, Berendzen KW, von Roepenack-Lahaye E, Stierhof YD, Lipka V, Jürgens G, Grefen C. A tyrosine phospho-switch within the Longin domain of VAMP721 modulates SNARE functionality. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1633-1651. [PMID: 37659090 DOI: 10.1111/tpj.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.
Collapse
Affiliation(s)
- Martiniano Maria Ricardi
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Niklas Wallmeroth
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
| | - Cecilia Cermesoni
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Sandra Richter
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
- University of Tübingen, ZMBP Central Facilities, Tübingen, Germany
| | - Lei Zhang
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Josephine Mittendorf
- University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Göttingen, Germany
| | - Ingeborg Godehardt
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | | | | | | | - Volker Lipka
- University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Göttingen, Germany
| | - Gerd Jürgens
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
| | - Christopher Grefen
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| |
Collapse
|
6
|
Kim SJ, Brandizzi F. Microscopy and Immunocytochemistry-Based Methods to Study Cell Wall Biosynthetic Enzymes in the Golgi. Methods Mol Biol 2022; 2557:39-51. [PMID: 36512208 DOI: 10.1007/978-1-0716-2639-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Golgi apparatus has essential roles in all eukaryotic cells, and its importance in plants is further exemplified by a critical role in building a cellulosic cell wall. The Golgi apparatus houses numerous cell wall-synthesizing or cell wall-modifying enzymes to generate the complex cell wall structure. However, several putative cell wall biosynthetic candidates await characterization, which requires verification of the subcellular localization and enzymatic products. Here, we describe detailed methods to analyze the localization of proteins that are transiently produced in tobacco leaves or stably produced in transgenic plants, by confocal microscopy using fluorescent-tagged proteins along with known Golgi markers or the trafficking inhibitor brefeldin A. We also detail a procedure to analyze the enzymatic products through antibody-based immunoblotting after cell wall enrichment.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.,MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA. .,Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA. .,MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Herburger K, Głazowska S, Mravec J. Bricks out of the wall: polysaccharide extramural functions. TRENDS IN PLANT SCIENCE 2022; 27:1231-1241. [PMID: 35989161 DOI: 10.1016/j.tplants.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Plant polysaccharides are components of plant cell walls and/or store energy. However, this oversimplified classification neglects the fact that some cell wall polysaccharides and glycoproteins can localize outside the relatively sharp boundaries of the apoplastic moiety, where they adopt functions not directly related to the cell wall. Such polysaccharide multifunctionality (or 'moonlighting') is overlooked in current research, and in most cases the underlying mechanisms that give rise to unconventional ex muro trafficking, targeting, and functions of polysaccharides and glycoproteins remain elusive. This review highlights major examples of the extramural occurrence of various glycan cell wall components, discusses the possible significance and implications of these phenomena for plant physiology, and lists exciting open questions to be addressed by future research.
Collapse
Affiliation(s)
- Klaus Herburger
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| |
Collapse
|
8
|
Xin P, Schier J, Šefrnová Y, Kulich I, Dubrovsky JG, Vielle-Calzada JP, Soukup A. The Arabidopsis TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE (TTL) family members are involved in root system formation via their interaction with cytoskeleton and cell wall remodeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:946-965. [PMID: 36270031 DOI: 10.1111/tpj.15980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 05/21/2023]
Abstract
Lateral roots (LR) are essential components of the plant edaphic interface; contributing to water and nutrient uptake, biotic and abiotic interactions, stress survival, and plant anchorage. We have identified the TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 3 (TTL3) gene as being related to LR emergence and later development. Loss of function of TTL3 leads to a reduced number of emerged LR due to delayed development of lateral root primordia (LRP). This trait is further enhanced in the triple mutant ttl1ttl3ttl4. TTL3 interacts with microtubules and endomembranes, and is known to participate in the brassinosteroid (BR) signaling pathway. Both ttl3 and ttl1ttl3ttl4 mutants are less sensitive to BR treatment in terms of LR formation and primary root growth. The ability of TTL3 to modulate biophysical properties of the cell wall was established under restrictive conditions of hyperosmotic stress and loss of root growth recovery, which was enhanced in ttl1ttl3ttl4. Timing and spatial distribution of TTL3 expression is consistent with its role in development of LRP before their emergence and subsequent growth of LR. TTL3 emerged as a component of the root system morphogenesis regulatory network.
Collapse
Affiliation(s)
- Pengfei Xin
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Jakub Schier
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Yvetta Šefrnová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad, 2001, Cuernavaca, 62250, Morelos, Mexico
| | - Jean-Philippe Vielle-Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, Mexico
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Vinicna 5, 128 44, Prague 2, Czech Republic
| |
Collapse
|
9
|
Jiang H, Ren Y, Guo J, Yang H, Zhu X, Li W, Tao L, Zhan Y, Wang Q, Wu Y, Liu B, Ye Y. CEF3 is involved in membrane trafficking and essential for secondary cell wall biosynthesis and its mutation enhanced biomass enzymatic saccharification in rice. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:111. [PMID: 36242043 PMCID: PMC9569061 DOI: 10.1186/s13068-022-02205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Background As one of the most important staple food crops, rice produces large of agronomic biomass residues that contain lots of secondary cell walls (SCWs). Membrane trafficking plays key roles in SCWs biosynthesis, but information association membrane trafficking and SCWs formation in plants is limited. Results In this study, we report the function characterization of a rice mutant, culm easily fragile 3 (cef3), that exhibits growth retardation and fragile culm phenotype with significantly altered cell wall composition and reduced secondary wall thickness. Map-based cloning revealed that CEF3 encodes a homologous protein of Arabidopsis STOMATAL CYTOKINESIS DEFECTIVE2 (SCD2). The saccharification assays revealed that CEF3 mutation can improve biomass enzymatic saccharification. Expression pattern analysis indicated that CEF3 is ubiquitously expressed in many organs at different developmental stages. Subcellular localization revealed that CEF3 is a Golgi-localized protein. The FM4-64 uptake assay revealed CEF3 is involved in endocytosis. Furthermore, mutation of CEF3 not only affected cellulose synthesis-related genes expression, but also altered the abundance of cellulose synthase catalytic subunit 9 (OsCESA9) in the PM and in the endomembrane systems. Conclusions This study has demonstrated that CEF3 participates in the membrane trafficking that is essential for normal cellulose and other polysaccharides biosynthesis of the secondary cell wall, thereby manipulation of CEF3 could alter cellulose content and enhance biomass enzymatic saccharification in rice plants. Therefore, the study of the function of CEF3 can provide a strategy for genetic modification of SCWs in bioenergy crops. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02205-y.
