1
|
Barahimi E, Ouspid E, Hossein-Zargari M, Ardeshiri M, Sheybani-Arani M. A case report and mini-review of Crimean-Congo hemorrhagic fever with encephalitis: an unexpected complication. J Neurovirol 2025:10.1007/s13365-025-01253-y. [PMID: 40261581 DOI: 10.1007/s13365-025-01253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
Crimean-Congo hemorrhagic fever is a severe tick-borne viral infection with high mortality rates. While Crimean-Congo hemorrhagic fever primarily presents as a hemorrhagic fever, central nervous system involvement, including encephalitis, is rare. The virus, transmitted through tick bites or direct contact with infected animal blood or bodily fluids, can lead to multi-organ failure. Neurological manifestations of Crimean-Congo hemorrhagic fever remain poorly understood. We report a 40-year-old man from Hormozgan province, Iran, who presented with fever, hematemesis, abdominal pain, and neurological symptoms. Initial laboratory findings indicated thrombocytopenia and elevated liver enzymes. Despite treatment with ribavirin, the patient developed agitation, confusion, and a progressive decline in consciousness. Brain imaging suggested encephalitis, and cerebrospinal fluid analysis revealed mild pleocytosis with elevated protein levels. Crimean-Congo hemorrhagic fever was confirmed via polymerase chain reaction testing. The patient was treated with ribavirin, intravenous immunoglobulin, and high-dose methylprednisolone, gradually recovering neurological function. Crimean-Congo hemorrhagic fever with encephalitis is an uncommon but severe presentation, necessitating prompt diagnosis and intervention. This case highlights the potential role of corticosteroids and intravenous immunoglobulin in managing Crimean-Congo hemorrhagic fever-associated neurological manifestations. Further studies are needed to establish standardized treatment protocols for Crimean-Congo hemorrhagic fever-related encephalitis.
Collapse
Affiliation(s)
- Elham Barahimi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Elham Ouspid
- Department of Neurology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahyar Hossein-Zargari
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoumeh Ardeshiri
- Department of Radiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - MohammadHosein Sheybani-Arani
- Clinical Research Development Center of Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
2
|
Ajazaj-Berisha L, Halili B, Ndrejaj V, Sherifi K, Jakupi X, Priesnitz S, Hemmer CJ, Ahmeti S, Emmerich P. Crimean-Congo Hemorrhagic Fever Mimicking HELLP Syndrome in a Pregnant Woman and Her Infant in Kosovo: A Case Report. Viruses 2025; 17:178. [PMID: 40006933 PMCID: PMC11860709 DOI: 10.3390/v17020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is fatal in 10 to 40% of cases. It is caused by CCHF virus (CCHFV). Symptoms include fever, headache, myalgia, and often hemorrhage and other complications. This report shows that CCHF may resemble HELLP syndrome (hemolysis, elevated liver enzymes, low platelets). We report CCHF in a pregnant mother with fever and suspected HELLP syndrome, who survived, and her infant (week 36), who died six days after C-section. The high CCHF viral load and bacterial sepsis may have jointly contributed to the death of the infant. CCHF should be considered as a differential diagnosis of HELLP syndrome in regions where this viral disease is endemic.
Collapse
Affiliation(s)
- Lindita Ajazaj-Berisha
- Infectious Diseases Hospital, University Clinical Center of Kosovo, 10000 Prishtina, Kosovo; (L.A.-B.); (B.H.); (V.N.)
| | - Bahrije Halili
- Infectious Diseases Hospital, University Clinical Center of Kosovo, 10000 Prishtina, Kosovo; (L.A.-B.); (B.H.); (V.N.)
| | - Vera Ndrejaj
- Infectious Diseases Hospital, University Clinical Center of Kosovo, 10000 Prishtina, Kosovo; (L.A.-B.); (B.H.); (V.N.)
| | - Kurtesh Sherifi
- Faculty of Agriculture and Veterinary, University of Prishtina “Hasan Prishtina”, 10000 Prishtina, Kosovo;
| | - Xhevat Jakupi
- National Institute of Public Health of Kosovo, 10000 Pristina, Kosovo;
| | - Simone Priesnitz
- Bundeswehr-Krankenhaus (German Armed Forces Hospital), Lesserstraße 180, 22049 Hamburg, Germany;
| | - Christoph J. Hemmer
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine, University Medicine Rostock, Ernst-Heydemann-Strasse 6, 18055 Rostock, Germany;
| | - Salih Ahmeti
- Faculty of Medicine, University “Hasan Prishtina”, 10000 Pristina, Kosovo;
| | - Petra Emmerich
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine, University Medicine Rostock, Ernst-Heydemann-Strasse 6, 18055 Rostock, Germany;
- Department of Virology, Bernhard Nocht Institute of Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
3
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Karaaslan E, Sorvillo TE, Scholte FEM, O'Neal TJ, Welch SR, Davies KA, Coleman-McCray JD, Harmon JR, Ritter JM, Pegan SD, Montgomery JM, Spengler JR, Spiropoulou CF, Bergeron É. Crimean Congo hemorrhagic fever virus nucleoprotein and GP38 subunit vaccine combination prevents morbidity in mice. NPJ Vaccines 2024; 9:148. [PMID: 39143104 PMCID: PMC11324950 DOI: 10.1038/s41541-024-00931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Immunizing mice with Crimean-Congo hemorrhagic fever virus (CCHFV) nucleoprotein (NP), glycoprotein precursor (GPC), or with the GP38 domain of GPC, can be protective when the proteins are delivered with viral vectors or as a DNA or RNA vaccine. Subunit vaccines are a safe and cost-effective alternative to some vaccine platforms, but Gc and Gn glycoprotein subunit vaccines for CCHFV fail to protect despite eliciting high levels of neutralizing antibodies. Here, we investigated humoral and cellular immune responses and the protective efficacy of recombinant NP, GP38, and GP38 forms (GP85 and GP160) associated with the highly glycosylated mucin-like (MLD) domain, as well as the NP + GP38 combination. Vaccination with GP160, GP85, or GP38 did not confer protection, and vaccination with the MLD-associated GP38 forms blunted the humoral immune responses to GP38, worsened clinical chemistry, and increased viral RNA in the blood compared to the GP38 vaccination. In contrast, NP vaccination conferred 100% protection from lethal outcome and was associated with mild clinical disease, while the NP + GP38 combination conferred even more robust protection by reducing morbidity compared to mice receiving NP alone. Thus, recombinant CCHFV NP alone is a promising vaccine candidate conferring 100% survival against heterologous challenge. Moreover, incorporation of GP38 should be considered as it further enhances subunit vaccine efficacy by reducing morbidity in surviving animals.
Collapse
Affiliation(s)
- Elif Karaaslan
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Troy Justin O'Neal
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Katherine A Davies
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
- U.S. Department of Agriculture, Agricultural Research Service, Zoonotic and Emerging Disease Research Unit, National Bio and Agro-Defense Facility, Manhattan, KS, USA
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jana M Ritter
- Infectious Disease Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Scott D Pegan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Ahmad F, Ahmad S, Husain A, Pandey N, Khubaib M, Sharma R. Role of inflammatory cytokine burst in neuro-invasion of Japanese Encephalitis virus infection: an immunotherapeutic approaches. J Neurovirol 2024; 30:251-265. [PMID: 38842651 DOI: 10.1007/s13365-024-01212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Japanese Encephalitis remains a significant global health concern, contributing to millions of deaths annually worldwide. Microglial cells, as key innate immune cells within the central nervous system (CNS), exhibit intricate cellular structures and possess molecular phenotypic plasticity, playing pivotal roles in immune responses during CNS viral infections. Particularly under viral inflammatory conditions, microglial cells orchestrate innate and adaptive immune responses to mitigate viral invasion and dampen inflammatory reactions. This review article comprehensively summarizes the pathophysiology of viral invasion into the CNS and the cellular interactions involved, elucidating the roles of various immune mediators, including pro-inflammatory cytokines, in neuroinflammation. Leveraging this knowledge, strategies for modulating inflammatory responses and attenuating hyperactivation of glial cells to mitigate viral replication within the brain are discussed. Furthermore, current chemotherapeutic and antiviral drugs are examined, elucidating their mechanisms of action against viral replication. This review aims to provide insights into therapeutic interventions for Japanese Encephalitis and related viral infections, ultimately contributing to improved outcomes for affected individuals.
Collapse
Affiliation(s)
- Firoz Ahmad
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad, 224001 Uttar Pradesh, India., 224001, Faizabad, Uttar Pradesh, India
| | - Adil Husain
- Department of Pathology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, 226016, Uttar Pradesh, India
| | - Niharika Pandey
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Mohd Khubaib
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India
| | - Rolee Sharma
- IIRC-3 Immunobiochemistry Lab, Department of Biosciences, Integral University, Lucknow, 226026, Uttar Pradesh, India.
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur, 228024, Uttar Pradesh, India.
| |
Collapse
|
6
|
Monteil VM, Wright SC, Dyczynski M, Kellner MJ, Appelberg S, Platzer SW, Ibrahim A, Kwon H, Pittarokoilis I, Mirandola M, Michlits G, Devignot S, Elder E, Abdurahman S, Bereczky S, Bagci B, Youhanna S, Aastrup T, Lauschke VM, Salata C, Elaldi N, Weber F, Monserrat N, Hawman DW, Feldmann H, Horn M, Penninger JM, Mirazimi A. Crimean-Congo haemorrhagic fever virus uses LDLR to bind and enter host cells. Nat Microbiol 2024; 9:1499-1512. [PMID: 38548922 PMCID: PMC11153131 DOI: 10.1038/s41564-024-01672-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/11/2024] [Indexed: 06/07/2024]
Abstract
Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.
