1
|
Davey RT, Collins GL, Rouphael N, Poliquin G, McConnell R, Grubbs G, Moir SL, Langley JM, Teitelbaum M, Hewlett AL, McLellan SLF, Bhadelia N, Raabe VN, Mulligan MJ, Maljkovic Berry I, Dighero-Kemp B, Kurtz JR, Hensley LE, Dozier NCE, Marron LCB, DuChene A, Kuhn JH, Brown SK, Khurana S, Lane HC, Neaton JD. Safety and immunogenicity of a delayed booster dose of the rVSVΔG-ZEBOV-GP vaccine for prevention of Ebola virus disease: a multicentre, open-label, phase 2 randomised controlled trial. THE LANCET. MICROBE 2024; 5:100923. [PMID: 39374605 PMCID: PMC11560587 DOI: 10.1016/s2666-5247(24)00163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND rVSVΔG-ZEBOV-GP is the first approved vaccine with clinical efficacy against Ebola virus disease. Although a seroprotective threshold has not been defined for those at occupational risk of exposure, the current vaccine strategy is to attain a sustained high level of antibody titres. The aim of this trial was to explore the effects of delayed boosting upon both the height and duration of antibody titres following primary immunisation. METHODS In this open-label phase 2 randomised controlled trial, we compared antibody titres at month 36 in participants who had received a homologous booster dose at month 18 following primary immunisation with those who had received no booster. From Oct 25, 2016, to Jan 29, 2020, healthy adults aged 18 years or older deemed at occupational risk of exposure to Ebola virus due to laboratory work, clinical duties, or travel to an active endemic region were recruited from four hospital clinics in the USA and one hospital clinic in Canada and received primary vaccination with 2×107 plaque-forming unit per mL of VSVΔG-ZEBOV-GP. 18 months later, individuals who consented and were still eligible were randomly assigned 1:1 to receive either a homologous booster dose or no booster. Study visits for safety and serial blood collections for antibody titres were done on enrolled participants at months 0, 1, 3, 6, 12, 18, 19, 24, 30, and 36. Through July, 2021, a web-based application was used for randomisation, including assignments with schedules for each of the five sites using mixed permuted blocks. The trial was not masked to participants or site staff. The primary endpoint was a comparison of geometric mean titres (GMTs) of anti-Ebola virus glycoprotein IgG antibody at month 36 (ie, 18 months after randomisation) for all randomly assigned participants who completed the 36 months of follow-up (primary analysis cohort). Investigators were aware of antibody titres from baseline (enrolment) through month 18 but were masked to summary data by randomisation group after month 18. This study is registered with ClinicalTrials.gov (NCT02788227). FINDINGS Of the 248 participants who enrolled and received their primary immunisation, 114 proceeded to the randomisation step at month 18. The two randomisation groups were balanced: 57 participants (24 [42%] of whom were female; median age was 42 years [IQR 35-50]) were randomly assigned to the booster group and 57 (24 [42%] of whom were female; median age was 42 years [IQR 36-51]) to the no-booster group. Of those randomly assigned, 92 participants (45 in the booster group and 47 in the no-booster group) completed 36 months of follow-up. At 18 months after primary immunisation, GMTs in the no-booster group increased from a baseline of 10 ELISA units (EU)/mL (95% CI 7-14) to 1451 EU/mL (1118-1882); GMTs in the booster group increased from 9 EU/mL (6-16) to 1769 EU/mL (1348-2321). At month 19, GMTs were 31 408 EU/mL (23 181-42 554) for the booster group and 1406 EU/mL (1078-1833) for the no-booster group; at month 36, GMTs were 10 146 EU/mL (7960-12 933) for the booster group and 1240 EU/mL (984-1563) for the no-booster group. Accordingly, the geometric mean ratio (GMR) of antibody titres had increased almost 21-fold more in the booster versus no-booster group at 1 month after booster administration (GMR 20·6; 95% CI 18·2-23·0; p<0·0001) and was still over 7-fold higher at month 36 (GMR 7·8; 95% CI 5·5-10·2; p<0·0001). Consistent with previous reports of this vaccine's side-effects, transient mono-articular or oligo-articular arthritis was diagnosed in 18 (9%) of 207 primary vaccination recipients; after randomisation, arthritis was diagnosed in one (2%) of 57 participants in the no-booster group. No new cases of arthritis developed after booster administration. Four serious adverse events occurred following randomisation: one (epistaxis) in the booster group and three (gastrointestinal haemorrhage, prostate cancer, and tachyarrhythmia) in the no-booster group. None of the serious adverse events was judged attributable to the booster vaccination assignment. INTERPRETATION In addition to no new safety concerns and in marked contrast to earlier trials evaluating short-term boosting, delaying a rVSVΔG-ZEBOV-GP booster until month 18 resulted in an increase in GMT that remained several-fold above the no-booster group GMT for at least 18 months. These findings could have implications for defining the optimal timing of booster doses as pre-exposure prophylaxis in populations at ongoing risk for Ebola virus exposure. FUNDING The Division of Intramural Research and the Division of Clinical Research of the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health, Canadian Immunization Research Network through the Public Health Agency of Canada, Canadian Institutes of Health Research, and the US Defense Threat Reduction Agency.
Collapse
Affiliation(s)
- Richard T Davey
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Gary L Collins
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Nadine Rouphael
- Hope Clinic of Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Guillaume Poliquin
- Public Health Agency of Canada, Children's Hospital Research Institute, Winnipeg, MB, Canada
| | - Rosemary McConnell
- Critical Care Medicine Department, Clinical Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, Silver Spring, MD, USA
| | - Susan L Moir
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joanne M Langley
- Canadian Center for Vaccinology, IWK Health Centre and Nova Scotia Health Authority, Dalhousie University, Halifax, NS, Canada
| | - Marc Teitelbaum
- Clinical Monitoring Research Program, Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Angela L Hewlett
- Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan L F McLellan
- Division of Infectious Diseases, Dept of Medicine, School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Nahid Bhadelia
- Boston University Center for Emerging Infectious Diseases Policy and Research, Boston University, Boston, MA, USA
| | - Vanessa N Raabe
- New York University Grossman School of Medicine, New York, NY, USA
| | - Mark J Mulligan
- New York University Grossman School of Medicine, New York, NY, USA
| | - Irina Maljkovic Berry
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Bonnie Dighero-Kemp
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Jonathan R Kurtz
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Nelson C E Dozier
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Lindsay C B Marron
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Alain DuChene
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Shawn K Brown
- Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food & Drug Administration, Silver Spring, MD, USA
| | - H Clifford Lane
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James D Neaton
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Abstract
Live attenuated, cold-adapted influenza vaccines exhibit several desirable characteristics, including the induction of systemic, mucosal, and cell-mediated immunity resulting in breadth of protection, ease of administration, and yield. Seasonal live attenuated influenza vaccines (LAIVs) were developed in the United States and Russia and have been used in several countries. In the last decade, following the incorporation of the 2009 pandemic H1N1 strain, the performance of both LAIVs has been variable and the U.S.-backbone LAIV was less effective than the corresponding inactivated influenza vaccines. The cause appears to be reduced replicative fitness of some H1N1pdm09 viruses, indicating a need for careful selection of strains included in multivalent LAIV formulations. Assays are now being implemented to select optimal strains. An improved understanding of the determinants of replicative fitness of vaccine strains and of vaccine effectiveness of LAIVs is needed for public health systems to take full advantage of these valuable vaccines.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza and Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
3
|
Gay L, Melenotte C, Lakbar I, Mezouar S, Devaux C, Raoult D, Bendiane MK, Leone M, Mège JL. Sexual Dimorphism and Gender in Infectious Diseases. Front Immunol 2021; 12:698121. [PMID: 34367158 PMCID: PMC8339590 DOI: 10.3389/fimmu.2021.698121] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in infectious diseases. Women are at less risk than men when it comes to developing most infectious diseases. However, understanding these observations requires a gender approach that takes into account an analysis of both biological and social factors. The host’s response to infection differs in males and females because sex differences have an impact on hormonal and chromosomal control of immunity. Estradiol appears to confer protective immunity, while progesterone and testosterone suppress anti-infectious responses. In addition, genetic factors, including those associated with sex chromosomes, also affect susceptibility to infections. Finally, differences in occupational activities, lifestyle, and comorbidities play major roles in exposure to pathogens and management of diseases. Hence, considering sexual dimorphism as a critical variable for infectious diseases should be one of the steps taken toward developing personalized therapeutic approaches.
Collapse
Affiliation(s)
- Laetitia Gay
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Cléa Melenotte
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Aix-Marseille Univ, INSERM, IRD, SESSTIM, Economy and Social Science, Health Care Systems and Societies, Marseille, France
| | - Ines Lakbar
- Department of Anaesthesia and Intensive Care, Hôpital Nord, Aix-Marseille Univ, APHM, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Marc-Karim Bendiane
- Aix-Marseille Univ, INSERM, IRD, SESSTIM, Economy and Social Science, Health Care Systems and Societies, Marseille, France
| | - Marc Leone
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.,Department of Anaesthesia and Intensive Care, Hôpital Nord, Aix-Marseille Univ, APHM, Marseille, France
| | - Jean-Louis Mège
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
4
|
Li H, Wang S, Hu G, Zhang L, Liu S, Lu S. DNA priming immunization is more effective than recombinant protein vaccine in eliciting antigen-specific B cell responses. Emerg Microbes Infect 2021; 10:833-841. [PMID: 33853515 PMCID: PMC8812797 DOI: 10.1080/22221751.2021.1918026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While DNA prime-protein boost vaccination approach has been widely used in preclinical and clinical studies especially in the field of HIV vaccine development, the exact role of DNA immunization has not been fully identified. Our previous work demonstrated that DNA immunization was able to elicit T follicular helper (Tfh) cell responses and germinal center (GC) B cell development in a mouse model. In the current report, a mouse immunogenicity study was conducted to further ask whether DNA immunization is able to elicit antigen-specific B cell responses. Using HIV-1 Env as model antigen delivered in the form of DNA prime-protein boost, our data demonstrated that DNA prime was able to enhance the antigen-specific B cell responses for both Env-specific antibody secreting cells (ASC) and memory B cells. Furthermore, the DNA priming can greatly reduce the need of including an adjuvant as part of the recombinant protein vaccine boost formulation. Our findings revealed one mechanism that supports the value of DNA priming in assisting the inductin of high affinity and long lasting antigen specific antibody responses.
Collapse
Affiliation(s)
- Haiying Li
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guangnan Hu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | | | - Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
5
|
Marcus H, Thompson E, Zhou Y, Bailey M, Donaldson MM, Stanley DA, Asiedu C, Foulds KE, Roederer M, Moliva JI, Sullivan NJ. Ebola-GP DNA Prime rAd5-GP Boost: Influence of Prime Frequency and Prime/Boost Time Interval on the Immune Response in Non-human Primates. Front Immunol 2021; 12:627688. [PMID: 33790899 PMCID: PMC8006325 DOI: 10.3389/fimmu.2021.627688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Heterologous prime-boost immunization regimens are a common strategy for many vaccines. DNA prime rAd5-GP boost immunization has been demonstrated to protect non-human primates against a lethal challenge of Ebola virus, a pathogen that causes fatal hemorrhagic disease in humans. This protection correlates with antibody responses and is also associated with IFNγ+ TNFα+ double positive CD8+ T-cells. In this study, we compared single DNA vs. multiple DNA prime immunizations, and short vs. long time intervals between the DNA prime and the rAd5 boost to evaluate the impact of these different prime-boost strategies on vaccine-induced humoral and cellular responses in non-human primates. We demonstrated that DNA/rAd5 prime-boost strategies can be tailored to induce either CD4+ T-cell or CD8+ T-cell dominant responses while maintaining a high magnitude antibody response. Additionally, a single DNA prime immunization generated a stable memory response that could be boosted by rAd5 3 years later. These results suggest DNA/rAd5 prime-boost provides a flexible platform that can be fine-tuned to generate desirable T-cell memory responses.
