1
|
Ribeiro AG, Silva RDS, Alves CVBDV, Campos DB, da Silva DA, Nascimento JCDS, da Silva EG, Saraiva EP, Costa FGP, Pereira WE, Carvalho LRRA, Guerra RR. Gene expression of calcium transporters Calbindin-D28K and TRPV6 in Japanese quails (Coturnix japonica) subjected to phytase super-dosing and under different temperatures. Poult Sci 2025; 104:104937. [PMID: 40010049 PMCID: PMC11910073 DOI: 10.1016/j.psj.2025.104937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
This study aimed to evaluate the effects of phytase super-dosing in the diet of laying quails subjected to different temperatures, their performance, blood biochemistry, and gene expression of the epithelial calcium transporters Calbindin-D28 K and TRPV6. Seven hundred and twenty (720) Japanese quails in the production phase were distributed in a completely randomized design, in a 5 × 3 factorial scheme, with five levels of phytase supplementation (0, 500, 1000, 1500 and 3000 FTU/kg) and three temperatures (24°C, 30°C and 36°C), totaling 15 treatments, and six replicates of eight birds each. The study began at 8 weeks of age and continued for two 21-day cycles, totaling 42 days of experiment. Performance parameters, serum biochemistry, and gene expression of calbindin-D28 K and TRPV6 were measured through real-time PCR. The data were subjected to analysis of variance, Tukey, and regression. Birds kept at 36°C showed lower feed intake than those kept at 24°C and 30°C. At 30°C, birds had lower serum uric acid levels than birds at 36°C, and higher total egg production, egg mass, and Calbindin-D28 K gene expression in the uterus than those at 24°C and 36°C. Birds kept at 24°C had higher serum calcium and phosphorus levels than those kept at 30°C and 36°C. At a supplementation level of 1500 FTU, phytase provided greater eggshell thickness in quails kept at 36°C and greater calbindin-D28 K gene expression in the kidney. Therefore, the use of 1500 FTU of phytase is recommended for Japanese quail exposed to high temperatures, since phytase overdosage has been shown to be effective in mitigating the negative effects of heat stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Walter Esfrain Pereira
- Universidade Federal da Paraíba, Department of Fundamental and Social Sciences, Areia-PB, Brazil
| | | | | |
Collapse
|
2
|
Lu YN, Yue TJ, Ding WL, Xu BW, Li AY, Huang SC. Gut-X Axis and Its Role in Poultry Bone Health: A Review. Microorganisms 2025; 13:757. [PMID: 40284594 PMCID: PMC12029844 DOI: 10.3390/microorganisms13040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/29/2025] Open
Abstract
The normal development and growth of bones are critical for poultry health. With the rapid increase in poultry growth rates achieved over the last few decades, juvenile meat-type poultry exhibit a high incidence of leg weakness and lameness. These issues are significant contributors to poor animal welfare and substantial economic losses. Understanding the potential etiology of bone problems in poultry will aid in developing treatments for bone diseases. The gut microbiota represents the largest micro-ecosystem in animals and is closely related to many metabolic disorders, including bone disease. It achieves this by secreting secondary metabolites and coordinating with various tissues and organs through the circulatory system, which leads to the concept of the gut-X axis. Given its importance, modulating gut microbiota to influence the gut-X axis presents new opportunities for understanding and developing innovative therapeutic approaches for poultry bone diseases. In light of the extensive literature on this topic, this review focuses on the effects of gut microbiota on bone density and strength in poultry, both directly and indirectly, through the regulation of the gut-X axis. Our aim is to provide scientific insights into the bone health problems faced by poultry.
Collapse
Affiliation(s)
| | | | | | | | - Ao-Yun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.-N.L.); (T.-J.Y.); (W.-L.D.); (B.-W.X.)
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.-N.L.); (T.-J.Y.); (W.-L.D.); (B.-W.X.)
| |
Collapse
|
3
|
Wang K, Suo Y, Shen D, Shi Y, Jin X, Li Y, Li C. Improvement in Heat Stress-Induced Damage to Sperm Quality Following Fecal Microbiota Transplantation from L-Arginine-Treated Mice. Animals (Basel) 2025; 15:796. [PMID: 40150325 PMCID: PMC11939313 DOI: 10.3390/ani15060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/02/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Heat stress has become a significant concern in animal husbandry, as it adversely affects reproductive performance, particularly sperm quality, through mechanisms that are not fully understood. This study aimed to investigate the protective effects of L-arginine against heat stress-induced sperm damage and explore its potential mechanisms through the modulation of the intestinal microbiota. This study consisted of two experiments. First, in a heat-stressed mouse model, L-arginine was administered to evaluate its effects on the reproductive health of heat-stressed mice. In the second experiment, by transplanting L-arginine-induced changes in the gut microbiota into heat-stressed mice, the protective effects of the microbiota on the sperm of heat-stressed mice were assessed. The findings revealed a significant amelioration of decreased sperm quality and testicular injury induced by heat stress. Post heat stress, mice supplemented with L-arginine presented an increase in seminal vesicle gland weight and index, partial alleviation of testicular tissue morphology, and a substantial increase in testosterone concentration (p < 0.05). Additionally, L-arginine upregulated the expression of testosterone synthesis genes and the mRNA levels of sperm generation-related genes, including 3β-HSD, Stra8, WT1, and Gdnf (p < 0.05). Concurrently, L-arginine-induced microbial communities mitigated heat stress-induced decreases in sperm quality and testicular injury, coupled with increases in the mRNA expression levels of Cyp17a1, 17β-HSD, Plzf, and Gdnf (p < 0.05). Furthermore, there was a reduction in the expression of proinflammatory factors, namely, NFκB, MyD88, TNF-α, and TGF-β3 (p < 0.05). In conclusion, L-arginine may influence the ratio of beneficial bacteria to harmful bacteria in the intestinal microbiota, thereby reducing inflammation caused by heat stress, maintaining intestinal health, and influencing the microenvironment for spermatogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (K.W.); (Y.S.); (D.S.); (Y.S.); (X.J.); (Y.L.)
| |
Collapse
|
4
|
Lyte JM, Jia X, Caputi V, Zhang D, Daniels KM, Phillips GJ, Lyte M. Heat stress in chickens induces temporal changes in the cecal microbiome concomitant with host enteric serotonin responses. Poult Sci 2025; 104:104886. [PMID: 39983259 PMCID: PMC11889389 DOI: 10.1016/j.psj.2025.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
Heat stress is a potent modulator of the avian neuroendocrine system with concomitant impact on the gut microbiome. As an interkingdom signaling molecule, serotonin is largely derived from the gut and found in large concentrations in the avian gut lumen. Despite the role of serotonin in animal stress physiology and related host-microbe interactions, whether heat stress alters avian enteric concentrations of serotonin is unknown. As such, the present study sought to determine whether acute or chronic exposure to moderate heat stress alters both enteric serotonin concentrations and the microbiome in the chicken gut. Chickens were, or were not, subjected to an acute (1 day), repeated acute (2 days) or chronic (6 days) moderate ambient cyclic heat stress (12h per day, 31°C). Enteric concentrations of serotonin were significantly decreased in the acute heat stress group (P < 0.05), and rebounded to become elevated in the chronic heat stress group (P < 0.05). Shotgun metagenomic sequencing revealed heat stress caused both functional and taxonomic changes in the cecal microbiome. Abundances of bacterial taxa that are known to interact with the host via the serotonergic system, including Lactobacillus spp., and Bifidobacterium spp., were significantly (P < 0.05) altered by heat stress. As these findings demonstrate that heat stress can alter serotonin concentrations in the chicken intestinal tract, with distinct outcomes depending on duration of the stressor, serotonergic signaling may serve as potential leverageable point of intervention in host-microbe interactions including foodborne pathogen colonization in the chicken gut. In addition, this study provides novel insight into the impact of acute and chronic heat stress on the avian microbiome, and its relationship to stress-driven changes in the enteric serotonergic system.
Collapse
Affiliation(s)
- Joshua M Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA.
| | - Xinglin Jia
- Department of Mathematics, Iowa State University, Ames, IA, USA; Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Valentina Caputi
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | - Danyang Zhang
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Karrie M Daniels
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Gregory J Phillips
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
5
|
Adhikari R, Rochell SJ, Kriseldi R, Silva M, Greiner L, Williams C, Matton B, Anderson A, Erf GF, Park E, Haydon K, Lee J. Recent advances in protein and amino acid nutritional dynamics in relation to performance, health, welfare, and cost of production. Poult Sci 2025; 104:104852. [PMID: 39965272 PMCID: PMC11879670 DOI: 10.1016/j.psj.2025.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
Amino acids are the foundation of numerous metabolic and physiological pathways for skeletal muscle accretion, internal organ development, skeletal development, and immune function. One widely studied subject in monogastric nutrition is dietary crude protein. However, birds do not have a crude protein requirement but have a clear requirement for essential amino acids. As individual amino acid requirements of swine and poultry are investigated and modern feed formulation tools and feed-grade amino acids are available cost-effectively, the dynamics of how we look at crude protein in the feed have evolved. With the modern tools available, nutritionists are able to formulate the feed to meet the amino acids required for optimal performance of animals. This approach reduces the excess nitrogen in the feed, making the diets friendlier for the gut, reducing substrates for harmful proliferating bacteria, reducing nitrogen excretion in manure, and improving the ecology and sustainability. Apart from growth, amino acids have a functional role in the metabolic and physiological pathways. Amino acids like threonine and arginine have additional functional roles in intestinal turnover, immune function, wound healing, vasodilation and oxidative, and heat stress alleviation. Such specific amino acids can be increased in the diet to support the physiological needs during the growth of animals without increasing the unwanted dietary nitrogen content. As the industry moves toward reducing crude protein while meeting the essential amino acid needs, more research is needed to understand the requirement of specific lower limiting and non-limiting amino acids as well as the dynamics of those amino acids in health, welfare, cost of production and ecological impact in poultry and swine production.