Collapse
Affiliation(s)
- Vanessa M Monteil
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | - Shane C Wright
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Max J Kellner
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Sebastian W Platzer
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | | | - Hyesoo Kwon
- National Veterinary Institute, Uppsala, Sweden
| | | | - Mattia Mirandola
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Stephanie Devignot
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
| | | | | | | | - Binnur Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- University Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Nazif Elaldi
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Cumhuriyet University, Sivas, Turkey
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Gießen, Germany
| | - Nuria Monserrat
- University of Barcelona, Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - David W Hawman
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Heinz Feldmann
- Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, USA
| | - Moritz Horn
- Acus Laboratories GmbH, Cologne, Germany
- JLP Health GmbH, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria.
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
- Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ali Mirazimi
- Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden.
- Public Health Agency of Sweden, Solna, Sweden.
- National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
7
|
Welch SR, Garrison AR, Bente DA, Burt F, D'Addiego J, Devignot S, Dowall S, Fischer K, Hawman DW, Hewson R, Mirazimi A, Oestereich L, Vatansever Z, Spengler JR, Papa A. Third International Conference on Crimean-Congo Hemorrhagic Fever in Thessaloniki, Greece, September 19-21, 2023. Antiviral Res 2024; 225:105844. [PMID: 38428749 PMCID: PMC11931574 DOI: 10.1016/j.antiviral.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
The Third International Conference on Crimean-Congo Hemorrhagic Fever (CCHF) was held in Thessaloniki, Greece, September 19-21, 2023, bringing together a diverse group of international partners, including public health professionals, clinicians, ecologists, epidemiologists, immunologists, and virologists. The conference was attended by 118 participants representing 24 countries and the World Health Organization (WHO). Meeting sessions covered the epidemiology of CCHF in humans; Crimean-Congo hemorrhagic fever virus (CCHFV) in ticks; wild and domestic animal hosts; molecular virology; pathogenesis and animal models; immune response related to therapeutics; and CCHF prevention in humans. The concluding session focused on recent WHO recommendations regarding disease prevention, control strategies, and innovations against CCHFV outbreaks. This meeting report summarizes lectures by the invited speakers and highlights advances in the field.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Dennis A Bente
- Galveston National Laboratory, Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service and Division of Virology, University of the Free State, Bloemfontein, South Africa
| | - Jake D'Addiego
- UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Stephanie Devignot
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Stuart Dowall
- UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald-Insel Riems, Germany
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Roger Hewson
- UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine and German Center for Infectious Research, Partner Sites Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Zati Vatansever
- Kafkas University, Faculty of Veterinary Medicine, Dept. of Parasitology, Kars, Turkey
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anna Papa
- Department of Microbiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
8
|
Frank MG, Weaver G, Raabe V. Crimean Congo Hemorrhagic Fever Virus for Clinicians-Virology, Pathogenesis, and Pathology. Emerg Infect Dis 2024; 30:847-853. [PMID: 38666566 PMCID: PMC11060449 DOI: 10.3201/eid3005.231646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF), caused by CCHF virus, is a tickborne disease that can cause a range of illness outcomes, from asymptomatic infection to fatal viral hemorrhagic fever; the disease has been described in >30 countries. We conducted a literature review to provide an overview of the virology, pathogenesis, and pathology of CCHF for clinicians. The virus life cycle and molecular interactions are complex and not fully described. Although pathogenesis and immunobiology are not yet fully understood, it is clear that multiple processes contribute to viral entry, replication, and pathological damage. Limited autopsy reports describe multiorgan involvement with extravasation and hemorrhages. Advanced understanding of CCHF virus pathogenesis and immunology will improve patient care and accelerate the development of medical countermeasures for CCHF.
Collapse
|
9
|
Frank MG, Weaver G, Raabe V. Crimean-Congo Hemorrhagic Fever Virus for Clinicians-Epidemiology, Clinical Manifestations, and Prevention. Emerg Infect Dis 2024; 30:854-863. [PMID: 38666548 PMCID: PMC11060446 DOI: 10.3201/eid3005.231647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tickborne infection that can range from asymptomatic to fatal and has been described in >30 countries. Early identification and isolation of patients with suspected or confirmed CCHF and the use of appropriate prevention and control measures are essential for preventing human-to-human transmission. Here, we provide an overview of the epidemiology, clinical features, and prevention and control of CCHF. CCHF poses a continued public health threat given its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, and potential for severe and fatal illness, in addition to the limited medical countermeasures for prophylaxis and treatment. A high index of suspicion, comprehensive travel and epidemiologic history, and clinical evaluation are essential for prompt diagnosis. Infection control measures can be effective in reducing the risk for transmission but require correct and consistent application.
Collapse
|
10
|
Frank MG, Weaver G, Raabe V. Crimean-Congo Hemorrhagic Fever Virus for Clinicians-Diagnosis, Clinical Management, and Therapeutics. Emerg Infect Dis 2024; 30:864-873. [PMID: 38666553 PMCID: PMC11060459 DOI: 10.3201/eid3005.231648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the most geographically widespread tickborne viral infection worldwide and has a fatality rate of up to 62%. Despite its widespread range and high fatality rate, no vaccines or treatments are currently approved by regulatory agencies in the United States or Europe. Supportive treatment remains the standard of care, but the use of antiviral medications developed for other viral infections have been considered. We reviewed published literature to summarize the main aspects of CCHFV infection in humans. We provide an overview of diagnostic testing and management and medical countermeasures, including investigational vaccines and limited therapeutics. CCHFV continues to pose a public health threat because of its wide geographic distribution, potential to spread to new regions, propensity for genetic variability, potential for severe and fatal illness, and limited medical countermeasures for prophylaxis and treatment. Clinicians should become familiar with available diagnostic and management tools for CCHFV infections in humans.
Collapse
|
11
|
Dai S, Min YQ, Li Q, Feng K, Jiang Z, Wang Z, Zhang C, Ren F, Fang Y, Zhang J, Zhu Q, Wang M, Wang H, Deng F, Ning YJ. Interactome profiling of Crimean-Congo hemorrhagic fever virus glycoproteins. Nat Commun 2023; 14:7365. [PMID: 37963884 PMCID: PMC10646030 DOI: 10.1038/s41467-023-43206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 pathogen requiring urgent research and development efforts. The glycoproteins of CCHFV, Gn and Gc, are considered to play multiple roles in the viral life cycle by interactions with host cells; however, these interactions remain largely unclear to date. Here, we analyzed the cellular interactomes of CCHFV glycoproteins and identified 45 host proteins as high-confidence Gn/Gc interactors. These host molecules are involved in multiple cellular biological processes potentially associated with the physiological actions of the viral glycoproteins. Then, we elucidated the role of a representative cellular protein, HAX1. HAX1 interacts with Gn by its C-terminus, while its N-terminal region leads to mitochondrial localization. By the strong interaction, HAX1 sequestrates Gn to mitochondria, thus depriving Gn of its normal Golgi localization that is required for functional glycoprotein-mediated progeny virion packaging. Consistently, the inhibitory activity of HAX1 against viral packaging and hence propagation was further elucidated in the contexts of pseudotyped and authentic CCHFV infections in cellular and animal models. Together, the findings provide a systematic CCHFV Gn/Gc-cell protein-protein interaction map, but also unravel a HAX1/mitochondrion-associated host antiviral mechanism, which may facilitate further studies on CCHFV biology and therapeutic approaches.
Collapse
Affiliation(s)
- Shiyu Dai
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yuan-Qin Min
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Qi Li
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
- University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Kuan Feng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Zhenyu Jiang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
- University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Zhiying Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Cunhuan Zhang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Fuli Ren
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Yaohui Fang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
- University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Jingyuan Zhang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
- University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Qiong Zhu
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Manli Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Hualin Wang
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| | - Fei Deng
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| | - Yun-Jia Ning
- Key Laboratory of Virology and Biosafety and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
- State Key Laboratory of Virology and Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
12
|
Rao D, Meade-White K, Leventhal S, Mihalakakos E, Carmody A, Feldmann H, Hawman DW. CD8 + T-cells target the Crimean-Congo haemorrhagic fever virus Gc protein to control the infection in wild-type mice. EBioMedicine 2023; 97:104839. [PMID: 37866114 PMCID: PMC10623175 DOI: 10.1016/j.ebiom.2023.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Crimean-Congo haemorrhagic fever (CCHF) is a serious viral hemorrhagic fever caused by the CCHF virus (CCHFV). Spread by the bites of infected ticks or handling of viremic livestock, human disease is characterized by a non-specific febrile illness that can rapidly progress to fatal hemorrhagic disease. No vaccines or antivirals are available. Case fatality rates can vary but can be higher than 30%, although sub-clinical infections are often unrecognized and unreported. Yet, while most humans infected with CCHFV will survive the infection, often with little-to-no symptoms, the host responses that control the infection are unknown. METHODS Here we investigated the role of cellular immunity in control of CCHFV infection in an immunocompetent mouse model. FINDINGS We found that CD8+ T-cells are crucial for efficient control of the acute infection and rapidly acquired CCHFV-specific antiviral effector functions such as production of antiviral cytokines and degranulating in response to CCHFV peptides. We further identified the minimal CD8+ T-cell epitopes in the viral Gc proteins and that infection of mice lacking IFNγ resulted in worsened disease and higher viral loads. INTERPRETATION Together our data suggest that CD8+ T-cells are important for control of acute CCHFV infection likely through production of antiviral cytokines. FUNDING This work was supported by the Intramural Research Program of the NIH.
Collapse
Affiliation(s)
- Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Shanna Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Evan Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Aaron Carmody
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA.
| |
Collapse
|
13
|
Ahata B, Akçapınar GB. CCHFV vaccine development, current challenges, limitations, and future directions. Front Immunol 2023; 14:1238882. [PMID: 37753088 PMCID: PMC10518622 DOI: 10.3389/fimmu.2023.1238882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is the most prevalent tick-borne viral disease affecting humans. The disease is life-threatening in many regions of the developing world, including Africa, Asia, the Middle East, and Southern Europe. In line with the rapidly increasing disease prevalence, various vaccine strategies are under development. Despite a large number of potential vaccine candidates, there are no approved vaccines as of yet. This paper presents a detailed comparative analysis of current efforts to develop vaccines against CCHFV, limitations associated with current efforts, and future research directions.