Collapse
Affiliation(s)
- Hadar Marcus
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Emily Thompson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yan Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Bailey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mitzi M Donaldson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Clement Asiedu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov 2020; 15:1441-1455. [PMID: 32783765 DOI: 10.1080/17460441.2020.1801629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The genetic variability and diversity of influenza viruses, and the expansion of their hosts, present a significant threat to human health. The development of a universal influenza vaccine is urgently needed to tackle seasonal epidemics, pandemics, vaccine mismatch, and zoonotic transmissions to humans. AREAS COVERED Despite the identification of broadly neutralizing antibodies against influenza viruses, designing a universal influenza vaccine that induces such broadly neutralizing antibodies at protective levels in humans has remained challenging. Besides neutralizing antibodies, multiple correlates of protection have recently emerged as crucially important for eliciting broad protection against diverse influenza viruses. This review discusses the immune responses required for broad protection against influenza viruses, and suggests a paradigm shift from an HA stalk-based approach to other approaches that can induce multiple immunological correlates of protection for the development of a universal influenza vaccine. EXPERT OPINION To develop a truly universal influenza vaccine, multiple correlates of protection should be considered, including antibody responses and T cell immunity. Balanced induction of neutralizing antibodies, antibody effector functions, and T cell immunity will contribute to the most effective vaccination strategy. Live-attenuated influenza vaccines provide an attractive platform to improve the breadth and potency of vaccines for broader protection.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University , Andong, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, South Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, South Korea
| |
Collapse
|
7
|
Lopez CE, Legge KL. Influenza A Virus Vaccination: Immunity, Protection, and Recent Advances Toward A Universal Vaccine. Vaccines (Basel) 2020; 8:E434. [PMID: 32756443 PMCID: PMC7565301 DOI: 10.3390/vaccines8030434] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza virus infections represent a serious public health threat and account for significant morbidity and mortality worldwide due to seasonal epidemics and periodic pandemics. Despite being an important countermeasure to combat influenza virus and being highly efficacious when matched to circulating influenza viruses, current preventative strategies of vaccination against influenza virus often provide incomplete protection due the continuous antigenic drift/shift of circulating strains of influenza virus. Prevention and control of influenza virus infection with vaccines is dependent on the host immune response induced by vaccination and the various vaccine platforms induce different components of the local and systemic immune response. This review focuses on the immune basis of current (inactivated influenza vaccines (IIV) and live attenuated influenza vaccines (LAIV)) as well as novel vaccine platforms against influenza virus. Particular emphasis will be placed on how each platform induces cross-protection against heterologous influenza viruses, as well as how this immunity compares to and contrasts from the "gold standard" of immunity generated by natural influenza virus infection.
Collapse
Affiliation(s)
- Christopher E. Lopez
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Kevin L. Legge
- Department of Microbiology and Immunology University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Rudraraju R, Mordant F, Subbarao K. How Live Attenuated Vaccines Can Inform the Development of Broadly Cross-Protective Influenza Vaccines. J Infect Dis 2020; 219:S81-S87. [PMID: 30715386 PMCID: PMC7313962 DOI: 10.1093/infdis/jiy703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Rajeev Rudraraju
- Department of Microbiology and Immunology, University of Melbourne
| | | | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne.,World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
9
|
Matsuda K, Huang J, Zhou T, Sheng Z, Kang BH, Ishida E, Griesman T, Stuccio S, Bolkhovitinov L, Wohlbold TJ, Chromikova V, Cagigi A, Leung K, Andrews S, Cheung CSF, Pullano AA, Plyler J, Soto C, Zhang B, Yang Y, Joyce MG, Tsybovsky Y, Wheatley A, Narpala SR, Guo Y, Darko S, Bailer RT, Poole A, Liang CJ, Smith J, Alexander J, Gurwith M, Migueles SA, Koup RA, Golding H, Khurana S, McDermott AB, Shapiro L, Krammer F, Kwong PD, Connors M. Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Sci Immunol 2020; 4:4/34/eaau2710. [PMID: 31004012 DOI: 10.1126/sciimmunol.aau2710] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Induction of an antibody response capable of recognizing highly diverse strains is a major obstacle to the development of vaccines for viruses such as HIV and influenza. Here, we report the dynamics of B cell expansion and evolution at the single-cell level after vaccination with a replication-competent adenovirus type 4 recombinant virus expressing influenza H5 hemagglutinin. Fluorescent H1 or H5 probes were used to quantitate and isolate peripheral blood B cells and their antigen receptors. We observed increases in H5-specific antibody somatic hypermutation and potency for several months beyond the period of active viral replication that was not detectable at the serum level. Individual broad and potent antibodies could be isolated, including one stem-specific antibody that is part of a new multidonor class. These results demonstrate prolonged evolution of the B cell response for months after vaccination and should be considered in efforts to evaluate or boost vaccine-induced immunity.
Collapse
Affiliation(s)
- Kenta Matsuda
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jinghe Huang
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics, Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY 10032, USA
| | - Byong H Kang
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Elise Ishida
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Trevor Griesman
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Stuccio
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lyuba Bolkhovitinov
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Teddy J Wohlbold
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Veronika Chromikova
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sarah Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Crystal S F Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alyssa A Pullano
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jason Plyler
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Adam Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yicheng Guo
- Department of Biochemistry and Molecular Biophysics, Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY 10032, USA
| | - Sam Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - April Poole
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jon Smith
- Emergent Biosolutions Inc., Gaithersburg, MD 20879, USA
| | | | - Marc Gurwith
- Emergent Biosolutions Inc., Gaithersburg, MD 20879, USA
| | - Stephen A Migueles
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Admnistration, Silver Spring, MD 20993, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Admnistration, Silver Spring, MD 20993, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY 10032, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mark Connors
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Fan W, Wan Y, Li Q. Interleukin-21 enhances the antibody avidity elicited by DNA prime and MVA boost vaccine. Cytokine 2019; 125:154814. [PMID: 31450102 DOI: 10.1016/j.cyto.2019.154814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 06/20/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022]
Abstract
Enhancement of the magnitude or affinity of protective antibodies (Abs) induced by vaccine adjuvant is highly desirable to prevent challenging pathogens such as HIV-1. IL-21 plays a crucial role in germinal center reactions during humoral immune responses. However, the effect of IL-21 as a vaccine adjuvant on the quantity and quality of antigen-specific Abs elicited by DNA prime and MVA boost vaccine, a commonly used vaccine strategy, remains unknown. To close this knowledge gap, female adult B6N mice were primed with DNA vaccine twice (days 0, 14, 100 µg, I.M.) and boosted with MVA vaccine (day 28, 2 × 107 pfu, I.M.) with or without an IL-21 DNA adjuvant (days 3, 17, 31, 40 µg, I.M.), in which HIV-1 gag was expressed as a model antigen. With the addition of an IL-21 adjuvant, we found significantly increased avidity of antigen-specific Abs at multiple time points in a longitudinal follow up. Collectively, our results suggest that an IL-21 immune adjuvant can significantly increase Ab quality induced by heterologous DNA-MVA prime-boost vaccine strategy.
Collapse
Affiliation(s)
- Wenjin Fan
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, NE 68583, USA
| | - Yanmin Wan
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, NE 68583, USA; Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska-Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, NE 68583, USA.
| |
Collapse
|
11
|
El Sahly HM, Atmar RL, Patel SM, Bellamy A, Liu L, Hong W, Zhu H, Guan Y, Keitel WA. Safety and immunogenicity of an 8 year interval heterologous prime-boost influenza A/H7N7-H7N9 vaccination. Vaccine 2019; 37:2561-2568. [PMID: 30955980 PMCID: PMC6519114 DOI: 10.1016/j.vaccine.2019.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Influenza A/H7N9 viruses are undergoing antigenic drift since their emergence in 2013, and vaccination strategies are needed for pandemic preparedness. Two doses of adjuvanted monovalent inactivated influenza A/H7N9 vaccine (IIV1 A/H7N9) are needed for optimal serological responses. However, administering 2 doses in a pandemic setting might be challenging. We evaluated the immunogenicity of "boosting" with IIV1 A/H7N9 in subjects "primed" 8 years previously with IIV1 A/H7N7. METHODS We administered 1 booster dose containing 45 mcg of IIV1 A/H7N9 hemagglutinin to 17 recipients of 2 prior doses of IIV1 A/H7N7, and to 10 influenza A/H7-naïve subjects. We tested their post-boosting sera for antibodies (Ab) against homologous influenza A/H7N9 using a hemagglutination inhibition assay; and compared their Ab titers to those in stored sera from recipients of AS03-adjuvanted IIV1 A/H7N9 against 9 strains of influenza A/H7N9 viruses. RESULTS The percentage of subjects with Ab titers ≥40 on Days 9 and 29 post boosting, respectively, was 65% and 41% in primed subjects and 10% and 0% in unprimed subjects. The Ab titers in recipients of AS03-adjuvanted IIV1 A/H7N9 were higher than those in the prime-boost group against a panel of influenza A/H7N9 viruses, except for 2 highly pathogenic strains. CONCLUSIONS Priming with IIV1 A/H7 results in serological responses following a delayed boost with 1 dose of unadjuvanted IIV1 A/H7N9, despite lack of antibody response after the prime. Optimizing prime-boost approaches would benefit pandemic preparedness. ClinicalTrials.gov identifier: NCT02586792.
Collapse
Affiliation(s)
- Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.
| | - Robert L Atmar
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Shital M Patel
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Liwei Liu
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China
| | - Wenshan Hong
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China
| | - Huachen Zhu
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China
| | - Yi Guan
- Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou, Guangdong, China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Wendy A Keitel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Kimuda SG, Biraro IA, Bagaya BS, Raynes JG, Cose S. Characterising antibody avidity in individuals of varied Mycobacterium tuberculosis infection status using surface plasmon resonance. PLoS One 2018; 13:e0205102. [PMID: 30312318 PMCID: PMC6185725 DOI: 10.1371/journal.pone.0205102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
There is increasing evidence supporting a role for antibodies in protection against tuberculosis (TB), with functional antibodies being described in the latent state of TB infection. Antibody avidity is an important determinant of antibody-mediated protection. This study characterised the avidity of antibodies against Ag85A, an immunodominant Mycobacterium tuberculosis (M.tb) antigen and constituent of several anti-TB vaccine candidates, in individuals of varied M.tb infection status. Avidity of Ag85A specific antibodies was measured in 30 uninfected controls, 34 individuals with latent TB infection (LTBI) and 75 active pulmonary TB (APTB) cases, employing the more commonly used chaotrope-based dissociation assays, and surface plasmon resonance (SPR). Chaotrope-based assays indicated that APTB was associated with a higher antibody avidity index compared to uninfected controls [adjusted geometric mean ratio (GMR): 1.641, 95% confidence interval (CI): 1.153, 2.337, p = 0.006, q = 0.018] and to individuals with LTBI [adjusted GMR: 1.604, 95% CI: 1.282, 2.006, p < 0.001, q <0.001]. SPR assays showed that APTB was associated with slower dissociation rates, an indication of higher avidity, compared to uninfected controls (adjusted GMR: 0.796, 95% CI: 0.681, 0.932, p = 0.004, q = 0.012) and there was also weak evidence of more avid antibodies in the LTBI compared to the uninfected controls (adjusted GMR: 0.871, 95% CI: 0.763, 0.994, p = 0.041, q = 0.123). We found no statistically significant differences in anti-Ag85A antibody avidity between the APTB and LTBI groups. This study shows that antibodies of increased avidity are generated against a principle vaccine antigen in M.tb infected individuals. It would be important to determine whether TB vaccines are able to elicit a similar response. Additionally, more research is needed to determine whether antibody avidity is important in protection against infection and disease.
