1
|
Zhu DYD, Castrillon C, Carroll MC. Innate Immune Receptors as Dynamic Modulators of Extrafollicular Autoimmune B Cell Response. Immunol Rev 2025; 330:e70005. [PMID: 39917856 DOI: 10.1111/imr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 05/08/2025]
Abstract
The immune system relies on carefully calibrated cellular machineries to enable distinction between endogenous and foreign molecules, with autoimmunity arising when this balance is disrupted. As potent autoantibody factories, B cells are major drivers of many autoimmune diseases. A significant fraction of patients affected by chronic autoimmune diseases such as systemic lupus erythematosus (SLE) exhibit pathogenic accumulation of B-cell subsets that are believed to be derived from the extrafollicular (EF) differentiation pathway. These B-cell subsets, although variously named and exhibiting intrinsic heterogeneity, are all poised producers of autoantibodies that correlate with patient pathophysiology. In addition, they are often characterized by biomarkers known to drive the innate immune response, including toll-like receptors and complement receptors. Although many innate receptors have well-established functions in myeloid cells and other immune cell types, their B cell-specific functions are still under active investigation and are crucial for understanding the molecular pathways that drive B-cell breaks of tolerance. In this review, we summarize studies on innate immune receptors that serve prominent roles in regulating EF B-cell activation in health and autoimmunity. By discussing independent and collaborative functions of these receptors, we hope to provide new perspectives in autoimmune disease signature research.
Collapse
Affiliation(s)
- Danni Yi-Dan Zhu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Graduate Program in Virology, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Carlos Castrillon
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Bozhkova M, Gardzheva P, Rangelova V, Taskov H, Murdjeva M. Cutting-edge assessment techniques for B cell immune memory: an overview. BIOTECHNOL BIOTEC EQ 2024; 38. [DOI: 10.1080/13102818.2024.2345119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 10/31/2024] Open
Affiliation(s)
- Martina Bozhkova
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Petya Gardzheva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Vanya Rangelova
- Department of Epidemiology and Disaster Medicine, Faculty of Public Health, Medical University–Plovdiv, Plovdiv, Bulgaria
| | - Hristo Taskov
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Elisey Yanev, MD”, Medical University–Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University–Plovdiv, Plovdiv, Bulgaria
- Laboratory of Clinical Immunology, University Hospital “St. George”, Plovdiv, Bulgaria
| |
Collapse
|
3
|
Piche-Ovares M, García MP, Moreira-Soto A, Figueroa-Romero MD, Merino-Sarmiento NS, Marcelo-Ñique AI, Málaga-Trillo E, Manosalva DEV, Gatty-Nogueira M, Cabezas Sanchez CA, Drexler JF. Rio Mamore Hantavirus Endemicity, Peruvian Amazon, 2020. Emerg Infect Dis 2024; 30:2532-2543. [PMID: 39592268 PMCID: PMC11616641 DOI: 10.3201/eid3012.240249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
To explore hantavirus infection patterns in Latin America, we conducted molecular and serologic hantavirus investigations among 3,400 febrile patients from Peru during 2020-2021. Reverse transcription PCR indicated that a patient from Loreto, in the Peruvian Amazon, was positive for Rio Mamore hantavirus (serum, 3.8 × 103 copies/mL). High genomic sequence identity of 87.0%-94.8% and phylogenetic common ancestry with a rodent-associated Rio Mamore hantavirus from Loreto in 1996 indicated endemicity. In 832 samples from Loreto, hantavirus incidence based on IgM ELISA of pooled Sin Nombre (SNV) and Andes virus (ANDV) nucleoproteins and immunofluorescence assay-based end-point titration using SNV/ANDV/Hantaan/Puumala/Saarema/Dobrava/Seoul hantaviruses was 0.5%. Across 3 ecologically distinct departments in Peru, SNV/ANDV IgG ELISA/IFA-based reactivity was 1.7%, suggesting circulation of antigenically distinct New World hantaviruses. Testing for arboviruses, nonendemic pathogens, and antigen-free ELISA corroborated nonspecific reactivity in 2 IgG and several IgM ELISA-positive serum samples. Hantavirus diagnostics and surveillance should be strengthened in Peru ad across Latin America.
Collapse
|
4
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
5
|
Yu SC, Chen KC, Huang RYJ. Nodal reactive proliferation of monocytoid B-cells may represent atypical memory B-cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:729-738. [PMID: 37080839 DOI: 10.1016/j.jmii.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Reactive lymphadenopathies such as toxoplasmosis and cytomegalovirus lymphadenitis are associated with monocytoid cell proliferation. Monocytoid cells are B-lymphocytes with an undetermined subset. METHODS Using digital spatial profiling whole transcriptome analyses, this study compared monocytoid and control B-cells. The B-cell subset of monocytoid cells was assigned according to gene expression profiles. RESULTS This study identified 466 differentially expressed genes between monocytoid and control B-cells. The cellular deconvolution algorithm identified monocytoid cells as memory B-cells instead of as naïve B-cells. A comparison of the upregulated genes revealed that atypical memory B-cells had the largest number of genes overlapping with monocytoid cells compared with other memory B-cell subsets. Atypical memory B-cell markers, namely TBX21 (T-bet), FCRL4 (IRTA1), and ITGAX (CD11c), were all upregulated in monocytoid cells. Similar to atypical memory B-cells, monocytoid cells exhibited (1) upregulated transcription factors (TBX21, TOX), (2) upregulated genes associated with B-cell inhibition (FCRL5, FCRL4) and downregulated genes associated with B-cell activation (PIK3CG, NFKB1A, CD40), (3) downregulated cell cycle-related genes (CDK6, MYC), and (4) downregulated cytokine receptors (IL4R). This study also analyzed the expression of monocytoid cell signature genes in various memory B-cell subsets. Atypical memory B-cells exhibited a gene expression pattern similar to that of monocytoid cells, but other memory B-cell subsets did not. Furthermore, monocytoid cells and marginal zone lymphomas differed in gene expression profiles. CONCLUSION Spatial transcriptomic analyses indicated that monocytoid cells may be atypical memory B-cells.
