1
|
Lackritz EM, Ng LC, Marques ETA, Rabe IB, Bourne N, Staples JE, Méndez-Rico JA, Harris E, Brault AC, Ko AI, Beasley DWC, Leighton T, Wilder-Smith A, Ostrowsky JT, Mehr AJ, Ulrich AK, Velayudhan R, Golding JP, Fay PC, Cehovin A, Moua NM, Moore KA, Osterholm MT, Barrett ADT. Zika virus: advancing a priority research agenda for preparedness and response. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00794-1. [PMID: 40024263 DOI: 10.1016/s1473-3099(24)00794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 03/04/2025]
Abstract
The 2015-16 Zika virus epidemic emerged in the Americas and rapidly spread throughout the region and beyond, showing the epidemic potential of this mosquito-borne Orthoflavivirus and its capacity to cause severe congenital malformations and neurological sequelae. WHO declared the Zika virus epidemic a public health emergency of international concern in 2016. Despite this declaration, there are no licensed Zika virus vaccines, therapeutics, or diagnostic tests appropriate for routine antenatal screening. To address this absence of essential tools to detect and mitigate the threat of future Zika virus outbreaks, a group of global experts developed a priority agenda for Zika virus research and development. This Series paper summarises crucial challenges and knowledge gaps and outlines a comprehensive strategy to advance research, surveillance, global capacity, policy, and investment for Zika virus preparedness and response.
Collapse
Affiliation(s)
- Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| | - Lee-Ching Ng
- National Environment Agency, Environmental Health Institute, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Ernesto T A Marques
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Virology and Experimental Therapeutics, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | | | - Nigel Bourne
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - J Erin Staples
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Jairo A Méndez-Rico
- Pan American Health Organization, WHO Region of the Americas, Washington, DC, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Albert I Ko
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Ministry of Health, Salvador, Brazil
| | - David W C Beasley
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | | | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Petra C Fay
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Ana Cehovin
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Li A, Coffey LL, Mohr EL, Raper J, Chahroudi A, Ausderau KK, Aliota MT, Friedrich TC, Mitzey AM, Koenig MR, Golos TG, Jaeger HK, Roberts VHJ, Lo JO, Smith JL, Hirsch AJ, Streblow DN, Newman CM, O'Connor DH, Lackritz EM, Van Rompay KKA, Adams Waldorf KM. Role of non-human primate models in accelerating research and developing countermeasures against Zika virus infection. THE LANCET. MICROBE 2025:101030. [PMID: 40024258 DOI: 10.1016/j.lanmic.2024.101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/19/2024] [Accepted: 10/21/2024] [Indexed: 03/04/2025]
Abstract
Zika virus, a mosquito-transmitted orthoflavivirus, has become a pathogen of global health concern ever since the virus caused an epidemic in Brazil in 2015 associated with approximately 700 000 laboratory-confirmed cases of congenital microcephaly. The subsequent spread of the epidemic in 2016 resulted in a wide spectrum of congenital neurological, ophthalmological, and developmental abnormalities across the Americas, Africa, and Asia. In this context, non-human primate models have become essential tools for Zika virus research to understand the pathogenesis of congenital brain injury and perinatal complications and for developing and testing medical countermeasures such as vaccines, diagnostics, and therapeutics. Fetal brain injury has been observed across various non-human primate species and is influenced by factors such as the Zika virus strain, gestational age at inoculation, and inoculation dose and route. Miscarriages are also seen as common outcomes of first trimester Zika virus infections. This Series paper reviews the diverse non-human primate models currently used for Zika virus research to mitigate the public health effects of future Zika virus epidemics.