Collapse
Affiliation(s)
- Roshan Adhikari
- CJ Bio America, 2001 Butterfield Rd. Suite 720, Downers Grove, IL 60515, USA.
| | - Sam J Rochell
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | | | | | - Laura Greiner
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Bart Matton
- Research Center, CJ Europe GmbH, Frankfurt, Germany
| | | | - Gisela F Erf
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | | | - Keith Haydon
- CJ Bio America, 2001 Butterfield Rd. Suite 720, Downers Grove, IL 60515, USA
| | - Jason Lee
- CJ Bio America, 2001 Butterfield Rd. Suite 720, Downers Grove, IL 60515, USA
| |
Collapse
|
6
|
Oladokun S, Alizadeh M, Mallick AI, Fazel F, Doost JS, Blake K, Denis MS, Raj S, Sharif S. Influenza a virus subtype H9N2 infection induces respiratory microbiota dysbiosis in chickens via type-I interferon-mediated mechanisms. FEMS MICROBES 2025; 6:xtaf001. [PMID: 39991080 PMCID: PMC11843552 DOI: 10.1093/femsmc/xtaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/10/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
Avian influenza virus (AIV) poses significant threats to poultry and human health. This study investigates the impact of H9N2 AIV infection on the respiratory microbiota of chickens using 16S rRNA gene sequencing. Total 48 one-day-old specific pathogen-free chickens were assigned to six groups: a control and five post-infection groups (days 1, 3, 5, 7, and 9). After a 15-day microbiota stabilization period, the infected chickens received a viral inoculum (107 TCID50/ml) via ocular, intra-nasal, and intra-tracheal routes. Tracheal and broncho-alveolar lavage samples were analyzed. Significant reductions in microbiota diversity were observed on days 5, 7, and 9 post-infection, compared to d0 controls. Permutational Multivariate Analysis of Variance confirmed significant beta diversity differences (P = 0.001) between infected and uninfected groups. The microbial shifts from d5 to d9 were marked by increased Proteobacteria, decreased Actinobacteria and Firmicutes, and a rise in Dickeya. Elevated type-I interferon (IFN-β) and viperin gene expression at d5 coincided with reduced microbiota diversity, highlighting the respiratory microbiota's role in modulating host responses to AIV H9N2 infection and suggesting potential biomarkers for respiratory dysbiosis.
Collapse
Affiliation(s)
- Samson Oladokun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Amirul I Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Katherine Blake
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Myles St Denis
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Peng H, Song X, Chen J, Xiong X, Yang L, Yu C, Qiu M, Zhang Z, Hu C, Zhu S, Xia B, Wang J, Xiong Z, Du L, Yang C. Soybean bioactive peptide supplementation improves gut health and metabolism in broiler chickens. Poult Sci 2025; 104:104727. [PMID: 39729732 PMCID: PMC11741984 DOI: 10.1016/j.psj.2024.104727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 12/29/2024] Open
Abstract
This study aimed to investigate the effects of soybean bioactive peptide (SBP) on the growth performance and intestinal health of yellow-feathered broilers and to further elucidate the regulatory mechanisms of intestinal health using multi-omics analysis. A total of 320 1-day-old yellow-feathered broilers were randomly divided into two groups, with 10 replicates per group and 16 birds per replicate. Broilers in the control group received the basal diet, and those in the experimental group (SBPG) received the basal diet with 0.2 % SBP replacing the same amount of soybean meal. The experiment lasted for 70 d. The results showed that, compared with those in the control group, the final body weight and average daily gain of SBPG broilers were significantly higher (P < 0.05), and the feed conversion ratio was significantly lower (P < 0.05). Notably, SBP significantly improved gut health in chickens, including increased intestinal villus height, decreased levels of proinflammatory factors, such as IL-1β and interferon-γ, and upregulated expression of tight junction proteins, such as ZO-1 and occludin. In addition, transcriptome sequencing results revealed that broilers in the SBP group exhibited significant enrichment in multiple metabolic pathways, including fatty acid metabolism, fatty acid degradation, and the biosynthesis of unsaturated fatty acids (P < 0.05). Cecal 16S rRNA sequencing showed that SBPG increased the abundance of the butyrate-producing beneficial bacteria Muribaculaceae. Subsequent cecal metabolome analysis also revealed that SBPG enhanced lipid-related metabolic pathways, such as alpha-linolenic acid metabolism and GPI-anchor biosynthesis. In conclusion, SBP is a potential feed additive that can improve intestinal morphology, enhance intestinal immunity and barrier function, optimize the structure of the intestinal microbiota, and enhance metabolic function.
Collapse
Affiliation(s)
- Han Peng
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Xiaoyan Song
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Jialei Chen
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Xia Xiong
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Li Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Chunlin Yu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Mohan Qiu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Zengrong Zhang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Chenming Hu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Shiliang Zhu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Bo Xia
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Jiangxian Wang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Zhuxiang Xiong
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Longhuan Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, PR China.
| |
Collapse
|
8
|
Yin B, Juan C, Zhang R, Yang S, Wang H, Liu Y, Song S, Yan Z, Yi Y, Zhao Z, Huang Z, Lin S. Physalis Calyx seu Fructus relieves chicken intestinal damage to heat via improving the antioxidant ability. Front Immunol 2025; 15:1536045. [PMID: 39877350 PMCID: PMC11772197 DOI: 10.3389/fimmu.2024.1536045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Heat-stress-induced oxidative and inflammatory responses were important factors contributing to chicken intestinal damage. The purpose of this study was based on the antioxidant and anti-inflammatory activities of Physalis Calyx seu Fructus (Jin Deng Long, JDL) to investigate its efficacy and mechanism in relieving chicken heat stress damage. Primary chicken embryo duodenum cells and 90 30-day-old specific-pathogen-free chicken were randomly divided into control and JDL groups to establish heat stress models in vitro and in vivo. The mitigating effect was assessed through the oxidation-related enzymes and key genes, histopathology, and inflammatory factors. The results demonstrated that 100 µg/mL JDL extract could effectively alleviate heat stress damage to chicken embryo duodenum cells at 42°C. A strong antioxidant capacity of 100 µg/mL JDL extract was shown in the downregulation of LDH (at 5 h, P < 0.01) and MDA (at 5 h, P < 0.05), in the upregulation of SOD (at 5 and 10 h, P < 0.01), CAT (at 5 h, P < 0.01), and GSH-PX and T-AOC (at 0 h, P < 0.01) as well as in the high transcription level of NQO1 (at 5 and 10 h, P < 0.05) and HO-1 (at 5 and 10 h, P < 0.01). Supplements with 1 and 3 g/kg b.wt, respectively, in the drinking water both suppressed the rise of body temperature and had light pathological lesions of chicken duodenal tissues caused by heat stress at 40 ± 1°C. Accordingly, the chicken of JDL extract groups showed a lower inflammatory response as manifested by a lower level of IL-10 and higher levels of IL-6 and TNF-α and a strong antioxidant capacity characterized by lower level of MDA and higher levels of SOD and GSH-PX in the serum as well as also showed a higher transcription level of Nrf2, NQO1, and HO-1 in the duodenal tissues. In conclusion, JDL extract relieved chicken intestinal damage to heat via improving the antioxidant ability and reducing the inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Shuqian Lin
- Poultry Institute, Shandong Academy of Agricultural Science,
Jinan, Shandong, China
| |
Collapse
|
9
|
Ncho CM, Berdos JI, Gupta V, Rahman A, Mekonnen KT, Bakhsh A. Abiotic stressors in poultry production: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2025; 109:30-50. [PMID: 39132861 PMCID: PMC11731476 DOI: 10.1111/jpn.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
In modern animal husbandry, stress can be viewed as an automatic response triggered by exposure to adverse environmental conditions. This response can range from mild discomfort to severe consequences, including mortality. The poultry industry, which significantly contributes to human nutrition, is not exempt from this issue. Although genetic selection has been employed for several decades to enhance production output, it has also resulted in poor stress resilience. Stress is manifested through a series of physiological reactions, such as the identification of the stressful stimulus, activation of the sympathetic nervous system and the adrenal medulla, and subsequent hormonal cascades. While brief periods of stress can be tolerated, prolonged exposure can have more severe consequences. For instance, extreme fluctuations in environmental temperature can lead to the accumulation of reactive oxygen species, impairment of reproductive performance, and reduced immunity. In addition, excessive noise in poultry slaughterhouses has been linked to altered bird behaviour and decreased production efficiency. Mechanical vibrations have also been shown to negatively impact the meat quality of broilers during transport as well as the egg quality and hatchability in hatcheries. Lastly, egg production is heavily influenced by light intensity and regimens, and inadequate light management can result in deficiencies, including visual anomalies, skeletal deformities, and circulatory problems. Although there is a growing body of evidence demonstrating the impact of environmental stressors on poultry physiology, there is a disproportionate representation of stressors in research. Recent studies have been focused on chronic heat stress, reflecting the current interest of the scientific community in climate change. Therefore, this review aims to highlight the major abiotic stressors in poultry production and elucidate their underlying mechanisms, addressing the need for a more comprehensive understanding of stress in diverse environmental contexts.
Collapse
Affiliation(s)
- Chris Major Ncho
- Department of Environmental Systems ScienceInstitute of Agricultural Sciences, ETH ZürichZürichSwitzerland
| | - Janine I. Berdos
- Department of Animal ScienceCollege of Agriculture and Forestry, Tarlac Agricultural UniversityMalacampaTarlacPhilippines
| | - Vaishali Gupta
- Division of Applied Life Sciences (BK21 Four Program)Gyeongsang National UniversityJinju‐siRepublic of Korea
| | - Attaur Rahman
- Department of Medicine and TherapeuticsFaculty of Medicine, The Chinese University of Hong KongHong KongChina
| | - Kefala Taye Mekonnen
- Department of Animal ScienceCollege of Agriculture and Environmental Science, Arsi UniversityAsellaOromiaEthiopia
| | - Allah Bakhsh
- Atta‐ur‐Rahman School of Applied Biosciences (ASAB)National University of Sciences and Technology (NUST)IslamabadPakistan
| |
Collapse
|
10
|
Xu L, Gao P, Wu H, Gao Y, Ji H, Huang X, Zhang S, Fan W, Song S. Lactobacillus plantarum 4-2 alleviates cyclic heat stress-induced oxidative stress and damage in the ileum of laying hens via Keap1-Nrf2 pathway. J Therm Biol 2025; 127:104072. [PMID: 39922116 DOI: 10.1016/j.jtherbio.2025.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
The frequency and severity of heat stress in livestock production are increasing due to intensive farming practices and rising global temperatures. Due to the lack of sweat glands, poultry are highly susceptible to heat stress, especially in the intestinal tract. Therefore, it is crucial to find environmentally friendly, safe, and effective methods to alleviate heat stress. Probiotics have often been used to mitigate intestinal damage and maintain intestinal function. In this study, the efficacy and mechanism of action of Lactobacillus plantarum 4-2 on oxidative damage and inflammation induced by cyclic heat stress in laying hens were investigated. The results showed that addition of Lactobacillus plantarum 4-2 (≥1 × 109 CFU/day/bird) significantly enhanced growth performance and improved the antioxidant capacity of the organism in cyclic heat-stressed laying hens. Meanwhile, ileum barrier damage was alleviated, expressions of intestinal tight junction proteins were elevated, and cyclic heat stress-induced decreases in ileum villus height and villus/crypt were ameliorated. Supplementation with Lactobacillus plantarum 4-2 resulted in a significant decrease in the expression of Ifn-γ and Il-6 and an increase in Il-10 and Tgf-β1, which attenuated the disruption of the ileum barrier and inflammatory damage by cyclic heat stress. Furthermore, Lactobacillus plantarum 4-2 decreased the level of Keap1 and increased the levels of Nrf2, NQO1, and HO-1, thereby alleviating cyclic heat stress-induced ileum oxidative stress. These results indicated that Lactobacillus plantarum 4-2 could enhance the antioxidant function, alleviate oxidative stress, and reduce ileum damage via Keap1-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Laizhi Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peichao Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huixian Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yixin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Helong Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
West D, Akter S, Cheng B, Oviedo E, Classen J, Wang-Li L. Impacts of Air Velocity Treatments Under Summer Conditions: Part III-Litter Characteristics, Ammonia Emissions, and Leg Health of Heavy Broilers. Animals (Basel) 2024; 14:3525. [PMID: 39682490 DOI: 10.3390/ani14233525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The broiler industry is crucial for rural economies, but it faces challenges in enhancing animal performance and well-being, particularly due to heat stress and ammonia (NH3) in grow-out houses. This study investigates the effectiveness of air velocity (AV) treatment in reducing heat stress and NH3 emissions while also improving litter conditions to enhance animal welfare. Conducted at the North Carolina State University's poultry engineering laboratory, the research used six identical controlled chambers, exposing broilers to High and Low AV treatments from 28 to 61 days across four flocks during the summers of 2017 and 2018. The nitrogen mass balance (NMB) method quantified NH3 emissions, while litter quality was assessed for moisture content, pH, total nitrogen, and total ammoniacal nitrogen. Additionally, leg health was evaluated through assessments of footpad dermatitis (FPD) and hock burns (HB) at 42 and 61 days. Results showed higher NH3 emissions in Low AV chambers, while High AV conditions improved litter quality and resulted in greater nitrogen retention. Broilers in High AV chambers also had higher individual body weights and better leg health scores. Thus, optimizing AV effectively mitigates heat stress, controls NH3 emissions, and enhances overall broiler performance and welfare, offering insights for sustainable industry practices.