Collapse
Affiliation(s)
- Shan-Chi Yu
- Graduate Institute of Pathology and Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ko-Chen Chen
- School of Medicine & Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruby Yun-Ju Huang
- School of Medicine & Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Engineering, College of Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Yu P, Liu Z, Zhu Z, Yang J, Deng M, Chen M, Lai C, Kong W, Xiong S, Wan L, Mai W, Chen L, Lei Y, Khan SA, Ruan J, Kang A, Guo X, Zhou Q, Li W, Chen Z, Liang Y, Li P, Zhang L, Ji T. Omicron variants breakthrough infection elicited higher specific memory immunity than third dose booster in healthy vaccinees. Virol Sin 2023; 38:233-243. [PMID: 36603767 PMCID: PMC10176432 DOI: 10.1016/j.virs.2022.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Homologous booster, heterologous booster, and Omicron variants breakthrough infection (OBI) could improve the humoral immunity against Omicron variants. Questions concerning about memory B cells (MBCs) and T cells immunity against Omicron variants, features of long-term immunity, after booster and OBI, needs to be explored. Here, comparative analysis demonstrate antibody and T cell immunity against ancestral strain, Delta and Omicron variants in Omicron breakthrough infected patients (OBIPs) are comparable to that in Ad5-nCoV boosted healthy volunteers (HVs), higher than that in inactivated vaccine (InV) boosted HVs. However, memory B cells (MBCs) immunity against Omicron variants was highest in OBIPs, followed by Ad5-nCoV boosted and InV boosted HVs. OBIPs and Ad5-nCoV boosted HVs have higher classical MBCs and activated MBCs, and lower naïve MBCs and atypical MBCs relative to both vaccine boosted HVs. Collectively, these data indicate Omicron breakthrough infection elicit higher MBCs and T cells against SARS-CoV-2 especially Omicron variants relative to homologous InV booster and heterologous Ad5-nCoV booster.
Collapse
Affiliation(s)
- Pei Yu
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zijian Liu
- State Key Laboratories of Respiratory Diseases, Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, China
| | - Zhuoqi Zhu
- Clinical Laboratory Medicine Department, Dongguan Ninth People's Hospital, Dongguan, 523016, China
| | - Jiaqing Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Mingxiao Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, 525000, China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shilong Xiong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Li Wan
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Weikang Mai
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Lu Chen
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yu Lei
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shahzad Akbar Khan
- Laboratory of Pathology, Department of Pathobiology, University of Poonch Rawalakot Azad Kashmir Pakistan 12350, Pakistan
| | - Jianfeng Ruan
- Hospital Infection-Control Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - An Kang
- Medical Examination Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xuguang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Qiang Zhou
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenrui Li
- Clinical Laboratory Medicine Department, Dongguan Ninth People's Hospital, Dongguan, 523016, China
| | - Zheng Chen
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| | - Yuemei Liang
- Clinical Laboratory Medicine Department, Dongguan Ninth People's Hospital, Dongguan, 523016, China.
| | - Pingchao Li
- State Key Laboratories of Respiratory Diseases, Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, China.
| | - Lei Zhang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China; Department of Organ Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 510630, China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
Vigón L, García-Pérez J, Rodríguez-Mora S, Torres M, Mateos E, Castillo de la Osa M, Cervero M, Malo De Molina R, Navarro C, Murciano-Antón MA, García-Gutiérrez V, Planelles V, Alcamí J, Pérez-Olmeda M, Coiras M, López-Huertas MR. Impaired Antibody-Dependent Cellular Cytotoxicity in a Spanish Cohort of Patients With COVID-19 Admitted to the ICU. Front Immunol 2021; 12:742631. [PMID: 34616404 PMCID: PMC8488389 DOI: 10.3389/fimmu.2021.742631] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022] Open
Abstract
SARS-CoV-2 infection causes COVID-19, ranging from mild to critical disease in symptomatic subjects. It is essential to better understand the immunologic responses occurring in patients with the most severe outcomes. In this study, parameters related to the humoral immune response elicited against SARS-CoV-2 were analysed in 61 patients with different presentations of COVID-19 who were recruited in Hospitals and Primary Healthcare Centres in Madrid, Spain, during the first pandemic peak between April and June 2020. Subjects were allocated as mild patients without hospitalization, severe patients hospitalized or critical patients requiring ICU assistance. Critical patients showed significantly enhanced levels of B cells with memory and plasmablast phenotypes, as well as higher levels of antibodies against SARS-CoV-2 with neutralization ability, which were particularly increased in male gender. Despite all this, antibody-dependent cell-mediated cytotoxicity was defective in these individuals. Besides, patients with critical COVID-19 also showed increased IgG levels against herpesvirus such as CMV, EBV, HSV-1 and VZV, as well as detectable CMV and EBV viremia in plasma. Altogether, these results suggest an enhanced but ineffectual immune response in patients with critical COVID-19 that allowed latent herpesvirus reactivation. These findings should be considered during the clinical management of these patients due to the potential contribution to the most severe disease during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Javier García-Pérez
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Castillo de la Osa
- Serology Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Miguel Cervero
- Internal Medicine Service, Hospital Universitario Severo Ochoa, Leganés, Spain
| | - Rosa Malo De Molina
- Neumology Service, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | | - Vicente Planelles
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - José Alcamí
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Mayte Pérez-Olmeda
- Serology Laboratory, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
8
|
Notarbartolo S, Ranzani V, Bandera A, Gruarin P, Bevilacqua V, Putignano AR, Gobbini A, Galeota E, Manara C, Bombaci M, Pesce E, Zagato E, Favalli A, Sarnicola ML, Curti S, Crosti M, Martinovic M, Fabbris T, Marini F, Donnici L, Lorenzo M, Mancino M, Ungaro R, Lombardi A, Mangioni D, Muscatello A, Aliberti S, Blasi F, De Feo T, Prati D, Manganaro L, Granucci F, Lanzavecchia A, De Francesco R, Gori A, Grifantini R, Abrignani S. Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. Sci Immunol 2021; 6:6/62/eabg5021. [PMID: 34376481 DOI: 10.1126/sciimmunol.abg5021] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022]
Abstract