Collapse
Affiliation(s)
- Hongrui Jiang
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Yan Ren
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Junyao Guo
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Huijie Yang
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Xiaotong Zhu
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Wenhao Li
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Liangzhi Tao
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Yue Zhan
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Qi Wang
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Yuejin Wu
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Binmei Liu
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Yafeng Ye
- grid.9227.e0000000119573309Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China ,grid.9227.e0000000119573309Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| |
Collapse
|
10
|
Gorelova V. A roadmap of plant clathrin-mediated vesicle trafficking. THE PLANT CELL 2022; 34:2106-2107. [PMID: 35348757 PMCID: PMC9134048 DOI: 10.1093/plcell/koac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Vera Gorelova
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen 6700 HB, The Netherlands
| |
Collapse
|
11
|
Zhang W, Staiger CJ. Revising the Role of Cortical Cytoskeleton during Secretion: Actin and Myosin XI Function in Vesicle Tethering. Int J Mol Sci 2021; 23:317. [PMID: 35008741 PMCID: PMC8745698 DOI: 10.3390/ijms23010317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
In plants, secretion of cell wall components and membrane proteins plays a fundamental role in growth and development as well as survival in diverse environments. Exocytosis, as the last step of the secretory trafficking pathway, is a highly ordered and precisely controlled process involving tethering, docking, and fusion of vesicles at the plasma membrane (PM) for cargo delivery. Although the exocytic process and machinery are well characterized in yeast and animal models, the molecular players and specific molecular events that underpin late stages of exocytosis in plant cells remain largely unknown. Here, by using the delivery of functional, fluorescent-tagged cellulose synthase (CESA) complexes (CSCs) to the PM as a model system for secretion, as well as single-particle tracking in living cells, we describe a quantitative approach for measuring the frequency of vesicle tethering events. Genetic and pharmacological inhibition of cytoskeletal function, reveal that the initial vesicle tethering step of exocytosis is dependent on actin and myosin XI. In contrast, treatments with the microtubule inhibitor, oryzalin, did not significantly affect vesicle tethering or fusion during CSC exocytosis but caused a minor increase in transient or aborted tethering events. With data from this new quantitative approach and improved spatiotemporal resolution of single particle events during secretion, we generate a revised model for the role of the cortical cytoskeleton in CSC trafficking.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Klink VP, Darwish O, Alkharouf NW, Lawaju BR, Khatri R, Lawrence KS. Conserved oligomeric Golgi (COG) complex genes functioning in defense are expressed in root cells undergoing a defense response to a pathogenic infection and exhibit regulation my MAPKs. PLoS One 2021; 16:e0256472. [PMID: 34437620 PMCID: PMC8389442 DOI: 10.1371/journal.pone.0256472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The conserved oligomeric Golgi (COG) complex maintains correct Golgi structure and function during retrograde trafficking. Glycine max has 2 paralogs of each COG gene, with one paralog of each gene family having a defense function to the parasitic nematode Heterodera glycines. Experiments presented here show G. max COG paralogs functioning in defense are expressed specifically in the root cells (syncytia) undergoing the defense response. The expressed defense COG gene COG7-2-b is an alternate splice variant, indicating specific COG variants are important to defense. Transcriptomic experiments examining RNA isolated from COG overexpressing and RNAi roots show some COG genes co-regulate the expression of other COG complex genes. Examining signaling events responsible for COG expression, transcriptomic experiments probing MAPK overexpressing roots show their expression influences the relative transcript abundance of COG genes as compared to controls. COG complex paralogs are shown to be found in plants that are agriculturally relevant on a world-wide scale including Manihot esculenta, Zea mays, Oryza sativa, Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Brassica rapa, Elaes guineensis and Saccharum officinalis and in additional crops significant to U.S. agriculture including Beta vulgaris, Solanum tuberosum, Solanum lycopersicum and Gossypium hirsutum. The analyses provide basic information on COG complex biology, including the coregulation of some COG genes and that MAPKs functioning in defense influence their expression. Furthermore, it appears in G. max and likely other crops that some level of neofunctionalization of the duplicated genes is occurring. The analysis has identified important avenues for future research broadly in plants.
Collapse
Affiliation(s)
- Vincent P. Klink
- USDA ARS NEA BARC Molecular Plant Pathology Laboratory, Beltsville, MD, United States of America
| | - Omar Darwish
- Department of Mathematics Computer Science, Texas Woman’s University, Denton, TX, United States of America
| | - Nadim W. Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD, United States of America
| | - Bisho R. Lawaju
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| | - Rishi Khatri
- Department of Biological Sciences, Mississippi State University, Mississippi, MS, United States of America
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
13
|
Zhang W, Huang L, Zhang C, Staiger CJ. Arabidopsis myosin XIK interacts with the exocyst complex to facilitate vesicle tethering during exocytosis. THE PLANT CELL 2021; 33:2454-2478. [PMID: 33871640 PMCID: PMC8364239 DOI: 10.1093/plcell/koab116] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/13/2021] [Indexed: 05/17/2023]
Abstract
Myosin motors are essential players in secretory vesicle trafficking and exocytosis in yeast and mammalian cells; however, similar roles in plants remain a matter for debate, at least for diffusely growing cells. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) myosin XIK, via its globular tail domain (GTD), participates in the vesicle tethering step of exocytosis through direct interactions with the exocyst complex. Specifically, myosin XIK GTD bound directly to several exocyst subunits in vitro and functional fluorescently tagged XIK colocalized with multiple exocyst subunits at plasma membrane (PM)-associated stationary foci. Moreover, genetic and pharmacological inhibition of myosin XI activity reduced the rate of appearance and lifetime of stationary exocyst complexes at the PM. By tracking single exocytosis events of cellulose synthase (CESA) complexes with high spatiotemporal resolution imaging and pair-wise colocalization of myosin XIK, exocyst subunits, and CESA6, we demonstrated that XIK associates with secretory vesicles earlier than exocyst and is required for the efficient localization and normal dynamic behavior of exocyst complex at the PM tethering site. This study reveals an important functional role for myosin XI in secretion and provides insights about the dynamic regulation of exocytosis in plants.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
- Author for correspondence:
| |
Collapse
|
14
|
De la Rubia AG, Mélida H, Centeno ML, Encina A, García-Angulo P. Immune Priming Triggers Cell Wall Remodeling and Increased Resistance to Halo Blight Disease in Common Bean. PLANTS 2021; 10:plants10081514. [PMID: 34451558 PMCID: PMC8401974 DOI: 10.3390/plants10081514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
The cell wall (CW) is a dynamic structure extensively remodeled during plant growth and under stress conditions, however little is known about its roles during the immune system priming, especially in crops. In order to shed light on such a process, we used the Phaseolus vulgaris-Pseudomonas syringae (Pph) pathosystem and the immune priming capacity of 2,6-dichloroisonicotinic acid (INA). In the first instance we confirmed that INA-pretreated plants were more resistant to Pph, which was in line with the enhanced production of H2O2 of the primed plants after elicitation with the peptide flg22. Thereafter, CWs from plants subjected to the different treatments (non- or Pph-inoculated on non- or INA-pretreated plants) were isolated to study their composition and properties. As a result, the Pph inoculation modified the bean CW to some extent, mostly the pectic component, but the CW was as vulnerable to enzymatic hydrolysis as in the case of non-inoculated plants. By contrast, the INA priming triggered a pronounced CW remodeling, both on the cellulosic and non-cellulosic polysaccharides, and CW proteins, which resulted in a CW that was more resistant to enzymatic hydrolysis. In conclusion, the increased bean resistance against Pph produced by INA priming can be explained, at least partially, by a drastic CW remodeling.