Collapse
Affiliation(s)
- Derek West
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Suraiya Akter
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Bin Cheng
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Edgar Oviedo
- Prestage Poultry Science Department, North Carolina State University, Raleigh, NC 27695, USA
| | - John Classen
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lingjuan Wang-Li
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. BIOLOGY 2024; 13:926. [PMID: 39596881 PMCID: PMC11591812 DOI: 10.3390/biology13110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Heat stress (HS) due to high temperatures has adverse effects on poultry, including decreased feed intake, lower feed efficiency, decreased body weight, and higher mortality. There are complex mechanisms behind heat stress in poultry involving the neuroendocrine system, organ damage, and other physiological systems. HS activates endocrine glands, such as the pituitary, adrenal, thyroid, and gonadal, by the action of the hypothalamus and sympathetic nerves, ultimately causing changes in hormone levels: HS leads to increased corticosterone levels, changes in triiodothyronine and thyroxine levels, decreased gonadotropin levels, reduced ovarian function, and the promotion of catecholamine release, which ultimately affects the normal productive performance of poultry. Meanwhile, heat stress also causes damage to the liver, lungs, intestines, and various immune organs, severely impairing organ function in poultry. Nutrient additives to feed are important measures of prevention and treatment, including natural plants and extracts, probiotics, amino acids, and other nutrients, which are effective in alleviating heat stress in poultry. Future studies need to explore the specific mechanisms through which heat stress impacts the neuroendocrine system in poultry and the interrelationships between the axes and organ damage so as to provide an effective theoretical basis for the development of preventive and treatment measures.
Collapse
Affiliation(s)
| | | | | | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (H.C.); (Y.H.)
| |
Collapse
|
13
|
Li Y, Wang K, Li C. Oxidative Stress in Poultry and the Therapeutic Role of Herbal Medicine in Intestinal Health. Antioxidants (Basel) 2024; 13:1375. [PMID: 39594517 PMCID: PMC11591273 DOI: 10.3390/antiox13111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
The intensive broiler farming model has accelerated the development of the poultry farming industry. However, it has also inevitably brought about many stressors that lead to oxidative stress in the organism. The intestine is the leading site of nutrient digestion, absorption, and metabolism, as well as a secretory and immune organ. Oxidative stress in animal production can harm the intestine, potentially leading to significant losses for the farming industry. Under conditions of oxidative stress, many free radicals are produced in the animal's body, attacking the intestinal mucosal tissues and destroying the barrier integrity of the intestinal tract, leading to disease. Recently, herbs have been shown to have a favorable safety profile and promising application in improving intestinal oxidative stress in poultry. Therefore, future in-depth studies on the specific mechanisms of herbs and their extracts for treating intestinal oxidative stress can provide a theoretical basis for the clinical application of herbs and new therapeutic options for intestinal oxidative stress injury during poultry farming. This review focuses on the causes and hazards of oxidative stress in the intestinal tract of poultry, and on herbs and their extracts with therapeutic potential, to provide a reference for developing and applying new antioxidants.
Collapse
Affiliation(s)
| | | | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.W.)
| |
Collapse
|
14
|
Seo YJ, Lim C, Lim B, Kim JM. Microbial-transcriptome integrative analysis of heat stress effects on amino acid metabolism and lipid peroxidation in poultry jejunum. Anim Biotechnol 2024; 35:2331179. [PMID: 38519440 DOI: 10.1080/10495398.2024.2331179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Despite the significant threat of heat stress to livestock animals, only a few studies have considered the potential relationship between broiler chickens and their microbiota. Therefore, this study examined microbial modifications, transcriptional changes and host-microbiome interactions using a predicted metabolome data-based approach to understand the impact of heat stress on poultry. After the analysis, the host functional enrichment analysis revealed that pathways related to lipid and protein metabolism were elevated under heat stress conditions. In contrast, pathways related to the cell cycle were suppressed under normal environmental temperatures. In line with the transcriptome analysis, the microbial analysis results indicate that taxonomic changes affect lipid degradation. Heat stress engendered statistically significant difference in the abundance of 11 microorganisms, including Bacteroides and Peptostreptococcacea. Together, integrative approach analysis suggests that microbiota-induced metabolites affect host fatty acid peroxidation metabolism, which is correlated with the gene families of Acyl-CoA dehydrogenase long chain (ACADL), Acyl-CoA Oxidase (ACOX) and Acetyl-CoA Acyltransferase (ACAA). This integrated approach provides novel insights into heat stress problems and identifies potential biomarkers associated with heat stress.
Collapse
Affiliation(s)
- Young-Jun Seo
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
15
|
Ouyang J, Zhang C, Deng C, Wen A, Zhou H, You J, Li G. Dietary vitamin B6 supplementation alleviates heat stress-induced intestinal barrier impairment by regulating the gut microbiota and metabolites in broilers. Poult Sci 2024; 103:104202. [PMID: 39222554 PMCID: PMC11402297 DOI: 10.1016/j.psj.2024.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Heat stress (HS) brings great challenges to the poultry industry. Vitamin B6 (VB6) is an essential micro-nutrient for animals to maintain normal physiological functions and possesses antioxidant and anti-inflammatory properties. This study aimed to explore the effect of VB6 on alleviating HS-induced intestinal barrier impairment in broilers. A total of 250 broilers (609.76 ± 0.34 g) were randomly allocated to 5 groups with 5 replicate cages of 10 birds each. The broilers in thermoneutral (TN) group were raised in thermoneutral conditions (23 ± 1°C) and fed with a basal diet. The birds in other four groups were housed under cycle high temperature (34 ± 1°C for 8 h/d) from d 21 to 35 and fed with the basal diet (HS group) or basal diet supplemented with 6, 12, or 24 mg/kg VB6 (HB-6, HB-12, HB-24 groups). The results showed that HS reduced the growth performance, increased ileum inflammatory cytokines levels, and impaired the gut barrier function (P < 0.05). Compared to the HS group, final body weight, average daily gain, and average daily feed intake, and the feed conversion ratio were improved by VB6 supplementation. The diamine oxidase, interleukin (IL)-1β, tumor necrosis factor-α, IL-18, IL-10, and interferon-γ levels were reduced by VB6 supplementation (P < 0.05). Moreover, VB6 supplementation linearly or quadratically enhanced villus height and villus height-to-crypt depth ratio of duodenum and jejunum, and decreased crypt depth of duodenum and ileum. The mRNA expression of Occlaudin, ZO1, Mucin2, Mucin4, E-cadhein, and β-catenin were increased by VB6 treatment (P < 0.05). Furthermore, dietary VB6 altered the diversity and community of gut microbiota (P < 0.05). A total of 83 differential metabolites associated with the amelioration of VB6 were identified, which were primarily enriched in glycerophospholipid metabolism, caffeine metabolism, and glutathione metabolism pathway. Collectively, VB6 may improve the growth performance and intestinal barrier function of heat-stressed broilers by regulating the ileal microbiota and metabolic homeostasis.
Collapse
Affiliation(s)
- Jingxin Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Chao Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Chenxi Deng
- Department of Animal Science and Technology, Jiangxi Biotech Vocational College, Nanchang 330200, China
| | - Ai Wen
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang 330045, China.
| |
Collapse
|
16
|
Beck DL, Gilbert ER, Cline MA. Embryonic thermal challenge is associated with increased stressor resiliency later in life: Molecular and morphological mechanisms in the small intestine. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111724. [PMID: 39111617 DOI: 10.1016/j.cbpa.2024.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
Developing chick embryos that are subjected to increased incubation temperature are more stressor-resilient later in life, but the underlying process is poorly understood. The potential mechanism may involve changes in small intestine function. In this study, we determined behavioral, morphological, and molecular effects of increased embryonic incubation temperatures and post-hatch heat challenge in order to understand how embryonic heat conditioning (EHC) affects gut function. At 4 days post-hatch, duodenum, jejunum, and ileum samples were collected at 0, 2, and 12 h relative to the start of heat challenge. In EHC chicks, we found that markers of heat and oxidative stress were generally lower while those of nutrient transport and antioxidants were higher. Temporally, gene expression changes in response to the heat challenge were similar in control and EHC chicks for markers of heat and oxidative stress. Crypt depth was greater in control than EHC chicks at 2 h post-challenge, and the villus height to crypt depth ratio increased from 2 to 12 h in both control and EHC chicks. Collectively, these results suggest that EHC chicks might be more energetically efficient at coping with thermal challenge, preferentially allocating nutrients to other tissues while protecting the mucosal layer from oxidative damage. These results provide targets for future studies aimed at understanding the molecular mechanisms underlying effects of embryonic heat exposure on intestinal function and stressor resiliency later in life.