To understand how a protective immune response against SARS-CoV-2 develops over time, we integrated phenotypic, transcriptional and repertoire analyses on PBMCs from mild and severe COVID-19 patients during and after infection, and compared them to healthy donors (HD). A type I IFN-response signature marked all the immune populations from severe patients during the infection. Humoral immunity was dominated by IgG production primarily against the RBD and N proteins, with neutralizing antibody titers increasing post infection and with disease severity. Memory B cells, including an atypical FCRL5+ T-BET+ memory subset, increased during the infection, especially in patients with mild disease. A significant reduction of effector memory, CD8+ T cells frequency characterized patients with severe disease. Despite such impairment, we observed robust clonal expansion of CD8+ T lymphocytes, while CD4+ T cells were less expanded and skewed toward TCM and TH2-like phenotypes. MAIT cells were also expanded, but only in patients with mild disease. Terminally differentiated CD8+ GZMB+ effector cells were clonally expanded both during the infection and post-infection, while CD8+ GZMK+ lymphocytes were more expanded post-infection and represented bona fide memory precursor effector cells. TCR repertoire analysis revealed that only highly proliferating T cell clonotypes, which included SARS-CoV-2-specific cells, were maintained post-infection and shared between the CD8+ GZMB+ and GZMK+ subsets. Overall, this study describes the development of immunity against SARS-CoV-2 and identifies an effector CD8+ T cell population with memory precursor-like features.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy. .,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Valeria Ranzani
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Paola Gruarin
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Valeria Bevilacqua
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Anna Rita Putignano
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy.,Unità Operativa Complessa (UOC) Coordinamento Trapianti, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Gobbini
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Eugenia Galeota
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Cristina Manara
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mauro Bombaci
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elisa Pesce
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Zagato
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Unità Operativa Complessa (UOC) Coordinamento Trapianti, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Favalli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Lucia Sarnicola
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Serena Curti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mariacristina Crosti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Martina Martinovic
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Tanya Fabbris
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Mainz, Germany
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mariangela Lorenzo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Marilena Mancino
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Riccardo Ungaro
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Mangioni
- Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center.,Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Aliberti
- Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Transfusion Medicine and Hematology, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center
| | - Francesco Blasi
- Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center
| | - Tullia De Feo
- Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center.,Unità Operativa Complessa (UOC) Coordinamento Trapianti, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Prati
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Transfusion Medicine and Hematology, Milan, Italy
| | - Lara Manganaro
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Francesca Granucci
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Antonio Lanzavecchia
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Raffaele De Francesco
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy.,Unità Operativa Complessa (UOC) Coordinamento Trapianti, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Renata Grifantini
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; .,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Sergio Abrignani
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; .,Unità Operativa Complessa (UOC) Coordinamento Trapianti, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.,INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Cherneha M, Korth J, Kaulfuß M, Trilling M, Widera M, Rohn H, Dolff S, Babel N, Hoerning A, Kribben A, Witzke O. Reactivations of Latent Viral Infections Are Associated with an Increased Thr389 p70S6k Phosphorylation in Peripheral Lymphocytes of Renal Transplant Recipients. Viruses 2021; 13:v13030424. [PMID: 33800846 PMCID: PMC8000484 DOI: 10.3390/v13030424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 01/19/2023] Open
Abstract
Reactivations of BK polyoma virus (BKPyV) and human cytomegalovirus (HCMV) frequently cause life- and graft-threatening complications after renal transplantation. Both viruses are dependent on the mTOR pathway for replication. In this study we investigated the association of viral replication with mTOR activity in peripheral lymphocytes of renal transplant recipients. A flow-cytometry based assay for the measurement of Thr389 p70S6k phosphorylation, a surrogate marker of the mTOR pathway was established. Forty-eight adult renal transplant recipients were recruited to measure p70S6k activity in their peripheral blood mononuclear cells. This data set in conjunction with information concerning previous replication of BKPyV and HCMV was examined for correlations. Episodes of BKPyV replication were significantly associated with increased p70S6k phosphorylation in CD4+ T lymphocytes (p = 0.0002) and CD19+ B lymphocytes (p = 0.0073). HCMV infection of patients with a high-risk HCMV constellation of donor and recipient (D+/R−) was associated with increased p70S6k phosphorylation in CD19+ B lymphocytes (p = 0.0325). These associations were found to be independent of the trough levels of the immunosuppressive drugs. Conclusion: P70S6k phosphorylation in peripheral lymphocytes is associated with BKPyV reactivations and to a lesser extent with HCMV infections in renal transplant recipients.
Collapse
Affiliation(s)
- Maxim Cherneha
- West German Centre of Infectious Diseases, Department of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.R.); (S.D.); (O.W.)
- Correspondence: ; Tel.: +49-(0)-201-723-82552
| | - Johannes Korth
- Department of Nephrology, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (J.K.); (A.K.)
| | - Meike Kaulfuß
- West German Centre of Infectious Diseases, Department of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.R.); (S.D.); (O.W.)
| | - Mirko Trilling
- Institute for Virology, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.T.); (M.W.)
| | - Marek Widera
- Institute for Virology, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.T.); (M.W.)
| | - Hana Rohn
- West German Centre of Infectious Diseases, Department of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.R.); (S.D.); (O.W.)
| | - Sebastian Dolff
- West German Centre of Infectious Diseases, Department of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.R.); (S.D.); (O.W.)
| | - Nina Babel
- Medical Department I, University Hospital Marien Hospital Herne, Ruhr-University of Bochum, 44625 Bochum, Germany;
| | - André Hoerning
- Department of Paediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - Andreas Kribben
- Department of Nephrology, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (J.K.); (A.K.)
| | - Oliver Witzke
- West German Centre of Infectious Diseases, Department of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.R.); (S.D.); (O.W.)