Collapse
|
15
|
De Caroli M, Manno E, Piro G, Lenucci MS. Ride to cell wall: Arabidopsis XTH11, XTH29 and XTH33 exhibit different secretion pathways and responses to heat and drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:448-466. [PMID: 33932060 PMCID: PMC8453972 DOI: 10.1111/tpj.15301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 05/09/2023]
Abstract
The xyloglucan endotransglucosylase/hydrolases (XTHs) are enzymes involved in cell wall assembly and growth regulation, cleaving and re-joining hemicellulose chains in the xyloglucan-cellulose network. Here, in a homologous system, we compare the secretion patterns of XTH11, XTH33 and XTH29, three members of the Arabidopsis thaliana XTH family, selected for the presence (XTH11 and XTH33) or absence (XTH29) of a signal peptide, and the presence of a transmembrane domain (XTH33). We show that XTH11 and XTH33 reached, respectively, the cell wall and plasma membrane through a conventional protein secretion (CPS) pathway, whereas XTH29 moves towards the apoplast following an unconventional protein secretion (UPS) mediated by exocyst-positive organelles (EXPOs). All XTHs share a common C-terminal functional domain (XET-C) that, for XTH29 and a restricted number of other XTHs (27, 28 and 30), continues with an extraterminal region (ETR) of 45 amino acids. We suggest that this region is necessary for the correct cell wall targeting of XTH29, as the ETR-truncated protein never reaches its final destination and is not recruited by EXPOs. Furthermore, quantitative real-time polymerase chain reaction analyses performed on 4-week-old Arabidopsis seedlings exposed to drought and heat stress suggest a different involvement of the three XTHs in cell wall remodeling under abiotic stress, evidencing stress-, organ- and time-dependent variations in the expression levels. Significantly, XTH29, codifying the only XTH that follows a UPS pathway, is highly upregulated with respect to XTH11 and XTH33, which code for CPS-secreted proteins.
Collapse
Affiliation(s)
- Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversità del SalentoLecce73100Italy
| | - Elisa Manno
- Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversità del SalentoLecce73100Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversità del SalentoLecce73100Italy
| | - Marcello S. Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversità del SalentoLecce73100Italy
| |
Collapse
|
16
|
Lu C, Yuan F, Guo J, Han G, Wang C, Chen M, Wang B. Current Understanding of Role of Vesicular Transport in Salt Secretion by Salt Glands in Recretohalophytes. Int J Mol Sci 2021; 22:2203. [PMID: 33672188 PMCID: PMC7926375 DOI: 10.3390/ijms22042203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Soil salinization is a serious and growing problem around the world. Some plants, recognized as the recretohalophytes, can normally grow on saline-alkali soil without adverse effects by secreting excessive salt out of the body. The elucidation of the salt secretion process is of great significance for understanding the salt tolerance mechanism adopted by the recretohalophytes. Between the 1950s and the 1970s, three hypotheses, including the osmotic potential hypothesis, the transfer system similar to liquid flow in animals, and vesicle-mediated exocytosis, were proposed to explain the salt secretion process of plant salt glands. More recently, increasing evidence has indicated that vesicular transport plays vital roles in salt secretion of recretohalophytes. Here, we summarize recent findings, especially regarding the molecular evidence on the functional roles of vesicular trafficking in the salt secretion process of plant salt glands. A model of salt secretion in salt gland is also proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (C.L.); (F.Y.); (J.G.); (G.H.); (C.W.); (M.C.)
| |
Collapse
|
17
|
Niraula PM, Zhang X, Jeremic D, Lawrence KS, Klink VP. Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines. PLoS One 2021; 16:e0244305. [PMID: 33444331 PMCID: PMC7808671 DOI: 10.1371/journal.pone.0244305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The Glycine max xyloglucan endotransglycosylase/hydrolase (EC 2.4.1.207), GmXTH43, has been identified through RNA sequencing of RNA isolated through laser microdissection of Heterodera glycines-parasitized root cells (syncytia) undergoing the process of defense. Experiments reveal that genetically increasing XTH43 transcript abundance in the H. glycines-susceptible genotype G. max[Williams 82/PI 518671] decreases parasitism. Experiments presented here show decreasing XTH43 transcript abundance through RNA interference (RNAi) in the H. glycines-resistant G. max[Peking/PI 548402] increases susceptibility, but it is unclear what role XTH43 performs. The experiments presented here show XTH43 overexpression decreases the relative length of xyloglucan (XyG) chains, however, there is an increase in the amount of those shorter chains. In contrast, XTH43 RNAi increases XyG chain length. The experiments show that XTH43 has the capability to function, when increased in its expression, to limit XyG chain extension. This outcome would likely impair the ability of the cell wall to expand. Consequently, XTH43 could provide an enzymatically-driven capability to the cell that would allow it to limit the ability of parasitic nematodes like H. glycines to develop a feeding structure that, otherwise, would facilitate parasitism. The experiments presented here provide experimentally-based proof that XTHs can function in ways that could be viewed as being able to limit the expansion of the cell wall.
Collapse
Affiliation(s)
- Prakash M. Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Xuefeng Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Dragica Jeremic
- Department of Sustainable Bioproducts, Mississippi State University, Starkville, Mississippi State, United States of America
| | - Katherine S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - Vincent P. Klink
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi State, United States of America
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, Mississippi State, United States of America
- Center for Computational Sciences High Performance Computing Collaboratory, Starkville, Mississippi State, United States of America
| |
Collapse
|
18
|
Wachsman G, Zhang J, Moreno-Risueno MA, Anderson CT, Benfey PN. Cell wall remodeling and vesicle trafficking mediate the root clock in Arabidopsis. Science 2020; 370:819-823. [PMID: 33184208 DOI: 10.1126/science.abb7250] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022]
Abstract
In Arabidopsis thaliana, lateral roots initiate in a process preceded by periodic gene expression known as the root clock. We identified the vesicle-trafficking regulator GNOM and its suppressor, ADENOSINE PHOSPHATE RIBOSYLATION FACTOR GTPase ACTIVATION PROTEIN DOMAIN3, as root clock regulators. GNOM is required for the proper distribution of pectin, a mediator of intercellular adhesion, whereas the pectin esterification state is essential for a functional root clock. In sites of lateral root primordia emergence, both esterified and de-esterified pectin variants are differentially distributed. Using a reverse-genetics approach, we show that genes controlling pectin esterification regulate the root clock and lateral root initiation. These results indicate that the balance between esterified and de-esterified pectin states is essential for proper root clock function and the subsequent initiation of lateral root primordia.