Collapse
Affiliation(s)
- Büşra Ahata
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
- Health Institutes of Turkey, Istanbul, Türkiye
| | - Günseli Bayram Akçapınar
- Department of Medical Biotechnology, Institute of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Türkiye
| |
Collapse
|
14
|
Ozdarendeli A. Crimean-Congo Hemorrhagic Fever Virus: Progress in Vaccine Development. Diagnostics (Basel) 2023; 13:2708. [PMID: 37627967 PMCID: PMC10453274 DOI: 10.3390/diagnostics13162708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a member of the Nairoviridae family and Bunyavirales order, is transmitted to humans via tick bites or contact with the blood of infected animals. It can cause severe symptoms, including hemorrhagic fever, with a mortality rate between 5 to 30%. CCHFV is classified as a high-priority pathogen by the World Health Organization (WHO) due to its high fatality rate and the absence of effective medical countermeasures. CCHFV is endemic in several regions across the world, including Africa, Europe, the Middle East, and Asia, and has the potential for global spread. The emergence of the disease in new areas, as well as the presence of the tick vector in countries without reported cases, emphasizes the need for preventive measures to be taken. In the past, the lack of a suitable animal model susceptible to CCHFV infection has been a major obstacle in the development of vaccines and treatments. However, recent advances in biotechnology and the availability of suitable animal models have significantly expedited the development of vaccines against CCHF. These advancements have not only contributed to an enhanced understanding of the pathogenesis of CCHF but have also facilitated the evaluation of potential vaccine candidates. This review outlines the immune response to CCHFV and animal models utilized for the study of CCHFV and highlights the progress made in CCHFV vaccine studies. Despite remarkable advancements in vaccine development for CCHFV, it remains crucial to prioritize continued research, collaboration, and investment in this field.
Collapse
Affiliation(s)
- Aykut Ozdarendeli
- Department of Microbiology, Faculty of Medicine, Erciyes University, 38039 Kayseri, Türkiye;
- Vaccine Research, Development and Application Centre (ERAGEM), Erciyes University, 38039 Kayseri, Türkiye
| |
Collapse
|
15
|
Li H, Smith G, Goolia M, Marszal P, Pickering BS. Comparative characterization of Crimean-Congo hemorrhagic fever virus cell culture systems with application to propagation and titration methods. Virol J 2023; 20:128. [PMID: 37337294 DOI: 10.1186/s12985-023-02089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Crimean-Congo hemorrhagic fever orthonairovirus (CCHFV) is a biosafety level 4 and World Health Organization top priority pathogen. Infection leads to an often fatal hemorrhagic fever disease in humans. The tick-borne virus is endemic in countries across Asia, Europe and Africa, with signs of spreading into new regions. Despite the severity of disease and the potential of CCHFV geographic expansion to cause widespread outbreaks, no approved vaccine or treatment is currently available. Critical for basic research and the development of diagnostics or medical countermeasures, CCHFV viral stocks are commonly produced in Vero E6 and SW-13 cell lines. While a variety of in-house methods are being used across different laboratories, there has been no clear, specific consensus on a standard, optimal system for CCHFV growth and titration. In this study, we perform a systematic, side-by-side characterization of Vero E6 and SW-13 cell lines concerning the replication kinetics of CCHFV under different culture conditions. SW-13 cells are typically cultured in a CO2-free condition (SW-13 CO2-) according to the American Type Culture Collection. However, we identify a CO2-compatible culture condition (SW-13 CO2+) that demonstrates the highest viral load (RNA concentration) and titer (infectious virus concentration) in the culture supernatants, in comparison to SW-13 CO2- and Vero E6 cultures. This optimal viral propagation system also leads to the development of two titration methods: an immunostaining-based plaque assay using a commercial CCHFV antibody and a colorimetric readout, and an antibody staining-free, cytopathic effect-based median tissue culture infectious dose assay using a simple excel calculator. These are anticipated to serve as a basis for a reproducible, standardized and user-friendly platform for CCHFV propagation and titration.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Melissa Goolia
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Peter Marszal
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
16
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
17
|
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a severe tick-borne illness with a wide geographical distribution and case fatality rates of 30% or higher. Caused by infection with the CCHF virus (CCHFV), cases are reported throughout Africa, the Middle East, Asia and southern and eastern Europe. The expanding range of the Hyalomma tick vector is placing new populations at risk for CCHF, and no licensed vaccines or specific antivirals exist to treat CCHF. Furthermore, despite cases of CCHF being reported annually, the host and viral determinants of CCHFV pathogenesis are poorly understood. CCHFV can productively infect a multitude of animal species, yet only humans develop a severe illness. Within human populations, subclinical infections are underappreciated and may represent a substantial proportion of clinical outcomes. Compared with other members of the Bunyavirales order, CCHFV has a more complex genomic organization, with many viral proteins having unclear functions in viral pathogenesis. In recent years, improved animal models have led to increased insights into CCHFV pathogenesis, and several antivirals and vaccines for CCHFV have shown robust efficacy in preclinical models. Translation of these insights and candidate therapeutics to the clinic will hopefully reduce the morbidity and mortality caused by CCHFV.
Collapse
|
18
|
Crimean-Congo hemorrhagic fever: Immunopathogenesis and recent advances in the development of vaccines. Microb Pathog 2023; 177:106054. [PMID: 36882130 DOI: 10.1016/j.micpath.2023.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Crimean-Congo hemorrhagic fever is a serious vector-borne zoonotic viral infection which leads to severe illness and fatalities in people living in endemic regions and becoming infected sporadically. Hyalomma ticks are responsible for the transmission of the virus which belongs to the family Nairoviridae. This disease spreads through ticks bite, infected tissues, or blood of viremic animals, and from infected humans to others. Serological studies also indicate the presence of the virus in various domestic and wild animals to be a risk factor for the transmission of the disease. Crimean-Congo hemorrhagic fever virus elicits many immune responses during the infection including inflammatory, innate, and adaptive immune responses. The development of an effective vaccine could be a promising method for the control and prevention of disease in endemic areas. The purpose of this review is to highlight the importance of CCHF, its mode of transmission, the interaction of the virus with the hosts and ticks, immunopathogenesis, and advances in immunization.
Collapse
|
19
|
Immune Functions of Astrocytes in Viral Neuroinfections. Int J Mol Sci 2023; 24:ijms24043514. [PMID: 36834929 PMCID: PMC9960577 DOI: 10.3390/ijms24043514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuroinfections of the central nervous system (CNS) can be triggered by various pathogens. Viruses are the most widespread and have the potential to induce long-term neurologic symptoms with potentially lethal outcomes. In addition to directly affecting their host cells and inducing immediate changes in a plethora of cellular processes, viral infections of the CNS also trigger an intense immune response. Regulation of the innate immune response in the CNS depends not only on microglia, which are fundamental immune cells of the CNS, but also on astrocytes. These cells align blood vessels and ventricle cavities, and consequently, they are one of the first cell types to become infected after the virus breaches the CNS. Moreover, astrocytes are increasingly recognized as a potential viral reservoir in the CNS; therefore, the immune response initiated by the presence of intracellular virus particles may have a profound effect on cellular and tissue physiology and morphology. These changes should be addressed in terms of persisting infections because they may contribute to recurring neurologic sequelae. To date, infections of astrocytes with different viruses originating from genetically distinct families, including Flaviviridae, Coronaviridae, Retroviridae, Togaviridae, Paramyxoviridae, Picomaviridae, Rhabdoviridae, and Herpesviridae, have been confirmed. Astrocytes express a plethora of receptors that detect viral particles and trigger signaling cascades, leading to an innate immune response. In this review, we summarize the current knowledge on virus receptors that initiate the release of inflammatory cytokines from astrocytes and depict the involvement of astrocytes in immune functions of the CNS.
Collapse
|
20
|
Hu YL, Zhang LQ, Liu XQ, Ye W, Zhao YX, Zhang L, Qiang ZX, Zhang LX, Lei YF, Jiang DB, Cheng LF, Zhang FL. Construction and evaluation of DNA vaccine encoding Crimean Congo hemorrhagic fever virus nucleocapsid protein, glycoprotein N-terminal and C-terminal fused with LAMP1. Front Cell Infect Microbiol 2023; 13:1121163. [PMID: 37026060 PMCID: PMC10072157 DOI: 10.3389/fcimb.2023.1121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hemorrhagic fever in humans and is mainly transmitted by ticks. There is no effective vaccine for Crimean-Congo hemorrhagic fever (CCHF) at present. We developed three DNA vaccines encoding CCHFV nucleocapsid protein (NP), glycoprotein N-terminal (Gn) and C-terminal (Gc) fused with lysosome-associated membrane protein 1 (LAMP1) and assessed their immunogenicity and protective efficacy in a human MHC (HLA-A11/DR1) transgenic mouse model. The mice that were vaccinated three times with pVAX-LAMP1-CCHFV-NP induced balanced Th1 and Th2 responses and could most effectively protect mice from CCHFV transcription and entry-competent virus-like particles (tecVLPs) infection. The mice vaccinated with pVAX-LAMP1-CCHFV-Gc mainly elicited specific anti-Gc and neutralizing antibodies and provided a certain protection from CCHFV tecVLPs infection, but the protective efficacy was less than that of pVAX-LAMP1-CCHFV-NP. The mice vaccinated with pVAX-LAMP1-CCHFV-Gn only elicited specific anti-Gn antibodies and could not provide sufficient protection from CCHFV tecVLPs infection. These results suggest that pVAX-LAMP1-CCHFV-NP would be a potential and powerful candidate vaccine for CCHFV.