Collapse
Affiliation(s)
- Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, USA
| | - Emma L Mohr
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica Raper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Atlanta, GA, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Atlanta, GA, USA
| | - Karla K Ausderau
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota Twin Cities, St Paul, MN, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ann M Mitzey
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Koenig
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannah K Jaeger
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Victoria H J Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jamie O Lo
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA; Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jessica L Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, USA
| | - Christina M Newman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy (CIDRAP), University of Minnesota, Minneapolis, MN, USA
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA, USA; California National Primate Research Center, Davis, CA, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
3
|
Wagstaffe HR, Ascough S, Openshaw PJM. Human challenge models for vaccine development-strengths, limitations, and expansion into endemic settings: a HIC-Vac meeting report. IMMUNOTHERAPY ADVANCES 2025; 5:ltaf004. [PMID: 40265077 PMCID: PMC12012439 DOI: 10.1093/immadv/ltaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/06/2025] [Indexed: 04/24/2025] Open
Abstract
The HIC-Vac network is a unique association of researchers focussed on the development and use of human infection challenge (HIC, otherwise known as controlled human infection models or CHIM) studies for vaccine and therapeutic development, particularly for pathogens of high global impact. The fifth annual meeting of the HIC-Vac network was held on 1-3 November 2023. The theme of the meeting was capacity-building in endemic settings particularly in low- and middle-income countries (LMIC), where pathogens cause the greatest morbidity and mortality. In this report we highlight the strengths and limitations of HIC and expansion of such studies into endemic settings, noting that immune responses and vaccine efficacy differ across diverse settings and populations. The consensus was that HIC studies must not be restricted to high income settings if they are to be relevant to LMIC populations. This report summarizes the work presented at the HIC-Vac annual meeting, highlighting current and future challenge models, challenge agent manufacture, public engagement, ethics, and industry perspectives.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Stephanie Ascough
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
4
|
Cagigi A, Tinnirello R, Iannolo G, Douradinha B. Orthoflavivirus zikaense (Zika) vaccines: What are we waiting for? Int J Antimicrob Agents 2024; 64:107367. [PMID: 39490448 DOI: 10.1016/j.ijantimicag.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Alberto Cagigi
- International Vaccine Institute (IVI) Europe Regional Office, Solna, Sweden
| | | | | | - Bruno Douradinha
- Vaccine Technology Subgroup, Emerging Pathogens Group, Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Valdes I, Suzarte E, Lazo L, Cobas K, Cabrales A, Pérez Y, Garateix R, Silva JA, Aguilar JC, Guzman CA, Guillén G. Addition of nucleotide adjuvants enhances the immunogenicity of a recombinant subunit vaccine against the Zika virus in BALB/c mice. Vaccine 2024; 42:126213. [PMID: 39138071 DOI: 10.1016/j.vaccine.2024.126213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Zika virus (ZIKV) infection remains a global public health problem. After the "Public Health Emergencies of International Concern" declared in February 2016, the incidence of new infections by this pathogen has been decreasing in many areas. However, there is still a likely risk that ZIKV will spread to more countries. To date, there is no vaccine or antiviral drug available to prevent or treat Zika virus infection. In the Zika vaccine development, those based on protein subunits are attractive as a non-replicable platform due to their potentially enhanced safety profile to be used in all populations. However, these vaccines frequently require multiple doses and adjuvants to achieve protective immunity. In this study we show the immunological evaluation of new formulations of the recombinant protein ZEC, which combines regions of domain III of the envelope and the capsid from ZIKV. Two nucleotide-based adjuvants were used to enhance the immunity elicited by the vaccine candidate ZEC. ODN 39M or c-di-AMP was incorporated as immunomodulator into the formulations combined with aluminum hydroxide. Following immunizations in immunocompetent BALB/c mice, the formulations stimulated high IgG antibodies. Although the IgG subtypes suggested a predominantly Th1-biased immune response by the formulation including the ODN 39M, cellular immune responses measured by IFNγ secretion from spleen cells after in vitro stimulations were induced by both immunomodulators. These results demonstrate the capacity of both immunomodulators to enhance the immunogenicity of the recombinant subunit ZEC as a vaccine candidate against ZIKV.