Collapse
Affiliation(s)
- Guy Wachsman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.,Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jingyuan Zhang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA. .,Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
19
|
Bhandari DD, Brandizzi F. Plant endomembranes and cytoskeleton: moving targets in immunity. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:8-16. [PMID: 33099211 DOI: 10.1016/j.pbi.2020.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Pathogens attack plant cells to divert resources toward pathogen proliferation. To resist pathogens, plant cells rely on multilayered signaling pathways that hinge upon the secretory pathway for the synthesis and trafficking of pathogen sensors and defense molecules. In recent years, significant strides have been made in the understanding of the functional relationship between pathogen response and membrane traffic. Here we discuss how the plant cytoskeleton and endomembranes are targeted by pathogen effectors and highlight an emerging role of membrane contact sites in biotic stress responses.
Collapse
Affiliation(s)
- Deepak D Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
20
|
EPSIN1 and MTV1 define functionally overlapping but molecularly distinct trans-Golgi network subdomains in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:25880-25889. [PMID: 32989160 DOI: 10.1073/pnas.2004822117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The plant trans-Golgi network (TGN) is a central trafficking hub where secretory, vacuolar, recycling, and endocytic pathways merge. Among currently known molecular players involved in TGN transport, three different adaptor protein (AP) complexes promote vesicle generation at the TGN with different cargo specificity and destination. Yet, it remains unresolved how sorting into diverging vesicular routes is spatially organized. Here, we study the family of Arabidopsis thaliana Epsin-like proteins, which are accessory proteins to APs facilitating vesicle biogenesis. By comprehensive molecular, cellular, and genetic analysis of the EPSIN gene family, we identify EPSIN1 and MODIFIED TRANSPORT TO THE VACUOLE1 (MTV1) as its only TGN-associated members. Despite their large phylogenetic distance, they perform overlapping functions in vacuolar and secretory transport. By probing their relationship with AP complexes, we find that they define two molecularly independent pathways: While EPSIN1 associates with AP-1, MTV1 interacts with AP-4, whose function is required for MTV1 recruitment. Although both EPSIN1/AP-1 and MTV1/AP-4 pairs reside at the TGN, high-resolution microscopy reveals them as spatially separate entities. Our results strongly support the hypothesis of molecularly, functionally, and spatially distinct subdomains of the plant TGN and suggest that functional redundancy can be achieved through parallelization of molecularly distinct but functionally overlapping pathways.
Collapse
|
21
|
Gavrin A, Rey T, Torode TA, Toulotte J, Chatterjee A, Kaplan JL, Evangelisti E, Takagi H, Charoensawan V, Rengel D, Journet EP, Debellé F, de Carvalho-Niebel F, Terauchi R, Braybrook S, Schornack S. Developmental Modulation of Root Cell Wall Architecture Confers Resistance to an Oomycete Pathogen. Curr Biol 2020; 30:4165-4176.e5. [PMID: 32888486 PMCID: PMC7658807 DOI: 10.1016/j.cub.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 11/26/2022]
Abstract
The cell wall is the primary interface between plant cells and their immediate environment and must balance multiple functionalities, including the regulation of growth, the entry of beneficial microbes, and protection against pathogens. Here, we demonstrate how API, a SCAR2 protein component of the SCAR/WAVE complex, controls the root cell wall architecture important for pathogenic oomycete and symbiotic bacterial interactions in legumes. A mutation in API results in root resistance to the pathogen Phytophthora palmivora and colonization defects by symbiotic rhizobia. Although api mutant plants do not exhibit significant overall growth and development defects, their root cells display delayed actin and endomembrane trafficking dynamics and selectively secrete less of the cell wall polysaccharide xyloglucan. Changes associated with a loss of API establish a cell wall architecture with altered biochemical properties that hinder P. palmivora infection progress. Thus, developmental stage-dependent modifications of the cell wall, driven by SCAR/WAVE, are important in balancing cell wall developmental functions and microbial invasion. The SCAR protein API controls actin and endomembrane trafficking dynamics SCAR proteins of several plant species can support symbiosis and pathogen infection A mutation in API affects specific biochemical properties of plant cell walls An altered wall architecture results in root resistance to Phytophthora palmivora
Collapse
Affiliation(s)
- Aleksandr Gavrin
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Thomas A Torode
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Justine Toulotte
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Abhishek Chatterjee
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Jonathan Louis Kaplan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Hiroki Takagi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Varodom Charoensawan
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Biochemistry, Faculty of Science, and Integrative Computational BioScience (ICBS) Center, Mahidol University, Bangkok 10400, Thailand
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; GeT-PlaGe, Genotoul, INRA US1426, Castanet-Tolosan Cedex, France
| | - Etienne-Pascal Journet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France; AGIR, Université de Toulouse, INRA, ENSFEA, Castanet-Tolosan 31326, France
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan 31326, France
| | | | - Ryohei Terauchi
- Iwate Biotechnology Institute, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | - Siobhan Braybrook
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Molecular, Cell, and Developmental Biology, 610 Charles E Young Drive South, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
22
|
The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proc Natl Acad Sci U S A 2020; 117:20316-20324. [PMID: 32737163 PMCID: PMC7443942 DOI: 10.1073/pnas.2007245117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plant cells have a polysaccharide-based wall that maintains their structural and functional integrity and determines their shape. Reorganization of wall components is required to allow growth and differentiation. One matrix polysaccharide that is postulated to play an important role in this reorganization is xyloglucan (XyG). While the structure of XyG is well understood, its biosynthesis is not. Through genetic studies with Arabidopsis CSLC genes, we demonstrate that they are responsible for the synthesis of the XyG glucan backbone. A quintuple cslc mutant is able to grow and develop normally but lacks detectable XyG. These results raise important questions regarding cell wall structure and its reorganization during growth. The series of cslc mutants will be valuable tools for investigating these questions. Xyloglucan (XyG) is an abundant component of the primary cell walls of most plants. While the structure of XyG has been well studied, much remains to be learned about its biosynthesis. Here we employed reverse genetics to investigate the role of Arabidopsis cellulose synthase like-C (CSLC) proteins in XyG biosynthesis. We found that single mutants containing a T-DNA in each of the five Arabidopsis CSLC genes had normal levels of XyG. However, higher-order cslc mutants had significantly reduced XyG levels, and a mutant with disruptions in all five CSLC genes had no detectable XyG. The higher-order mutants grew with mild tissue-specific phenotypes. Despite the apparent lack of XyG, the cslc quintuple mutant did not display significant alteration of gene expression at the whole-genome level, excluding transcriptional compensation. The quintuple mutant could be complemented by each of the five CSLC genes, supporting the conclusion that each of them encodes a XyG glucan synthase. Phylogenetic analyses indicated that the CSLC genes are widespread in the plant kingdom and evolved from an ancient family. These results establish the role of the CSLC genes in XyG biosynthesis, and the mutants described here provide valuable tools with which to study both the molecular details of XyG biosynthesis and the role of XyG in plant cell wall structure and function.