Collapse
Affiliation(s)
- Yong-Liang Hu
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- Department of Dermatology, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Lian-Qing Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| | - Xiao-Qian Liu
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wei Ye
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yue-Xi Zhao
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- School of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liang Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Zun-Xian Qiang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Lin-Xuan Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Ying-Feng Lei
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Dong-Bo Jiang
- Department of Immunology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- *Correspondence: Dong-Bo Jiang, ; Lin-Feng Cheng, ; Fang-Lin Zhang,
| | - Lin-Feng Cheng
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- *Correspondence: Dong-Bo Jiang, ; Lin-Feng Cheng, ; Fang-Lin Zhang,
| | - Fang-Lin Zhang
- Department of Microbiology, Air Force Medical University (The Fourth Military Medical University), Xi’an, China
- *Correspondence: Dong-Bo Jiang, ; Lin-Feng Cheng, ; Fang-Lin Zhang,
| |
Collapse
|
21
|
Hollidge BS, Salzano MV, Ibrahim JM, Fraser JW, Wagner V, Leitner NE, Weiss SR, Weber F, González-Scarano F, Soldan SS. Targeted Mutations in the Fusion Peptide Region of La Crosse Virus Attenuate Neuroinvasion and Confer Protection against Encephalitis. Viruses 2022; 14:1464. [PMID: 35891445 PMCID: PMC9317099 DOI: 10.3390/v14071464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
La Crosse virus (LACV) is a major cause of pediatric encephalitis and aseptic meningitis in the Midwestern, Mid-Atlantic, and Southern United States, where it is an emerging pathogen. The LACV Gc glycoprotein plays a critical role in the neuropathogenesis of LACV encephalitis as the putative virus attachment protein. Previously, we identified and experimentally confirmed the location of the LACV fusion peptide within Gc and generated a panel of recombinant LACVs (rLACVs) containing mutations in the fusion peptide as well as the wild-type sequence. These rLACVs retained their ability to cause neuronal death in a primary embryonic rat neuronal culture system, despite decreased replication and fusion phenotypes. To test the role of the fusion peptide in vivo, we tested rLACVs in an age-dependent murine model of LACV encephalitis. When inoculated directly into the CNS of young adult mice (P28), the rLACV fusion peptide mutants were as neurovirulent as the rLACV engineered with a wild-type sequence, confirming the results obtained in tissue culture. In contrast, the fusion peptide mutant rLACVs were less neuroinvasive when suckling (P3) or weanling (P21) mice were inoculated peripherally, demonstrating that the LACV fusion peptide is a determinant of neuroinvasion, but not of neurovirulence. In a challenge experiment, we found that peripheral challenge of weanling (P21) mice with fusion peptide mutant rLACVs protected from a subsequent WT-LACV challenge, suggesting that mutations in the fusion peptide are an attractive target for generating live-attenuated virus vaccines. Importantly, the high degree of conservation of the fusion peptide amongst the Bunyavirales and, structurally, other arboviruses suggests that these findings are broadly applicable to viruses that use a class II fusion mechanism and cause neurologic disease.
Collapse
Affiliation(s)
- Bradley S. Hollidge
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Mary-Virginia Salzano
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - John M. Ibrahim
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Jonathan W. Fraser
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Valentina Wagner
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, 79008 Freiburg, Germany; (V.W.); (F.W.)
| | - Nicole E. Leitner
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Susan R. Weiss
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, 79008 Freiburg, Germany; (V.W.); (F.W.)
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, 35392 Giessen, Germany
| | - Francisco González-Scarano
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
| | - Samantha S. Soldan
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; (B.S.H.); (M.-V.S.); (J.M.I.); (J.W.F.); (N.E.L.); (S.R.W.); (F.G.-S.)
- The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Freitas N, Legros V, Cosset FL. Crimean-Congo hemorrhagic fever: a growing threat to Europe. C R Biol 2022; 345:17-36. [DOI: 10.5802/crbiol.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
|
23
|
Rodriguez SE, Hawman DW, Sorvillo TE, O'Neal TJ, Bird BH, Rodriguez LL, Bergeron É, Nichol ST, Montgomery JM, Spiropoulou CF, Spengler JR. Immunobiology of Crimean-Congo hemorrhagic fever. Antiviral Res 2022; 199:105244. [PMID: 35026307 PMCID: PMC9245446 DOI: 10.1016/j.antiviral.2022.105244] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
Abstract
Human infection with Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne pathogen in the family Nairoviridae, can result in a spectrum of outcomes, ranging from asymptomatic infection through mild clinical signs to severe or fatal disease. Studies of CCHFV immunobiology have investigated the relationship between innate and adaptive immune responses with disease severity, attempting to elucidate factors associated with differential outcomes. In this article, we begin by highlighting unanswered questions, then review current efforts to answer them. We discuss in detail current clinical studies and research in laboratory animals on CCHF, including immune targets of infection and adaptive and innate immune responses. We summarize data about the role of the immune response in natural infections of animals and humans and experimental studies in vitro and in vivo and from evaluating immune-based therapies and vaccines, and present recommendations for future research.
Collapse
Affiliation(s)
- Sergio E Rodriguez
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - David W Hawman
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Teresa E Sorvillo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA; One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - T Justin O'Neal
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brian H Bird
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Luis L Rodriguez
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Orient Point, New York, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.
| |
Collapse
|
24
|
Dai S, Deng F, Wang H, Ning Y. Crimean-Congo Hemorrhagic Fever Virus: Current Advances and Future Prospects of Antiviral Strategies. Viruses 2021; 13:v13071195. [PMID: 34206476 PMCID: PMC8310003 DOI: 10.3390/v13071195] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a widespread, tick-borne pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) with high morbidity and mortality. CCHFV is transmitted to humans through tick bites or direct contact with patients or infected animals with viremia. Currently, climate change and globalization have increased the transmission risk of this biosafety level (BSL)-4 virus. The treatment options of CCHFV infection remain limited and there is no FDA-approved vaccine or specific antivirals, which urges the identification of potential therapeutic targets and the design of CCHF therapies with greater effort. In this article, we discuss the current progress and some future directions in the development of antiviral strategies against CCHFV.
Collapse
Affiliation(s)
- Shiyu Dai
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (F.D.); (H.W.); (Y.N.); Tel./Fax: +86-27-8719-8465 (F.D.); +86-27-8719-9353 (H.W.); +86-27-8719-7200 (Y.N.)
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (F.D.); (H.W.); (Y.N.); Tel./Fax: +86-27-8719-8465 (F.D.); +86-27-8719-9353 (H.W.); +86-27-8719-7200 (Y.N.)
| | - Yunjia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China;
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Correspondence: (F.D.); (H.W.); (Y.N.); Tel./Fax: +86-27-8719-8465 (F.D.); +86-27-8719-9353 (H.W.); +86-27-8719-7200 (Y.N.)
| |
Collapse
|
25
|
Dai S, Wu Q, Wu X, Peng C, Liu J, Tang S, Zhang T, Deng F, Shen S. Differential Cell Line Susceptibility to Crimean-Congo Hemorrhagic Fever Virus. Front Cell Infect Microbiol 2021; 11:648077. [PMID: 33869079 PMCID: PMC8044861 DOI: 10.3389/fcimb.2021.648077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 01/09/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe tick-borne viral disease of global concerns due to the increasing incidence and lack of effective treatments. The causative agent, CCHF virus (CCHFV), has been characterized for years; however, its tropism in cell lines of different host and tissue origins remains unclear. This study characterized the susceptibility of 16 human and 6 animal cell lines to CCHFV. Increased viral load and viral nucleoprotein expression, and productive CCHFV replication were detected in human vascular (HUVEC), renal (SW-13 and HEK-293), hepatic (Huh7), and cerebral (U-87 MG) cell lines, which were considered CCHFV-highly permissive cell lines. Renal cell lines derived from monkey and dog could also support CCHFV replication. This study evaluated the susceptibility of different cell lines to CCHFV and identified CCHFV-permissive cell lines. Our findings raise concerns regarding the use of cell lines in ex vivo studies of CCHFV and may have important implications for further fundamental research, which would promote understanding of CCHFV pathogenesis and transmission, as well as benefit designing strategies for disease prevention and control.
Collapse
Affiliation(s)
- Shiyu Dai
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiaoli Wu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Wu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng Peng
- National Biosafety Laboratory, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Liu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shuang Tang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
26
|
McEntire CRS, Song KW, McInnis RP, Rhee JY, Young M, Williams E, Wibecan LL, Nolan N, Nagy AM, Gluckstein J, Mukerji SS, Mateen FJ. Neurologic Manifestations of the World Health Organization's List of Pandemic and Epidemic Diseases. Front Neurol 2021; 12:634827. [PMID: 33692745 PMCID: PMC7937722 DOI: 10.3389/fneur.2021.634827] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
The World Health Organization (WHO) monitors the spread of diseases globally and maintains a list of diseases with epidemic or pandemic potential. Currently listed diseases include Chikungunya, cholera, Crimean-Congo hemorrhagic fever, Ebola virus disease, Hendra virus infection, influenza, Lassa fever, Marburg virus disease, Neisseria meningitis, MERS-CoV, monkeypox, Nipah virus infection, novel coronavirus (COVID-19), plague, Rift Valley fever, SARS, smallpox, tularemia, yellow fever, and Zika virus disease. The associated pathogens are increasingly important on the global stage. The majority of these diseases have neurological manifestations. Those with less frequent neurological manifestations may also have important consequences. This is highlighted now in particular through the ongoing COVID-19 pandemic and reinforces that pathogens with the potential to spread rapidly and widely, in spite of concerted global efforts, may affect the nervous system. We searched the scientific literature, dating from 1934 to August 2020, to compile data on the cause, epidemiology, clinical presentation, neuroimaging features, and treatment of each of the diseases of epidemic or pandemic potential as viewed through a neurologist's lens. We included articles with an abstract or full text in English in this topical and scoping review. Diseases with epidemic and pandemic potential can be spread directly from human to human, animal to human, via mosquitoes or other insects, or via environmental contamination. Manifestations include central neurologic conditions (meningitis, encephalitis, intraparenchymal hemorrhage, seizures), peripheral and cranial nerve syndromes (sensory neuropathy, sensorineural hearing loss, ophthalmoplegia), post-infectious syndromes (acute inflammatory polyneuropathy), and congenital syndromes (fetal microcephaly), among others. Some diseases have not been well-characterized from a neurological standpoint, but all have at least scattered case reports of neurological features. Some of the diseases have curative treatments available while in other cases, supportive care remains the only management option. Regardless of the pathogen, prompt, and aggressive measures to control the spread of these agents are the most important factors in lowering the overall morbidity and mortality they can cause.