Collapse
MESH Headings
- Animals
- Mice, Inbred BALB C
- Zika Virus/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Zika Virus Infection/prevention & control
- Zika Virus Infection/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mice
- Female
- Adjuvants, Immunologic/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunogenicity, Vaccine
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Adjuvants, Vaccine
- Immunity, Cellular
- Viral Envelope Proteins/immunology
- Capsid Proteins/immunology
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
Collapse
Affiliation(s)
- Iris Valdes
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba.
| | - Edith Suzarte
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Laura Lazo
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Karem Cobas
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Yusleidi Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Rocío Garateix
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - José A Silva
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Julio C Aguilar
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Germany
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| |
Collapse
|
6
|
Acosta CJ, Nordio F, Boltz DA, Baldwin WR, Hather G, Kpamegan E. Predicting Efficacy of a Purified Inactivated Zika Virus Vaccine in Flavivirus-Naïve Humans Using an Immunological Correlate of Protection in Non-Human Primates. Microorganisms 2024; 12:1177. [PMID: 38930559 PMCID: PMC11206130 DOI: 10.3390/microorganisms12061177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
A traditional phase 3 clinical efficacy study for a Zika vaccine may be unfeasible because of the current low transmission of Zika virus (ZIKV). An alternative clinical development approach to evaluate Zika vaccine efficacy (VE) is therefore required, delineated in the US FDA's Accelerated Approval Program for licensure, which utilizes an anti-Zika neutralizing antibody (Zika NAb) titer correlated with non-human primate (NHP) protection as a surrogate endpoint. In this accelerated approval approach, the estimation of VE would be inferred from the percentage of phase 3 trial participants achieving the established surrogate endpoint. We provide a statistical framework to predict the probability of protection for human participants vaccinated with a purified inactivated ZIKV vaccine (TAK-426), in the absence of VE measurements, using NHP data under a single-correlate model. Based on a logistic regression (LR) with bias-reduction model, a probability of 90% protection in humans is expected with a ZIKV NAb geometric mean titer (GMT) ≥ 3.38 log10 half-maximal effective concentration (EC50). The predicted probability of protection of TAK-426 against ZIKV infection was determined using the two-parameter LR model that fit the calculated VE in rhesus macaques and the flavivirus-naïve phase 1 trial participants' ZIKV NAb GMTs log10 EC50, measured by a ZIKV reporter virus particle assay, at 1 month post dose 2. The TAK-426 10 µg dose predicted a probability of protection from infection of 98% among flavivirus-naïve phase 1 trial participants.
Collapse
Affiliation(s)
- Camilo J. Acosta
- Takeda Vaccines Inc., Cambridge, MA 02142, USA; (F.N.); (D.A.B.); (W.R.B.); (G.H.); (E.K.)
| | | | | | | | | | | |
Collapse
|
7
|
Ganji M, Bakhshi S, Ahmadi K, Shoari A, Moeini S, Ghaemi A. Rational design of B-cell and T-cell multi epitope-based vaccine against Zika virus, an in silico study. J Biomol Struct Dyn 2024; 42:3426-3440. [PMID: 37190978 DOI: 10.1080/07391102.2023.2213339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
The Zika virus (ZKV) is a single-stranded positive-sense, enveloped RNA virus. Zika infection during pregnancy can cause congenital microcephaly, Guillain-Barré syndrome, miscarriage, and other CNS abnormalities. The world needs safe and effective vaccinations to fight against ZIKV infection since vaccination is generally regarded as one of the most effective ways to prevent infectious diseases. In the present work, we used immunoinformatics and docking studies to construct a vaccine containing multi-epitopes using the structural and non-structural proteins of ZKV. The structural models of ZKV proteins (PrE, PrM, NS1, and NS2A) were constructed using Pyre2 and RaptorX servers. The epitopes of B-cell, T-cell (HTL and CTL), and IFN-γ were predicted, and each epitope's immunogenic nature and physiochemical properties were confirmed. As an adjuvant, the CPG-Oligodeoxynucleotide, an agonist of Toll-like receptor 9 (TLR9), is associated to cytotoxic T-lymphocytes (CTL) epitopes via PAPAP linker. To assess the binding affinity and the tendency of the designed vaccine to induce an immune response through TLR9, molecular docking was done. In