Collapse
Affiliation(s)
- Simon G. Kimuda
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Irene Andia Biraro
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - John G. Raynes
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Stephen Cose
- Department of Medical Microbiology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Topham DJ, Nguyen P, Sangster MY. Pandemic influenza vaccines: what they have taught us about B cell immunology. Curr Opin Immunol 2018; 53:203-208. [PMID: 29957457 DOI: 10.1016/j.coi.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
The emergence of avian influenza viruses stimulated pandemic concerns and efforts to develop protective vaccines. Studies of the immune responses to experimental vaccines for pandemic influenza have taught us lessons about human immunity to influenza in general that can be applied to seasonal, pandemic, and even universal vaccine responses. For example, the concepts of targeting the hemagglutinin stalk and elicitation of stalk reactive antibodies grew out of studies of the 2009 pandemic H1N1 vaccines. More recently, the phenomenon of imprinting, the influence of early life exposure to influenza modifying responses to the viruses or vaccines later in life, has been reinforced through the study of potential pandemic influenza virus vaccines such as H7N9. These studies have also revealed potential strategies to improve responses to novel influenza strains and produce more broadly cross-reactive B cell and antibody responses. These concepts are discussed in detail in this review.
Collapse
Affiliation(s)
- David J Topham
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology & Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA.
| | - Phuong Nguyen
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology & Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA
| | - Mark Y Sangster
- New York Influenza Center of Excellence, David H. Smith Center for Vaccine Biology & Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA
| |
Collapse
|
14
|
Johnson LE, Brockstedt D, Leong M, Lauer P, Theisen E, Sauer JD, McNeel DG. Heterologous vaccination targeting prostatic acid phosphatase (PAP) using DNA and Listeria vaccines elicits superior anti-tumor immunity dependent on CD4+ T cells elicited by DNA priming. Oncoimmunology 2018; 7:e1456603. [PMID: 30221049 DOI: 10.1080/2162402x.2018.1456603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Background. Sipuleucel T, an autologous cell-based vaccine targeting prostatic acid phosphatase (PAP), has demonstrated efficacy for the treatment of advanced prostate cancer. DNA vaccines encoding PAP and live attenuated Listeria vaccines have entered clinical trials for patients with prostate cancer, and have advantages in terms of eliciting predominantly Th1-biased immunity. In this study, we investigated whether the immunogenicity and anti-tumor efficacy of a DNA and Listeria vaccine, each encoding PAP, could be enhanced by using them in a heterologous prime/boost approach. Methods. Transgenic mice expressing HLA-A2.01 and HLA-DRB1*0101 were immunized alone or with a heterologous prime/boost strategy. Splenocytes were evaluated for MHC class I and II-restricted, PAP-specific immune responses by IFNγ ELISPOTs. Anti-tumor activity to a syngeneic, PAP-expressing tumor line was evaluated. Results. PAP-specific cellular immunity and anti-tumor activity were elicited in mice after immunization with DNA- or listeria-based vaccines. Greater CD4+ and CD8+ responses, and anti-tumor responses, were elicited when mice were immunized first with DNA and boosted with Listeria, but not when administered in the opposite order. This was found to be dependent on CD4+ T cells elicited with DNA priming, and was not due to inflammatory signals by Listeria itself or due to B cells serving as antigen-presenting cells for DNA during priming. Conclusions. Heterologous prime/boost vaccination using DNA priming with Listeria boosting may provide better anti-tumor immunity, similar to many reports evaluating DNA priming with vaccines targeting foreign microbial antigens. These findings have implications for the design of future clinical trials.
Collapse
Affiliation(s)
- Laura E Johnson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| | | | | | | | - Erin Theisen
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI
| |
Collapse
|
15
|
Wargowski E, Johnson LE, Eickhoff JC, Delmastro L, Staab MJ, Liu G, McNeel DG. Prime-boost vaccination targeting prostatic acid phosphatase (PAP) in patients with metastatic castration-resistant prostate cancer (mCRPC) using Sipuleucel-T and a DNA vaccine. J Immunother Cancer 2018. [PMID: 29534736 PMCID: PMC5850960 DOI: 10.1186/s40425-018-0333-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Prostatic acid phosphatase (PAP) is a prostate tumor antigen, and the target of the only FDA-approved anti-tumor vaccine, sipuleucel-T. We have previously reported in two clinical trials that a DNA vaccine encoding PAP (pTVG-HP) could elicit PAP-specific, Th1-biased T cells in patients with PSA-recurrent prostate cancer. In the current pilot trial we sought to evaluate whether this vaccine could augment PAP-specific immunity when used as a booster to immunization with sipuleucel-T in patients with metastatic, castration-resistant prostate cancer (mCRPC). Methods Eigthteen patients with mCRPC were randomized to receive sipuleucel-T alone or followed by intradermal immunization with pTVG-HP DNA vaccine. Patients were followed for time to progression, and immune monitoring was conducted at defined intervals. Results Overall, patients were followed for a median of 24 months. 11/18 patients completed treatments as per protocol. No treatment-associated events > grade 2 were observed. Th1-biased PAP-specific T-cell responses were detected in 11/18 individuals, and were not statistically different between study arms. Higher titer antibody responses to PAP were detectable in patients who received pTVG-HP booster immunizations. Median time to progression was less than 6 months and not statistically different between study arms. The median overall survival for all patients was 28 months. Conclusions These findings suggest that prime-boost vaccination can augment and diversify the type of immunity elicited with anti-tumor vaccination in terms of T-cell and humoral immunity. Future studies will explore DNA as priming immunization rather than a booster immunization. Trial registration NCT01706458.
Collapse
Affiliation(s)
- Ellen Wargowski
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Laura E Johnson
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jens C Eickhoff
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI, 53705, USA.,Department of Biostatistics, University of Wisconsin, Madison, WI, 53792, USA
| | - Lauren Delmastro
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Mary Jane Staab
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Glenn Liu
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
16
|
Koday MT, Leonard JA, Munson P, Forero A, Koday M, Bratt DL, Fuller JT, Murnane R, Qin S, Reinhart TA, Duus K, Messaoudi I, Hartman AL, Stefano-Cole K, Morrison J, Katze MG, Fuller DH. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates. PLoS One 2017; 12:e0189780. [PMID: 29267331 PMCID: PMC5739435 DOI: 10.1371/journal.pone.0189780] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 12/01/2017] [Indexed: 01/19/2023] Open
Abstract
Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA) universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.
Collapse
Affiliation(s)
- Merika T. Koday
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Jolie A. Leonard
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Paul Munson
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Adriana Forero
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Michael Koday
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - Debra L. Bratt
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - James T. Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Robert Murnane
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - Shulin Qin
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Todd A. Reinhart
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Karen Duus
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States of America
- Basic Sciences Department, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV, United States of America
| | - Ilhem Messaoudi
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Amy L. Hartman
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kelly Stefano-Cole
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Juliet Morrison
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
17
|
An avian influenza H7 DNA priming vaccine is safe and immunogenic in a randomized phase I clinical trial. NPJ Vaccines 2017; 2:15. [PMID: 29263871 PMCID: PMC5627236 DOI: 10.1038/s41541-017-0016-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 11/18/2022] Open
Abstract
A novel avian influenza subtype, A/H7N9, emerged in 2013 and represents a public health threat with pandemic potential. We have previously shown that DNA vaccine priming increases the magnitude and quality of antibody responses to H5N1 monovalent inactivated boost. We now report the safety and immunogenicity of a H7 DNA-H7N9 monovalent inactivated vaccine prime-boost regimen. In this Phase 1, open label, randomized clinical trial, we evaluated three H7N9 vaccination regimens in healthy adults, with a prime-boost interval of 16 weeks. Group 1 received H7 DNA vaccine prime and H7N9 monovalent inactivated vaccine boost. Group 2 received H7 DNA and H7N9 monovalent inactivated vaccine as a prime and H7N9 monovalent inactivated vaccine as a boost. Group 3 received H7N9 monovalent inactivated vaccine in a homologous prime-boost regimen. Overall, 30 individuals between 20 to 60 years old enrolled and 28 completed both vaccinations. All injections were well tolerated with no serious adverse events. 2 weeks post-boost, 50% of Group 1 and 33% of Group 2 achieved a HAI titer ≥1:40 compared with 11% of Group 3. Also, at least a fourfold increase in neutralizing antibody responses was seen in 90% of Group 1, 100% of Group 2, and 78% of Group 3 subjects. Peak neutralizing antibody geometric mean titers were significantly greater for Group 1 (GMT = 440.61, p < 0.05) and Group 2 (GMT = 331, p = 0.02) when compared with Group 3 (GMT = 86.11). A novel H7 DNA vaccine was safe, well-tolerated, and immunogenic when boosted with H7N9 monovalent inactivated vaccine, while priming for higher HAI and neutralizing antibody titers than H7N9 monovalent inactivated vaccine alone. A vaccine candidate to treat a deadly subtype of avian influenza was shown to induce protective antibodies in initial clinical trials. As of March 2017, avian influenza strain A/H7N9 has killed 497 people since 2013, with 1349 confirmed cases. Julie Ledgerwood and her team from the United States’ National Institutes of Health in collaboration with colleagues at the Centers for Disease Control and Prevention tested their two-stage vaccine protocol in humans, showing it to be effective and safe. The vaccine consists of an initial injection of viral DNA, which ‘primes’ the immune system to the pathogen, followed by a follow-up injection of an inactivated purified viral protein, which further boosts the host’s production of protective antibodies. The study shows the viability of this vaccine regimen and suggests further investigation into its appropriateness for treating avian influenza in humans.