| |
Collapse
|
10
|
Boppana SB, Britt WJ. Recent Approaches and Strategies in the Generation of Anti-human Cytomegalovirus Vaccines. Methods Mol Biol 2021; 2244:403-463. [PMID: 33555597 DOI: 10.1007/978-1-0716-1111-1_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus is the largest human herpesvirus and shares many core features of other herpesviruses such as tightly regulated gene expression during genome replication and latency as well as the establishment of lifelong persistence following infection. In contrast to stereotypic clinical syndromes associated with alpha-herpesvirus infections, almost all primary HCMV infections are asymptomatic and acquired early in life in most populations in the world. Although asymptomatic in most individuals, HCMV is a major cause of disease in hosts with deficits in adaptive and innate immunity such as infants who are infected in utero and allograft recipients following transplantation. Congenital HCMV is a commonly acquired infection in the developing fetus that can result in a number of neurodevelopmental abnormalities. Similarly, HCMV is a major cause of disease in allograft recipients in the immediate and late posttransplant period and is thought to be a major contributor to chronic allograft rejection. Even though HCMV induces robust innate and adaptive immune responses, it also encodes a vast array of immune evasion functions that are thought aid in its persistence. Immune correlates of protective immunity that prevent or modify intrauterine HCMV infection remain incompletely defined but are thought to consist primarily of adaptive responses in the pregnant mother, thus making congenital HCMV a potentially vaccine modifiable disease. Similarly, HCMV infection in allograft recipients is often more severe in recipients without preexisting adaptive immunity to HCMV. Thus, there has been a considerable effort to modify HCMV specific immunity in transplant recipient either through active immunization or passive transfer of adaptive effector functions. Although efforts to develop an efficacious vaccine and/or passive immunotherapy to limit HCMV disease have been underway for nearly six decades, most have met with limited success at best. In contrast to previous efforts, current HCMV vaccine development has relied on observations of unique properties of HCMV in hopes of reproducing immune responses that at a minimum will be similar to that following natural infection. However, more recent findings have suggested that immunity following naturally acquired HCMV infection may have limited protective activity and almost certainly, is not sterilizing. Such observations suggest that either the induction of natural immunity must be specifically tailored to generate protective activity or alternatively, that providing targeted passive immunity to susceptible populations could be prove to be more efficacious.
Collapse
Affiliation(s)
- Suresh B Boppana
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA.,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Britt
- Departments of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Freudenhammer M, Voll RE, Binder SC, Keller B, Warnatz K. Naive- and Memory-like CD21 low B Cell Subsets Share Core Phenotypic and Signaling Characteristics in Systemic Autoimmune Disorders. THE JOURNAL OF IMMUNOLOGY 2020; 205:2016-2025. [PMID: 32907998 DOI: 10.4049/jimmunol.2000343] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
An expansion of CD21low B cells has been described in a variety of diseases associated with persistent immune stimulation as in chronic infection, immunodeficiency, or autoimmunity. Different developmental stages of CD21low B cells have been highlighted in specific diseases; however, a systematic comparison of distribution, phenotype, and signaling capacity of these populations has not yet been performed to delineate the pivotal character of this unusual B cell population. Screening of more than 200 patients with autoimmune disease demonstrated that the prevalence of patients with expanded CD21low B cells varies between diseases. The expansion was frequent in patients with systemic lupus erythematosus, in which it correlated to relative B cell lymphopenia and duration of disease. Different proportions of distinct developmental stages of CD21low B cells co-occur in nearly all patients with autoimmune disease. Although in most patients, naive-like and CD27- switched memory B cells were the most prominent CD21low subpopulations, there was no detectable association of the pattern with the underlying disease. Despite their distinct developmental stage, all CD21low B cells share a common core phenotype including the increased expression of inhibitory receptors, associated with an elevated constitutive phosphorylation of proximal signaling molecules downstream of the BCR but impaired Ca2+ mobilization and NF-κB activation after BCR stimulation. Further, this was accompanied by impaired upregulation of CD69, although CD86 upregulation was preserved. Beyond maturation-associated differences, the common core characteristics of all CD21low B cell populations suggests either a common ancestry or a shared sustained imprint by the environment they originated in.
Collapse
Affiliation(s)
- Mirjam Freudenhammer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| | - Sebastian C Binder
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; .,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; and
| |
Collapse
|
12
|
Cooper L, Good-Jacobson KL. Dysregulation of humoral immunity in chronic infection. Immunol Cell Biol 2020; 98:456-466. [PMID: 32275789 DOI: 10.1111/imcb.12338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Chronic viral infections disrupt the ability of the humoral immune response to produce neutralizing antibody or form effective immune memory, preventing viral clearance and making vaccine design difficult. Multiple components of the B-cell response are affected by pathogens that are not cleared from the host. Changes in the microenvironment shift production of B cells to short-lived plasma cells early in the response. Polyclonal B cells are recruited into both the plasma cell and germinal center compartments, inhibiting the formation of a targeted, high-affinity response. Finally, memory B cells shift toward an "atypical" phenotype, which may in turn result in changes to the functional properties of this population. While similar properties of B-cell dysregulation have been described across different types of persistent infections, key questions about the underlying mechanisms remain. This review will discuss the recent advances in this field, as well as highlight the critical questions about the interplay between viral load, microenvironment, the polyclonal response and atypical memory B cells that are yet to be answered. Design of new preventative treatments will rely on identifying the extrinsic and intrinsic modulators that push B cells toward an ineffective response, and thus identify new ways to guide them back onto the best path for clearance of virus and formation of effective immune memory.
Collapse
Affiliation(s)
- Lucy Cooper
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program, The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
13
|
Stockdale L, Nash S, Nalwoga A, Gibson L, Painter H, Raynes J, Asiki G, Newton R, Fletcher H. HIV, HCMV and mycobacterial antibody levels: a cross-sectional study in a rural Ugandan cohort. Trop Med Int Health 2019; 24:247-257. [PMID: 30506614 PMCID: PMC6378403 DOI: 10.1111/tmi.13188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES A growing evidence base implicates human cytomegalovirus (HCMV) as a risk factor for TB disease. We investigated total IgG and mycobacteria-specific antibodies in a cross-sectional study nested within a rural Ugandan General Population Cohort (GPC), in relation to HIV infection and the magnitude of HCMV IgG response. METHODS Sera from 2189 individuals (including 27 sputum-positive TB cases) were analysed for antibodies against mycobacteria (Ag85A, PPD, LAM, ESAT6/CFP10) and HCMV, tetanus toxoid (TT) and total IgG. RESULTS Anti-mycobacterial antibodies increased with age until approximately 20 years, when they plateaued. Higher HCMV exposure (measured by IgG) was associated with lower levels of some anti-mycobacterial antibodies, but no increase in total IgG. HIV infection was associated with a decrease in all anti-mycobacterial antibodies measured and with an increase in total IgG. CONCLUSIONS The increase in anti-mycobacterial antibodies with age suggests increasing exposure to non-tuberculous mycobacteria (NTM), and to M.tb itself. HIV infection is associated with decreased levels of all mycobacterial antibodies studied here, and high levels of HCMV IgG are associated with decreased levels of some mycobacterial antibodies. These findings point towards the importance of humoral immune responses in HIV/TB co-infection and highlight a possible role of HCMV as a risk factor for TB disease.