the next step, molecular dynamics (MD) simulation to 100 nanoseconds (ns) was used to evaluate the stability of the interaction of the designed vaccine with TLR9. The designed vaccine is predicted to be highly antigenic, non-toxic, soluble, and stable with low flexibility in MD simulation. MD studies indicated that the finalized vaccine-TLR9 docked complex was stable during simulation time. The vaccine construct is able to stimulate both humoral and cellular immune responses. We suppose that our constructed model of the vaccine may have the ability to induce the host immune response against ZKV. Further studies, including in vitro and in vivo experimental analyses, are needed to prove the constructed vaccine's efficacy with multi-epitopes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Soheila Moeini
- Department of Surgery, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Peng ZY, Yang S, Lu HZ, Wang LM, Li N, Zhang HT, Xing SY, Du YN, Deng SQ. A review on Zika vaccine development. Pathog Dis 2024; 82:ftad036. [PMID: 38192053 PMCID: PMC10901608 DOI: 10.1093/femspd/ftad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Zika virus (ZIKV), which belongs to the Flavivirus family, is mainly transmitted via the bite of Aedes mosquitoes. In newborns, ZIKV infection can cause severe symptoms such as microcephaly, while in adults, it can lead to Guillain‒Barré syndrome (GBS). Due to the lack of specific therapeutic methods against ZIKV, the development of a safe and effective vaccine is extremely important. Several potential ZIKV vaccines, such as live attenuated, inactivated, nucleic acid, viral vector, and recombinant subunit vaccines, have demonstrated promising outcomes in clinical trials involving human participants. Therefore, in this review, the recent developmental progress, advantages and disadvantages of these five vaccine types are examined, and practical recommendations for future development are provided.
Collapse
Affiliation(s)
- Zhe-Yu Peng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Song Yang
- Institute of Agro-products Processing, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
| | - Hong-Zheng Lu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Lin-Min Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Ni Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hai-Ting Zhang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Si-Yu Xing
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yi-Nan Du
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Sheng-Qun Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoon-oses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
9
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
10
|
Jamrozik E, Selgelid MJ. COVID-19 human challenge studies: ethical issues. THE LANCET. INFECTIOUS DISEASES 2020; 20:e198-e203. [PMID: 32479747 PMCID: PMC7259898 DOI: 10.1016/s1473-3099(20)30438-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022]
Abstract
COVID-19 poses an extraordinary threat to global public health and an effective vaccine could provide a key means of overcoming this crisis. Human challenge studies involve the intentional infection of research participants and can accelerate or improve vaccine development by rapidly providing estimates of vaccine safety and efficacy. Human challenge studies of low virulence coronaviruses have been done in the past and human challenge studies with severe acute respiratory syndrome coronavirus 2 have been proposed. These studies of coronaviruses could provide considerable benefits to public health; for instance, by improving and accelerating vaccine development. However, human challenge studies of severe acute respiratory syndrome coronavirus 2 in particular might be controversial, in part, for ethical reasons. The ethical issues raised by such studies thus warrant early consideration involving, for example, broad consultation with the community. This Personal View provides preliminary analyses of relevant ethical considerations regarding human challenge studies of severe acute respiratory syndrome coronavirus 2, including the potential benefits to public health and to participants, the risks and uncertainty for participants, and the third-party risks (ie, to research staff and the wider community). We argue that these human challenge studies can reasonably be considered ethically acceptable insofar as such studies are accepted internationally and by the communities in which they are done, can realistically be expected to accelerate or improve vaccine development, have considerable potential to directly benefit participants, are designed to limit and minimise risks to participants, and are done with strict infection control measures to limit and reduce third-party risks.