Collapse
|
18
|
Campi-Azevedo AC, Costa-Pereira C, Antonelli LR, Fonseca CT, Teixeira-Carvalho A, Villela-Rezende G, Santos RA, Batista MA, Campos FM, Pacheco-Porto L, Melo Júnior OA, Hossell DMSH, Coelho-dos-Reis JG, Peruhype-Magalhães V, Costa-Silva MF, de Oliveira JG, Farias RH, Noronha TG, Lemos JA, von Doellinger VDR, Simões M, de Souza MM, Malaquias LC, Persi HR, Pereira JM, Martins JA, Dornelas-Ribeiro M, Vinhas ADA, Alves TR, Maia MDL, Freire MDS, Martins RDM, Homma A, Romano APM, Domingues CM, Tauil PL, Vasconcelos PF, Rios M, Caldas IR, Camacho LA, Martins-Filho OA. Booster dose after 10 years is recommended following 17DD-YF primary vaccination. Hum Vaccin Immunother 2016; 12:491-502. [PMID: 26360663 PMCID: PMC5049740 DOI: 10.1080/21645515.2015.1082693] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A single vaccination of Yellow Fever vaccines is believed to confer life-long protection. In this study, results of vaccinees who received a single dose of 17DD-YF immunization followed over 10 y challenge this premise. YF-neutralizing antibodies, subsets of memory T and B cells as well as cytokine-producing lymphocytes were evaluated in groups of adults before (NVday0) and after (PVday30-45, PVyear1-4, PVyear5-9, PVyear10-11, PVyear12-13) 17DD-YF primary vaccination. YF-neutralizing antibodies decrease significantly from PVyear1-4 to PVyear12-13 as compared to PVday30-45, and the seropositivity rates (PRNT≥2.9Log10mIU/mL) become critical (lower than 90%) beyond PVyear5-9. YF-specific memory phenotypes (effector T-cells and classical B-cells) significantly increase at PVday30-45 as compared to naïve baseline. Moreover, these phenotypes tend to decrease at PVyear10-11 as compared to PVday30-45. Decreasing levels of TNF-α+ and IFN-γ+ produced by CD4+ and CD8+ T-cells along with increasing levels of IL-10+CD4+T-cells were characteristic of anti-YF response over time. Systems biology profiling represented by hierarchic networks revealed that while the naïve baseline is characterized by independent micro-nets, primary vaccinees displayed an imbricate network with essential role of central and effector CD8+ memory T-cell responses. Any putative limitations of this cross-sectional study will certainly be answered by the ongoing longitudinal population-based investigation. Overall, our data support the current Brazilian national immunization policy guidelines that recommend one booster dose 10 y after primary 17DD-YF vaccination.
Collapse
Affiliation(s)
| | | | - Lis R Antonelli
- a Centro de Pesquisas René Rachou; FIOCRUZ ; Minas Gerais , Brazil
| | | | | | | | - Raiany A Santos
- a Centro de Pesquisas René Rachou; FIOCRUZ ; Minas Gerais , Brazil
| | | | | | | | | | | | | | | | | | | | - Roberto H Farias
- b Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos-FIOCRUZ ; Rio de Janeiro , Brazil
| | - Tatiana G Noronha
- b Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos-FIOCRUZ ; Rio de Janeiro , Brazil
| | - Jandira A Lemos
- c Secretaria de Estado de Saúde; Governo do Estado de Minas Gerais; Belo Horizonte ; Minas Gerais , Brazil
| | | | - Marisol Simões
- b Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos-FIOCRUZ ; Rio de Janeiro , Brazil
| | - Mirian M de Souza
- b Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos-FIOCRUZ ; Rio de Janeiro , Brazil
| | - Luiz C Malaquias
- d Universidade Federal de Alfenas ; Alfenas , Minas Gerais , Brazil
| | - Harold R Persi
- e Instituto de Biologia do Exército ; Rio de Janeiro , Brazil
| | - Jorge M Pereira
- e Instituto de Biologia do Exército ; Rio de Janeiro , Brazil
| | - José A Martins
- e Instituto de Biologia do Exército ; Rio de Janeiro , Brazil
| | | | | | - Tatiane R Alves
- e Instituto de Biologia do Exército ; Rio de Janeiro , Brazil
| | - Maria de L Maia
- f Assessoria Clínica de Bio-Manguinhos; FIOCRUZ ; Rio de Janeiro , Brazil
| | - Marcos da S Freire
- b Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos-FIOCRUZ ; Rio de Janeiro , Brazil
| | - Reinaldo de M Martins
- b Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos-FIOCRUZ ; Rio de Janeiro , Brazil
| | - Akira Homma
- f Assessoria Clínica de Bio-Manguinhos; FIOCRUZ ; Rio de Janeiro , Brazil
| | | | | | - Pedro L Tauil
- h Universidade de Brasília ; Distrito Federal , Brazil
| | | | - Maria Rios
- j Center for Biologics Evaluation and Research-CBER; US Food and Drug Administration (FDA) ; Silver Spring , MD , USA
| | - Iramaya R Caldas
- k Diretoria Regional de Brasília-Direb; FIOCRUZ ; Brasília , Brazil
| | - Luiz A Camacho
- l Escola Nacional de Saúde Pública; FIOCRUZ ; Rio de Janeiro , Brazil
| | | |
Collapse
|
19
|
Khurana S, Fuentes S, Coyle EM, Ravichandran S, Davey RT, Beigel JH. Human antibody repertoire after VSV-Ebola vaccination identifies novel targets and virus-neutralizing IgM antibodies. Nat Med 2016; 22:1439-1447. [PMID: 27798615 DOI: 10.1038/nm.4201] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Development of an effective vaccine against Ebola virus is of high priority. However, knowledge about potential correlates of protection and the durability of immune response after vaccination is limited. Here, we elucidate the human antibody repertoire after administration of vesicular stomatitis virus (VSV)-Ebola vaccine at 3 million, 20 million and 100 million plaque-forming units (PFU) and homologous VSV-Ebola vaccine boost in healthy adult volunteers. Whole genome-fragment phage display libraries, expressing linear and conformational epitopes of Ebola glycoprotein (GP), showed higher diversity of antibody epitopes in individuals vaccinated with 20 million PFU than in those vaccinated with 3 million or 100 million PFU. Surface plasmon resonance kinetics showed higher levels of GP-binding antibodies after a single vaccination with 20 million or 100 million PFU than with 3 million PFU, and these correlated strongly with neutralization titers. A second vaccination did not boost antibody or virus neutralization titers, which declined rapidly, and induced only minimal antibody affinity maturation. Isotype analysis revealed a predominant IgM response even after the second vaccination, which contributed substantially to virus neutralization in vitro. These findings may help identify new vaccine targets and aid development and evaluation of effective countermeasures against Ebola.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sandra Fuentes
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elizabeth M Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard T Davey
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John H Beigel
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
20
|
Joyce MG, Wheatley AK, Thomas PV, Chuang GY, Soto C, Bailer RT, Druz A, Georgiev IS, Gillespie RA, Kanekiyo M, Kong WP, Leung K, Narpala SN, Prabhakaran MS, Yang ES, Zhang B, Zhang Y, Asokan M, Boyington JC, Bylund T, Darko S, Lees CR, Ransier A, Shen CH, Wang L, Whittle JR, Wu X, Yassine HM, Santos C, Matsuoka Y, Tsybovsky Y, Baxa U, Mullikin JC, Subbarao K, Douek DC, Graham BS, Koup RA, Ledgerwood JE, Roederer M, Shapiro L, Kwong PD, Mascola JR, McDermott AB. Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell 2016; 166:609-623. [PMID: 27453470 PMCID: PMC4978566 DOI: 10.1016/j.cell.2016.06.043] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/12/2016] [Accepted: 06/23/2016] [Indexed: 11/29/2022]
Abstract
Antibodies capable of neutralizing divergent influenza A viruses could form the basis of a universal vaccine. Here, from subjects enrolled in an H5N1 DNA/MIV-prime-boost influenza vaccine trial, we sorted hemagglutinin cross-reactive memory B cells and identified three antibody classes, each capable of neutralizing diverse subtypes of group 1 and group 2 influenza A viruses. Co-crystal structures with hemagglutinin revealed that each class utilized characteristic germline genes and convergent sequence motifs to recognize overlapping epitopes in the hemagglutinin stem. All six analyzed subjects had sequences from at least one multidonor class, and-in half the subjects-multidonor-class sequences were recovered from >40% of cross-reactive B cells. By contrast, these multidonor-class sequences were rare in published antibody datasets. Vaccination with a divergent hemagglutinin can thus increase the frequency of B cells encoding broad influenza A-neutralizing antibodies. We propose the sequence signature-quantified prevalence of these B cells as a metric to guide universal influenza A immunization strategies.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- B-Lymphocytes/immunology
- Epitopes, B-Lymphocyte
- Female
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Humans
- Immunologic Memory
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A virus/immunology
- Influenza Vaccines/immunology
- Male
- Middle Aged
- Models, Molecular
- Protein Structure, Tertiary
- Structure-Activity Relationship
- Young Adult
Collapse
Affiliation(s)
- M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam K Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul V Thomas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pathology, Microbiology, and Immunology and Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep N Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Madhu S Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sam Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher R Lees
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy Ransier
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James R Whittle
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xueling Wu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hadi M Yassine
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Celia Santos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yumiko Matsuoka
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - James C Mullikin
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry & Molecular Biophysics and Department of Systems Biology, Columbia University, New York, NY 10027, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Immunogenicity and Protective Efficacy against Enterotoxigenic Escherichia coli Colonization following Intradermal, Sublingual, or Oral Vaccination with EtpA Adhesin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:628-37. [PMID: 27226279 DOI: 10.1128/cvi.00248-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 12/16/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a common cause of diarrhea. Extraordinary antigenic diversity has prompted a search for conserved antigens to complement canonical approaches to ETEC vaccine development. EtpA, an immunogenic extracellular ETEC adhesin relatively conserved in the ETEC pathovar, has previously been shown to be a protective antigen following intranasal immunization. These studies were undertaken to explore alternative routes of EtpA vaccination that would permit use of a double mutant (R192G L211A) heat-labile toxin (dmLT) adjuvant. Here, oral vaccination with EtpA adjuvanted with dmLT afforded significant protection against small intestinal colonization, and the degree of protection correlated with fecal IgG, IgA, or total fecal antibody responses to EtpA. Sublingual vaccination yielded compartmentalized mucosal immune responses with significant increases in anti-EtpA fecal IgG and IgA, and mice vaccinated via this route were also protected against colonization. In contrast, while intradermal (i.d.) vaccination achieved high levels of both serum and fecal antibodies against both EtpA and dmLT, mice vaccinated via the i.d. route were not protected against subsequent colonization and the avidity of serum IgG and IgA EtpA-specific antibodies was significantly lower after i.d. immunization compared to other routes. Finally, we demonstrate that antiserum from vaccinated mice significantly impairs binding of LT to cognate GM1 receptors and shows near complete neutralization of toxin delivery by ETEC in vitro Collectively, these data provide further evidence that EtpA could complement future vaccine strategies but also suggest that additional effort will be required to optimize its use as a protective immunogen.