Collapse
Affiliation(s)
- Caleb R. S. McEntire
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Kun-Wei Song
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Robert P. McInnis
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - John Y. Rhee
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Michael Young
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Erika Williams
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Leah L. Wibecan
- Massachusetts General Hospital (MGH)-Brigham Pediatric Neurology Residency Program, Boston, MA, United States
| | - Neal Nolan
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Amanda M. Nagy
- Massachusetts General Hospital (MGH)-Brigham Pediatric Neurology Residency Program, Boston, MA, United States
| | - Jeffrey Gluckstein
- Massachusetts General Hospital (MGH)-Brigham Neurology Residency Program, Boston, MA, United States
| | - Shibani S. Mukerji
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Farrah J. Mateen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
27
|
T-Cells and Interferon Gamma Are Necessary for Survival Following Crimean-Congo Hemorrhagic Fever Virus Infection in Mice. Microorganisms 2021; 9:microorganisms9020279. [PMID: 33572859 PMCID: PMC7912317 DOI: 10.3390/microorganisms9020279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe tick-borne febrile illness with wide geographic distribution. In humans, the disease follows infection by the Crimean-Congo hemorrhagic fever virus (CCHFV) and begins as flu-like symptoms that can rapidly progress to hemorrhaging and death. Case fatality rates can be as high as 30%. An important gap in our understanding of CCHF are the host immune responses necessary to control the infection. A better understanding of these responses is needed to direct therapeutic strategies to limit the often-severe morbidity and mortality seen in humans. In this report, we have utilized a mouse model in which mice develop severe disease but ultimately recover. T-cells were robustly activated, differentiated to produce antiviral cytokines, and were critical for survival following CCHFV infection. We further identified a key role for interferon gamma (IFNγ) in survival following CCHFV infection. These results significantly improve our understanding of the host adaptive immune response to severe CCHFV infection.
Collapse
|
28
|
Pavel STI, Yetiskin H, Kalkan A, Ozdarendeli A. Evaluation of the cell culture based and the mouse brain derived inactivated vaccines against Crimean-Congo hemorrhagic fever virus in transiently immune-suppressed (IS) mouse model. PLoS Negl Trop Dis 2020; 14:e0008834. [PMID: 33226988 PMCID: PMC7721194 DOI: 10.1371/journal.pntd.0008834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 12/07/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus in the Nairoviridae family within the Bunyavirales order of viruses. Crimean-Congo hemorrhagic fever (CCHF) is the most widespread among tick-borne human viral diseases. It is endemic in many areas of Africa, Asia, the Middle East, in the Balkans, Russia and countries of the former Soviet Union. The confirmed CCHF cases were seen in Spain in 2016 to signify expansion of the virus into new geographical areas. CCHFV causes a viral human disease characterized by sudden onset of fever, headache, abdominal pain, nausea, hypotension, hemorrhage, and hepatic dysfunction with fatality rates up to 30%. Currently, there are no spesific treatments or licensed vaccines available for CCHFV. The absence of a susceptible animal model for CCHFV infection was severely hindered work on the development of vaccines. However, several animal models of CCHFV infection have been recently developed and used to assess vaccine efficacy. In this study, we have used the transiently immune-suppressed (IS) mouse model that MAb-5A3 was used to block IFN-I signaling in immune intact, wild-type mice at the time of CCHFV infection to evaluate the immune response and efficacy of the cell culture based and the mouse brain derived inactivated vaccines against CCHFV. Both vaccine preparations have provided complete protection but the cell culture based vaccine more effectively induced to CCFHV spesific antibodies and T cell responses. This is the first comparison of the cell culture based and the mouse brain derived vaccines for assessing the protective efficacy and the immunogenicity in the IS mouse CCHFV model.
Collapse
Affiliation(s)
- Shaikh Terkis Islam Pavel
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Turkey
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Turkey
| | - Hazel Yetiskin
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Turkey
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Turkey
| | - Ahmet Kalkan
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Karadeniz Technical University, Trabzon, Turkey
| | - Aykut Ozdarendeli
- Department of Microbiology, Medical Faculty, Erciyes University, Kayseri, Turkey
- Vaccine Research, Development and Application Center, Erciyes University, Kayseri, Turkey
- * E-mail: ,
| |
Collapse
|
29
|
Ranadheera C, Valcourt EJ, Warner BM, Poliquin G, Rosenke K, Frost K, Tierney K, Saturday G, Miao J, Westover JB, Gowen BB, Booth S, Feldmann H, Wang Z, Safronetz D. Characterization of a novel STAT 2 knock-out hamster model of Crimean-Congo hemorrhagic fever virus pathogenesis. Sci Rep 2020; 10:12378. [PMID: 32704046 PMCID: PMC7378551 DOI: 10.1038/s41598-020-69054-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne pathogen causing a febrile illness in humans, which can progress to hemorrhagic manifestations, multi-organ failure, and death. Current mouse models of CCHFV infection reliably succumb to virus challenge but vary in their ability to reflect signs of disease similar to humans. In this study, we established a signal transducer and activator of transcription 2 (STAT2) knockout hamster model to expand the repertoire of animal models of CCHFV pathogenesis that can be used for therapeutic development. These hamsters demonstrated a systemic and lethal disease in response to infection. Hallmarks of human disease were observed including petechial rash, blood coagulation dysfunction, and various biochemistry and blood cell count abnormalities. Furthermore, we also demonstrated the utility of this model for anti-CCHFV therapeutic evaluation. The STAT2 knock-out hamster model of CCHFV infection may provide some further insights into clinical disease, viral pathogenesis, and pave the way for testing of potential drug and vaccine candidates.
Collapse
Affiliation(s)
- Charlene Ranadheera
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Bioforensics Assay Development and Diagnostics, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Emelissa J Valcourt
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Bryce M Warner
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Guillaume Poliquin
- Office of the Scientific Director, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Kathy Frost
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Jinxin Miao
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA.,Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450066, People's Republic of China
| | - Jonna B Westover
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Brian B Gowen
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Stephanie Booth
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada. .,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
30
|
Differential Growth Characteristics of Crimean-Congo Hemorrhagic Fever Virus in Kidney Cells of Human and Bovine Origin. Viruses 2020; 12:v12060685. [PMID: 32630501 PMCID: PMC7354505 DOI: 10.3390/v12060685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes a lethal tick-borne zoonotic disease with severe clinical manifestation in humans but does not produce symptomatic disease in wild or domestic animals. The factors contributing to differential outcomes of infection between species are not yet understood. Since CCHFV is known to have tropism to kidney tissue and cattle play an important role as an amplifying host for CCHFV, in this study, we assessed in vitro cell susceptibility to CCHFV infection in immortalized and primary kidney and adrenal gland cell lines of human and bovine origin. Based on our indirect fluorescent focus assay (IFFA), we suggest a cell-to-cell CCHF viral spread process in bovine kidney cells but not in human cells. Over the course of seven days post-infection (dpi), infected bovine kidney cells are found in restricted islet-like areas. In contrast, three dpi infected human kidney or adrenal cells were noted in areas distant from one another yet progressed to up to 100% infection of the monolayer. Pronounced CCHFV replication, measured by quantitative real-time RT-PCR (qRT-PCR) of both intra- and extracellular viral RNA, was documented only in human kidney cells, supporting restrictive infection in cells of bovine origin. To further investigate the differences, lactate dehydrogenase activity and cytopathic effects were measured at different time points in all mentioned cells. In vitro assays indicated that CCHFV infection affects human and bovine kidney cells differently, where human cell lines seem to be markedly permissive. This is the initial reporting of CCHFV susceptibility and replication patterns in bovine cells and the first report to compare human and animal cell permissiveness in vitro. Further investigations will help to understand the impact of different cell types of various origins on the virus–host interaction.
Collapse
|
31
|
The Crimean-Congo Hemorrhagic Fever Virus NSm Protein is Dispensable for Growth In Vitro and Disease in Ifnar -/- Mice. Microorganisms 2020; 8:microorganisms8050775. [PMID: 32455700 PMCID: PMC7285326 DOI: 10.3390/microorganisms8050775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tri-segmented, tick-borne nairovirus that causes disease of ranging severity in humans. The CCHFV M segment encodes a complex glycoprotein precursor (GPC) that undergoes extensive endoproteolytic cleavage, giving rise to two structural proteins (Gn and Gc) required for virus attachment and entry, and to multiple non-structural proteins (NSm, GP160, GP85, and GP38). The functions of these non-structural proteins remain largely unclear. Here, we investigate the role of NSm during infection by generating a recombinant CCHFV lacking the complete NSm domain (10200∆NSm) and observing CCHFV ∆NSm replication in cell lines and pathogenicity in Ifnar-/- mice. Our data demonstrate that the NSm domain is dispensable for viral replication in vitro, and, despite the delayed onset of clinical signs, CCHFV lacking this domain caused severe or lethal disease in infected mice.