Collapse
Affiliation(s)
- Euzebiusz Jamrozik
- Monash Bioethics Centre and WHO Collaborating Centre for Bioethics, Monash University, Melbourne, VIC, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia.
| | - Michael J Selgelid
- Monash Bioethics Centre and WHO Collaborating Centre for Bioethics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Abstract
The increasing recent interest in human challenge studies or controlled human infection model studies for accelerating vaccine development has been driven by the recognition of the unique ability of these studies to contribute to the understanding of response to infection and the performance of vaccines. With streamlining of ethical processes, conduct and supervision and the availability of new investigative tools from immunophenotyping to glycobiology, the potential to derive valuable data to inform vaccine testing and development has never been greater. However, issues of availability and standardization of challenge strains, conduct of studies in disease endemic locations and the iteration between clinical and laboratory studies still need to be addressed to gain maximal value for vaccine development.
Collapse
Affiliation(s)
- Amrita Sekhar
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India.
| |
Collapse
|
12
|
Christofferson RC, Parker DM, Overgaard HJ, Hii J, Devine G, Wilcox BA, Nam VS, Abubakar S, Boyer S, Boonnak K, Whitehead SS, Huy R, Rithea L, Sochantha T, Wellems TE, Valenzuela JG, Manning JE. Current vector research challenges in the greater Mekong subregion for dengue, Malaria, and Other Vector-Borne Diseases: A report from a multisectoral workshop March 2019. PLoS Negl Trop Dis 2020; 14:e0008302. [PMID: 32730249 PMCID: PMC7392215 DOI: 10.1371/journal.pntd.0008302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Daniel M. Parker
- University of California, Irvine, California, United States of America
| | | | | | - Gregor Devine
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bruce A. Wilcox
- ASEAN Institute for Health Development, Mahidol University, Nakhon Pathom, Thailand
| | - Vu Sinh Nam
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Sazaly Abubakar
- Tropical Infectious Diseases Research and Education Center, Kuala Lumpur, Malaysia
| | | | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stephen S. Whitehead
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Rekol Huy
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Leang Rithea
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Tho Sochantha
- National Center for Parasitology Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jesus G. Valenzuela
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jessica E. Manning
- US National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| |
Collapse
|
13
|
Abstract
Although the principle of fair subject selection is a widely recognized requirement of ethical clinical research, it often yields conflicting imperatives, thus raising major ethical dilemmas regarding participant selection. In this paper, we diagnose the source of this problem, arguing that the principle of fair subject selection is best understood as a bundle of four distinct sub-principles, each with normative force and each yielding distinct imperatives: (1) fair inclusion; (2) fair burden sharing; (3) fair opportunity; and (4) fair distribution of third-party risks. We first map out these distinct sub-principles, and then identify the ways in which they yield conflicting imperatives for the design of inclusion and exclusion criteria, and the recruitment of participants. We then offer guidance for how decision makers should navigate these conflicting imperatives to ensure that participants are selected fairly.
Collapse
|
14
|
Zika Vaccine Development-Current Progress and Challenges for the Future. Trop Med Infect Dis 2019; 4:tropicalmed4030104. [PMID: 31337115 PMCID: PMC6789600 DOI: 10.3390/tropicalmed4030104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus is an emergent pathogen that gained significant importance during the epidemic in South and Central America as unusual and alarming complications of infection were recognized. Although initially considered a self-limited benign infection, a panoply of neurologic complications were recognized including a Guillain-Barré-like syndrome and in-utero fetal infection causing microcephaly, blindness, and other congenital neurologic complications. Numerous Zika virus vaccines were developed, with nine different vaccines representing five different platforms entered into clinical trials, one progressing to Phase II. Here we review the current landscape and challenges confronting Zika virus vaccine development.
Collapse
|
15
|
Immunological Assays used to Support Efficacy of Zika Virus Vaccines. Trop Med Infect Dis 2019; 4:tropicalmed4030097. [PMID: 31261617 PMCID: PMC6789453 DOI: 10.3390/tropicalmed4030097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 01/07/2023] Open
Abstract
In February of 2016, the World Health Organization (WHO) declared Zika virus (ZIKV) a Public Health Emergency of International Concern. This prompted a rapid response from both the private and public sector resulting in the generation of several promising vaccine candidates. In this review, we discuss published scientific efforts associated with these novel vaccines, emphasizing the immunological assays used to evaluate their immunogenicity and efficacy, and support future licensure.