Collapse
|
22
|
Canelle Q, Dewé W, Innis BL, van der Most R. Evaluation of potential immunogenicity differences between Pandemrix™ and Arepanrix™. Hum Vaccin Immunother 2016; 12:2289-98. [PMID: 27105343 PMCID: PMC5027709 DOI: 10.1080/21645515.2016.1168954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In retrospective observational studies, an increased relative risk of incident narcolepsy was observed in some European countries among recipients of the AS03-adjuvanted, A(H1N1)pdm09, inactivated, detergent-split virion vaccine Pandemrix™ manufactured in Dresden, Germany (D-Pan H1N1). A similar increased risk was not observed in a retrospective population-based study in individuals in Quebec province, Canada, who received Aprepanrix™, a Quebec-manufactured AS03-adjuvanted A(H1N1)pdm09 inactivated, detergent-split virion vaccine (Q-Pan H1N1). Antibody responses in D-Pan versus Q-Pan vaccinees (adults/children) measured as hemagglutination inhibition (HI) titers 21 d post-vaccination were found to be equivalent (NCT01161160). The current post-hoc analysis was conducted to determine whether antibody avidity differed following immunization with the 2 vaccines. Using surface plasmon resonance, we evaluated the capacity of serum specimens (drawn from the comparative immunogenicity trial) from a subset of subjects aged 3-9 y who received either D-Pan or Q-Pan (N = 28/group), to bind to recombinant A(H1N1)pdm09 hemagglutinin. IgG antibodies were purified from Day 21 sera. Binding was assessed by end association level; dissociation by retention of antigen-antibody complexes at the end of the dissociation phase, and kd. Inter-run variability for the control monoclonal antibody, association levels and dissociation levels was low (CVs 1.3%, 7.8% and 1.4%, respectively); non-specific binding was negligible. High avidity and slow dissociation was observed for both groups (kd ≤ 10(-4)/s; geometric mean [IQR] association and dissociation levels for D-Pan/Q-Pan: 15.4 RU [13.4-17.7]/12.4 RU [10.8-14.3] and 94.5% [92.5-96.5]/95.5% [93.5-97.6], respectively). Association, but not dissociation levels correlated with HI titers. No significant differences in avidity parameters were observed between D-Pan and Q-Pan sera.
Collapse
|
23
|
Abstract
DNA plasmids can be used to induce a protective (or therapeutic) immune response by delivering genes encoding vaccine antigens. That naked DNA (without the refinement of coat proteins or host evasion systems) can cross from outside the cell into the nucleus and be expressed is particularly remarkable given the sophistication of the immune system in preventing infection by pathogens. As a result of the ease, low cost, and speed of custom gene synthesis, DNA vaccines dangle a tantalizing prospect of the next wave of vaccine technology, promising individual designer vaccines for cancer or mass vaccines with a rapid response time to emerging pandemics. There is considerable enthusiasm for the use of DNA vaccination as an approach, but this enthusiasm should be tempered by the successive failures in clinical trials to induce a potent immune response. The technology is evolving with the development of improved delivery systems that increase expression levels, particularly electroporation and the incorporation of genetically encoded adjuvants. This review will introduce some key concepts in the use of DNA plasmids as vaccines, including how the DNA enters the cell and is expressed, how it induces an immune response, and a summary of clinical trials with DNA vaccines. The review also explores the advances being made in vector design, delivery, formulation, and adjuvants to try to realize the promise of this technology for new vaccines. If the immunogenicity and expression barriers can be cracked, then DNA vaccines may offer a step change in mass vaccination.
Collapse
|
24
|
Brazzoli M, Magini D, Bonci A, Buccato S, Giovani C, Kratzer R, Zurli V, Mangiavacchi S, Casini D, Brito LM, De Gregorio E, Mason PW, Ulmer JB, Geall AJ, Bertholet S. Induction of Broad-Based Immunity and Protective Efficacy by Self-amplifying mRNA Vaccines Encoding Influenza Virus Hemagglutinin. J Virol 2016; 90:332-44. [PMID: 26468547 PMCID: PMC4702536 DOI: 10.1128/jvi.01786-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Seasonal influenza is a vaccine-preventable disease that remains a major health problem worldwide, especially in immunocompromised populations. The impact of influenza disease is even greater when strains drift, and influenza pandemics can result when animal-derived influenza virus strains combine with seasonal strains. In this study, we used the SAM technology and characterized the immunogenicity and efficacy of a self-amplifying mRNA expressing influenza virus hemagglutinin (HA) antigen [SAM(HA)] formulated with a novel oil-in-water cationic nanoemulsion. We demonstrated that SAM(HA) was immunogenic in ferrets and facilitated containment of viral replication in the upper respiratory tract of influenza virus-infected animals. In mice, SAM(HA) induced potent functional neutralizing antibody and cellular immune responses, characterized by HA-specific CD4 T helper 1 and CD8 cytotoxic T cells. Furthermore, mice immunized with SAM(HA) derived from the influenza A virus A/California/7/2009 (H1N1) strain (Cal) were protected from a lethal challenge with the heterologous mouse-adapted A/PR/8/1934 (H1N1) virus strain (PR8). Sera derived from SAM(H1-Cal)-immunized animals were not cross-reactive with the PR8 virus, whereas cross-reactivity was observed for HA-specific CD4 and CD8 T cells. Finally, depletion of T cells demonstrated that T-cell responses were essential in mediating heterologous protection. If the SAM vaccine platform proves safe, well tolerated, and effective in humans, the fully synthetic SAM vaccine technology could provide a rapid response platform to control pandemic influenza. IMPORTANCE In this study, we describe protective immune responses in mice and ferrets after vaccination with a novel HA-based influenza vaccine. This novel type of vaccine elicits both humoral and cellular immune responses. Although vaccine-specific antibodies are the key players in mediating protection from homologous influenza virus infections, vaccine-specific T cells contribute to the control of heterologous infections. The rapid production capacity and the synthetic origin of the vaccine antigen make the SAM platform particularly exploitable in case of influenza pandemic.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cross Protection
- Disease Models, Animal
- Female
- Ferrets
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Leukocyte Reduction Procedures
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Respiratory System/virology
- Survival Analysis
- Treatment Outcome
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
Collapse
Affiliation(s)
| | - Diletta Magini
- Novartis Vaccines and Diagnostics S.r.l., Siena, Italy Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | - Vanessa Zurli
- Novartis Vaccines and Diagnostics S.r.l., Siena, Italy Dipartimento di Biologia, Università degli Studi di Padova, Padua, Italy
| | | | | | - Luis M Brito
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | | | - Peter W Mason
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | - Jeffrey B Ulmer
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | - Andrew J Geall
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, USA
| | | |
Collapse
|
25
|
Abstract
In the two decades since their initial discovery, DNA vaccines technologies have come a long way. Unfortunately, when applied to human subjects inadequate immunogenicity is still the biggest challenge for practical DNA vaccine use. Many different strategies have been tested in preclinical models to address this problem, including novel plasmid vectors and codon optimization to enhance antigen expression, new gene transfection systems or electroporation to increase delivery efficiency, protein or live virus vector boosting regimens to maximise immune stimulation, and formulation of DNA vaccines with traditional or molecular adjuvants. Better understanding of the mechanisms of action of DNA vaccines has also enabled better use of the intrinsic host response to DNA to improve vaccine immunogenicity. This review summarizes recent advances in DNA vaccine technologies and related intracellular events and how these might impact on future directions of DNA vaccine development.
Collapse
Affiliation(s)
- Lei Li
- a Vaxine Pty Ltd, Bedford Park , Adelaide , Australia.,b Department of Diabetes and Endocrinology , Flinders University, Flinders Medical Centre , Adelaide , SA , Australia
| | - Nikolai Petrovsky
- a Vaxine Pty Ltd, Bedford Park , Adelaide , Australia.,b Department of Diabetes and Endocrinology , Flinders University, Flinders Medical Centre , Adelaide , SA , Australia
| |
Collapse
|
26
|
Suschak JJ, Wang S, Fitzgerald KA, Lu S. A cGAS-Independent STING/IRF7 Pathway Mediates the Immunogenicity of DNA Vaccines. THE JOURNAL OF IMMUNOLOGY 2015; 196:310-6. [PMID: 26590319 DOI: 10.4049/jimmunol.1501836] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022]
Abstract
It has been known since the discovery of DNA vaccines >20 y ago that DNA vaccines can function as adjuvants. Our recent study reported the involvement of Aim2 as the sensor of DNA vaccines in eliciting Ag-specific Ab responses. Our findings indicated the presence of previously unrecognized innate immune response pathways in addition to the TLR9 pathway, which is mainly activated by the CpG motifs of DNA vaccines. Our data further demonstrated the requirement of type I IFN in DNA vaccine-induced immune responses via the Aim2 pathway, but the exact downstream molecular mechanism was not characterized. In the present study, we investigated the roles of the putative DNA sensor cyclic GMP-AMP synthase (cGas), as well as the downstream IFN regulatory factors (IRF) 3 and 7 in type I IFN induction and Ag-specific immune responses elicited by DNA vaccination. Our results showed that DNA vaccine-induced, Irf7-dependent signaling, as part of the Sting pathway, was critical for generation of both innate cytokine signaling and Ag-specific B and T cell responses. In contrast, Irf3 was not as critical as expected in this pathway and, more surprisingly, immune responses elicited by DNA vaccines were not cGas-dependent in vivo. Data from this study provide more details on the innate immune mechanisms involved in DNA vaccination and further enrich our understanding on the potential utility of DNA vaccines in generating Ag-specific immune responses.
Collapse
Affiliation(s)
- John J Suschak
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
27
|
Halliley JL, Khurana S, Krammer F, Fitzgerald T, Coyle EM, Chung KY, Baker SF, Yang H, Martínez-Sobrido L, Treanor JJ, Subbarao K, Golding H, Topham DJ, Sangster MY. High-Affinity H7 Head and Stalk Domain-Specific Antibody Responses to an Inactivated Influenza H7N7 Vaccine After Priming With Live Attenuated Influenza Vaccine. J Infect Dis 2015; 212:1270-8. [PMID: 25838266 PMCID: PMC4577047 DOI: 10.1093/infdis/jiv210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/24/2015] [Indexed: 11/14/2022] Open
Abstract
Recent studies have shown that live attenuated influenza vaccines (LAIVs) expressing avian influenza virus hemagglutinins (HAs) prime for strong protective antibody responses to an inactivated influenza vaccine (IIV) containing the HA. To better understand this priming effect, we compared H7 HA head and stalk domain-specific B-cell responses in H7N7 LAIV-primed subjects and non-H7-primed controls after a single dose of H7N7 IIV. As previously reported, H7N7 LAIV-primed subjects but not control subjects generated strong hemagglutination-inhibiting and neutralizing antibody responses to the H7N7 IIV. Here, we found that the quantity, epitope diversity, and affinity of H7 head-specific antibodies increased rapidly in only H7N7 LAIV-primed subjects after receipt of the IIV. However, all cohorts generated a vigorous, high-affinity, stalk-specific antibody response. Consistent increases in circulating memory B-cell frequencies after receipt of the IIV reflected the specificity of high-affinity antibody production. Our findings emphasize the value of LAIVs as a vehicle for prepandemic vaccination.