Collapse
|
32
|
Tipih T, Burt FJ. Crimean-Congo Hemorrhagic Fever Virus: Advances in Vaccine Development. Biores Open Access 2020; 9:137-150. [PMID: 32461819 PMCID: PMC7247048 DOI: 10.1089/biores.2019.0057] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 01/12/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe human disease with mortality rates of up to 30%. The disease is widespread in Africa, Asia, the Middle East and Eastern Europe. The last few years have seen disease emergence in Spain for the first time and disease re-emergence in other regions of the world after periods of inactivity. Factors, such as climate change, movement of infected ticks, animals, and changes in human activity, are likely to broaden endemic foci. There are therefore concerns that CCHF might emerge in currently nonendemic regions. The absence of approved vaccines or therapies heightens these concerns; thus Crimean-Congo hemorrhagic fever virus (CCHFV) is listed by the World Health Organization as a priority organism. However, the current sporadic nature of CCHF cases may call for targeted vaccination of risk groups as opposed to mass vaccinations. CCHF vaccine development has accelerated in recent years, partly because of the discovery of CCHF animal models. In this review, we discuss CCHF risk groups who are most likely to benefit from vaccine development, the merits and demerits of available CCHF animal models, and the various approaches which have been explored for CCHF vaccine development. Lastly, we present concluding remarks and research areas which can be further explored to enhance the available CCHFV vaccine data.
Collapse
Affiliation(s)
- Thomas Tipih
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Felicity Jane Burt
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- National Health Laboratory Service, Bloemfontein, South Africa
| |
Collapse
|
33
|
The Utility of Human Immune System Mice for High-Containment Viral Hemorrhagic Fever Research. Vaccines (Basel) 2020; 8:vaccines8010098. [PMID: 32098330 PMCID: PMC7157695 DOI: 10.3390/vaccines8010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Human immune system (HIS) mice are a subset of humanized mice that are generated by xenoengraftment of human immune cells or tissues and/or their progenitors into immunodeficient mice. Viral hemorrhagic fevers (VHFs) cause severe disease in humans, typically with high case fatality rates. HIS mouse studies have been performed to investigate the pathogenesis and immune responses to VHFs that must be handled in high-containment laboratory facilities. Here, we summarize studies on filoviruses, nairoviruses, phenuiviruses, and hantaviruses, and discuss the knowledge gained from using various HIS mouse models. Furthermore, we discuss the complexities of designing and interpreting studies utilizing HIS mice while highlighting additional questions about VHFs that can still be addressed using HIS mouse models.
Collapse
|
34
|
Fluorescent Crimean-Congo hemorrhagic fever virus illuminates tissue tropism patterns and identifies early mononuclear phagocytic cell targets in Ifnar-/- mice. PLoS Pathog 2019; 15:e1008183. [PMID: 31790513 PMCID: PMC6984736 DOI: 10.1371/journal.ppat.1008183] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/27/2020] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV, order Bunyavirales, family Nairoviridae, genus Orthonairovirus) is the tick-borne etiological agent of Crimean-Congo hemorrhagic fever (CCHF) in humans. Animals are generally susceptible to CCHFV infection but refractory to disease. Small animal models are limited to interferon-deficient mice, that develop acute fatal disease following infection. Here, using a ZsGreen1- (ZsG) expressing reporter virus (CCHFV/ZsG), we examine tissue tropism and dissemination of virus in interferon-α/β receptor knock-out (Ifnar-/-) mice. We demonstrate that CCHFV/ZsG retains in vivo pathogenicity comparable to wild-type virus. Interestingly, despite high levels of viral RNA in all organs assessed, 2 distribution patterns of infection were observed by both fluorescence and immunohistochemistry (IHC), corresponding to the permissiveness of organ tissues. To further investigate viral dissemination and to temporally define cellular targets of CCHFV in vivo, mice were serially euthanized at different stages of disease. Flow cytometry was used to characterize CCHFV-associated alterations in hematopoietic cell populations and to classify infected cells in the blood, lymph node, spleen, and liver. ZsG signal indicated that mononuclear phagocytic cells in the lymphatic tissues were early targets of infection; in late-stage infection, overall, the highest levels of signal were detected in the liver, and ZsG was found in both antigen-presenting and lymphocyte cell populations. Human infection by tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV) can result in severe disease with up to 30% case fatality rates. While CCHFV is known to be hepatotropic, the presence and implications of virus in other tissues are less clear. Furthermore, to date, early cellular targets of infection in a CCHFV disease model have not been investigated in detail. Here, using a recombinant reporter CCHFV expressing the fluorescent protein ZsGreen1 (ZsG; CCHFV/ZsG) in interferon-α/β receptor knock-out (Ifnar-/-) mice, which develop acute fatal disease following infection, we investigate both cellular and tissue targets of infection. Importantly, we find that CCHFV/ZsG infection demonstrated comparable pathogenicity to wild-type virus in Ifnar-/- mice. We used in situ visualization of fluorescent signal in tissues to assess viral dissemination throughout the course of infection, and found robust viral signal in reproductive tissues, previously unrecognized as sites of CCHFV infection. We also used flow cytometry to detect intracellular fluorescent signal, and identified initial target cells of CCHFV infection as macrophage and monocyte populations in lymphatic tissues. These findings support a central role of immune cells in early virus dissemination, and a need for further investigations into reproductive tract involvement in human CCHFV infection.
Collapse
|
35
|
Aligholipour Farzani T, Földes K, Ergünay K, Gurdal H, Bastug A, Ozkul A. Immunological Analysis of a CCHFV mRNA Vaccine Candidate in Mouse Models. Vaccines (Basel) 2019; 7:vaccines7030115. [PMID: 31527460 PMCID: PMC6789841 DOI: 10.3390/vaccines7030115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Development of new vaccine platforms against viral diseases is considered urgent. In recent years, mRNA constructs have attracted great interest in this field due to unique advantages over conventional gene transfer platforms. In the present study, we developed a new naked conventional mRNA vaccine expressing the non-optimized small (S) segment of the Ank-2 strain of Crimean-Congo Hemorrhagic Fever virus (CCHFV). We then analyzed its single and booster dose immunogenicity and protection potential in the challenge assay in two mice models, including IFNα/β/γR-/- and C57BL/6. The results obtained from the immunological assays, namely IL-4 and IFN-gamma ELISPOT, intracellular IFN-gamma staining, in-house sandwich ELISA, and survival data, demonstrated that our construct elicited the production of anti-nucleocapsid (N) specific immune responses in both mice models. A 100% protection rate was only obtained in the booster dose group of IFNα/β/γR-/- mice, indicating that this platform needs further optimization in future studies. In conclusion, we assessed a novel approach in CCHFV vaccination by introducing a conventional mRNA platform which can be considered in future experiments as an efficient and safe way to battle this disease.
Collapse
Affiliation(s)
| | - Katalin Földes
- Virology Department, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey.
| | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, 06100 Ankara, Turkey.
| | - Hakan Gurdal
- Pharmacology Department, Faculty of Medicine, Ankara University, 06100 Ankara, Turkey.
| | - Aliye Bastug
- Infectious Disease Department, Ankara Numune Training and Research Hospital, 06800 Ankara, Turkey.
| | - Aykut Ozkul
- Virology Department, Faculty of Veterinary Medicine, Ankara University, 06110 Ankara, Turkey.
- Biotechnology Institute, Ankara University, 06560 Ankara, Turkey.
| |
Collapse
|
36
|
Garrison AR, Smith DR, Golden JW. Animal Models for Crimean-Congo Hemorrhagic Fever Human Disease. Viruses 2019; 11:E590. [PMID: 31261754 PMCID: PMC6669593 DOI: 10.3390/v11070590] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is an important tick-borne human pathogen endemic throughout Asia, Africa and Europe. CCHFV is also an emerging virus, with recent outbreaks in Western Europe. CCHFV can infect a large number of wild and domesticated mammalian species and some avian species, however the virus does not cause severe disease in these animals, but can produce viremia. In humans, CCHFV infection can lead to a severe, life-threating disease characterized by hemodynamic instability, hepatic injury and neurological disorders, with a worldwide lethality rate of ~20-30%. The pathogenic mechanisms of CCHF are poorly understood, largely due to the dearth of animal models. However, several important animal models have been recently described, including novel murine models and a non-human primate model. In this review, we examine the current knowledge of CCHF-mediated pathogenesis and describe how animal models are helping elucidate the molecular and cellular determinants of disease. This information should serve as a reference for those interested in CCHFV animal models and their utility for evaluation of medical countermeasures (MCMs) and in the study of pathogenesis.
Collapse
Affiliation(s)
- Aura R Garrison
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA.
- Mailing address: Virology Division, USAMRIID, 1425 Porter Street, Fort Detrick, MD 21702, USA.
| | - Darci R Smith
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA.
- Mailing address: Virology Division, USAMRIID, 1425 Porter Street, Fort Detrick, MD 21702, USA.
| | - Joseph W Golden
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA.
- Mailing address: Virology Division, USAMRIID, 1425 Porter Street, Fort Detrick, MD 21702, USA.
| |
Collapse
|
37
|
Scholte FEM, Spengler JR, Welch SR, Harmon JR, Coleman-McCray JD, Freitas BT, Kainulainen MH, Pegan SD, Nichol ST, Bergeron É, Spiropoulou CF. Single-dose replicon particle vaccine provides complete protection against Crimean-Congo hemorrhagic fever virus in mice. Emerg Microbes Infect 2019; 8:575-578. [PMID: 30947619 PMCID: PMC6455139 DOI: 10.1080/22221751.2019.1601030] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Florine E M Scholte
- a Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| | - Jessica R Spengler
- a Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| | - Stephen R Welch
- a Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| | - Jessica R Harmon
- a Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| | - JoAnn D Coleman-McCray
- a Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| | - Brendan T Freitas
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , USA
| | - Markus H Kainulainen
- a Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| | - Scott D Pegan
- b Department of Pharmaceutical and Biomedical Sciences , University of Georgia , Athens , USA
| | - Stuart T Nichol
- a Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| | - Éric Bergeron
- a Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| | - Christina F Spiropoulou
- a Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention , Atlanta , USA
| |
Collapse
|
38
|
Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever. Sci Rep 2019; 9:7755. [PMID: 31123310 PMCID: PMC6533279 DOI: 10.1038/s41598-019-44210-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne bunyavirus, can cause a life-threatening hemorrhagic syndrome in humans but not in its animal host. The virus is widely distributed throughout southeastern Europe, the Middle East, Africa, and Asia. Disease management has proven difficult and there are no broadly licensed vaccines or therapeutics. Recombinant vesicular stomatitis viruses (rVSV) expressing foreign glycoproteins (GP) have shown promise as experimental vaccines for several viral hemorrhagic fevers. Here, we developed and assessed a replication competent rVSV vector expressing the CCHFV glycoprotein precursor (GPC), which encodes CCHFV structural glycoproteins. This construct drives strong expression of CCHFV-GP, in vitro. Using these vectors, we vaccinated STAT-1 knock-out mice, an animal model for CCHFV. The vector was tolerated and 100% efficacious against challenge from a clinical strain of CCHFV. Anti-CCHFV-GP IgG and neutralizing antibody titers were observed in surviving animals. This study demonstrates that a rVSV expressing only the CCHFV-GP has the potential to serve as a replication competent vaccine platform against CCHF infections.