Collapse
|
16
|
Wilder-Smith A, Wei Y, de Araújo TVB, VanKerkhove M, Turchi Martelli CM, Turchi MD, Teixeira M, Tami A, Souza J, Sousa P, Soriano-Arandes A, Soria-Segarra C, Sanchez Clemente N, Rosenberger KD, Reveiz L, Prata-Barbosa A, Pomar L, Pelá Rosado LE, Perez F, Passos SD, Nogueira M, Noel TP, Moura da Silva A, Moreira ME, Morales I, Miranda Montoya MC, Miranda-Filho DDB, Maxwell L, Macpherson CNL, Low N, Lan Z, LaBeaud AD, Koopmans M, Kim C, João E, Jaenisch T, Hofer CB, Gustafson P, Gérardin P, Ganz JS, Dias ACF, Elias V, Duarte G, Debray TPA, Cafferata ML, Buekens P, Broutet N, Brickley EB, Brasil P, Brant F, Bethencourt S, Benedetti A, Avelino-Silva VL, Ximenes RADA, Alves da Cunha A, Alger J. Understanding the relation between Zika virus infection during pregnancy and adverse fetal, infant and child outcomes: a protocol for a systematic review and individual participant data meta-analysis of longitudinal studies of pregnant women and their infants and children. BMJ Open 2019; 9:e026092. [PMID: 31217315 PMCID: PMC6588966 DOI: 10.1136/bmjopen-2018-026092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/11/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Zika virus (ZIKV) infection during pregnancy is a known cause of microcephaly and other congenital and developmental anomalies. In the absence of a ZIKV vaccine or prophylactics, principal investigators (PIs) and international leaders in ZIKV research have formed the ZIKV Individual Participant Data (IPD) Consortium to identify, collect and synthesise IPD from longitudinal studies of pregnant women that measure ZIKV infection during pregnancy and fetal, infant or child outcomes. METHODS AND ANALYSIS We will identify eligible studies through the ZIKV IPD Consortium membership and a systematic review and invite study PIs to participate in the IPD meta-analysis (IPD-MA). We will use the combined dataset to estimate the relative and absolute risk of congenital Zika syndrome (CZS), including microcephaly and late symptomatic congenital infections; identify and explore sources of heterogeneity in those estimates and develop and validate a risk prediction model to identify the pregnancies at the highest risk of CZS or adverse developmental outcomes. The variable accuracy of diagnostic assays and differences in exposure and outcome definitions means that included studies will have a higher level of systematic variability, a component of measurement error, than an IPD-MA of studies of an established pathogen. We will use expert testimony, existing internal and external diagnostic accuracy validation studies and laboratory external quality assessments to inform the distribution of measurement error in our models. We will apply both Bayesian and frequentist methods to directly account for these and other sources of uncertainty. ETHICS AND DISSEMINATION The IPD-MA was deemed exempt from ethical review. We will convene a group of patient advocates to evaluate the ethical implications and utility of the risk stratification tool. Findings from these analyses will be shared via national and international conferences and through publication in open access, peer-reviewed journals. TRIAL REGISTRATION NUMBER PROSPERO International prospective register of systematic reviews (CRD42017068915).