Collapse
Affiliation(s)
- Lisa Stockdale
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Stephen Nash
- Faculty of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineLondonUK
| | - Angela Nalwoga
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
- Medical Research Council/Uganda Virus Research InstituteEntebbeUganda
| | - Lorna Gibson
- Faculty of Epidemiology and Population HealthLondon School of Hygiene and Tropical MedicineLondonUK
| | - Hannah Painter
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - John Raynes
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Gershim Asiki
- African Population and Health Research CenterNairobiKenya
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Robert Newton
- Medical Research Council/Uganda Virus Research InstituteEntebbeUganda
- Department of Health SciencesUniversity of YorkYorkUK
- International Agency for Research on CancerLyonFrance
| | - Helen Fletcher
- Faculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
14
|
Nipper AJ, Smithey MJ, Shah RC, Canaday DH, Landay AL. Diminished antibody response to influenza vaccination is characterized by expansion of an age-associated B-cell population with low PAX5. Clin Immunol 2018; 193:80-87. [PMID: 29425852 PMCID: PMC9934856 DOI: 10.1016/j.clim.2018.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/19/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Individuals over the age of 65 comprise a substantial portion of the world population and become more susceptible to vaccine-preventable infections with age as vaccination response diminishes. The underlying reason for this impaired vaccine response in older individuals is not entirely clear. We evaluated potential differences in phenotypic and functional responses of B cells from healthy younger (22-45years) and older (64-95years) individuals that may associate with a diminished antibody response to influenza vaccination. We report that age is associated with expansion of atypical memory B cells (CD10-CD20+CD21-CD27-) and an age-associated B cell (ABC, CD21-T-bet+CD11c+) phenotype. Reduced expression of PAX5 was also seen in older individuals. Poor influenza-specific antibody production following vaccination was associated with low PAX5 expression and a distinct composition of the ABC compartment. Collectively, these findings demonstrate that the characteristics of the ABC populations of older individuals are associated with antibody production following influenza vaccination.
Collapse
Affiliation(s)
- Allison J. Nipper
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Megan J. Smithey
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Raj C. Shah
- Department of Family Medicine, Rush University Medical Center, Chicago, IL, USA,Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David H. Canaday
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA,Department of Internal Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan L. Landay
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA,Corresponding author. Rush University Medical Center, 1735 West Harrison, Chicago, IL 60612, USA., (A.L. Landay)
| |
Collapse
|
15
|
Insights into defective serological memory after acute lymphoblastic leukaemia treatment: The role of the plasma cell survival niche, memory B-cells and gut microbiota in vaccine responses. Blood Rev 2018; 32:71-80. [DOI: 10.1016/j.blre.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/04/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022]
|
16
|
Marchant A, Sadarangani M, Garand M, Dauby N, Verhasselt V, Pereira L, Bjornson G, Jones CE, Halperin SA, Edwards KM, Heath P, Openshaw PJ, Scheifele DW, Kollmann TR. Maternal immunisation: collaborating with mother nature. THE LANCET. INFECTIOUS DISEASES 2017; 17:e197-e208. [PMID: 28433705 DOI: 10.1016/s1473-3099(17)30229-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 10/07/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022]
Abstract
Maternal immunisation has the potential to substantially reduce morbidity and mortality from infectious diseases after birth. The success of tetanus, influenza, and pertussis immunisation during pregnancy has led to consideration of additional maternal immunisation strategies to prevent group B streptococcus and respiratory syncytial virus infections, among others. However, many gaps in knowledge regarding the immunobiology of maternal immunisation prevent the optimal design and application of this successful public health intervention. Therefore, we did an innovative landscape analysis to identify research priorities. Key topics were delineated through review of the published literature, consultation with vaccine developers and regulatory agencies, and a collaborative workshop that gathered experts across several maternal immunisation initiatives-group B streptococcus, respiratory syncytial virus, pertussis, and influenza. Finally, a global online survey prioritised the identified knowledge gaps on the basis of expert opinion about their importance and relevance. Here we present the results of this worldwide landscape analysis and discuss the identified research gaps.