Collapse
|
39
|
Aytekin FY, Barut HŞ, Rüstemoğlu A, Atay A, Günal Ö, Duygu F. Factors related to fatalities and clinical progression of Crimean-Congo hemorrhagic fever patients and the effects of IL 28-B gene polymorphism. Arch Virol 2019; 164:547-557. [PMID: 30478788 DOI: 10.1007/s00705-018-4106-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
Mortality rates of Crimean-Congo hemorrhagic fever (CCHF) vary from 5% to 80%. However, there is no clear information available about why this disease is fatal for some people while others recover. In this study, the factors related to fatalities and serious clinical progression of CCHF patients and the correlation between serious prognosis and IL 28-B gene polymorphism were investigated. The study included 107 patients with a preliminary diagnosis of CCHF, and the patients were found positive for CCHFV RNA based on polymerase chain reaction (PCR) analysis. The IL 28-B rs12979860 polymorphism was identified by PCR "restriction fragment length polymorphism" (PCR-RFLP) analysis using blood samples from the patients. In addition to the IL 28-B analysis results, a variety of data along with laboratory records obtained during the hospital stay were evaluated using statistical analysis. Of the 107 cases, nine were fatal (8.4%), while the other patients recovered and were discharged. Twenty-four patients had the CC genotype (22.43%), 64 had the CT genotype (59.81%), and 19 had the TT genotype (17.76%). Of the nine patients who died, three had the CC genotype (33.33%) and six had the CT genotype (66.67%). None of the patients who died had the TT genotype. Symptoms and findings of diarrhea, abdominal pain, hemorrhage, and rash were more common in fatal cases than in non-fatal cases. The IL 28-B rs12979860 polymorphism was not found to have a statistically significant correlation with fatality or symptoms indicating serious clinical progression in CCHF patients. As has been observed in previous studies, our study showed that leukocytosis, abdominal pain and diarrhea were more common in fatal cases.
Collapse
Affiliation(s)
- Feyza Yıldız Aytekin
- Department of Infectious Diseases and Clinical Microbiology, Ministry of Health-Giresun University Prof. Dr. A. Ilhan Özdemir Training and Research Hospital, Giresun, Turkey.
| | - Hüseyin Şener Barut
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Aydın Rüstemoğlu
- Department of Medical Biology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey
| | - Ayfer Atay
- Department of Infectious Diseases and Clinical Microbiology, Bahçelievler State Hospital, Istanbul, Turkey
| | - Özgür Günal
- Department of Infectious Diseases and Clinical Microbiology, Samsun Training and Research Hospital, University of Health Science, Samsun, Turkey
| | - Fazilet Duygu
- Department of Infectious Diseases and Clinical Microbiology, Ankara Onkology Training and Research Hospital, University of Health Science, Ankara, Turkey
| |
Collapse
|
40
|
Perdomo-Celis F, Salvato MS, Medina-Moreno S, Zapata JC. T-Cell Response to Viral Hemorrhagic Fevers. Vaccines (Basel) 2019; 7:E11. [PMID: 30678246 PMCID: PMC6466054 DOI: 10.3390/vaccines7010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 12/22/2022] Open
Abstract
Viral hemorrhagic fevers (VHF) are a group of clinically similar diseases that can be caused by enveloped RNA viruses primarily from the families Arenaviridae, Filoviridae, Hantaviridae, and Flaviviridae. Clinically, this group of diseases has in common fever, fatigue, dizziness, muscle aches, and other associated symptoms that can progress to vascular leakage, bleeding and multi-organ failure. Most of these viruses are zoonotic causing asymptomatic infections in the primary host, but in human beings, the infection can be lethal. Clinical and experimental evidence suggest that the T-cell response is needed for protection against VHF, but can also cause damage to the host, and play an important role in disease pathogenesis. Here, we present a review of the T-cell immune responses to VHF and insights into the possible ways to improve counter-measures for these viral agents.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, 050010, Colombia.
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Maria S Salvato
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Sandra Medina-Moreno
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | - Juan C Zapata
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a widely distributed hemorrhagic fever virus and the cause of hemorrhagic disease in Africa, Southern and Eastern Europe, the Middle East, India and Asia. Recent emergence of CCHFV into Spain indicates that the geographic range of this virus is expanding and the presence of its tick vector in several countries without reported disease suggest that CCHFV will continue to spread. Research into CCHFV was historically limited by a lack of suitable animal models and tools to study viral pathogenesis. However, in the past few years the toolset for studying CCHFV has expanded with small animal and non-human primate models for CCHFV being developed along with a reverse genetics system that allows for investigation of viral determinants of disease. These tools have been utilized to understand how CCHFV antagonizes host restriction factors and to develop novel vaccine candidates that may help limit the substantial morbidity and mortality in humans caused by CCHFV.
Collapse
Affiliation(s)
- David W Hawman
- Laboratory of Virology, Division of Intramural Research, NIAID/NIH, Hamilton, Montana, 59840, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, NIAID/NIH, Hamilton, Montana, 59840, USA
| |
Collapse
|
42
|
Spengler JR, McElroy AK, Harmon JR, Coleman-McCray JD, Welch SR, Keck JG, Nichol ST, Spiropoulou CF. Human immune cell engraftment does not alter development of severe acute Rift Valley fever in mice. PLoS One 2018; 13:e0201104. [PMID: 30028878 PMCID: PMC6054394 DOI: 10.1371/journal.pone.0201104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022] Open
Abstract
Rift Valley fever (RVF) in humans is usually mild, but, in a subset of cases, can progress to severe hepatic and neurological disease. Rodent models of RVF generally develop acute severe clinical disease. Here, we inoculated humanized NSG-SGM3 mice with Rift Valley fever virus (RVFV) to investigate whether the presence of human immune cells in mice would alter the progression of RVFV infection to more closely model human disease. Despite increased human cytokine expression, including responses mirroring those seen in human disease, and decreased hepatic viral RNA levels at terminal euthanasia, both high- and low-dose RVFV inoculation resulted in lethal disease in all mice with comparable time-to-death as unengrafted mice.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | - Anita K. McElroy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- Division of Pediatric Infectious Diseases, Emory University, Atlanta, GA, United States of America
- Divison of Pediatric Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jessica R. Harmon
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - JoAnn D. Coleman-McCray
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - James G. Keck
- In Vivo Services, The Jackson Laboratory, Sacramento, CA, United States of America
| | - Stuart T. Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
43
|
Zivcec M, Safronetz D, Scott DP, Robertson S, Feldmann H. Nucleocapsid protein-based vaccine provides protection in mice against lethal Crimean-Congo hemorrhagic fever virus challenge. PLoS Negl Trop Dis 2018; 12:e0006628. [PMID: 30011277 PMCID: PMC6062107 DOI: 10.1371/journal.pntd.0006628] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/26/2018] [Accepted: 06/24/2018] [Indexed: 01/11/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an acute, often fatal viral disease characterized by rapid onset of febrile symptoms followed by hemorrhagic manifestations. The etiologic agent, CCHF orthonairovirus (CCHFV), can infect several mammals in nature but only seems to cause clinical disease in humans. Over the past two decades there has been an increase in total number of CCHF case reports, including imported CCHF patients, and an expansion of CCHF endemic areas. Despite its increased public health burden there are currently no licensed vaccines or treatments to prevent CCHF. We here report the development and assessment of the protective efficacy of an adenovirus (Ad)-based vaccine expressing the nucleocapsid protein (N) of CCHFV (Ad-N) in a lethal immunocompromised mouse model of CCHF. The results show that Ad-N can protect mice from CCHF mortality and that this platform should be considered for future CCHFV vaccine strategies. Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease that can manifest as a viral hemorrhagic fever syndrome. The CCHF virus is widely spread throughout the African continent, the Balkans, the Middle East, Southern Russia and Western Asia where it remains a serious public health concern. Currently, there are no licensed treatments or vaccines available, and medical countermeasures are urgently needed. We developed an adenovirus vector vaccine based on the conserved structural nucleoprotein (N) as the antigen. A prime-boost approach showed promising efficacy in the most widely used immunocompromised mouse model. This vaccine approach demonstrates a role for N in protection and suggests its consideration for future CCHFV vaccine strategies.
Collapse
Affiliation(s)
- Marko Zivcec
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - David Safronetz
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Shelly Robertson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
44
|
Mendoza EJ, Warner B, Safronetz D, Ranadheera C. Crimean-Congo haemorrhagic fever virus: Past, present and future insights for animal modelling and medical countermeasures. Zoonoses Public Health 2018; 65:465-480. [PMID: 29676526 PMCID: PMC7165601 DOI: 10.1111/zph.12469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 01/24/2023]
Abstract
Crimean–Congo haemorrhagic fever (CCHF) is a widespread tick‐borne viral zoonosis with a case‐fatality rate ranging from 9% to 50% in humans. Although a licensed vaccine to prevent infection by the CCHF virus (CCHFV) exists, its ability to induce neutralizing antibodies is limited and its efficacy against CCHFV remains undetermined. In addition, controlling CCHF infections by eradication of the tick reservoir has been ineffective, both economically and logistically, and the treatment options for CCHF remain limited. In this review, we first critically discuss the existing animal models to evaluate therapeutics for CCHF. We then review the therapeutic options for CCHF that have been investigated in human cases, followed by investigational drugs that have been evaluated in pre‐clinical studies. We highlight the importance of understanding human prognostic factors in developing an animal model for CCHF that recapitulates hallmarks of human disease and its implication for selecting therapeutic candidates.