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yinghui Wei
- Centre for Mathematical Sciences, University of Plymouth, Plymouth, UK
| | | | - Maria VanKerkhove
- Health Emergencies Programme, Organisation mondiale de la Sante, Geneve, Switzerland
| | | | - Marília Dalva Turchi
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Brazil
| | - Mauro Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana Tami
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, The Netherlands
| | - João Souza
- Department of Social Medicine, University of São Paulo, São Paulo, Brazil
| | - Patricia Sousa
- Reference Center for Neurodevelopment, Assistance, and Rehabilitation of Children, State Department of Health of Maranhão, Sao Luís, Brazil
| | | | | | | | - Kerstin Daniela Rosenberger
- Department of Infectious Diseases, Section Clinical Tropical Medicine, UniversitatsKlinikum Heidelberg, Heidelberg, Germany
| | - Ludovic Reveiz
- Evidence and Intelligence for Action in Health, Pan American Health Organization, Washington, District of Columbia, USA
| | - Arnaldo Prata-Barbosa
- Department of Pediatrics, D’Or Institute for Research & Education, Rio de Janeiro, Brazil
| | - Léo Pomar
- Department of Obstetrics and Gynecology, Centre Hospitalier de l’Ouest Guyanais, Saint-Laurent du Maroni, French Guiana
| | | | - Freddy Perez
- Communicable Diseases and Environmental Determinants of Health Department, Pan American Health Organization, Washington, District of Columbia, USA
| | | | - Mauricio Nogueira
- Faculdade de Medicina de Sao Jose do Rio Preto, Department of Dermatologic Diseases, São José do Rio Preto, Brazil
| | - Trevor P. Noel
- Windward Islands Research and Education Foundation, St. George’s University, True Blue Point, Grenada
| | - Antônio Moura da Silva
- Department of Public Health, Universidade Federal do Maranhão – São Luís, São Luís, Brazil
| | | | - Ivonne Morales
- Department of Infectious Diseases, Section Clinical Tropical Medicine, UniversitatsKlinikum Heidelberg, Heidelberg, Germany
| | | | | | - Lauren Maxwell
- Reproductive Health and Research, World Health Organization, Geneva, Switzerland
- Hubert Department of Global Health, Emory University, Atlanta, Georgia, USA
| | - Calum N. L. Macpherson
- Windward Islands Research and Education Foundation, St. George’s University, True Blue Point, Grenada
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Zhiyi Lan
- McGill University Health Centre, McGill University, Montréal, Canada
| | | | - Marion Koopmans
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caron Kim
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Esaú João
- Department of Infectious Diseases, Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
| | - Thomas Jaenisch
- Department of Infectious Diseases, Section Clinical Tropical Medicine, UniversitatsKlinikum Heidelberg, Heidelberg, Germany
| | - Cristina Barroso Hofer
- Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paul Gustafson
- Statistics, University of British Columbia, British Columbia, Vancouver, Canada
| | - Patrick Gérardin
- INSERM CIC1410 Clinical Epidemiology, CHU La Réunion, Saint Pierre, Réunion
- UM 134 PIMIT (CNRS 9192, INSERM U1187, IRD 249, Université de la Réunion), Universite de la Reunion, Sainte Clotilde, Réunion
| | | | - Ana Carolina Fialho Dias
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Elias
- Sustainable Development and Environmental Health, Pan American Health Organization, Washington, District of Columbia, USA
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, University of São Paulo, São Paulo, Brazil
| | - Thomas Paul Alfons Debray
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - María Luisa Cafferata
- Mother and Children Health Research Department, Instituto de Efectividad Clinica y Sanitaria, Buenos Aires, Argentina
| | - Pierre Buekens
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, USA
| | - Nathalie Broutet
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Elizabeth B. Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Patrícia Brasil
- Instituto de pesquisa Clínica Evandro Chagas, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fátima Brant
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah Bethencourt
- Facultad de Ciencias de la Salud, Universidad de Carabobo, Valencia, Carabobo, Bolivarian Republic of Venezuela
| | - Andrea Benedetti
- Departments of Medicine and of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Vivian Lida Avelino-Silva
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | | | | | - Jackeline Alger
- Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | |
Collapse
|
17
|
Morens DM, Fauci AS. Pandemic Zika: A Formidable Challenge to Medicine and Public Health. J Infect Dis 2019; 216:S857-S859. [PMID: 29267908 PMCID: PMC5853239 DOI: 10.1093/infdis/jix383] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- David M Morens
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland.,National Institutes of Health, Bethesda, Maryland
| | - Anthony S Fauci
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland.,National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
18
|
Abstract