Collapse
Affiliation(s)
- Jessica L. Halliley
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Surender Khurana
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, New York
| | | | - Elizabeth M. Coyle
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Ka Yan Chung
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | | | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center
| | | | | | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Hana Golding
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| | - Mark Y. Sangster
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology
| |
Collapse
|
28
|
Ledgerwood JE, Hu Z, Costner P, Yamshchikov G, Enama ME, Plummer S, Hendel CS, Holman L, Larkin B, Gordon I, Bailer RT, Poretz DM, Sarwar U, Kabadi A, Koup R, Mascola JR, Graham BS. Phase I clinical evaluation of seasonal influenza hemagglutinin (HA) DNA vaccine prime followed by trivalent influenza inactivated vaccine (IIV3) boost. Contemp Clin Trials 2015; 44:112-118. [PMID: 26275339 DOI: 10.1016/j.cct.2015.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 11/27/2022]
Abstract
Annual influenza vaccination reduces the risks of influenza when the vaccines are well matched to circulating strains, but development of an approach that induces broader and more durable immune responses would be beneficial. We conducted two companion Phase 1 studies, VRC 307 and VRC 309, over sequential seasons (2008-2009 and 2009-2010) in which only the influenza B strain component of the vaccines differed. Objectives were safety and immunogenicity of prime-boost vaccination schedules. A schedule of DNA vaccine encoding for seasonal influenza hemagglutinins (HA) prime followed by seasonal trivalent influenza inactivated vaccine (IIV3) boost (HA DNA-IIV3) was compared to placebo (PBS)-IIV3 or IIV3-IIV3. Cumulatively, 111 adults were randomized to HA DNA-IIV3 (n=66), PBS-IIV3 (n=25) or IIV3-IIV3 (n=20). Safety was assessed by clinical observations, laboratory parameters and 7-day solicited reactogenicity. The seasonal HA DNA prime-IIV3 boost regimen was evaluated as safe and well tolerated. There were no serious adverse events. The local and systemic reactogenicity for HA DNA, IIV and placebo were reported predominantly as none or mild within the first 5days post-vaccination. There was no significant difference in immunogenicity detected between the treatment groups as evaluated by hemagglutination inhibition (HAI) assay. The studies demonstrated the safety and immunogenicity of seasonal HA DNA-IIV3 regimen, but the 3-4week prime-boost interval was suboptimal for improving influenza-specific immune responses. This is consistent with observations in avian H5 DNA vaccine prime-boost studies in which a long interval, but not a short interval, was associated with improved immunogenicity. TRIAL REGISTRATION NCT00858611 for VRC 307 and NCT00995982 for VRC 309.
Collapse
Affiliation(s)
- Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Zonghui Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Pamela Costner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Galina Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Mary E Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Sarah Plummer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Cynthia S Hendel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lasonji Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Brenda Larkin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Donald M Poretz
- Clinical Alliance for Research and Education - Infectious Diseases (CARE-ID), Annandale, VA 22003, United States
| | - Uzma Sarwar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alisha Kabadi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Richard Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | | |
Collapse
|
29
|
Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. J Virol 2015; 89:10383-98. [PMID: 26246566 DOI: 10.1128/jvi.01653-15] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Generating neutralizing antibodies (nAbs) is a major goal of many current HIV-1 vaccine efforts. To be of practical value, these nAbs must be both potent and cross-reactive in order to be capable of preventing the transmission of the highly diverse and generally neutralization resistant (Tier-2) HIV-1 strains that are in circulation. The HIV-1 envelope glycoprotein (Env) spike is the only target for nAbs. To explore whether Tier-2 nAbs can be induced by Env proteins, we immunized conventional mice with soluble BG505 SOSIP.664 trimers that mimic the native Env spike. Here, we report that it is extremely difficult for murine B cells to recognize the Env epitopes necessary for inducing Tier-2 nAbs. Thus, while trimer-immunized mice raised Env-binding IgG Abs and had high-quality T follicular helper (Tfh) cell and germinal center (GC) responses, they did not make BG505.T332N nAbs. Epitope mapping studies showed that Ab responses in mice were specific to areas near the base of the soluble trimer. These areas are not well shielded by glycans and likely are occluded on virions, which is consistent with the lack of BG505.T332N nAbs. These data inform immunogen design and suggest that it is useful to obscure nonneutralizing epitopes presented on the base of soluble Env trimers and that the glycan shield of well-formed HIV Env trimers is virtually impenetrable for murine B cell receptors (BCRs). IMPORTANCE Human HIV vaccine efficacy trials have not generated meaningful neutralizing antibodies to circulating HIV strains. One possible hindrance has been the lack of immunogens that properly mimic the native conformation of the HIV envelope trimer protein. Here, we tested the first generation of soluble, native-like envelope trimer immunogens in a conventional mouse model. We attempted to generate neutralizing antibodies to neutralization-resistant circulating HIV strains. Various vaccine strategies failed to induce neutralizing antibodies to a neutralization-resistant HIV strain. Further analysis revealed that mouse antibodies targeted areas near the bottom of the soluble envelope trimers. These areas are not easily accessible on the HIV virion due to occlusion by the viral membrane and may have resulted from an absence of glycan shielding. Our results suggest that obscuring the bottom of soluble envelope trimers is a useful strategy to reduce antibody responses to epitopes that are not useful for virus neutralization.
Collapse
|
30
|
Wang L, Shi W, Joyce MG, Modjarrad K, Zhang Y, Leung K, Lees CR, Zhou T, Yassine HM, Kanekiyo M, Yang ZY, Chen X, Becker MM, Freeman M, Vogel L, Johnson JC, Olinger G, Todd JP, Bagci U, Solomon J, Mollura DJ, Hensley L, Jahrling P, Denison MR, Rao SS, Subbarao K, Kwong PD, Mascola JR, Kong WP, Graham BS. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun 2015. [PMID: 26218507 PMCID: PMC4525294 DOI: 10.1038/ncomms8712] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanisms were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development. Unmet need exists for a vaccine against Middle East respiratory syndrome coronavirus (MERS-CoV). Here the authors report the establishment and evaluation, in mice and primates, of a series of MERS-CoV immunogens and show that they can serve as promising leads for vaccine development.![]()
Collapse
Affiliation(s)
- Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kayvon Modjarrad
- 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2] U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA [3] Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20817, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christopher R Lees
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hadi M Yassine
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhi-yong Yang
- 1] Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Sanofi-Aventis, 270 Albany Street, Cambridge, Massachusetts 02139, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michelle M Becker
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Megan Freeman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Leatrice Vogel
- Emerging Respiratory Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joshua C Johnson
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland,21702, USA
| | - Gene Olinger
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland,21702, USA
| | - John P Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ulas Bagci
- 1] Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Center for Research in Computer Vision (CRCV), University of Central Florida, Orlando, Florida 32816, USA
| | - Jeffrey Solomon
- Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel J Mollura
- Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lisa Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland,21702, USA
| | - Peter Jahrling
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland,21702, USA
| | - Mark R Denison
- 1] Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Srinivas S Rao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kanta Subbarao
- Emerging Respiratory Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
31
|
Chung KY, Coyle EM, Jani D, King LR, Bhardwaj R, Fries L, Smith G, Glenn G, Golding H, Khurana S. ISCOMATRIX™ adjuvant promotes epitope spreading and antibody affinity maturation of influenza A H7N9 virus like particle vaccine that correlate with virus neutralization in humans. Vaccine 2015; 33:3953-62. [PMID: 26093202 DOI: 10.1016/j.vaccine.2015.06.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/09/2022]
Abstract
In a previously reported phase I clinical trial, subjects vaccinated with two doses of an unadjuvanted H7N9 virus like particle (VLP) vaccine responded poorly (15.6% seroconversion rates with 45μg hemagglutinin (HA) dose). In contrast, 80.6% of subjects receiving H7N9 VLP vaccine (5μg HA) with ISCOMATRIX™ adjuvant developed hemagglutination-inhibition (HI) responses. To better understand the role of adjuvant, complete antibody epitope repertoires of post-vaccination sera were investigated using Whole Genome Fragment Phage Display Library (GFPDL). In addition, antibody affinity maturation following vaccination was measured against HA1 and HA2 antigenic domains using real time Surface Plasmon Resonance (SPR) based kinetic assays. Unadjuvanted H7N9-VLP vaccine generated primarily antibodies targeting the C-terminus of the HA1 domain, predicted to be mostly buried on the native HA spikes, while adjuvanted VLP vaccine generated antibodies against large epitopes in the HA1 spanning the receptor binding domain (RBD). SPR analysis using a functional H7-HA1 domain demonstrated that sera from adjuvanted H7N9-VLP vaccine induced higher total binding antibodies and significantly higher antibody affinity maturation to HA1 compared to sera from unadjuvanted vaccine. Total antibody binding and affinity to the HA1 (but not HA2) domain correlated with HI and neutralization titers. This study demonstrates that ISCOMATRIX™ adjuvanted vaccine promotes higher quality antibody immune response against avian influenza in naïve humans.
Collapse
Affiliation(s)
- Ka Yan Chung
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA
| | | | | | - Lisa R King
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA
| | - Rukmini Bhardwaj
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA
| | | | | | | | - Hana Golding
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA
| | - Surender Khurana
- Division of Viral Products, CBER, FDA, Silver Spring, MD 20993, USA.
| |
Collapse
|
32
|
Wheatley AK, Whittle JRR, Lingwood D, Kanekiyo M, Yassine HM, Ma SS, Narpala SR, Prabhakaran MS, Matus-Nicodemos RA, Bailer RT, Nabel GJ, Graham BS, Ledgerwood JE, Koup RA, McDermott AB. H5N1 Vaccine-Elicited Memory B Cells Are Genetically Constrained by the IGHV Locus in the Recognition of a Neutralizing Epitope in the Hemagglutinin Stem. THE JOURNAL OF IMMUNOLOGY 2015; 195:602-10. [PMID: 26078272 DOI: 10.4049/jimmunol.1402835] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/13/2015] [Indexed: 11/19/2022]
Abstract
Because of significant viral diversity, vaccines that elicit durable and broad protection against influenza have been elusive. Recent research has focused on the potential of highly conserved regions of the viral hemagglutinin (HA) as targets for broadly neutralizing Ab responses. Abs that bind the highly conserved stem or stalk of HA can be elicited by vaccination in humans and animal models and neutralize diverse influenza strains. However, the frequency and phenotype of HA stem-specific B cells in vivo remain unclear. In this article, we characterize HA stem-specific B cell responses following H5N1 vaccination and describe the re-expansion of a pre-existing population of memory B cells specific for stem epitopes. This population uses primarily, but not exclusively, IGHV1-69-based Igs for HA recognition. However, within some subjects, allelic polymorphism at the ighv1-69 locus can limit IGHV1-69 immunodominance and may reduce circulating frequencies of stem-reactive B cells in vivo. The accurate definition of allelic selection, recombination requirements, and ontogeny of neutralizing Ab responses to influenza will aid rational influenza vaccine design.
Collapse
Affiliation(s)
- Adam K Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - James R R Whittle
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Boston, MA 02139; and
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hadi M Yassine
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Steven S Ma
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Madhu S Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Rodrigo A Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
33
|
Ledgerwood JE, Bellamy AR, Belshe R, Bernstein DI, Edupuganti S, Patel SM, Renehan P, Zajdowicz T, Schwartz R, Koup R, Bailer RT, Yamshchikov GV, Enama ME, Sarwar U, Larkin B, Graham BS. DNA priming for seasonal influenza vaccine: a phase 1b double-blind randomized clinical trial. PLoS One 2015; 10:e0125914. [PMID: 25950433 PMCID: PMC4423975 DOI: 10.1371/journal.pone.0125914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/18/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The efficacy of current influenza vaccines is limited in vulnerable populations. DNA vaccines can be produced rapidly, and may offer a potential strategy to improve vaccine immunogenicity, indicated by studies with H5 influenza DNA vaccine prime followed by inactivated vaccine boost. METHODS Four sites enrolled healthy adults, randomized to receive 2011/12 seasonal influenza DNA vaccine prime (n=65) or phosphate buffered saline (PBS) (n=66) administered intramuscularly with Biojector. All subjects received the 2012/13 seasonal inactivated influenza vaccine, trivalent (IIV3) 36 weeks after the priming injection. Vaccine safety and tolerability was the primary objective and measurement of antibody response by hemagglutination inhibition (HAI) was the secondary objective. RESULTS The DNA vaccine prime-IIV3 boost regimen was safe and well tolerated. Significant differences in HAI responses between the DNA vaccine prime and the PBS prime groups were not detected in this study. CONCLUSION While DNA priming significantly improved the response to a conventional monovalent H5 vaccine in a previous study, it was not effective in adults using seasonal influenza strains, possibly due to pre-existing immunity to the prime, unmatched prime and boost antigens, or the lengthy 36 week boost interval. Careful optimization of the DNA prime-IIV3 boost regimen as related to antigen matching, interval between vaccinations, and pre-existing immune responses to influenza is likely to be needed in further evaluations of this vaccine strategy. In particular, testing this concept in younger age groups with less prior exposure to seasonal influenza strains may be informative. TRIAL REGISTRATION ClinicalTrials.gov NCT01498718.