Collapse
|
23
|
Isolation and Glycomic Analysis of Trans-Golgi Network Vesicles in Plants. Methods Mol Biol 2020. [PMID: 32632812 DOI: 10.1007/978-1-0716-0767-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The dynamic endomembrane system facilitates sorting and transport of diverse cargo. Therefore, it is crucial for plant growth and development. Vesicle proteomic studies have made substantial progress in recent years. In contrast, much less is known about the identity of vesicle compartments that mediate the transport of polysaccharides to and from the plasma membrane and the types of sugars they selectively transport. In this chapter, we provide a detailed description of the protocol used for the elucidation of the SYP61 vesicle population glycome. Our methodology can be easily adapted to perform glycomic studies of a broad variety of plant cell vesicle populations defined via subcellular markers or different treatments.
Collapse
|
24
|
Domozych DS, Sun L, Palacio-Lopez K, Reed R, Jeon S, Li M, Jiao C, Sørensen I, Fei Z, Rose JKC. Endomembrane architecture and dynamics during secretion of the extracellular matrix of the unicellular charophyte, Penium margaritaceum. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3323-3339. [PMID: 31974570 PMCID: PMC7289721 DOI: 10.1093/jxb/eraa039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The extracellular matrix (ECM) of many charophytes, the assemblage of green algae that are the sister group to land plants, is complex, produced in large amounts, and has multiple essential functions. An extensive secretory apparatus and endomembrane system are presumably needed to synthesize and secrete the ECM, but structural details of such a system have not been fully characterized. Penium margaritaceum is a valuable unicellular model charophyte for studying secretion dynamics. We report that Penium has a highly organized endomembrane system, consisting of 150-200 non-mobile Golgi bodies that process and package ECM components into different sets of vesicles that traffic to the cortical cytoplasm, where they are transported around the cell by cytoplasmic streaming. At either fixed or transient areas, specific cytoplasmic vesicles fuse with the plasma membrane and secrete their constituents. Extracellular polysaccharide (EPS) production was observed to occur in one location of the Golgi body and sometimes in unique Golgi hybrids. Treatment of cells with brefeldin A caused disruption of the Golgi body, and inhibition of EPS secretion and cell wall expansion. The structure of the endomembrane system in Penium provides mechanistic insights into how extant charophytes generate large quantities of ECM, which in their ancestors facilitated the colonization of land.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
- Correspondence:
| | - Li Sun
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | | | - Reagan Reed
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Susan Jeon
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Mingjia Li
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| | - Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, USA
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Knoblauch J, Knoblauch M, Vasina VV, Peters WS. Sieve elements rapidly develop 'nacreous walls' following injury - a common wounding response? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:797-808. [PMID: 31883138 DOI: 10.1111/tpj.14665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Thick glistening cell walls occur in sieve tubes of all major land plant taxa. Historically, these 'nacreous walls' have been considered a diagnostic feature of sieve elements; they represent a conundrum, though, in the context of the widely accepted pressure-flow theory as they severely constrict sieve tubes. We employed the cucurbit Gerrardanthus macrorhizus as a model to study nacreous walls in sieve elements by standard and in situ confocal microscopy and electron microscopy, focusing on changes in functional sieve tubes that occur when prepared for microscopic observation. Over 90% of sieve elements in tissue sections processed for microscopy by standard methods exhibit nacreous walls. Sieve elements in whole, live plants that were actively transporting as shown by phloem-mobile tracers, lacked nacreous walls and exhibited open lumina of circular cross-sections instead, an appropriate structure for Münch-type mass flow of the cell contents. Puncturing of transporting sieve elements with micropipettes triggered the rapid (<1 min) development of nacreous walls that occluded the cell lumen almost completely. We conclude that nacreous walls are preparation artefacts rather than structural features of transporting sieve elements. Nacreous walls in land plants resemble the reversibly swellable walls found in various algae, suggesting that they may function in turgor buffering, the amelioration of osmotic stress, wounding-induced sieve tube occlusion, and possibly local defence responses of the phloem.
Collapse
Affiliation(s)
- Jan Knoblauch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164, USA
| |
Collapse
|
26
|
Lawaju BR, Niraula P, Lawrence GW, Lawrence KS, Klink VP. The Glycine max Conserved Oligomeric Golgi (COG) Complex Functions During a Defense Response to Heterodera glycines. FRONTIERS IN PLANT SCIENCE 2020; 11:564495. [PMID: 33262774 PMCID: PMC7686354 DOI: 10.3389/fpls.2020.564495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/02/2020] [Indexed: 05/07/2023]
Abstract
The conserved oligomeric Golgi (COG) complex, functioning in retrograde trafficking, is a universal structure present among eukaryotes that maintains the correct Golgi structure and function. The COG complex is composed of eight subunits coalescing into two sub-complexes. COGs1-4 compose Sub-complex A. COGs5-8 compose Sub-complex B. The observation that COG interacts with the syntaxins, suppressors of the erd2-deletion 5 (Sed5p), is noteworthy because Sed5p also interacts with Sec17p [alpha soluble NSF attachment protein (α-SNAP)]. The α-SNAP gene is located within the major Heterodera glycines [soybean cyst nematode (SCN)] resistance locus (rhg1) and functions in resistance. The study presented here provides a functional analysis of the Glycine max COG complex. The analysis has identified two paralogs of each COG gene. Functional transgenic studies demonstrate at least one paralog of each COG gene family functions in G. max during H. glycines resistance. Furthermore, treatment of G. max with the bacterial effector harpin, known to function in effector triggered immunity (ETI), leads to the induced transcription of at least one member of each COG gene family that has a role in H. glycines resistance. In some instances, altered COG gene expression changes the relative transcript abundance of syntaxin 31. These results indicate that the G. max COG complex functions through processes involving ETI leading to H. glycines resistance.
Collapse
Affiliation(s)
- Bisho Ram Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Prakash Niraula
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Gary W. Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Vincent P. Klink
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
- Center for Computational Sciences High Performance Computing Collaboratory, Mississippi State University, Starkville, MS, United States
- *Correspondence: Vincent P. Klink, ;
| |
Collapse
|
27
|
Huang L, Li X, Zhang C. Progress in using chemical biology as a tool to uncover novel regulators of plant endomembrane trafficking. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:106-113. [PMID: 31546132 DOI: 10.1016/j.pbi.2019.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/12/2019] [Accepted: 07/09/2019] [Indexed: 05/20/2023]
Abstract
The regulated dynamic transport of materials among organelles through endomembrane trafficking pathways is essential for plant growth, development, and environmental adaptation, and thus is a major topic of plant biology research. Large-scale chemical library screens have identified small molecules that could potentially inhibit different plant endomembrane trafficking steps. Further characterization of these molecules has provided valuable tools for understanding plant endomembrane trafficking and uncovered novel regulators of trafficking processes.