There was a dramatic upsurge in research activity after the recognition of Zika virus (ZIKV) transmission in South America in 2015 and its causal relationship to devastating anomalies in newborn infants. Progress in this area required a community of arbovirologists poised to refocus their research efforts and rapidly characterize the features of ZIKV transmission and infection through diverse multidisciplinary collaborations. Significant gaps remain in our knowledge of the natural history of ZIKV infection, its effects on neurodevelopment, modes and risk of transmission, and its interrelationship with other arbovirus infections. Development of effective countermeasures, such as therapeutics and an effective vaccine, are also research priorities. Lessons learned from our research response to ZIKV may help public health officials plan for the next emerging infectious disease threat.The last 18 months have witnessed one of the most rapid and coordinated research responses against an emerging disease to date. Zika virus, a pathogen that has been known since 1947 but poorly studied until recently because it was believed to only cause a mild infection, has rapidly become the object of intense investigation by the international research community since the link between infection and severe congenital disease was announced by Brazilian authorities in November 2015. According to PubMed, the total number of ZIKV-related publications skyrocketed from 117 in 2015 to 3253 in August of 2017. This supplement summarizes the tremendous progress that has been made since 2015 to elucidate the biology of this virus, its various disease manifestations in humans and animals, the diverse routes by which it is transmitted, and the role of various mosquito vectors in the recent outbreaks. In addition, several efforts have been initiated to develop new diagnostics, therapeutics, vaccines, and vector control strategies to better detect, treat, and prevent this important infection. There are 3 factors that contributed to the rapid progress in ZIKV research: (1) the availability of dedicated funding for ZIKV research; (2) the prior existence of both flavivirologists and maternal-child health researchers who were poised to tackle this new public health challenge; and (3) the high level of coordination and collaboration between different research agencies worldwide.Despite the significant progress, many significant questions remain to be addressed to accelerate the development of effective ZIKV countermeasures and increase our preparedness against this significant public health threat. Some of the most pressing scientific gaps that need to be addressed to advance the field are summarized below.
Collapse
Affiliation(s)
- Emily Erbelding
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Cristina Cassetti
- Virology Branch, Division of Microbiology and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
19
|
Vannice KS, Cassetti MC, Eisinger RW, Hombach J, Knezevic I, Marston HD, Wilder-Smith A, Cavaleri M, Krause PR. Demonstrating vaccine effectiveness during a waning epidemic: A WHO/NIH meeting report on approaches to development and licensure of Zika vaccine candidates. Vaccine 2019; 37:863-868. [PMID: 30639461 PMCID: PMC6357529 DOI: 10.1016/j.vaccine.2018.12.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Abstract
Since its peak in early 2016, the incidence of Zika virus (ZIKV) cases has declined to such low levels that Phase 3 field efficacy trials may be infeasible. While great progress was made to rapidly advance several vaccine candidates into Phase 1 and 2 clinical trials, in the absence of sustained viral transmission it may be difficult to evaluate the effectiveness of ZIKV vaccine candidates by conducting traditional clinical disease endpoint efficacy studies. However, ZIKV is still circulating at low levels in some areas and is likely to re-emerge in naïve populations or in sites of prior epidemics once population immunity wanes. Therefore, the public health need for a ZIKV vaccine remains. To facilitate continued ZIKV vaccine development efforts, the World Health Organization's Initiative for Vaccine Research and the National Institutes of Health's National Institute of Allergy and Infectious Diseases co-hosted a meeting of experts in March 2018 to identify strategies to demonstrate vaccine effectiveness in view of waning ZIKV disease incidence. This paper outlines points for consideration for developers, regulators, and other stakeholders working towards a licensed ZIKV vaccine. These deliberations may also be applicable to development of vaccines for other emerging infections where the size, unpredictability, and ephemeral nature of outbreaks makes clinical disease endpoint efficacy trials to demonstrate vaccine effectiveness infeasible.
Collapse
Affiliation(s)
- Kirsten S Vannice
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland.
| | - M Cristina Cassetti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert W Eisinger
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joachim Hombach
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Ivana Knezevic
- Department of Essential Medicines and Health Products, World Health Organization, Geneva, Switzerland
| | - Hilary D Marston
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annelies Wilder-Smith
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | | | - Philip R Krause
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD, USA
| |
Collapse
|