Collapse
Affiliation(s)
- David L Beck
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
17
|
Aydin SS, Hatipoglu D. Probiotic strategies for mitigating heat stress effects on broiler chicken performance. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2153-2171. [PMID: 39320540 DOI: 10.1007/s00484-024-02779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
The primary objective of this study was to evaluate the effects of liquid (Fructose-added lactic acid bacteria, F-LAB) and commercial (Commercial LAB, C-LAB) probiotics sourced from Rye-Grass Lactic Acid Bacteria (LAB) on broiler chickens experiencing heat stress (HS). The research involved 240 broiler chicks, divided into six groups: control, F-LAB, C-LAB (raised at 24 °C), HS, F-LAB/HS, and C-LAB/HS (exposed to 5-7 h of 34-36 °C daily). The study followed a randomized complete block design, with each group consisting of 40 chicks. F-LAB and HS/F-LAB groups received a natural probiotic added to their drinking water at a rate of 0.5 ml/L, while C-LAB and HS/C-LAB groups were supplemented with a commercial probiotic at the same dosage. Control and HS groups received no probiotic supplementation. The duration of the study was 42 days, with data collected on growth performance, feed intake, feed conversion ratio, and health parameters. Statistical analyses were performed using ANOVA, and significant differences between groups were determined using post hoc tests. The results revealed that without probiotic supplementation, heat stress led to a decrease in body weight gain, T3 levels, citrulline, and growth hormone levels, along with an increase in the feed conversion ratio, serum corticosterone, HSP70, ALT, AST, and leptin levels (p < 0.05 for all). Heat stress also adversely affected cecal microbiota, reducing lactic acid bacteria count (LABC) while increasing Escherichia coli and coliform bacteria (CBC) counts. However, in the groups receiving probiotic supplementation under heat stress (F-LAB/HS and C-LAB/HS), these effects were alleviated (p < 0.05 for all). Particularly noteworthy was the observation that broiler chickens supplemented with natural lactic acid bacteria (F-LAB) exhibited greater resilience to heat stress compared to those receiving the commercial probiotic, as evidenced by improvements in growth, liver function, hormonal balance, intestinal health, and cecal microbiome ecology (p < 0.05). These findings suggest that the supplementation of naturally sourced probiotics (F-LAB) may positively impact the intestinal health of broiler chickens exposed to heat stress, potentially supporting growth and health parameters.
Collapse
Affiliation(s)
- Sadik Serkan Aydin
- Department of Animal Nutrition and Nutritional Disease, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Türkiye
| | - Durmus Hatipoglu
- Department of Physiology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Türkiye.
| |
Collapse
|
18
|
He S, Bian G, Guo Y, Guo J. Hesperidin Helps Improve the Intestinal Structure, Maintain Barrier Function, and Reduce Inflammation in Yellow-Feathered Broilers Exposed to High Temperatures. Animals (Basel) 2024; 14:2585. [PMID: 39272369 PMCID: PMC11394609 DOI: 10.3390/ani14172585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
To investigate the possible protective effect of hesperidin on intestinal damage caused by high-temperature heat stress in yellow-feathered broilers, 960 broilers aged 21 days were randomly divided into four groups: HT, HT300, HT450, and HT600, with each group receiving different amounts of hesperidin supplementation (0, 300, 450, and 600 mg/kg). The dietary supplementation of hesperidin could mitigate the elevation of corticosterone (CORT) and adrenocorticotropic hormone (ATCH) levels in serum from yellow-feathered broilers induced by heat stress. The supplementation of 300 mg/kg and 450 mg/kg of hesperidin reduced crypt depth and increased the V/C ratio in the small intestine compared to the HT group. The dietary supplementation of hesperidin decreased endotoxin and D-lactic acid levels in the blood, and dietary supplementation of 300 mg/kg of hesperidin increased the expression of claudin-1 and ZO-1 mRNA in the jejunum compared with the HT group. Furthermore, the dietary supplementation of 300 mg/kg of hesperidin decreased serum IL-1β and IL-6 levels. In comparison, supplementation with 300 mg/kg and 450 mg/kg of hesperidin decreased serum TNF-α levels in yellow-feathered broilers compared to the HT group. Moreover, the dietary supplementation of hesperidin decreased NF-κB mRNA levels. Overall, these data suggest that dietary supplementation with hesperidin potentially improves intestinal injury caused by heat stress in yellow-feathered broilers.
Collapse
Affiliation(s)
- Shaoping He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Guozhi Bian
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Yuming Guo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiyu Guo
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| |
Collapse
|
19
|
Hemanth M, Venugopal S, Devaraj C, Shashank CG, Ponnuvel P, Mandal PK, Sejian V. Comparative assessment of growth performance, heat resistance and carcass traits in four poultry genotypes reared in hot-humid tropical environment. J Anim Physiol Anim Nutr (Berl) 2024; 108:1510-1523. [PMID: 38825837 DOI: 10.1111/jpn.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
This study investigated the impact of heat stress on growth and carcass traits in four poultry genotypes-Giriraja, Country chicken, Naked Neck and Kadaknath reared in a hot and humid tropical environment. Birds from all genotypes had ad libitum access to feed and water while being challenged with consistently high environmental temperatures in the experimental shed. Daily diurnal meteorological data were recorded inside and outside the shed. The study specifically examined growth variables and carcass characteristics. Significant differences (p < 0.01) were observed in body weight and average daily gain at various intervals. Notably, feed intake showed significant differences (p < 0.01) across weeks, indicating interactions between genotypes and time intervals. The feed conversion ratio (FCR) varied significantly (p < 0.01), with the highest FCR recorded in the Kadaknath breed. Livability percentages were similar across groups, except for Giriraja, which had significantly lower livability (p < 0.01). Carcass traits, including dressing, wings, feathers and giblet percentages, showed significant differences among genotypes (p < 0.01). Hepatic mRNA expression of growth-related genes revealed numerical variations, with Naked Neck displaying the highest (p < 0.05) fold change in IGF-1 expression compared to other genotypes. The study recognized in the Naked Neck genotype to possess higher resilience in maintaining homoeostasis and uncompromised growth under heat stress, providing valuable insights for sustainable poultry farming in challenging environmental conditions.
Collapse
Affiliation(s)
- M Hemanth
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - S Venugopal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - C Devaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| | - C G Shashank
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| | - P Ponnuvel
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - P K Mandal
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - V Sejian
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
- ICAR-National Institute of Animal Nutrition and Physiology, Audugodi, Bangalore, Karnataka, India
| |
Collapse
|
20
|
Park J, Heo YJ, Kim DH, Kim YB, Kwon BY, Song JY, Lee KW. Nutritional and physiological responses to dietary phosphorus levels and phytase in pullets and laying hens. Poult Sci 2024; 103:103886. [PMID: 38878747 PMCID: PMC11234048 DOI: 10.1016/j.psj.2024.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 07/13/2024] Open
Abstract
The objective of this study was to determine the effects of dietary available phosphorus (P) levels and dietary phytase added into the very low-P diet on the performance, mineral balance, odor emission, and stress responses in growing pullets and laying hens during 13 to 32 wk of age. One hundred sixty-eight pullets (Hy-Line Brown) were randomly assigned into 1 of 4 dietary treatments with 7 replicates of 6 birds each. Experimental diets were formulated to contain 3 graded P levels at 0.25, 0.35, and 0.45% during 13 to 15 wk (phase 1), 0.25, 0.35, and 0.45% during 16 to 18 wk (phase 2), and 0.20, 0.30, and 0.40% during 19 to 32 wk (phase 3). In addition, dietary phytase (500 FTU/kg matrix values) was added into the very low-P diets (0.20% during 13-15 wk, 0.25% during 16-18 wk, and 0.20% during 19-32 wk) to meet the nutritional adequacy with standard P diets. In all phases, decreasing dietary P levels did not affect (P > 0.05) growth, laying performance, and egg qualities. Decreasing dietary P levels linearly increased the relative duodenal and oviduct weights (P < 0.05), and quadratically increased the relative ovary weight in pullets (P = 0.016). Dietary phytase lowered (P = 0.021) the relative duodenal weight compared with the very low-P diet. Tibia breaking strength and tibia Mg contents in pullets were linearly lowered (P < 0.05) as dietary P levels decreased. Dietary phytase tended to increase (P = 0.091) tibia breaking strength and significantly increased (P = 0.025) tibia Mg content compared with the very low-P diet. Dietary P levels and dietary phytase affected (P < 0.05) ileal crypt depth and ileal villus height: crypt depth ratio in pullets. Decreasing dietary P levels linearly decreased (P < 0.01) crude fat digestibility and P excretion in both pullets and laying hens. Dietary phytase reversed (P < 0.05) the very low-P diet-mediated decrease of crude fat digestibility in pullets and laying hens. Dietary P levels and dietary phytase affected (P < 0.05) odor emission including ammonia in pullets and total volatile fatty acids in laying hens. Finally, lowering dietary P levels increased (P < 0.01) yolk corticosterone concentrations and the increased corticosterone concentration by the very low-P diet was reversed by dietary phytase. Collectively, our study shows that decreasing dietary P levels induced nutritional and physiological responses in pullets and laying hens and these P-mediated negative effects were mitigated by dietary phytase.
Collapse
Affiliation(s)
- Jina Park
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Ji Heo
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Da-Hye Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoo Bhin Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung-Yeon Kwon
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ju-Yong Song
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Woo Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
21
|
Liu Y, Sun D, Xu C, Liu X, Tang M, Ying S. In-depth transcriptome profiling of Cherry Valley duck lungs exposed to chronic heat stress. Front Vet Sci 2024; 11:1417244. [PMID: 39104549 PMCID: PMC11298465 DOI: 10.3389/fvets.2024.1417244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Amidst rising global temperatures, chronic heat stress (CHS) is increasingly problematic for the poultry industry. While mammalian CHS responses are well-studied, avian-specific research is lacking. This study uses in-depth transcriptome sequencing to evaluate the pulmonary response of Cherry Valley ducks to CHS at ambient temperatures of 20°C and a heat-stressed 29°C. We detailed the CHS-induced gene expression changes, encompassing mRNAs, lncRNAs, and miRNAs. Through protein-protein interaction network analysis, we identified central genes involved in the heat stress response-TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and PLCB2. Subsequent functional enrichment analysis of the differentially expressed genes and RNA targets revealed significant engagement in immune responses and regulatory processes. KEGG pathway analysis underscored crucial immune pathways, specifically those related to intestinal IgA production and Toll-like receptor signaling, as well as Salmonella infection and calcium signaling pathways. Importantly, we determined six miRNAs-miR-146, miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p-as potential key regulators within the ceRNA network. These findings enhance our comprehension of the physiological adaptation of ducks to CHS and may provide a foundation for developing strategies to improve duck production under thermal stress.