Collapse
Affiliation(s)
- Lei Huang
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, United States; Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States
| | - Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, United States; Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, 915 W. State St., West Lafayette, IN, 47907, United States; Center for Plant Biology, Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, United States.
| |
Collapse
|
28
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
29
|
Wierzbicki MP, Maloney V, Mizrachi E, Myburg AA. Xylan in the Middle: Understanding Xylan Biosynthesis and Its Metabolic Dependencies Toward Improving Wood Fiber for Industrial Processing. FRONTIERS IN PLANT SCIENCE 2019; 10:176. [PMID: 30858858 PMCID: PMC6397879 DOI: 10.3389/fpls.2019.00176] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/04/2019] [Indexed: 05/14/2023]
Abstract
Lignocellulosic biomass, encompassing cellulose, lignin and hemicellulose in plant secondary cell walls (SCWs), is the most abundant source of renewable materials on earth. Currently, fast-growing woody dicots such as Eucalyptus and Populus trees are major lignocellulosic (wood fiber) feedstocks for bioproducts such as pulp, paper, cellulose, textiles, bioplastics and other biomaterials. Processing wood for these products entails separating the biomass into its three main components as efficiently as possible without compromising yield. Glucuronoxylan (xylan), the main hemicellulose present in the SCWs of hardwood trees carries chemical modifications that are associated with SCW composition and ultrastructure, and affect the recalcitrance of woody biomass to industrial processing. In this review we highlight the importance of xylan properties for industrial wood fiber processing and how gaining a greater understanding of xylan biosynthesis, specifically xylan modification, could yield novel biotechnology approaches to reduce recalcitrance or introduce novel processing traits. Altering xylan modification patterns has recently become a focus of plant SCW studies due to early findings that altered modification patterns can yield beneficial biomass processing traits. Additionally, it has been noted that plants with altered xylan composition display metabolic differences linked to changes in precursor usage. We explore the possibility of using systems biology and systems genetics approaches to gain insight into the coordination of SCW formation with other interdependent biological processes. Acetyl-CoA, s-adenosylmethionine and nucleotide sugars are precursors needed for xylan modification, however, the pathways which produce metabolic pools during different stages of fiber cell wall formation still have to be identified and their co-regulation during SCW formation elucidated. The crucial dependence on precursor metabolism provides an opportunity to alter xylan modification patterns through metabolic engineering of one or more of these interdependent pathways. The complexity of xylan biosynthesis and modification is currently a stumbling point, but it may provide new avenues for woody biomass engineering that are not possible for other biopolymers.
Collapse
Affiliation(s)
| | | | | | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
30
|
Anderson CT. Finding order in a bustling construction zone: quantitative imaging and analysis of cell wall assembly in plants. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:62-67. [PMID: 30107305 DOI: 10.1016/j.pbi.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Assembly of polysaccharide-based walls by plant cells involves the rapid synthesis, trafficking, and deposition of complex biopolymers, but how these events are controlled and coordinated to achieve a strong, resilient extracellular matrix has remained obscure for decades. Recent quantitative analyses of fluorescence microscopy data have revealed details of the trafficking and synthetic activity of cellulose synthases, and new methods for labeling matrix polymers have unveiled aspects of their regulated deposition in the wall. Detailed studies of the identity, architecture, activity, and trafficking of the proteins and protein complexes that synthesize wall polymers, combined with advances in image acquisition and analysis, will aid future efforts to dissect wall assembly.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
31
|
Rosquete MR, Drakakaki G. Plant TGN in the stress response: a compartmentalized overview. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:122-129. [PMID: 30316189 DOI: 10.1016/j.pbi.2018.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 05/10/2023]
Abstract
The cellular responses to abiotic and biotic stress rely on the regulation of vesicle trafficking to ensure the correct localization of proteins specialized in sensing stress stimuli and effecting the response. Several studies have implicated the plant trans-Golgi network (TGN)-mediated trafficking in different types of biotic and abiotic stress responses; however, the underlying molecular mechanisms are poorly understood. Further, the identity, specialization and stress-relevant cargo transported by the TGN subcompartments involved in stress responses await more in depth characterization. This review presents TGN trafficking players implicated in stress and discusses potential avenues to understand the role of this dynamic network under such extreme circumstances.
Collapse
Affiliation(s)
- Michel Ruiz Rosquete
- Department of Plant Sciences, University of California, Davis, CA 95616, United States.
| | - Georgia Drakakaki
- Department of Plant Sciences, University of California, Davis, CA 95616, United States.
| |
Collapse
|
32
|
Golgi-localized LOT regulates trans-Golgi network biogenesis and pollen tube growth. Proc Natl Acad Sci U S A 2018; 115:12307-12312. [PMID: 30413616 DOI: 10.1073/pnas.1809206115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The trans-Golgi network (TGN) is an essential tubular-vesicular organelle derived from the Golgi and functions as an independent sorting and trafficking hub within the cell. However, the molecular regulation of TGN biogenesis remains enigmatic. Here we identified an Arabidopsis mutant loss of TGN (lot) that is defective in TGN formation and sterile due to impaired pollen tube growth in the style. The mutation leads to overstacking of the Golgi cisternae and significant reduction in the number of TGNs and vesicles surrounding the Golgi in pollen, which is corroborated by the dispersed cytosolic distribution of TGN-localized proteins. Consistently, deposition of extracellular pectin and plasma membrane localization of kinases and phosphoinositide species are also impaired. Subcellular localization analysis suggests that LOT is localized on the periphery of the Golgi cisternae, but the mutation does not affect the localization of Golgi-resident proteins. Furthermore, the yeast complementation result suggests that LOT could functionally act as a component of the guanine nucleotide exchange factor (GEF) complex of small Rab GTPase Ypt6. Taken together, these findings suggest that LOT is a critical player for TGN biogenesis in the plant lineage.
Collapse
|
33
|
Yang J, Wu C, Yu Y, Mao H, Bao Y, Kang Y, Qi Z. A mongolian pine specific endoplasmic reticulum localized CALMODULIN-LIKE calcium binding protein enhances arabidopsis growth. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:1-11. [PMID: 29689429 DOI: 10.1016/j.jplph.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Stress-adapted wild plants are natural sources of novel genes for molecular breeding. Here, we conducted a transcriptional analysis of Pinus sylvestris var. mongolica Litv, an evergreen pine in northeastern China, to identify a novel CALMODULIN-LIKE protein-encoding gene, PsCML1, no significant homologs found in other plant species. PsCML1 encodes a protein predicted to have a single trans-membrane domain at its N-terminal. Four EF-hand motifs (calcium [Ca]-binding structures) are located at its C-terminal and showed Ca2+-specific affinity in isothermal titration calorimetric analysis. Transient expression of PsCML1 in Nicotiana benthamiana showed that the PsCML1 localizes to the endoplasmic reticulum (ER). Heterologous expression of PsCML1 in Arabidopsis significantly promoted seedling growth, and increased resistance to stress from NaCl and Ca2+ deficiency. The roots of the transgenic seedlings had higher contents of cellulose and pectin, but less hemicellulose than those of the wild type (WT). The biosynthesis of cell wall components is linked with protein glycosylation in the ER and reactive oxygen species (ROS) homeostasis. No significant difference was found in the extent of protein glycosylation between the transgenic and WT plants. However, the transgenic roots had higher steady-state levels of ROS, NADPH oxidase activity, and endo-membrane dynamics than those of the WT. A working model was proposed to delineate the interaction among Ca2+, ROS homeostasis, and cell wall loosening-dependent cell division.