Collapse
Affiliation(s)
- Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Mathieu Garand
- Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine and Immunity Theme, Medical Research Council Unit, Fajara, The Gambia
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles, Brussels, Belgium; Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Brussels, Belgium
| | - Valerie Verhasselt
- Faculty of Molecular Science, University of Western Australia, Perth, WA, Australia
| | | | - Gordean Bjornson
- Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Christine E Jones
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St George's, University of London, London, UK
| | - Scott A Halperin
- Canadian Center for Vaccinology, Dalhousie University, Izaak Walton Killam Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - Kathryn M Edwards
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Paul Heath
- St George's Vaccine Institute, Institute of Infection and Immunity, St George's, University of London, London, UK
| | - Peter J Openshaw
- Respiratory Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - David W Scheifele
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Tobias R Kollmann
- Division of Infectious Diseases, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada; Vaccine Evaluation Center, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Keller B, Stumpf I, Strohmeier V, Usadel S, Verhoeyen E, Eibel H, Warnatz K. High SYK Expression Drives Constitutive Activation of CD21 low B Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4285-4292. [PMID: 28468967 DOI: 10.4049/jimmunol.1700079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/03/2023]
Abstract
Human CD21low B cells present with an activated phenotype and accumulate in distinct disorders connected with chronic immune stimulation. Signaling studies had revealed an increased basal phosphorylation of spleen tyrosine kinase (SYK) and phospholipase Cγ2. Additional BCR stimulation of these constitutively active cells, however, led to reduced activation of these signaling molecules and subsequently NF-κB and Ca2+ activation. In this article, we demonstrate that high SYK expression is a common feature of CD21low B cells independent of the underlying disorder, and that this high expression is sufficient to drive constitutive phosphorylation of SYK and its immediate targets Bruton's tyrosine kinase and phospholipase Cγ2. Inhibition of SYK activity eliminated features of the constitutive activation in these cells and partly restored BCR signaling. High SYK expression is especially induced by CpG or CD40L in combination with IL-21, but not BCR stimulation, suggesting the importance of the immune-stimulatory context for the induction of this B cell phenotype. In summary, high SYK expression is a common feature of human CD21low B cells and presumably results from chronic activation in inflammatory environments present in a subgroup of patients with heterogeneous disorders like chronic infection, autoimmunity, and immunodeficiency. High SYK expression by itself drives the constitutive activation observed in these B cells, which in turn may contribute to the hyporesponsiveness upon BCR stimulation. Given the high prevalence of autoreactive clones among CD21low B cells in autoimmune disorders, the dominant role of SYK in CD21low B cells may provide a new option for therapeutic interventions in patients with expanded CD21low B cells and humoral autoimmunity.
Collapse
Affiliation(s)
- Baerbel Keller
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ina Stumpf
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Valentina Strohmeier
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Susanne Usadel
- Practice for Infection Medicine, Division of Infectious Diseases, Department of Internal Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Els Verhoeyen
- Centre International de Recherche en Infectiologie, Virus Enveloppés, Vecteurs et Réponses Innées Équipe, INSERM U1111, CNRS, UMR5308, Université de Lyon-1, École Normale Supérieure de Lyon, 69007 Lyon, France; and.,INSERM, U1065, Centre de Médecine Moléculaire, Équipe "Contrôle Métabolique des Morts Cellulaires," 06204 Nice, France
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
18
|
Abstract
We comprehensively review memory B cells (MBCs), covering the definition of MBCs and their identities and subsets, how MBCs are generated, where they are localized, how they are maintained, and how they are reactivated. Whereas naive B cells adopt multiple fates upon stimulation, MBCs are more restricted in their responses. Evolving work reveals that the MBC compartment in mice and humans consists of distinct subpopulations with differing effector functions. We discuss the various approaches to define subsets and subset-specific roles. A major theme is the need to both deliver faster effector function upon reexposure and readapt to antigenically variant pathogens while avoiding burnout, which would be the result if all MBCs generated only terminal effector function. We discuss cell-intrinsic differences in gene expression and signaling that underlie differences in function between MBCs and naive B cells and among MBC subsets and how this leads to memory responses.
Collapse
Affiliation(s)
- Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Mark Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
19
|
Pupovac A, Good-Jacobson KL. An antigen to remember: regulation of B cell memory in health and disease. Curr Opin Immunol 2017; 45:89-96. [PMID: 28319732 PMCID: PMC7126224 DOI: 10.1016/j.coi.2017.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022]
Abstract
IgM+ MBCs are early responders in malaria and may be vital in parasite clearance. MBC heterogeneity may be expanded to tackle varying antigen in chronic infection. Atypical MBCs, CD21neg and T-bet+CD11c+ B cells may share transcriptional programs. In vivo studies will allow insight into intrinsic and extrinsic regulators of MBCs.
Vaccine success relies on the formation of immunity. Humoral immunity is critical and is mediated by long-lived antibody-secreting cells and memory B cells (MBCs). Chronic infectious diseases cause a significant global burden of disease; pathogens that evade the immune system can cause phenotypical and functional changes to immune memory populations. Thus, recent studies have focused on MBC subset function. IgM+ MBCs have emerged as important early responders in malaria. Atypical MBCs have functional qualities associated with exhaustion in chronic infectious diseases, but the requirements for their formation and where they localize remains unknown. Similarly, the T-bet-driven transcriptional program drives formation of MBCs phenotypically similar to atypical MBCs. Identifying protective or detrimental roles of MBC subsets, and their regulators, will be important for clinical intervention.
Collapse
Affiliation(s)
- Aleta Pupovac
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kim L Good-Jacobson
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
20
|
Rovito R, Korndewal MJ, van Zelm MC, Ziagkos D, Wessels E, van der Burg M, Kroes ACM, Langerak AW, Vossen ACTM. T and B Cell Markers in Dried Blood Spots of Neonates with Congenital Cytomegalovirus Infection: B Cell Numbers at Birth Are Associated with Long-Term Outcomes. THE JOURNAL OF IMMUNOLOGY 2016; 198:102-109. [PMID: 27903736 DOI: 10.4049/jimmunol.1601182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022]
Abstract
Congenital CMV infection (cCMV) is the most common congenital infection that can cause long-term impairment (LTI). The pathogenesis of LTI is not completely understood. Fetal immunity may play a role in controlling the infection and preventing LTI, although immune activation may also contribute to fetal immunopathology. In this study, we analyzed various molecular markers of T and B cell numbers in neonatal dried blood spots of 99 children with cCMV and 54 children without cCMV: δRec-ψJα signal joints on TCR excision circles, intron recombination signal sequence k-deleting element signal joints on Igκ-deleting recombination excision circles, genomic intron recombination signal sequence k-deleting element coding joint, genomic Vδ1-Jδ1, and Vδ2-Jδ1 rearrangements. Of this cohort, clinical symptoms at birth and LTI at 6 y of age were recorded. Neonates with cCMV had fewer TCR excision circles in their blood than non-infected controls. Furthermore, cCMV infection was associated with increased numbers of γδ T cells and B cells, and these numbers were positively correlated with CMV viral load in the dried blood spots. Infected children with a better long-term outcome had higher numbers of B cells at birth than those who developed LTI; no difference in B cell replication was observed. The potential protective role of B cells in controlling cCMV-related disease and the clinical value of this marker as a predictor of long-term outcome merit further evaluation.