Collapse
Affiliation(s)
- Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongyue Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Congcong Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijia Ying
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
22
|
Ji H, Zhong Y, Zhang Z, Chen Y, Zhang Y, Bian S, Yin J, Hu J, Nie S. In vitro digestion and fermentation characteristics of eight kinds of pulses and suggestions for different populations. Food Funct 2024; 15:7314-7332. [PMID: 38898712 DOI: 10.1039/d4fo00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Pulse-based diets are attracting attention for their potential in combating diet-related non-communicable diseases. However, limited research studies have focused on the digestive and fermentative properties of pulses, which are crucial for exerting benefits. Here, we investigated the in vitro digestibility of starch/protein, along with the fermentation characteristics, of eight pulses and their pastes, including white kidney beans, adzuki beans, cowpeas, broad beans, mung beans, chickpeas, white lentils, and yellow peas. The findings indicated that pulse flours and pastes were low GL food (estimated GL < 10) and had a low degree of protein hydrolysis during simulated gastrointestinal digestion. During in vitro fermentation, pulses flours and pastes decreased the fermentation pH, increased the level of short-chain fatty acids (mainly consisting of valeric acid, followed by acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid), and positively modulated the microbiota composition over time, specifically reducing the ratio of Firmicutes to Bacteroidetes. In addition, we found that boiling could affect the in vitro digestion and fermentation characteristics of pulses, possibly depending on their intrinsic nutrient characteristics. This research could provide a comprehensive summary of the nutrient content, digestibility, and fermentation of eight pulses and their pastes. Guided by factor analysis, for different individuals' consumption, pulses, cowpeas, broad beans, white lentils, and white kidney beans were preferred for diabetic individuals, yellow peas and white lentils were preferred for intestinal homeostasis disorders, and white lentils, broad beans, white kidney beans, and cowpeas were suitable for obese individuals, in which white lentils were considered healthier and suggested for healthy adults.
Collapse
Affiliation(s)
- Haihua Ji
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Ziyi Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yu Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yanli Zhang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shuigen Bian
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
23
|
Shen W, Gao P, Zhou K, Li J, Bo T, Xu D. The Impact of High-Temperature Stress on Gut Microbiota and Reproduction in Siberian Hamsters ( Phodopus sungorus). Microorganisms 2024; 12:1426. [PMID: 39065194 PMCID: PMC11278997 DOI: 10.3390/microorganisms12071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Global warming has induced alterations in the grassland ecosystem, such as elevated temperatures and decreased precipitation, which disturb the equilibrium of these ecosystems and impact various physiological processes of grassland rodents, encompassing growth, development, and reproduction. As global warming intensifies, the repercussions of high-temperature stress on small mammals are garnering increased attention. Recently, research has highlighted that the composition and ratio of gut microbiota are not only shaped by environmental factors and the host itself but also reciprocally influence an array of physiological functions and energy metabolism in animals. In this research, we combined 16S rRNA high-throughput sequencing with conventional physiological assessments, to elucidate the consequences of high-temperature stress on the gut microbiota structure and reproductive capacity of Siberian hamsters (Phodopus sungorus). The results were as follows: 1. The growth and development of male and female hamsters in the high-temperature group were delayed, with lower body weight and reduced food intake. 2. High temperature inhibits the development of reproductive organs in both female and male hamsters. 3. High temperature changes the composition and proportion of gut microbiota, reducing bacteria that promote reproduction, such as Pseudobutyricoccus, Ruminiclostridium-E, Sporofaciens, UMGS1071, and CAG_353. Consequently, our study elucidates the specific impacts of high-temperature stress on the gut microbiota dynamics and reproductive health of Siberian hamsters, thereby furnishing insights for managing rodent populations amidst global climatic shifts. It also offers a valuable framework for understanding seasonal variations in mammalian reproductive strategies, contributing to the broader discourse on conservation and adaptation under changing environmental conditions.
Collapse
Affiliation(s)
- Wenjing Shen
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Peng Gao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Kunying Zhou
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| | - Jin Li
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| | - Tingbei Bo
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (W.S.); (P.G.)
| | - Deli Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, China; (K.Z.); (J.L.)
| |
Collapse
|
24
|
Feng S, Zeng J, Li J, Yuan S, Wu B. Alleviating effect of methionine on intestinal mucosal injury induced by heat stress. J Therm Biol 2024; 123:103935. [PMID: 39098059 DOI: 10.1016/j.jtherbio.2024.103935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Climate change is an increasing concern of stakeholders worldwide. The intestine is severely impacted by the heat stress. This study aimed to investigate the alleviating effects of methionine on the intestinal damage induced by heat stress in mice. The mice were divided into four groups: control group (C), methionine deficiency group (MD), methionine + heat stress group (MH), and methionine deficiency + heat stress group (MDH). Histopathological techniques, PAS-Alcian blue staining, immunohistochemistry method, biochemical quantification method, ELISA, and micro method were used to study the changes in the intestinal mucosal morphology, the number of goblet cells, the expression of tight junction proteins, the peroxide product contents and antioxidant enzyme activities, the intestinal mucosal damage, the content of immunoglobulins and HSP70, the activity of Na+/K+-ATPase. The results showed that methionine can improve intestinal mucosal morphology (increase the villi height, V/C value, and muscle layer thickness, decrease crypt depth), increase the expression of tight junction proteins (Claudin-1, Occludin, ZO-1) and the content of DAO, decrease the content of intestinal mucosa damage markers (ET, FABP2) and peroxidation products (MDA), increase the activity of antioxidant enzymes (GR, GSH-Px, SOD), the number of goblet cells, the contents of immunoglobulins (sIgA, IgA, IgG, IgM) and stress protein (HSP70), and the activity of Na+/K+-ATPase. It is suggested that methionine can alleviate intestinal damage in heat-stressed mice.
Collapse
Affiliation(s)
- Shaohua Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China
| | - Jie Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China
| | - Jia Li
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China
| | - Shibin Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China; Nanchong Key Laboratory of Wildlife Nutritional Ecology and Disease Prevention and Control, Nanchong, 637000, Sichuan, China.
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, 637000, Sichuan, China; College of Life Sciences, China West Normal University, Nanchong, 637000, Sichuan, China; Nanchong Key Laboratory of Wildlife Nutritional Ecology and Disease Prevention and Control, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
25
|
Yehia M, Alfonso-Avila AR, Prus JMA, Ouellet V, Alnahhas N. The potential of in ovo-fed amino acids to alleviate the effects of heat stress on broiler chickens: effect on performance, body temperature, and oxidative status during the finisher phase. Poult Sci 2024; 103:103821. [PMID: 38823160 PMCID: PMC11179241 DOI: 10.1016/j.psj.2024.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
The aim of the current study was to investigate the potential of in ovo-fed amino acids (AA) to reduce the effects of heat stress on finishing broiler chickens. To achieve this, a total of 1,400 fertile hatching eggs were randomly distributed into 5 groups (n = 280/group) and injected with one of the following in ovo treatments on embryonic day 18: 52 µL of sterile diluent/egg (CTRL), CTRL + 1.0 mg of L-Leucine (T1), CTRL + 0.45 mg of leucine + 1.15 mg of methionine (T2), CTRL + 3.0 mg of methionine + 2.0 mg of cysteine (T3), and CTRL + 0.40 mg of leucine + 1.60 mg of methionine + 1.60 mg of cysteine (T4). After hatch, chicks were allocated according to a complete randomized block design comprising 2 thermal conditions: thermoneutral (24°C, 45% RH) and heat stress (34°C, 55-60% RH) with 5 pens/group/condition. The cyclical heat stress regimen (10 h/d) was then applied from d 29 to d 34. Compared to the CTRL group, T3 and T4 exhibited a higher BW during the starter phase (P < 0.001). T4 also had a lower feed conversion ratio (FCR) than CTRL during this same phase (P = 0.03). During the grower phase, males of all treatment groups consistently exhibited higher BW compared to the CTRL group, which was not observed among female birds (PSex × TRT = 0.005). During the finisher phase, the in ovo treatment effect on performance was not significant. However, heat-stressed birds from treatment group T3 and T4 exhibited lower facial temperatures (Pday × TRT < 0.001) as well as lower plasma (Pcondition x TRT = 0.039) and liver (Pcondition x TRT < 0.001) malonaldehyde concentrations compared to the CTRL group. In conclusion, in ovo-fed AA have the potential to modulate the effects of heat stress on finishing broiler chickens by limiting its detrimental consequences, including increased body temperature and oxidative damage.
Collapse
Affiliation(s)
- Moustafa Yehia
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| | | | | | - Véronique Ouellet
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada
| | - Nabeel Alnahhas
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City G1V 0A6, Quebec, Canada; Swine and Poultry Infectious Diseases Research Center, Université de Montréal, Saint-Hyacinthe J2S 2M2, Quebec, Canada.
| |
Collapse
|
26
|
van der Klein SAS, Bernardeau M, Gibbs K, Pál L. Research Note: Water applied direct-fed microbial reduced mortality in heat stressed broilers. Poult Sci 2024; 103:103857. [PMID: 38796989 PMCID: PMC11153221 DOI: 10.1016/j.psj.2024.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Pressure to reduce the use of antibiotics in the poultry industry has intensified research on alternative solutions to support intestinal health, including but not limited to direct fed microbials (DFM). Heat stress is known to impact intestinal health and function. The aim of this study was to determine efficacy of a water applied DFM product on broiler performance during the summer period. One of two treatments were randomly allocated to 12 replicate floor pens each: a control treatment and a treatment provided daily with a dual strain DFM comprised of Lactobacillus acidophilus AG01 and Bifidobacterium animalis AG02 at 1 × 108 CFU/bird/d. Each pen contained 20 Ross 308 broilers. All birds were fed the same three-phased wheat- and soybean meal-based diets. Body weight, feed intake, feed conversion ratio, and mortality were measured at d 0, 10, 24, 35, and 42. Due to natural extreme external temperature conditions, all birds were subject to heat stress during the end of the grower phase up to and including the finisher phase. Temperature was on average 5°C higher compared to industry recommendation. No significant differences were found in growth performance between the control and DFM treatment, yet BW at d 42 in both treatments was reduced by 19% compared to the breed standard. The DFM treatment significantly reduced mortality among the birds. Overall mortality from d 1 to d 35 was reduced from 4.58% to 0.42% (P = 0.023) and overall mortality from d 1 to d 42 was reduced from 5.83 to 0.83% (P = 0.027). This was driven by the difference in heat-stress related mortality in the finisher phase from d 25 to d 42, where mortality reached only 0.44% in the DFM treatment versus 2.88% in the unsupplemented control treatment. Post-mortem analysis confirmed heat-stress related hypoxia. In conclusion, the dual strain DFM may have provided improved (intestinal) homeostasis and barrier function allowing increased resilience to heat stress in broilers.