Collapse
Affiliation(s)
- E J Mendoza
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - B Warner
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - D Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - C Ranadheera
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
45
|
Abstract
OBJECTIVES The aim of this prospective study is to investigate the central nervous system involvement in Crimean-Congo haemorrhagic fever (CCHF) with magnetic resonance imaging (MRI) in conjunction with clinical and laboratory findings. METHODS Between July 2015 and August 2016, 36 patients with CCHF were undergone brain MRI including SWI. Two MRIs, one at the time of admission and the second in the convalescent period, were performed for each patient in order to see if there is any sign of central nervous system (CNS) involvement, especially in terms of intracranial haemorrhage or viral encephalitis. Clinical severity scoring was also done and laboratory findings were noted in order to correlate with clinical and imaging findings. RESULTS None of the 36 patients showed any MRI findings of an acute intracranial event during the course of the disease. There was a significant difference between mild cases and moderate cases in terms of some laboratory parameters (p < 0.05). CONCLUSIONS Although CCHF is a highly lethal disease which involves multiple organs and systems, CNS involvement seems to be extremely rare in mild and moderate cases. KEY POINTS • MRI is the imaging method of choice to diagnose microbleeds and encephalitis • Although CCHF causes multisystem bleeding, intracranial haemorrhage seems to be very rare • CNS complications are uncommon, even in the setting of suggestive symptoms • Death usually results from extracranial bleeding and multiorgan failure • Severity scoring is associated with some laboratory abnormalities in CCHF.
Collapse
|
46
|
Skelton JK, Ortega-Prieto AM, Dorner M. A Hitchhiker's guide to humanized mice: new pathways to studying viral infections. Immunology 2018; 154:50-61. [PMID: 29446074 PMCID: PMC5904706 DOI: 10.1111/imm.12906] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
Humanized mice are increasingly appreciated as an incredibly powerful platform for infectious disease research. The often very narrow species tropism of many viral infections, coupled with the sometimes misleading results from preclinical studies in animal models further emphasize the need for more predictive model systems based on human cells rather than surrogates. Humanized mice represent such a model and have been greatly enhanced with regards to their immune system reconstitution as well as immune functionality in the past years, resulting in their recommendation as a preclinical model by the US Food and Drug Administration. This review aims to give a detailed summary of the generation of human peripheral blood lymphocyte-, CD34+ haematopoietic stem cell- and bone marrow/liver/thymus-reconstituted mice and available improved models (e.g. myeloid- or T-cell-only mice, MISTRG, NSG-SGM3). Additionally, we summarize human-tropic viral infections, for which humanized mice offer a novel approach for the study of disease pathogenesis as well as future perspectives for their use in biomedical, drug and vaccine research.
Collapse
Affiliation(s)
- Jessica Katy Skelton
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| | | | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
47
|
Spengler JR, Bente DA, Bray M, Burt F, Hewson R, Korukluoglu G, Mirazimi A, Weber F, Papa A. Second International Conference on Crimean-Congo Hemorrhagic Fever. Antiviral Res 2018; 150:137-147. [PMID: 29199036 PMCID: PMC6497152 DOI: 10.1016/j.antiviral.2017.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022]
Abstract
The Second International Conference on Crimean-Congo Hemorrhagic Fever (CCHF) was held in Thessaloniki, Greece, from September 10-13, 2017, and brought together international public health professionals, clinicians, ecologists, and basic laboratory researchers. Nearly 100 participants, representing 24 countries and the World Health Organization (WHO), were in attendance. Meeting sessions covered the epidemiology of CCHF in humans; ticks and virus-tick interactions; wild and domestic animal hosts; molecular virology; taxonomic classification; pathogenesis and animal models; clinical aspects and diagnosis; clinical management and clinical trials; and disease prevention in humans. The concluding session focused on recent WHO recommendations for public health measures and future research. This report summarizes lectures by the invited speakers and highlights advances in the field.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis A Bente
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Felicity Burt
- Division of Virology, National Health Laboratory Service Universitas and Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, United Kingdom
| | - Gülay Korukluoglu
- Public Health Institution of Turkey, National Virology Reference Laboratory, Ankara, Turkey
| | - Ali Mirazimi
- Department for Clinical Microbiology, LabMed, Karolinska Institute in Stockholm, Sweden; Public Health Agency of Sweden, Sweden; National Veterinary Institute, Sweden
| | | | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
48
|
Welch SR, Scholte FEM, Flint M, Chatterjee P, Nichol ST, Bergeron É, Spiropoulou CF. Identification of 2'-deoxy-2'-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus. Antiviral Res 2017; 147:91-99. [PMID: 29024765 DOI: 10.1016/j.antiviral.2017.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 10/08/2017] [Indexed: 12/31/2022]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a tick-borne orthonairovirus, causes a severe hemorrhagic disease in humans (Crimean-Congo hemorrhagic fever, CCHF). Currently, no vaccines are approved to prevent CCHF; treatment is limited to supportive care and the use of ribavirin, the therapeutic benefits of which remain unclear. CCHF is part of WHO's priority list of infectious diseases warranting further research and development. To aid in the identification of new antiviral compounds, we generated a recombinant CCHFV expressing a reporter protein, allowing us to quantify virus inhibition by measuring the reduction in fluorescence in infected cells treated with candidate compounds. The screening assay was readily adaptable to high-throughput screening (HTS) of compounds using Huh7 cells, with a signal-to-noise ratio of 50:1, and Z'-factors > 0.6 in both 96- and 384-well formats. A screen of candidate nucleoside analog compounds identified 2'-deoxy-2'-fluorocytidine (EC50 = 61 ± 18 nM) as having 200 × the potency of ribavirin (EC50 = 12.5 ± 2.6 μM), as well as 17 × the potency of T-705 (favipiravir), another compound with reported anti-CCHFV activity (EC50 = 1.03 ± 0.16 μM). Furthermore, we also determined that 2'-deoxy-2'-fluorocytidine acts synergistically with T-705 to inhibit CCHFV replication without causing cytotoxicity. The incorporation of this reporter virus into the high-throughput screening assay described here will allow more rapid identification of effective therapeutic options to combat this emerging human pathogen.
Collapse
Affiliation(s)
- Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA, 30329, USA.
| |
Collapse
|
49
|
Schönrich G, Raftery MJ. Exploring the Immunopathogenesis of Viral Hemorrhagic Fever in Mice with a Humanized Immune System. Front Immunol 2017; 8:1202. [PMID: 29018450 PMCID: PMC5622932 DOI: 10.3389/fimmu.2017.01202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/11/2017] [Indexed: 01/23/2023] Open
Abstract
Viral hemorrhagic fever (VHF) as a disease entity was first codified in the 1930s by soviet scientists investigating patients suffering from hantavirus infection. The group of hemorrhagic fever viruses (HFVs) has since expanded to include members from at least four different virus families: Arenaviridae, Bunyaviridae, Filoviridae, and Flaviviridae, all enveloped single-stranded RNA viruses. After infection, the natural hosts of HFVs do not develop symptoms, whereas humans can be severely affected. This observation and other evidence from experimental data suggest that the human immune system plays a crucial role in VHF pathogenesis. For this reason mice with a human immune system, referred to here as humanized mice (humice), are valuable tools that provide insight into disease mechanisms and allow for preclinical testing of novel vaccinations approaches as well as antiviral agents. In this article, we review the impact of humice in VHF research.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
50
|
Zivcec M, Guerrero LIW, Albariño CG, Bergeron É, Nichol ST, Spiropoulou CF. Identification of broadly neutralizing monoclonal antibodies against Crimean-Congo hemorrhagic fever virus. Antiviral Res 2017; 146:112-120. [PMID: 28842265 DOI: 10.1016/j.antiviral.2017.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
Abstract
Despite the serious public health impact of Crimean-Congo hemorrhagic fever (CCHF), the efficacy of antivirals targeting the causative agent, CCHF virus (CCHFV), remains debatable. Neutralizing monoclonal antibodies (MAbs) targeting the CCHFV glycoprotein Gc have been reported to protect mice against challenge with the prototype CCHFV strain, IbAr10200. However, due to extensive sequence diversity of CCHFV glycoproteins, it is unknown whether these MAbs neutralize other CCHFV strains. We initially used a CCHF virus-like particle (VLP) system to generate 11 VLP moieties, each possessing a glycoprotein from a genetically diverse CCHFV strain isolated in either Africa, Asia, the Middle East, or southeastern Europe. We used these VLPs in biosafety level 2 conditions to efficiently screen MAb cross-neutralization potency. Of the 16 MAbs tested, 3 (8A1, 11E7, and 30F7) demonstrated cross-neutralization activity with most CCHF VLPs, with 8A1 neutralizing all VLPs tested. Although binding studies suggest that none of the MAbs compete for the same epitope, combining 11E7, 30F7, or both 11E7 and 30F7 with 8A1 had no additive effect on increasing neutralization in this system. To confirm our findings from the VLP system, the 3 MAbs capable of strain cross-neutralization were confirmed to effectively neutralize 5 diverse CCHFV strains in vitro. Passaging CCHFV strains in the presence of sub-neutralizing concentrations of MAbs did not generate escape mutants resistant to subsequent neutralization. This study demonstrates the utility of the VLP system for screening neutralizing MAbs against multiple CCHFV strains, and provides the first evidence that a single MAb can effectively neutralize a number of diverse CCHFV strains in vitro, which may lead to development of future CCHF therapeutics.
Collapse
Affiliation(s)
- Marko Zivcec
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa I W Guerrero
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|