Collapse
Affiliation(s)
- Jia Yang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China; Inner Mongolia HeSheng Institute of Ecological Sciences & Technology, Hohhot, 011517, PR China
| | - Caili Wu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yahui Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Huiping Mao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Yan Kang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Zhi Qi
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
34
|
Cole RA, Peremyslov VV, Van Why S, Moussaoui I, Ketter A, Cool R, Moreno MA, Vejlupkova Z, Dolja VV, Fowler JE. A broadly conserved NERD genetically interacts with the exocyst to affect root growth and cell expansion. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3625-3637. [PMID: 29722827 PMCID: PMC6022600 DOI: 10.1093/jxb/ery162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 05/10/2023]
Abstract
The exocyst, a conserved, octameric protein complex, helps mediate secretion at the plasma membrane, facilitating specific developmental processes that include control of root meristem size, cell elongation, and tip growth. A genetic screen for second-site enhancers in Arabidopsis identified NEW ENHANCER of ROOT DWARFISM1 (NERD1) as an exocyst interactor. Mutations in NERD1 combined with weak exocyst mutations in SEC8 and EXO70A1 result in a synergistic reduction in root growth. Alone, nerd1 alleles modestly reduce primary root growth, both by shortening the root meristem and by reducing cell elongation, but also result in a slight increase in root hair length, bulging, and rupture. NERD1 was identified molecularly as At3g51050, which encodes a transmembrane protein of unknown function that is broadly conserved throughout the Archaeplastida. A functional NERD1-GFP fusion localizes to the Golgi, in a pattern distinct from the plasma membrane-localized exocyst, arguing against a direct NERD1-exocyst interaction. Structural modeling suggests the majority of the protein is positioned in the lumen, in a β-propeller-like structure that has some similarity to proteins that bind polysaccharides. We suggest that NERD1 interacts with the exocyst indirectly, possibly affecting polysaccharides destined for the cell wall, and influencing cell wall characteristics in a developmentally distinct manner.
Collapse
Affiliation(s)
- Rex A Cole
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Valera V Peremyslov
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Savannah Van Why
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Ibrahim Moussaoui
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Ann Ketter
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Renee Cool
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Matthew Andres Moreno
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
| | - John E Fowler
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA
- Correspondence:
| |
Collapse
|
35
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
36
|
Majda M, Robert S. The Role of Auxin in Cell Wall Expansion. Int J Mol Sci 2018; 19:ijms19040951. [PMID: 29565829 PMCID: PMC5979272 DOI: 10.3390/ijms19040951] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.
Collapse
Affiliation(s)
- Mateusz Majda
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| | - Stéphanie Robert
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
37
|
Park E, Nedo A, Caplan JL, Dinesh-Kumar SP. Plant-microbe interactions: organelles and the cytoskeleton in action. THE NEW PHYTOLOGIST 2018; 217:1012-1028. [PMID: 29250789 DOI: 10.1111/nph.14959] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/10/2017] [Indexed: 05/06/2023]
Abstract
Contents Summary 1012 I. Introduction 1012 II. The endomembrane system in plant-microbe interactions 1013 III. The cytoskeleton in plant-microbe interactions 1017 IV. Organelles in plant-microbe interactions 1019 V. Inter-organellar communication in plant-microbe interactions 1022 VI. Conclusions and prospects 1023 Acknowledgements 1024 References 1024 SUMMARY: Plants have evolved a multilayered immune system with well-orchestrated defense strategies against pathogen attack. Multiple immune signaling pathways, coordinated by several subcellular compartments and interactions between these compartments, play important roles in a successful immune response. Pathogens use various strategies to either directly attack the plant's immune system or to indirectly manipulate the physiological status of the plant to inhibit an immune response. Microscopy-based approaches have allowed the direct visualization of membrane trafficking events, cytoskeleton reorganization, subcellular dynamics and inter-organellar communication during the immune response. Here, we discuss the contributions of organelles and the cytoskeleton to the plant's defense response against microbial pathogens, as well as the mechanisms used by pathogens to target these compartments to overcome the plant's defense barrier.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Alexander Nedo
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Jeffrey L Caplan
- Department of Biological Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19711, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
38
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
39
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
40
|
Dorokhov YL, Sheshukova EV, Komarova TV. Methanol in Plant Life. FRONTIERS IN PLANT SCIENCE 2018; 9:1623. [PMID: 30473703 PMCID: PMC6237831 DOI: 10.3389/fpls.2018.01623] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/18/2018] [Indexed: 05/19/2023]
Abstract
Until recently, plant-emitted methanol was considered a biochemical by-product, but studies in the last decade have revealed its role as a signal molecule in plant-plant and plant-animal communication. Moreover, methanol participates in metabolic biochemical processes during growth and development. The purpose of this review is to determine the impact of methanol on the growth and immunity of plants. Plants generate methanol in the reaction of the demethylation of macromolecules including DNA and proteins, but the main source of plant-derived methanol is cell wall pectins, which are demethylesterified by pectin methylesterases (PMEs). Methanol emissions increase in response to mechanical wounding or other stresses due to damage of the cell wall, which is the main source of methanol production. Gaseous methanol from the wounded plant induces defense reactions in intact leaves of the same and neighboring plants, activating so-called methanol-inducible genes (MIGs) that regulate plant resistance to biotic and abiotic factors. Since PMEs are the key enzymes in methanol production, their expression increases in response to wounding, but after elimination of the stress factor effects, the plant cell should return to the original state. The amount of functional PMEs in the cell is strictly regulated at both the gene and protein levels. There is negative feedback between one of the MIGs, aldose epimerase-like protein, and PME gene transcription; moreover, the enzymatic activity of PMEs is modulated and controlled by PME inhibitors (PMEIs), which are also induced in response to pathogenic attack.