Collapse
Affiliation(s)
- S A S van der Klein
- Danisco Animal Nutrition and Health (IFF), 2342 BH, Oegstgeest, The Netherlands.
| | - M Bernardeau
- Danisco Animal Nutrition and Health (IFF), 2342 BH, Oegstgeest, The Netherlands
| | - K Gibbs
- Danisco Animal Nutrition and Health (IFF), 2342 BH, Oegstgeest, The Netherlands
| | - L Pál
- Institute of Physiology and Nutrition, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, Hungary
| |
Collapse
|
27
|
Elokil A, Li S, Chen W, Farid O, Abouelezz K, Zohair K, Nassar F, El-Komy E, Farag S, Elattrouny M. Ethoxyquin attenuates enteric oxidative stress and inflammation by promoting cytokine expressions and symbiotic microbiota in heat-stressed broilers. Poult Sci 2024; 103:103761. [PMID: 38692088 PMCID: PMC11070915 DOI: 10.1016/j.psj.2024.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024] Open
Abstract
Intestinal oxidative stress in broilers is produced by chronic heat stress (HS) and has a negative impact on poultry performance as it induces intestinal inflammation and promotes the invasion of gram-negative bacteria, such as bacterial lipopolysaccharide (LPS). Therefore, dietary inclusion of the antioxidant compound, ethoxyquin (EQ), could improve enteric antioxidant capacity, immune responses, and the epithelial barrier, and maintain the symbiotic gut microbiota community. To investigate the effects of EQ supplementation on alleviating enteric oxidative stress in heat-stressed broilers, 200 one-day-old male Ross 308 broilers were randomly assigned to 4 groups (n = 50 chicks/group; n = 10 chicks/replicate) and fed a basal diet supplemented with 0 (CT), 50 (EQ-50), 100 (EQ-100), and 200 (EQ-200) mg EQ/ kg-1 for 5 wk. The chicks were raised in floor pens inside the broiler farm at a temperature and humidity index (THI) of 29 from d 21 to d 35. Growth performance traits, relative organ index, hepatic antioxidant enzymes, serum immunity, total adenylate, and cytokine activities were improved in the EQ-50 group (linear or quadratic P < 0.05), promoting the relative mRNA expression of cytokine gene-related anti-inflammatory and growth factors. A distinct microbial community colonised the gut microbiota in the EQ-50 group, with a high relative abundance of Lactobacillus, Ligilactobacillus, Limosilactobacillus, Pediococcus, Blautia, and Faecalibacterium compared to the other groups. Dietary supplementation with 50 mg EQ/ kg-1 for 5 wk attenuates enteric oxidative stress and intestinal inflammation by enhancing serum immune and cytokine content (IgG, IL-6, and TGF-β,) and symbiotic microbiota in heat-stressed broilers. EQ promotes the expression of Hsp70, SOD2, GPx 4, IL-6, and IGF-1 cytokine gene-related anti-inflammatory and growth factors in heat-stressed hepatic broilers. Collectively, EQ-50 could be a suitable feed supplement for attenuating enteric oxidative stress and intestinal inflammation, thereby promoting the productivity of heat-stressed broilers.
Collapse
Affiliation(s)
- Abdelmotaleb Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China.
| | - Omar Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza 12553, Egypt
| | - Khaled Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Khairy Zohair
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Farid Nassar
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Esteftah El-Komy
- Animal Production Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Soha Farag
- Department of animal production, Faculty of Agriculture, Tanta University, Egypt
| | - Mahmoud Elattrouny
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
28
|
Salami SA, Taylor-Pickard J, Ross SA, Moran CA. A Meta-Analysis of the Effects of Dietary Yeast Mannan-Rich Fraction on Broiler Performance and the Implication for Greenhouse Gas Emissions from Chicken Production. Animals (Basel) 2024; 14:1595. [PMID: 38891642 PMCID: PMC11171374 DOI: 10.3390/ani14111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Dietary supplementation of yeast-derived mannan-rich fraction (MRF) could improve the gastrointestinal health and production efficiency of broilers, and, consequently, lower the environmental impacts of chicken production. The objective of this meta-analysis was to quantify the retrospective effects of feeding MRF (Actigen®, Alltech Inc., Nicholasville, KY) on the production performance of broilers. The meta-analysis database included 27 studies and consisted of 66 comparisons of MRF-supplemented diets vs. basal (i.e., negative control) and antibiotic-supplemented (i.e., positive control) diets. A total of 34,596 broilers were involved in the comparisons and the average final age of the birds was 35 days. Additionally, the impact of feeding MRF on the carbon footprint (feed and total emission intensities) of chicken production was evaluated using the meta-analysis results of broiler performance (MRF vs. basal diets) to develop a scenario simulation that was analyzed by a life cycle assessment (LCA) model. A database of all trials (MRF vs. basal and antibiotic diets) indicated that feeding MRF increased (p < 0.01) average daily feed intake (ADFI; +3.7%), final body weight (FBW; +3.5%), and average daily gain (ADG; 4.1%) and improved (p < 0.01) feed conversion ratio (FCR; -1.7%) without affecting (p > 0.05) mortality. A subdatabase of MRF vs. basal diets indicated that dietary MRF increased ADFI (+4.5%), FBW (+4.7%), and ADG (+6.3%) and improved FCR (-2.2%) and mortality (-21.1%). For the subdatabase of MRF vs. antibiotic diets, both treatments exhibited equivalent effects (p > 0.05) on broiler performance parameters, suggesting that MRF could be an effective alternative to in-feed antibiotics. Subgroup analysis revealed that different study factors (year of study, breed/strain, production challenges, and MRF feeding duration) influenced the effect of dietary MRF on broiler performance. Simulated life cycle analysis (LCA) indicated that feeding MRF decreased feed and total emission intensities, on average, by -2.4% and -2.1%, respectively. In conclusion, these results demonstrate that dietary MRF is an effective nutritional solution for improving broiler performance, an effective alternative to in-feed antibiotic growth promoters, and reduces the environmental impact of poultry meat production.
Collapse
Affiliation(s)
- Saheed A. Salami
- Alltech Biotechnology Centre, Summerhill Road, A86 X006 Dunboyne, Ireland;
| | - Jules Taylor-Pickard
- Solutions Deployment Team, Alltech (UK) Ltd., Ryhall Road, Stamford PE9 1TZ, UK;
| | | | - Colm A. Moran
- Regulatory Affairs Department, Alltech SARL, Rue Charles Amand, 14500 Vire, France
| |
Collapse
|
29
|
Gouda A, Al-Khalaifah H, Al-Nasser A, Kamel NN, Gabr S, Eid KMA. Early Feeding Strategy Mitigates Major Physiological Dynamics Altered by Heat Stress in Broilers. Animals (Basel) 2024; 14:1485. [PMID: 38791702 PMCID: PMC11117284 DOI: 10.3390/ani14101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heat stress is one of the stressors that negatively affect broiler chickens, leading to a reduction in production efficiency and profitability. This reduction affects the economy in general, especially in hot and semi-hot countries. Therefore, improving heat tolerance of broiler chicks is a key to sustained peak performance, especially under adverse environmental heat stress conditions. The present study investigated three early feed withdrawal regimes (FWD) as a potential mitigation for thermal stress exposure. A total of 240 unsexed one-day-old Cobb-500 chicks were randomly recruited to one of four experimental groups using a completely randomized design (10 birds × 6 replicates). The experimental groups included the control group with no feed withdrawal (control), while the other three groups were subjected to early feed withdrawal for either 24 h on the 5th day of age (FWD-24), 12 h on the 3rd and 5th day of age (FWD-12), or 8 h on the 3rd, 4th, and 5th day of age (FWD-8), respectively. Production performance was monitored throughout the experiment. Meanwhile, blood and liver samples were taken at the end of the experimental period to evaluate major physiological dynamic changes. Our findings demonstrated that under chronic heat stress conditions, FWD treatments significantly improved broilers' production performance and enhanced several physiological parameters compared with the control. Serum levels of thyroid hormones were elevated, whereas leptin hormone was decreased in FWD groups compared with the control. Moreover, serum total protein, globulin, and hemoglobin levels were higher, while total cholesterol and uric acid were lower in the FWD groups. Furthermore, FWD groups showed significantly higher antioxidant marker activity with a significantly lower lipid peroxidation level. Immunoglobulin levels, lysozyme, complement factor C3, and liver heat shock protein 70 (HSP70) concentration were also elevated in FWD compared with the control. Also, serum interleukin-1β (IL-1β) and interferon-gamma (IFN-γ) significantly increased with FWD. Based on our findings, early feed withdrawal can be applied as a promising non-invasive nutritional strategy for broilers reared under chronic heat stress conditions. Such a strategy promotes the alleviation of the deleterious effects of heat stress on broiler performance, immunity, and redox status, owing to the onset of physiological adaptation and the development of thermotolerance ability.
Collapse
Affiliation(s)
- Ahmed Gouda
- Department of Animal Production, National Research Center, El Buhouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Hanan Al-Khalaifah
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, Kuwait City 13109, Kuwait; (H.A.-K.); (A.A.-N.)
| | - Afaf Al-Nasser
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat, Kuwait City 13109, Kuwait; (H.A.-K.); (A.A.-N.)
| | - Nancy N. Kamel
- Department of Animal Production, National Research Center, El Buhouth St., Dokki, Giza P.O. Box 12622, Egypt
| | - Sherin Gabr
- Department of Poultry Breeding Research, Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza P.O. Box 12611, Egypt; (S.G.); (K.M.A.E.)
| | - Kamal M. A. Eid
- Department of Poultry Breeding Research, Animal Production Research Institute, Ministry of Agriculture, Dokki, Giza P.O. Box 12611, Egypt; (S.G.); (K.M.A.E.)
| |
Collapse
|
30
|
Mangan M, Siwek M. Strategies to combat heat stress in poultry production-A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:576-595. [PMID: 38152002 DOI: 10.1111/jpn.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
The effects of heat stress (HS) caused by high temperatures continue to be a global concern in poultry production. Poultry birds are homoeothermic, however, modern-day chickens are highly susceptible to HS due to their inefficiency in dissipating heat from their body due to the lack of sweat glands. During HS, the heat load is higher than the chickens' ability to regulate it. This can disturb normal physiological functioning, affect metabolism and cause behavioural changes, respiratory alkalosis and immune dysregulation in birds. These adverse effects cause gut dysbiosis and, therefore, reduce nutrient absorption and energy metabolism. This consequently reduces production performances and causes economic losses. Several strategies have been explored to combat the effects of HS. These include environmentally controlled houses, provision of clean cold water, low stocking density, supplementation of appropriate feed additives, dual and restricted feeding regimes, early heat conditioning and genetic selection of poultry lines to produce heat-resistant birds. Despite all these efforts, HS still remains a challenge in the poultry sector. Therefore, there is a need to explore effective strategies to address this long-lasting problem. The most recent strategy to ameliorate HS in poultry is early perinatal programming using the in ovo technology. Such an approach seems particularly justified in broilers because chick embryo development (21 days) equals half of the chickens' posthatch lifespan (42 days). As such, this strategy is expected to be more efficient and cost-effective to mitigate the effects of HS on poultry and improve the performance and health of birds. Therefore, this review discusses the impact of HS on poultry, the advantages and limitations of the different strategies. Finally recommend a promising strategy that could be efficient in ameliorating the adverse effects of HS in poultry.