Collapse
Affiliation(s)
- Julie E. Ledgerwood
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Abbie R. Bellamy
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Robert Belshe
- Edward A. Daisy Research Center, Saint Louis University, Saint Louis, Missouri, United States of America
| | - David I. Bernstein
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Shital M. Patel
- Department of Medicine and Molecular Virology and Microbiology, Baylor College of Medicine Houston, Texas, United States of America
| | - Phyllis Renehan
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Thad Zajdowicz
- The EMMES Corporation, Rockville, Maryland, United States of America
| | - Richard Schwartz
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Koup
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert T. Bailer
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Galina V. Yamshchikov
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mary E. Enama
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Uzma Sarwar
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brenda Larkin
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
34
|
Crank MC, Gordon IJ, Yamshchikov GV, Sitar S, Hu Z, Enama ME, Holman LA, Bailer RT, Pearce MB, Koup RA, Mascola JR, Nabel GJ, Tumpey TM, Schwartz RM, Graham BS, Ledgerwood JE. Phase 1 study of pandemic H1 DNA vaccine in healthy adults. PLoS One 2015; 10:e0123969. [PMID: 25884189 PMCID: PMC4401709 DOI: 10.1371/journal.pone.0123969] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/13/2015] [Indexed: 11/26/2022] Open
Abstract
Background A novel, swine-origin influenza A (H1N1) virus was detected worldwide in April 2009, and the World Health Organization (WHO) declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1) influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1) licensed monovalent inactivated vaccine (MIV). Methods 20 subjects received three H1 DNA vaccinations (4 mg intramuscularly with Biojector) at 4-week intervals. Eighteen subjects received an optional boost when the licensed H1N1 MIV became available. The interval between the third H1 DNA injection and MIV boost was 3–17 weeks. Vaccine safety was assessed by clinical observation, laboratory parameters, and 7-day solicited reactogenicity. Antibody responses were assessed by ELISA, HAI and neutralization assays, and T cell responses by ELISpot and flow cytometry. Results Vaccinations were safe and well-tolerated. As evaluated by HAI, 6/20 developed positive responses at 4 weeks after third DNA injection and 13/18 at 4 weeks after MIV boost. Similar results were detected in neutralization assays. T cell responses were detected after DNA and MIV. The antibody responses were significantly amplified by the MIV boost, however, the boost did not increased T cell responses induced by DNA vaccine. Conclusions H1 DNA vaccine was produced quickly, was well-tolerated, and had modest immunogenicity as a single agent. Other HA DNA prime-MIV boost regimens utilizing one DNA prime vaccination and longer boost intervals have shown significant immunogenicity. Rapid and large-scale production of HA DNA vaccines has the potential to contribute to an efficient response against future influenza pandemics. Trial Registration Clinicaltrials.gov NCT00973895
Collapse
Affiliation(s)
- Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ingelise J Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Galina V Yamshchikov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandra Sitar
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zonghui Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mary E Enama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - LaSonji A Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Melissa B Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, US Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Richard M Schwartz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
35
|
Kines RC, Zarnitsyn V, Johnson TR, Pang YYS, Corbett KS, Nicewonger JD, Gangopadhyay A, Chen M, Liu J, Prausnitz MR, Schiller JT, Graham BS. Vaccination with human papillomavirus pseudovirus-encapsidated plasmids targeted to skin using microneedles. PLoS One 2015; 10:e0120797. [PMID: 25785935 PMCID: PMC4364728 DOI: 10.1371/journal.pone.0120797] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022] Open
Abstract
Human papilloma virus-like particles (HPV VLP) serve as the basis of the current licensed vaccines for HPV. We have previously shown that encapsidation of DNA expressing the model antigen M/M2 from respiratory syncytial virus (RSV) in HPV pseudovirions (PsV) is immunogenic when delivered intravaginally. Because the HPV capsids confer tropism for basal epithelium, they represent attractive carriers for vaccination targeted to the skin using microneedles. In this study we asked: 1) whether HPV16 VLP administered by microneedles could induce protective immune responses to HPV16 and 2) whether HPV16 PsV-encapsidated plasmids delivered by microneedles could elicit immune responses to both HPV and the antigen delivered by the transgene. Mice immunized with HPV16 VLP coated microneedles generated robust neutralizing antibody responses and were protected from HPV16 challenge. Microneedle arrays coated with HPV16-M/M2 or HPV16-F protein (genes of RSV) were then tested and dose-dependent HPV and F-specific antibody responses were detected post-immunization, and M/M2-specific T-cell responses were detected post RSV challenge, respectively. HPV16 PsV-F immunized mice were fully protected from challenge with HPV16 PsV and had reduced RSV viral load in lung and nose upon intranasal RSV challenge. In summary, HPV16 PsV-encapsidated DNA delivered by microneedles induced neutralizing antibody responses against HPV and primed for antibody and T-cell responses to RSV antigens encoded by the encapsidated plasmids. Although the immunogenicity of the DNA component was just above the dose response threshold, the HPV-specific immunity was robust. Taken together, these data suggest microneedle delivery of lyophilized HPV PsV could provide a practical, thermostable combined vaccine approach that could be developed for clinical evaluation.
Collapse
MESH Headings
- Administration, Cutaneous
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- DNA, Viral/genetics
- DNA, Viral/immunology
- Female
- Gene Expression
- Genes, Reporter
- Human papillomavirus 16/drug effects
- Human papillomavirus 16/genetics
- Human papillomavirus 16/immunology
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Microinjections
- Needles
- Papillomavirus Infections/immunology
- Papillomavirus Infections/prevention & control
- Papillomavirus Infections/virology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/immunology
- Respiratory Syncytial Viruses/genetics
- Respiratory Syncytial Viruses/immunology
- Skin/immunology
- Transgenes
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/prevention & control
- Uterine Cervical Neoplasms/virology
- Vaccination
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
- Viral Fusion Proteins/administration & dosage
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Viral Matrix Proteins/administration & dosage
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Rhonda C. Kines
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vladimir Zarnitsyn
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Teresa R. Johnson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuk-Ying S. Pang
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kizzmekia S. Corbett
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John D. Nicewonger
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anu Gangopadhyay
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Man Chen
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jie Liu
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark R. Prausnitz
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - John T. Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Khurana S, Coyle EM, Manischewitz J, King LR, Ishioka G, Alexander J, Smith J, Gurwith M, Golding H. Oral priming with replicating adenovirus serotype 4 followed by subunit H5N1 vaccine boost promotes antibody affinity maturation and expands H5N1 cross-clade neutralization. PLoS One 2015; 10:e0115476. [PMID: 25629161 PMCID: PMC4309450 DOI: 10.1371/journal.pone.0115476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/23/2014] [Indexed: 12/28/2022] Open
Abstract
A Phase I trial conducted in 2009-2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Affinity/immunology
- Clinical Trials, Phase I as Topic
- Cross Reactions/immunology
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Humans
- Immunization, Secondary
- Influenza A Virus, H5N1 Subtype/classification
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland, United States of America, 20903
- * E-mail: (SK); (HG)
| | - Elizabeth M. Coyle
- Division of Viral products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland, United States of America, 20903
| | - Jody Manischewitz
- Division of Viral products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland, United States of America, 20903
| | - Lisa R. King
- Division of Viral products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland, United States of America, 20903
| | - Glenn Ishioka
- PaxVax, San Diego, CA, United States of America, 92121
| | | | - Jon Smith
- PaxVax, San Diego, CA, United States of America, 92121
| | - Marc Gurwith
- PaxVax, Redwood City, CA, United States of America, 94063
| | - Hana Golding
- Division of Viral products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland, United States of America, 20903
- * E-mail: (SK); (HG)
| |
Collapse
|
37
|
Suschak JJ, Wang S, Fitzgerald KA, Lu S. Identification of Aim2 as a sensor for DNA vaccines. THE JOURNAL OF IMMUNOLOGY 2014; 194:630-6. [PMID: 25488991 DOI: 10.4049/jimmunol.1402530] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent human study data have re-established the value of DNA vaccines, especially in priming high-level Ag-specific Ab responses, but also raised questions about the mechanisms responsible for such effects. Whereas previous reports have shown involvement of downstream signaling molecules in the innate immune system, the current study investigated the role of absent in melanoma 2 (Aim2) as a sensor for DNA vaccines. The Aim2 inflammasome directs maturation of the proinflammatory cytokines IL-1β and IL-18 and an inflammatory form of cell death called pyroptosis. Both the humoral and cellular Ag-specific adaptive responses were significantly reduced in Aim2-deficient mice in an IL-1β/IL-18-independent manner after DNA vaccination. Surprisingly, Aim2-deficient mice also exhibited significantly lower levels of IFN-α/β at the site of injection. These results indicate a previously unreported link between DNA vaccine-induced pyroptotic cell death and vaccine immunogenicity that is instrumental in shaping the Ag-specific immune response to DNA vaccines.
Collapse
Affiliation(s)
- John J Suschak
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
38
|
Babu TM, Levine M, Fitzgerald T, Luke C, Sangster MY, Jin H, Topham D, Katz J, Treanor J, Subbarao K. Live attenuated H7N7 influenza vaccine primes for a vigorous antibody response to inactivated H7N7 influenza vaccine. Vaccine 2014; 32:6798-804. [PMID: 25446831 PMCID: PMC9002966 DOI: 10.1016/j.vaccine.2014.09.070] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND H7 influenza viruses have emerged as potential pandemic threat. We evaluated the safety and immunogenicity of two candidate H7 pandemic live attenuated influenza vaccines (pLAIV) and their ability to prime for responses to an unadjuvanted H7 pandemic inactivated influenza vaccine (pIIV). METHODS Healthy seronegative adults received two doses of A/Netherlands/219/03 (H7N7) or one dose of A/chicken/British Columbia/CN-6/04 (H7N3) pLAIV all given as 10(7.5) 50% tissue culture infective doses (TCID50) intranasally. A subset of subjects received one 45 μg dose of H7N7 pIIV containing the A/Mallard/Netherlands/12/2000 HA intramuscularly 18-24 months after pLAIV. Viral shedding was assessed by culture and real-time polymerase chain reaction (rRT-PCR), B cell responses following pLAIV were evaluated by ELISPOT and flow cytometry. Serum antibody was assessed by hemagglutination-inhibition (HAI), microneutralization (MN) and ELISA assays after each vaccine. RESULTS Serum HAI or MN responses were not detected in any subject following one or two doses of either H7 pLAIV, although some subjects had detectable H7 specific B cells after vaccination. However, 10/13 subjects primed with two doses of H7N7 pLAIV responded to a subsequent dose of the homologous H7N7 pIIV with high titer HAI and MN antibody that cross-reacted with both North American and Eurasian lineage H7 viruses, including H7N9. In contrast, naïve subjects and recipients of a single dose of the mismatched H7N3 pLAIV did not develop HAI or MN antibody after pIIV. CONCLUSIONS While pLAIVs did not elicit detectable serum MN or HAI antibody, strain-specific pLAIV priming established long term immune memory that was cross-reactive with other H7 influenza strains. Understanding the mechanisms underlying priming by pLAIV may aid in pandemic vaccine development.