Collapse
Affiliation(s)
- Yuri L. Dorokhov
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Yuri L. Dorokhov,
| | | | - Tatiana V. Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
41
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Issawi M, Muhieddine M, Girard C, Sol V, Riou C. Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition. Glycoconj J 2017; 34:585-590. [PMID: 28676909 DOI: 10.1007/s10719-017-9782-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 01/06/2023]
Abstract
This article presents a new insight about TBY-2 cells; from extracellular polysaccharides secretion to cell wall composition during cell suspension culture. In the medium of cells taken 2 days after dilution (end of lag phase), a two unit pH decrease from 5.38 to 3.45 was observed and linked to a high uronic acid (UA) amount secretion (47.8%) while, in 4 and 7 day-old spent media, pH increased and UA amounts decreased 35.6 and 42.3% UA, respectively. To attain deeper knowledge of the putative link between extracellular polysaccharide excretion and cell wall composition, we determined cell wall UA and neutral sugar composition of cells from D2 to D12 cultures. While cell walls from D2 and D3 cells contained a large amount of uronic acid (twice as much as the other analysed cell walls), similar amounts of neutral sugar were detected in cells from lag to end of exponential phase cells suggesting an enriched pectin network in young cultures. Indeed, monosaccharide composition analysis leads to an estimated percentage of pectins of 56% for D3 cell wall against 45% D7 cell walls indicating that the cells at the mid-exponential growth phase re-organized their cell wall linked to a decrease in secreted UA that finally led to a stabilization of the spent medium pH to 5.4. In conclusion, TBY-2 cell suspension from lag to stationary phase showed cell wall remodeling that could be of interest in drug interaction and internalization study.
Collapse
Affiliation(s)
- Mohammad Issawi
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Mohammad Muhieddine
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Celine Girard
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Vincent Sol
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Catherine Riou
- Laboratoire de Chimie des Substances Naturelles, Université de Limoges, EA 1069, 123 avenue Albert Thomas, 87060, Limoges, France.
| |
Collapse
|
43
|
Stavolone L, Lionetti V. Extracellular Matrix in Plants and Animals: Hooks and Locks for Viruses. Front Microbiol 2017; 8:1760. [PMID: 28955324 PMCID: PMC5600933 DOI: 10.3389/fmicb.2017.01760] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 01/15/2023] Open
Abstract
The extracellular matrix (ECM) of animal and plants cells plays important roles in viral diseases. While in animal cells extracellular matrix components can be exploited by viruses for recognition, attachment and entry, the plant cell wall acts as a physical barrier to viral entry and adds a higher level of difficulty to intercellular movement of viruses. Interestingly, both in plant and animal systems, ECM can be strongly remodeled during virus infection, and the understanding of remodeling mechanisms and molecular players offers new perspectives for therapeutic intervention. This review focuses on the different roles played by the ECM in plant and animal hosts during virus infection with special emphasis on the similarities and differences. Possible biotechnological applications aimed at improving viral resistance are discussed.
Collapse
Affiliation(s)
- Livia Stavolone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle RicercheBari, Italy.,International Institute of Tropical AgricultureIbadan, Nigeria
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie "C. Darwin", "Sapienza" Università di RomaRome, Italy
| |
Collapse
|
44
|
Padmanaban S, Czerny DD, Levin KA, Leydon AR, Su RT, Maugel TK, Zou Y, Chanroj S, Cheung AY, Johnson MA, Sze H. Transporters involved in pH and K+ homeostasis affect pollen wall formation, male fertility, and embryo development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3165-3178. [PMID: 28338823 PMCID: PMC5853877 DOI: 10.1093/jxb/erw483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/01/2016] [Indexed: 05/20/2023]
Abstract
Flowering plant genomes encode multiple cation/H+ exchangers (CHXs) whose functions are largely unknown. AtCHX17, AtCHX18, and AtCHX19 are membrane transporters that modulate K+ and pH homeostasis and are localized in the dynamic endomembrane system. Loss of function reduced seed set, but the particular phase(s) of reproduction affected was not determined. Pollen tube growth and ovule targeting of chx17chx18chx19 mutant pollen appeared normal, but reciprocal cross experiments indicate a largely male defect. Although triple mutant pollen tubes reach ovules of a wild-type pistil and a synergid cell degenerated, half of those ovules were unfertilized or showed fertilization of the egg or central cell, but not both female gametes. Fertility could be partially compromised by impaired pollen tube and/or sperm function as CHX19 and CHX18 are expressed in the pollen tube and sperm cell, respectively. When fertilization was successful in self-pollinated mutants, early embryo formation was retarded compared with embryos from wild-type ovules receiving mutant pollen. Thus CHX17 and CHX18 proteins may promote embryo development possibly through the endosperm where these genes are expressed. The reticulate pattern of the pollen wall was disorganized in triple mutants, indicating perturbation of wall formation during male gametophyte development. As pH and cation homeostasis mediated by AtCHX17 affect membrane trafficking and cargo delivery, these results suggest that male fertility, sperm function, and embryo development are dependent on proper cargo sorting and secretion that remodel cell walls, plasma membranes, and extracellular factors.
Collapse
Affiliation(s)
- Senthilkumar Padmanaban
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Daniel D Czerny
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Kara A Levin
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Alexander R Leydon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Robert T Su
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Timothy K Maugel
- Laboratory for Biological Ultrastructure, University of Maryland, College Park, MD, USA
| | - Yanjiao Zou
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Salil Chanroj
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
- Department of Biotechnology, Burapha University, Chon-Buri, Thailand
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Heven Sze
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Maryland Agricultural Experiment Station, University of Maryland, College Park, MD, USA
- Correspondence:
| |
Collapse
|
45
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
46
|
Duruflé H, Hervé V, Balliau T, Zivy M, Dunand C, Jamet E. Proline Hydroxylation in Cell Wall Proteins: Is It Yet Possible to Define Rules? FRONTIERS IN PLANT SCIENCE 2017; 8:1802. [PMID: 29089960 PMCID: PMC5651053 DOI: 10.3389/fpls.2017.01802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
Cell wall proteins (CWPs) play critical and dynamic roles in plant cell walls by contributing to developmental processes and response to environmental cues. Since the CWPs go through the secretion pathway, most of them undergo post-translational modifications (PTMs) which can modify their biological activity. Glycosylation is one of the major PTMs of CWPs and refers to N-glycosylation, O-glycosylation and glypiation. Each of these PTMs occurs in different amino acid contexts which are not all well defined. This article deals with the hydroxylation of Pro residues which is a prerequisite for O-glycosylation of CWPs on hydroxyproline (Hyp) residues. The location of Hyp residues is well described in several structural CWPs, but yet rarely described in other CWPs. In this article, it is studied in detail in five Arabidopsis thaliana proteins using mass spectrometry data: one of them (At4g38770, AtPRP4) is a structural CWP containing 32.5% of Pro residues arranged in typical motifs, the others are either rich (27-28%, At1g31580 and At2g10940) or poor (6-8%, At1g09750 and At3g08030) in Pro residues. The known rules of Pro hydroxylation allowed a good prediction of Hyp location in AtPRP4. However, they could not be applied to the other proteins whatever their Pro content. In addition, variability of the Pro hydroxylation patterns was observed within some amino acid motifs in all the proteins and new patterns of Pro hydroxylation are described. Altogether, this work shows that Hyp residues are present in more protein families than initially described, and that Pro hydroxylation patterns could be different in each of them. This work paves the way for completing the existing Pro hydroxylation code.
Collapse
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vincent Hervé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- INRS – Institut Armand Frappier, Laval, Canada
| | - Thierry Balliau
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Zivy
- PAPPSO, GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- *Correspondence: Elisabeth Jamet,
| |
Collapse
|