Collapse
Affiliation(s)
- Modou Mangan
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| |
Collapse
|
31
|
Chen J, Xu WY, Gu Y, Tang YX, Xu XW, Li XN, Li JL. Inhibition of mtDNA-PRRs pathway-mediated sterile inflammation by astragalus polysaccharide protects against transport stress-induced cardiac injury in chicks. Poult Sci 2024; 103:103638. [PMID: 38579575 PMCID: PMC11001779 DOI: 10.1016/j.psj.2024.103638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Transport stress (TS) not only weakens poultry performance but also affects animal welfare. Additionally, TS can evoke cardiac damage by triggering sterile inflammation in chicks, but the underlying mechanism is not fully understood. Here, we aimed to elucidate how TS induces sterile inflammation and heart injury and to clarify the antagonism effect of astragalus polysaccharides (APS). We randomly divided 60 chicks (one-day-old female) into 5 groups (n = 12): Control_0h (Con_0h) group (chicks were slaughtered at initiation), Control group (stress-free control), TS group (simulated TS exposure for 8 h), TS plus water (TS+W) group, and TS plus APS (TS+APS) group. Before simulation transport, the chicks of TS+W and TS+APS groups were, respectively, dietary with 100 μL of water or APS (250 μg/mL). H&E staining was employed for cardiac histopathological observation. ELISA assay was used to measure oxidative stress marker levels (GSH, GPX, GST, and MDA). A commercial kit was used to isolate the mitochondrial portion, and qRT-PCR was employed to measure the mitochondrial DNA (mtDNA) levels. Furthermore, we evaluated the activity of mtDNA-mediated NF-κB, NLRP3 inflammasome, and cGAS-STING inflammatory pathways and the expression of downstream inflammatory factors by Western Blotting or qRT-PCR. Our findings revealed that APS notably relieved TS-induced myocardial histopathological lesions and infiltrations. Likewise, the decrease in proinflammatory factors (TNF-α, IL-1β, and IL-6) and IFN-β by APS further supported this result. Meanwhile, TS caused severe oxidative stress in the chick heart, as evidenced by decreased antioxidant enzymes and increased MDA. Importantly, APS prevented mtDNA stress and leakage by reducing oxidative stress. Interestingly, TS-induced mtDNA leakage caused a series of inflammation events via mtDNA-PRRs pathways, including TLR21-NF-κB, NLRP3 inflammasome, and cGAS-STING signaling. Encouragingly, all these adverse changes related to inflammation events induced by mtDNA-PRRs activation were all relieved by APS treatment. In summary, our findings provide the first evidence that inhibition of mtDNA-PRRs pathway-mediated sterile inflammation by APS could protect against TS-induced cardiac damage in chicks.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Wang-Ye Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yuan Gu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiang-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
32
|
Eslamizad M, Albrecht D, Kuhla B, Koch F. Cellular and mitochondrial adaptation mechanisms in the colon of lactating dairy cows during hyperthermia. J Dairy Sci 2024; 107:3292-3305. [PMID: 38056565 DOI: 10.3168/jds.2023-24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Heat stress causes barrier dysfunction and inflammation of the small intestine of several species. However, less is known about the molecular and cellular mechanisms underlying the response of the bovine large intestine to hyperthermia. We aimed to identify changes in the colon of dairy cows in response to constant heat stress using a proteomic approach. Eighteen lactating Holstein dairy cows were kept under constant thermoneutral conditions (16°C and 68% relative humidity [RH]; temperature-humidity index [THI] = 60) for 6 d (period 1) with free access to feed and water. Thereafter, 6 cows were equally allocated to (1) thermoneutral condition with ad libitum feeding (TNAL; 16°C, RH = 68%, THI = 60), (2) heat stress condition (HS; 28°C, RH = 50%, THI = 76) with ad libitum feeding, or (3) pair-feeding at thermoneutrality (TNPF; 16°C, RH = 68%, THI = 60) for another 7 d (period 2). Rectal temperature, milk yield, dry matter and water intake were monitored daily. Then, cows were slaughtered and colon mucosa samples were taken for proteomic analysis. Physiological data were analyzed by ANOVA and colon proteome data were processed using DESeq2 package in R. Rectal temperature was significantly higher in HS than in TNPF and TNAL cows in period 2. Proteomic analysis revealed an enrichment of activated pathways related to colonic barrier function and inflammation, heat shock proteins, AA metabolism, reduced overall protein synthesis rate, and post-transcriptional regulation induced by heat stress. Further regulations were found for enzymes of the tricarboxylic acid cycle and components of the mitochondrial electron transport chain, presumably to reduce the generation of reactive oxygen species, maintain cellular ATP levels, and prevent apoptosis in the colon of HS cows. These results highlight the cellular, extracellular, and mitochondrial adaptations of the colon during heat stress and suggest a dysfunction of the hindgut barrier integrity potentially resulting in a "leaky" colon.
Collapse
Affiliation(s)
- Mehdi Eslamizad
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, 17489 Greifswald, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany
| | - Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany.
| |
Collapse
|
33
|
White AR. The firestorm within: A narrative review of extreme heat and wildfire smoke effects on brain health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171239. [PMID: 38417511 DOI: 10.1016/j.scitotenv.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Climate change is generating increased heatwaves and wildfires across much of the world. With these escalating environmental changes comes greater impacts on human health leading to increased numbers of people suffering from heat- and wildfire smoke-associated respiratory and cardiovascular impairment. One area of health impact of climate change that has received far less attention is the effects of extreme heat and wildfire smoke exposure on human brain health. As elevated temperatures, and wildfire-associated smoke, are increasingly experienced simultaneously over summer periods, understanding this combined impact is critical to management of human health especially in the elderly, and people with dementia, and other neurological disorders. Both extreme heat and wildfire smoke air pollution (especially particulate matter, PM) induce neuroinflammatory and cerebrovascular effects, oxidative stress, and cognitive impairment, however the combined effect of these impacts are not well understood. In this narrative review, a comprehensive examination of extreme heat and wildfire smoke impact on human brain health is presented, with a focus on how these factors contribute to cognitive impairment, and dementia, one of the leading health issues today. Also discussed is the potential impact of combined heat and wildfire smoke on brain health, and where future efforts should be applied to help advance knowledge in this rapidly growing and critical field of health research.
Collapse
Affiliation(s)
- Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD, Australia.
| |
Collapse
|
34
|
Kim HR, Ryu C, Lee SD, Cho JH, Kang H. Effects of Heat Stress on the Laying Performance, Egg Quality, and Physiological Response of Laying Hens. Animals (Basel) 2024; 14:1076. [PMID: 38612315 PMCID: PMC11011014 DOI: 10.3390/ani14071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
As high temperature and relative humidity (RH) are the main environmental factors causing heat stress, the temperature-humidity index (THI) serves as an indicator of heat stress in livestock animals. This study aimed to determine the effects of heat stress on the laying performance, physiological responses, egg quality, and blood profile of laying hens by subjecting them to environmental conditions with varying THI levels (68-85) for 28 days. The indicators of laying performance, such as feed intake (-30%) and egg production rate (-11%), significantly decreased in the hens exposed to severe heat stress (33 °C, 66% RH) compared to those exposed to thermoneutral conditions (21 °C, 68% RH). Moreover, severe heat stress reduced the egg yolk color, eggshell thickness and strength, and Haugh units of the eggs produced by the laying hens. Furthermore, a significant increase in serum K+ and a decrease in Na+ levels were observed in the hens subjected to severe heat stress compared with those under thermoneutral conditions. Our results indicate that heat stress alters the physiological responses and metabolism of laying hens, resulting in a lower egg quality and production rate.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.-R.K.); (C.R.); (S.-D.L.)
| | - Chaehwa Ryu
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.-R.K.); (C.R.); (S.-D.L.)
| | - Sung-Dae Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.-R.K.); (C.R.); (S.-D.L.)
| | - Jin-Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Hwanku Kang
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (H.-R.K.); (C.R.); (S.-D.L.)
| |
Collapse
|
35
|
Oretomiloye F, Adewole D. Exploring the modulatory effects of brown seaweed meal and extracts on intestinal microbiota and morphology of broiler chickens challenged with heat stress. Poult Sci 2024; 103:103562. [PMID: 38417338 PMCID: PMC10909895 DOI: 10.1016/j.psj.2024.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Brown seaweed (Ascophyllum nodosum) is known for its prebiotic roles and can improve animal intestinal health by enhancing the growth of beneficial microbes and inhibiting pathogenic ones. However, the gut health-modulatory roles of brown seaweed on chickens challenged with heat stress (HS) are rarely studied. The current study examined the effects of brown seaweed meal (SWM) and extract (SWE) on the ceca microbiota and small intestinal morphology of chickens challenged or unchallenged with HS. Three hundred and thirty-six 1-day-old Ross 308 broiler chicks were randomly assigned to either a thermoneutral (TN; 24 ± 1°C); or HS room (HS; 32-34°C, 8 h/d from d 21 to 27). All birds in each room were randomly allotted to 4 treatments - control (CON), CON + 1 mL/L seaweed extract (SWE) in drinking water, CON + 2 mL/L SWE in drinking water, and CON + 2% seaweed meal (SWM) in feed and raised for 28 d. On d 14 and 28, 12 and 24 birds per treatment group, respectively, were euthanized to collect the ceca content for gut microbiota analysis and small intestinal tissues for morphological examination. On d 14, 2% SWM increased (P = 0.047) the relative abundance of cecal Fecalibacterium and all brown seaweed treatments improved jejunal villus height (VH) and VH:CD compared to the CON diet. On d 28, HS significantly reduced (P < 0.05) ileal VH, VW, and VH:CD, and duodenal VH and VH:CD. Among the HS group, 2% SWM and 2 mL/L SWE significantly increased (P < 0.05) the relative abundance of Lactobacillus, Sellimonas, and Fournierella, compared to the CON diet. HS birds fed with 2% SWM had higher ileal VH and VH:CD compared to other treatments. In summary, SWM and SWE enhanced the abundance of beneficial microbes and improved small intestinal morphology among HS chickens. This implies that seaweed could potentially alleviate HS-induced intestinal impairment in chickens.