Collapse
MESH Headings
- Administration, Intranasal
- Adult
- Antibodies, Viral/blood
- B-Lymphocytes/immunology
- Enzyme-Linked Immunosorbent Assay
- Enzyme-Linked Immunospot Assay
- Flow Cytometry
- Healthy Volunteers
- Hemagglutination Inhibition Tests
- Humans
- Influenza A Virus, H7N3 Subtype/immunology
- Influenza A Virus, H7N7 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Neutralization Tests
- Real-Time Polymerase Chain Reaction
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Virus Cultivation
- Virus Shedding
Collapse
Affiliation(s)
- Tara M Babu
- Division of Infectious Disease, University of Rochester Medical Center, Rochester, NY, United States
| | - Min Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Theresa Fitzgerald
- Division of Infectious Disease, University of Rochester Medical Center, Rochester, NY, United States
| | - Catherine Luke
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mark Y Sangster
- David Smith Center for Immunology and Vaccine Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hong Jin
- MedImmune LLC, Gaithersburg, MD, United States
| | - David Topham
- David Smith Center for Immunology and Vaccine Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jacqueline Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John Treanor
- Division of Infectious Disease, University of Rochester Medical Center, Rochester, NY, United States.
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Fry AM, Zhong W, Gubareva LV. Advancing treatment options for influenza: challenges with the human influenza challenge. J Infect Dis 2014; 211:1033-5. [PMID: 25281756 DOI: 10.1093/infdis/jiu543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Weimin Zhong
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
40
|
Roozendaal R, Tolboom J, Roos A, Riahi S, Theeuwsen J, Bujny MV, Klaren V, Korse HJWM, Dekking L, Grootenhuis A, Weverling GJ, Koudstaal W, Goudsmit J, Radošević K. Transient humoral protection against H5N1 challenge after seasonal influenza vaccination of humans. PLoS One 2014; 9:e103550. [PMID: 25075622 PMCID: PMC4116209 DOI: 10.1371/journal.pone.0103550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/28/2014] [Indexed: 11/20/2022] Open
Abstract
Current influenza vaccines are believed to confer protection against a narrow range of virus strains. The identification of broadly influenza neutralizing antibodies (bnAbs) has triggered efforts to develop vaccines providing ‘universal’ protection against influenza. Several bnAbs were isolated from humans recently vaccinated with conventional influenza vaccines, suggesting that such vaccines could, in principle, be broadly protective. Assessing the breadth-of-protection conferred to humans by influenza vaccines is hampered by the lack of in vitro correlates for broad protection. We designed and employed a novel human-to-mouse serum transfer and challenge model to analyze protective responses in serum samples from clinical trial subjects. One dose of seasonal vaccine induces humoral protection not only against vaccine-homologous H1N1 challenge, but also against H5N1 challenge. This heterosubtypic protection is neither detected, nor accurately predicted by in vitro immunogenicity assays. Moreover, heterosubtypic protection is transient and not boosted by repeated inoculations. Strategies to increase the breadth and duration of the protective response against influenza are required to obtain ‘universal’ protection against influenza by vaccination. In the absence of known correlates of protection for broadly protective vaccines, the human-to-mouse serum transfer and challenge model described here may aid the development of such vaccines.
Collapse
Affiliation(s)
- Ramon Roozendaal
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Jeroen Tolboom
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Anna Roos
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Sarra Riahi
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Jessica Theeuwsen
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Miriam V. Bujny
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Vincent Klaren
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Hans J. W. M. Korse
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Liesbeth Dekking
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | | | - Gerrit Jan Weverling
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Wouter Koudstaal
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Jaap Goudsmit
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
| | - Katarina Radošević
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Crucell Holland BV, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
41
|
Affiliation(s)
- Ann R Falsey
- Department of Medicine, Rochester General Hospital and University of Rochester School of Medicine and Dentistry, New York
| |
Collapse
|
42
|
Luke CJ, Subbarao K. Improving pandemic H5N1 influenza vaccines by combining different vaccine platforms. Expert Rev Vaccines 2014; 13:873-83. [DOI: 10.1586/14760584.2014.922416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Boxus M, Lockman L, Fochesato M, Lorin C, Thomas F, Giannini SL. Antibody avidity measurements in recipients of Cervarix® vaccine following a two-dose schedule or a three-dose schedule. Vaccine 2014; 32:3232-6. [DOI: 10.1016/j.vaccine.2014.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 12/23/2022]
|
44
|
Heterologous prime-boost vaccination with MF59-adjuvanted H5 vaccines promotes antibody affinity maturation towards the hemagglutinin HA1 domain and broad H5N1 cross-clade neutralization. PLoS One 2014; 9:e95496. [PMID: 24755693 PMCID: PMC3995799 DOI: 10.1371/journal.pone.0095496] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
In an open label clinical study (2007), MF59-adjuvanted hemagglutinin (HA) vaccine from H5N1-A/Vietnam/1194/2004 (clade 1) was administered to subjects previously vaccinated (primed) with clade 0 H5N3 (A/duck/Singapore/97) vaccine at least 6 years earlier (in 1999 or 2001). The primed individuals responded rapidly and generated high neutralizing antibody titers against the H5N1-Vietnam strain within 7 days of a single booster vaccination. Furthermore, significant cross-neutralization titers were measured against H5N1 clade 0, 1, and 2 viruses. In the current study, the impact of MF59 adjuvant during heterologous priming on the quality of humoral polyclonal immune response in different vaccine arms were further evaluated using real time kinetics assay by surface plasmon resonance (SPR). Total anti-H5N1 HA1 polyclonal sera antibody binding from the heterologous prime-boost groups after a single MF59-H5N1 boost was significantly higher compared with sera from unprimed individuals that received two MF59-H5N1 vaccinations. The antigen-antibody complex dissociation rates (surrogate for antibody affinity) of the polyclonal sera against HA1 of H5N1-A/Vietnam/1194/2004 from the MF59-H5N3 primed groups were significantly higher compared to sera from unadjuvanted primed groups or unprimed individuals that received two MF59-H5N1 vaccines. Furthermore, strong inverse correlations were observed between the antibody dissociation off-rates of the immune sera against HA1 (but not HA2) and the virus neutralization titers against H5 vaccine strains and heterologous H5N1 strains. These findings supports the use of oil-in-water-adjuvanted pandemic influenza vaccines to elicit long term memory B cells with high affinity BCR capable of responding to potential variant pandemic viruses likely to emerge and adapt to human transmissions.
Collapse
|
45
|
Talaat KR, Luke CJ, Khurana S, Manischewitz J, King LR, McMahon BA, Karron RA, Lewis KDC, Qin J, Follmann DA, Golding H, Neuzil KM, Subbarao K. A live attenuated influenza A(H5N1) vaccine induces long-term immunity in the absence of a primary antibody response. J Infect Dis 2014; 209:1860-9. [PMID: 24604819 DOI: 10.1093/infdis/jiu123] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza A(H5N1) causes severe infections in humans. We generated 2 influenza A(H5N1) live attenuated influenza vaccines for pandemic use (pLAIVs), but they failed to elicit a primary immune response. Our objective was to determine whether the vaccines primed or established long-lasting immunity that could be detected by administration of inactivated subvirion influenza A(H5N1) vaccine (ISIV). METHODS The following groups were invited to participate in the study: persons who previously received influenza A(H5N1) pLAIV; persons who previously received an irrelevant influenza A(H7N3) pLAIV; and community members who were naive to influenza A(H5N1) and LAIV. LAIV-experienced subjects received a single 45-μg dose of influenza A(H5N1) ISIV. Influenza A(H5N1)- and LAIV-naive subjects received either 1 or 2 doses of ISIV. RESULTS In subjects who had previously received antigenically matched influenza A(H5N1) pLAIV followed by 1 dose of ISIV compared with those who were naive to influenza A(H5N1) and LAIV and received 2 doses of ISIV, we observed an increased frequency of antibody response (82% vs 50%, by the hemagglutination inhibition assay) and a significantly higher antibody titer (112 vs 76; P = .04). The affinity of antibody and breadth of cross-clade neutralization was also enhanced in influenza A(H5N1) pLAIV-primed subjects. CONCLUSIONS ISIV administration unmasked long-lasting immunity in influenza A(H5N1) pLAIV recipients, with a rapid, high-titer, high-quality antibody response that was broadly cross-reactive across several influenza A(H5N1) clades. CLINICAL TRIALS REGISTRATION NCT01109329.
Collapse
Affiliation(s)
- Kawsar R Talaat
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | | | - Surender Khurana
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| | - Jody Manischewitz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| | - Lisa R King
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| | - Bridget A McMahon
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | - Ruth A Karron
- Center For Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore
| | | | - Jing Qin
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Dean A Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Hana Golding
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| | | | | |
Collapse
|
46
|
Yamazaki T, Ichinohe T. Inflammasomes in antiviral immunity: clues for influenza vaccine development. Clin Exp Vaccine Res 2013; 3:5-11. [PMID: 24427758 PMCID: PMC3890450 DOI: 10.7774/cevr.2014.3.1.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammasomes are cytosolic multiprotein complexes that sense microbial motifs or cellular stress and stimulate caspase-1-dependent cytokine secretion and cell death. Recently, it has become increasingly evident that both DNA and RNA viruses activate inflammasomes, which control innate and adaptive immune responses against viral infections. In addition, recent studies suggest that certain microbiota induce inflammasomes-dependent adaptive immunity against influenza virus infections. Here, we review recent advances in research into the role of inflammasomes in antiviral immunity.
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
47
|
Mastelic B, Garçon N, Del Giudice G, Golding H, Gruber M, Neels P, Fritzell B. Predictive markers of safety and immunogenicity of adjuvanted vaccines. Biologicals 2013; 41:458-68. [PMID: 24071553 DOI: 10.1016/j.biologicals.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 01/08/2023] Open
Abstract
Vaccination represents one of the greatest public health triumphs; in part due to the effect of adjuvants that have been included in vaccine preparations to boost the immune responses through different mechanisms. Although a variety of novel adjuvants have been under development, only a limited number have been approved by regulatory authorities for human vaccines. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference on the current state of the art in the adjuvant field. Held at the U.S. Pharmacopeial Convention (USP) in Rockville, Maryland, USA, from 18 to 19 April 2013 and organized by the International Association for Biologicals (IABS), the conference focused particularly on the future development of effective adjuvants and adjuvanted vaccines and on overcoming major hurdles, such as safety and immunogenicity assessment, as well as regulatory scrutiny. More information on the conference output can be found on the IABS website, http://www.iabs.org/.
Collapse
Affiliation(s)
- Beatris Mastelic
- WHO Center for Vaccinology and Neonatal Immunology, University of Geneva, CMU, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|