Collapse
Affiliation(s)
- Roberta Rovito
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands;
| | - Marjolein J Korndewal
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.,Centre for Infectious Diseases, Epidemiology and Surveillance, National Institute of Public Health and the Environment, 3720 BA, Bilthoven, the Netherlands
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Dimitrios Ziagkos
- Medical Statistics and Bioinformatics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Els Wessels
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC University Medical Centre Rotterdam, 3015 CN, Rotterdam, the Netherlands
| | - Aloys C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Anton W Langerak
- Department of Immunology, Erasmus MC University Medical Centre Rotterdam, 3015 CN, Rotterdam, the Netherlands
| | - Ann C T M Vossen
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
21
|
Ingelman-Sundberg HM, Laestadius Å, Chrapkowska C, Mördrup K, Magnusson B, Sundberg E, Nilsson A. Diverse effects on vaccine-specific serum IgG titres and memory B cells upon methotrexate and anti-TNF-α therapy in children with rheumatic diseases: A cross-sectional study. Vaccine 2016; 34:1304-11. [DOI: 10.1016/j.vaccine.2016.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
|
22
|
Goldeck D, Oettinger L, Janssen N, Demuth I, Steinhagen-Thiessen E, Pawelec G. Cytomegalovirus Infection Minimally Affects the Frequencies of B-Cell Phenotypes in Peripheral Blood of Younger and Older Adults. Gerontology 2016; 62:323-9. [PMID: 26820888 DOI: 10.1159/000382076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND An accumulation of late-differentiated CD8+ T-cells together with fewer B-cells and seropositivity for cytomegalovirus (CMV) characterises an 'immune risk profile' associated with mortality in elderly people and represents one of the hallmarks of 'immunosenescence'. OBJECTIVES While differences in memory T-cell phenotypes between young and old people have been intensively studied, and the role of CMV is well-accepted as a driving force in this regard, the impact of CMV on B-cells, if any, has been relatively neglected thus far. METHODS Here, we avail ourselves of blood samples from participants of the Berlin Aging Study II (BASE-II) to compare peripheral blood B-cell differentiation phenotypes of 140 age- and gender-matched CMV-seronegative or -seropositive adults aged between 24 and 85 years using multicolour flow cytometry analysis. RESULTS We found that the frequencies of naïve B-cells within the CD19+ population were not significantly different in younger and older CMV-seronegative people. This was also true in CMV-seropositive subjects. The frequencies of late-differentiated B-cells were also not different in CMV-negative elderly and young. However, in marked contrast to the T-cell compartment, this was also true for late differentiated B-cells. Within age groups, the most marked differences in the distribution of B-cell phenotypes were between CMV-seronegative and -seropositive subjects, for both genders. CONCLUSION These results emphasize the importance of including CMV serostatus in the analysis of immune signatures. Because the proportion of the population infected with CMV increases with age, the effect of CMV rather than age could confound analyses seeking age-associated changes to human immunity.
Collapse
Affiliation(s)
- David Goldeck
- Department of Internal Medicine II, Centre for Medical Research, Medical School, University of Tx00FC;bingen, Tx00FC;bingen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Dauby N, Sartori D, Kummert C, Lecomte S, Haelterman E, Delforge ML, Donner C, Mach M, Marchant A. Limited Effector Memory B-Cell Response to Envelope Glycoprotein B During Primary Human Cytomegalovirus Infection. J Infect Dis 2015; 213:1642-50. [PMID: 26715677 DOI: 10.1093/infdis/jiv769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/21/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Following primary human cytomegalovirus (HCMV) infection, the production of antibodies against envelope glycoprotein B (gB) is delayed, compared with production of antibodies against tegument proteins, and this likely reduces the control of HCMV dissemination. METHODS The frequency and the phenotype of gB-specific and tegument protein-specific B cells were studied in a cohort of pregnant women with primary HCMV infection. Healthy adults who had chronic HCMV infection or were recently immunized with tetanus toxoid (TT) were included as controls. RESULTS Primary HCMV infection was associated with high and similar frequencies of gB-specific and tegument protein-specific B cells following primary HCMV infection. During primary infection, tegument protein-specific B cells expressed an activated (CD21(low)) memory B-cell (MBC) phenotype. Activated MBCs were also induced by TT booster immunization, indicating that the expansion of this subset is part of the physiological B-cell response to protein antigens. In contrast, gB-specific B cells had a predominant classical (CD21(+)) MBC phenotype during both primary and chronic infections. CONCLUSIONS The delayed production of gB-specific immunoglobulin G (IgG) during primary HCMV infection is associated with a limited induction of MBCs with effector potential. This novel mechanism by which HCMV may interfere with the production of neutralizing antibodies could represent a target for therapeutic immunization.
Collapse
Affiliation(s)
- Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB)
| | - Delphine Sartori
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB)
| | | | - Sandra Lecomte
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB)
| | | | | | - Catherine Donner
- Department of Obstetrics and Gynecology, Erasme Hospital, ULB, Brussels, Belgium
| | - Michael Mach
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) ImmuneHealth, Gosselies
| |
Collapse
|
24
|
Faucette AN, Gonik B, Chen K. Reply: Maternal vaccination: moving the science forward. Hum Reprod Update 2015; 21:408-9. [PMID: 25712340 DOI: 10.1093/humupd/dmv010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Azure N Faucette
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Bernard Gonik
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA Department of Immunology and Microbiology, Detroit, MI 48201, USA Department of Oncology, Wayne State University, Detroit, MI 48201, USA Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
|
26
|
Zinöcker S, Schindler CE, Skinner J, Rogosch T, Waisberg M, Schickel JN, Meffre E, Kayentao K, Ongoïba A, Traoré B, Pierce SK. The V gene repertoires of classical and atypical memory B cells in malaria-susceptible West African children. THE JOURNAL OF IMMUNOLOGY 2015; 194:929-39. [PMID: 25556245 DOI: 10.4049/jimmunol.1402168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immunity to Plasmodium falciparum malaria is naturally acquired in individuals living in malaria-endemic areas of Africa. Abs play a key role in mediating this immunity; however, the acquisition of the components of Ab immunity, long-lived plasma cells and memory B cells (MBCs), is remarkably inefficient, requiring years of malaria exposure. Although long-lived classical MBCs (CD19(+)/CD20(+)/CD21(+)/CD27(+)/CD10(-)) are gradually acquired in response to natural infection, exposure to P. falciparum also results in a large expansion of what we have termed atypical MBCs (CD19(+)/CD20(+)/CD21(-)/CD27(-)/CD10(-)). At present, the function of atypical MBCs in malaria is not known, nor are the factors that drive their differentiation. To gain insight into the relationship between classical and atypical IgG(+) MBCs, we compared the Ab H and L chain V gene repertoires of children living in a malaria-endemic region in Mali. We found that these repertoires were remarkably similar by a variety of criteria, including V gene usage, rate of somatic hypermutation, and CDR-H3 length and composition. The similarity in these repertoires suggests that classical MBCs and atypical MBCs differentiate in response to similar Ag-dependent selective pressures in malaria-exposed children and that atypical MBCs do not express a unique V gene repertoire.
Collapse
Affiliation(s)
- Severin Zinöcker
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| | - Christine E Schindler
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Tobias Rogosch
- Laboratory for Neonatology and Pediatric Immunology, Department of Pediatrics, Philipps-University, D-35032 Marburg, Germany
| | - Michael Waisberg
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510; and
| | - Kassoum Kayentao
- Mali International Center for Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Aïssata Ongoïba
- Mali International Center for Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Boubacar Traoré
- Mali International Center for Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852;
| |
Collapse
|
27
|
McCormick AL, Mocarski ES. The immunological underpinnings of vaccinations to prevent cytomegalovirus disease. Cell Mol Immunol 2014; 12:170-9. [PMID: 25544503 DOI: 10.1038/cmi.2014.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/10/2014] [Indexed: 01/03/2023] Open
Abstract
A universal cytomegalovirus (CMV) vaccination promises to reduce the burden of the developmental damage that afflicts up to 0.5% of live births worldwide. An effective vaccination that prevents transplacental transmission would reduce CMV congenital disease and CMV-associated still births and leave populations less susceptible to opportunistic CMV disease. Thus, a vaccination against this virus has long been recognized for the potential of enormous health-care savings because congenital damage is life-long and existing anti-viral options are limited. Vaccine researchers, industry leaders, and regulatory representatives have discussed the challenges posed by clinical efficacy trials that would lead to a universal CMV vaccine, reviewing the links between infection and disease, and identifying settings where disrupting viral transmission might provide a surrogate endpoint for disease prevention. Reducing the complexity of such trials would facilitate vaccine development. Children and adolescents are the targets for universal vaccination, with the expectation of protecting the offspring of immunized women. Given that a majority of females worldwide experience CMV infection during childhood, a universal vaccine must boost natural immunity and reduce transmission due to reactivation and re-infection as well as primary infection during pregnancy. Although current vaccine strategies recognize the value of humoral and cellular immunity, the precise mechanisms that act at the placental interface remain elusive. Immunity resulting from natural infection appears to limit rather than prevent reactivation of latent viruses and susceptibility to re-infection, leaving a challenge for universal vaccination to improve upon natural immunity levels. Despite these hurdles, early phase clinical trials have achieved primary end points in CMV seronegative subjects. Efficacy studies must be expanded to mixed populations of CMV-naive and naturally infected subjects to understand the overall efficacy and potential. Together with CMV vaccine candidates currently in clinical development, additional promising preclinical strategies continue to come forward; however, these face limitations due to the insufficient understanding of host defense mechanisms that prevent transmission, as well as the age-old challenges of reaching the appropriate threshold of immunogenicity, efficacy, durability and potency. This review focuses on the current understanding of natural and CMV vaccine-induced protective immunity.
Collapse
Affiliation(s)
- A Louise McCormick
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Huygens A, Dauby N, Vermijlen D, Marchant A. Immunity to cytomegalovirus in early life. Front Immunol 2014; 5:552. [PMID: 25400639 PMCID: PMC4214201 DOI: 10.3389/fimmu.2014.00552] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/16/2014] [Indexed: 01/21/2023] Open
Abstract
Cytomegalovirus (CMV) is the most common congenital infection and is the leading non-genetic cause of neurological defects. CMV infection in early life is also associated with intense and prolonged viral excretion, indicating limited control of viral replication. This review summarizes our current understanding of the innate and adaptive immune responses to CMV infection during fetal life and infancy. It illustrates the fact that studies of congenital CMV infection have provided a proof of principle that the human fetus can develop anti-viral innate and adaptive immune responses, indicating that such responses should be inducible by vaccination in early life. The review also emphasizes the fact that our understanding of the mechanisms involved in symptomatic congenital CMV infection remains limited.
Collapse
Affiliation(s)
- Ariane Huygens
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| | - David Vermijlen
- Faculty of Pharmacy, Université Libre de Bruxelles , Brussels , Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles , Charleroi , Belgium
| |
Collapse
|
29
|
Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood 2014; 124:1450-9. [PMID: 25037628 DOI: 10.1182/blood-2014-03-563940] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the accumulation of highly-differentiated and granzyme B (GrB)-expressing CD8(+)CD28(-) T cells has been associated with aging, the mechanism for their enrichment and contribution to immune function remains poorly understood. Here we report a novel B-cell subset expressing 4-1BBL, which increases with age in humans, rhesus macaques, and mice, and with immune reconstitution after chemotherapy and autologous progenitor cell transplantation. These cells (termed 4BL cells) induce GrB(+)CD8(+) T cells by presenting endogenous antigens and using the 4-1BBL/4-1BB axis. We found that the 4BL cells increase antitumor responses in old mice, which may explain in part the paradox of retarded tumor growth in the elderly. 4BL cell accumulation and its capacity to evoke the generation of GrB(+)CD8(+) T cells can be eliminated by inducing reconstitution of B cells in old mice, suggesting that the age-associated skewed cellular immune responses are reversible. We propose that 4BL cells and the 4-1BBL signaling pathway are useful targets for improved effectiveness of natural antitumor defenses and therapeutic immune manipulations in the elderly.
Collapse
|