Collapse
Affiliation(s)
- Fisayo Oretomiloye
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, B2N 5E3, Canada; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada.
| |
Collapse
|
36
|
Reisinger N, Doupovec B, Czabany T, Van Immerseel F, Croubels S, Antonissen G. Endotoxin Translocation Is Increased in Broiler Chickens Fed a Fusarium Mycotoxin-Contaminated Diet. Toxins (Basel) 2024; 16:167. [PMID: 38668592 PMCID: PMC11053883 DOI: 10.3390/toxins16040167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024] Open
Abstract
Broiler chickens in livestock production face numerous challenges that can impact their health and welfare, including mycotoxin contamination and heat stress. In this study, we aimed to investigate the combined effects of two mycotoxins, deoxynivalenol (DON) and fumonisins (FBs), along with short-term heat stress conditions, on broiler gut health and endotoxin translocation. An experiment was conducted to assess the impacts of mycotoxin exposure on broilers, focusing on intestinal endotoxin activity, gene expression related to gut barrier function and inflammation, and the plasma concentration of the endotoxin marker 3-OH C14:0 either at thermoneutral conditions or short-term heat stress conditions. Independently of heat stress, broilers fed DON-contaminated diets exhibited reduced body weight gain during the starter phase (Day 1-12) compared to the control group, while broilers fed FB-contaminated diets experienced decreased body weight gain throughout the entire trial period (Day 1-24). Furthermore, under thermoneutral conditions, broilers fed DON-contaminated diets showed an increase in 3-OH C14:0 concentration in the plasma. Moreover, under heat stress conditions, the expression of genes related to gut barrier function (Claudin 5, Zonulin 1 and 2) and inflammation (Toll-like receptor 4, Interleukin-1 beta, Interleukin-6) was significantly affected by diets contaminated with mycotoxins, depending on the gut segment. This effect was particularly prominent in broilers fed diets contaminated with FBs. Notably, the plasma concentration of 3-OH C14:0 increased in broilers exposed to both DON- and FB-contaminated diets under heat stress conditions. These findings shed light on the intricate interactions between mycotoxins, heat stress, gut health, and endotoxin translocation in broiler chickens, highlighting the importance of understanding these interactions for the development of effective management strategies in livestock production to enhance broiler health and welfare.
Collapse
Affiliation(s)
- Nicole Reisinger
- dsm-firmenich Animal Nutrition and Health R&D Center Tulln, Technopark 1, 3430 Tulln, Austria; (B.D.); (T.C.)
| | - Barbara Doupovec
- dsm-firmenich Animal Nutrition and Health R&D Center Tulln, Technopark 1, 3430 Tulln, Austria; (B.D.); (T.C.)
| | - Tibor Czabany
- dsm-firmenich Animal Nutrition and Health R&D Center Tulln, Technopark 1, 3430 Tulln, Austria; (B.D.); (T.C.)
| | - Filip Van Immerseel
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.V.I.); (S.C.); (G.A.)
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.V.I.); (S.C.); (G.A.)
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (F.V.I.); (S.C.); (G.A.)
- Chair Poultry Health Sciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
37
|
Zhang H, Pertiwi H, Hou Y, Majdeddin M, Michiels J. Protective effects of Lactobacillus on heat stress-induced intestinal injury in finisher broilers by regulating gut microbiota and stimulating epithelial development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170410. [PMID: 38280596 DOI: 10.1016/j.scitotenv.2024.170410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Heat stress (HS) is a critical challenge in broilers due to the high metabolic rate and lack of sweat glands. Results from this study show that implementing a cyclic chronic HS (34 °C for 7 h/d) to finisher broilers decreased the diversity of cecal microbiota and impaired intestinal barrier, resulting in gut leak and decreased body weight (both P < 0.05). These alterations might be related to inflammatory outbursts and the retarded proliferation of intestinal epithelial cells (IECs) according to the transcriptome analysis. Considering the potential beneficial properties of Lactobacillus on intestinal development and function, the protective effects of Lactobacillus rhamnosus (L. rhamnosus) on the intestine were investigated under HS conditions in this study. Orally supplemented L. rhamnosus improved the composition of cecal microbiota and upregulated the transcription of tight junction proteins in both duodenum and jejunum, with a consequent suppression in intestinal gene expressions of pro-inflammatory cytokines and facilitation in digestive capability. Meanwhile, the jejunal villus height of the birds that received L. rhamnosus was significantly higher compared with those treated with the broth (P < 0.05). The expression abundances of genes related to IECs proliferation and differentiation were increased by L. rhamnosus, along with upregulated mRNA levels of Wnt3a and β-catenin in jejunum. In addition, L. rhamnosus attenuated enterocyte apoptosis as indicated by decreased caspase-3 and caspase-9 gene expressions. The results indicated that oral administration with L. rhamnosus mitigated HS-induced dysfunction by promoting intestinal development and epithelial maturation in broilers and that the effects of L. rhamnosus might be dependent of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium.
| | - Herinda Pertiwi
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
38
|
Zhou E, Zhang L, He L, Xiao Y, Zhang K, Luo B. Cold exposure, gut microbiota and health implications: A narrative review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170060. [PMID: 38242473 DOI: 10.1016/j.scitotenv.2024.170060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Temperature has been recognized as an important environmental factor affecting the composition and function of gut microbiota (GM). Although research on high-temperature impacts has been well studied, knowledge about the effect of cold exposure on GM remains limited. This narrative review aims to synthesize the latest scientific findings on the impact of cold exposure on mammalian GM, and its potential health implications. Chronic cold exposure could disrupt the α-diversity and the composition of GM in both experimental animals and wild-living hosts. Meanwhile, cold exposure could impact gut microbial metabolites, such as short-chain fatty acids. We also discussed plausible biological pathways and mechanisms by which cold-induced changes may impact host health, including metabolic homeostasis, fitness and thermogenesis, through the microbiota-gut-brain axis. Intriguingly, alterations in GM may provide a tool for favorably modulating the host response to the cold temperature. Finally, current challenges and future perspectives are discussed, emphasizing the need for translational research in humans. GM could be manipulated by utilizing nutritional strategies, such as probiotics and prebiotics, to deal with cold-related health issues and enhance well-being in populations living or working in cold environments.
Collapse
Affiliation(s)
- Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Li He
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ya Xiao
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
39
|
Yang J, Liu W, Han X, Hao X, Yao Q, Du W. Gut microbiota modulation enhances the immune capacity of lizards under climate warming. MICROBIOME 2024; 12:37. [PMID: 38388458 PMCID: PMC10882899 DOI: 10.1186/s40168-023-01736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Host-microbial interactions are expected to affect species' adaptability to climate change but have rarely been explored in ectothermic animals. Some studies have shown that short-term warming reduced gut microbial diversity that could hamper host functional performance. RESULTS However, our longitudinal experiments in semi-natural conditions demonstrated that warming decreased gut microbiota diversity at 2 months, but increased diversity at 13 and 27 months in a desert lizard (Eremias multiocellata). Simultaneously, long-term warming significantly increased the antibacterial activity of serum, immune responses (higher expression of intestinal immune-related genes), and the concentration of short-chain fatty acids (thereby intestinal barrier and immunity) in the lizard. Fecal microbiota transplant experiments further revealed that increased diversity of gut microbiota significantly enhanced antibacterial activity and the immune response of lizards. More specifically, the enhanced immunity is likely due to the higher relative abundance of Bacteroides in warming lizards, given that the bacteria of Bacteroides fragilis regulated IFN-β expression to increase the immune response of lizards under a warming climate. CONCLUSIONS Our study suggests that gut microbiota can help ectotherms cope with climate warming by enhancing host immune response, and highlights the importance of long-term studies on host-microbial interactions and their biological impacts.
Collapse
Affiliation(s)
- Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingzhi Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Wildlife and Protected Areas, Northeast Forestry University, Harbin, 150040, China
| | - Xin Hao
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural, School of Rural Revitalization), Hainan University, Danzhou, 571737, China
| | - Qibin Yao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
40
|
Al Sulaiman AR, Abudabos AM, Alhotan RA. Protective influence of supplementary betaine against heat stress by regulating intestinal oxidative status and microbiota composition in broiler chickens. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:279-288. [PMID: 38047943 DOI: 10.1007/s00484-023-02589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 09/16/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
To assess the impact of supplementing betaine (BT) under heat stress (HS) conditions on broiler performance and intestinal health from 21 to 42 days of age, a total of 150 male Ross 308 broilers were indiscriminately allotted to 3 treatments with 10 replications of 5 birds each. The control (CON) group was given a basal ration and accommodated at a thermoneutral condition (22 ± 1 °C), whereas the HS and HS + BT groups were raised under cyclic HS (33 ± 1 °C for 8 h and 22 ± 1 °C for 16 h per day) and received the basal ration without or with 1000 mg/kg BT, respectively. The HS reduced average daily gain (ADG); average daily feed intake; villus height (VH); VH to crypt depth (CD) ratio (VCR); activities of trypsin, lipase, glutathione peroxidase (GPX), and catalase; and enumeration of Lactobacillus and Bifidobacterium (P < 0.05) and augmented feed conversion ratio (FCR), CD, malondialdehyde (MDA) accumulation, and enumeration of Escherichia coli, Clostridium, and coliforms (P < 0.05). Conversely, BT supplementation heightened ADG, VH, VCR, trypsin activity, GPX activity, and populations of Lactobacillus and Bifidobacterium (P < 0.05) and lowered FCR, MDA accumulation, and Clostridium population (P < 0.05). Furthermore, the FCR value, trypsin and GPX activities, MDA content, and Bifidobacterium and Clostridium populations in the HS + BT group were nearly equivalent to those in the CON group. To conclude, feeding BT under HS conditions could improve broiler performance through improving intestinal health by specifically mitigating oxidative damage and enhancing the colonization of beneficial bacteria.
Collapse
Affiliation(s)
- Ali R Al Sulaiman
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, 11442, Saudi Arabia.
| | - Ala M Abudabos
- Department of Agriculture, School of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Drive, Lorman, Mississippi, 39096-7500, USA
| | - Rashed A Alhotan
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
41
|
Mayorga EJ, Freestone AD, Rudolph TE, Roths M, Abeyta MA, Rodríguez-Jiménez S, Goetz BM, Opgenorth J, Selsby JT, Baumgard LH. Therapeutic effects of mitoquinol during an acute heat stress challenge in growing gilts. J Anim Sci 2024; 102:skae250. [PMID: 39212947 PMCID: PMC11439150 DOI: 10.1093/jas/skae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Study objectives were to evaluate the effects of mitoquinol (MitoQ) on production parameters, gastrointestinal tract (GIT; stomach and small and large intestines) weight, and circulating leukocytes during a 24-h acute heat stress (HS) challenge. Crossbred gilts [n = 32; 49.1 ± 2.4 kg body weight (BW)] were blocked by BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCON), 2) TN and MitoQ (n = 8; TNMitoQ), 3) HS control (n = 8; HSCON), or 4) HS and MitoQ (n = 8; HSMitoQ). Pigs were moved into individual pens and allowed to acclimate for 6 d. The study consisted of 2 experimental periods (P). During P1 (2 d), all pigs remained in TN conditions (20.6 ± 1.5 °C) and were fed ad libitum. During P2 (24 h), pigs were fed ad libitum and exposed to either TN or constant HS (37.3 ± 1.3 °C). Mitoquinol (40 mg/d) was orally administered twice daily (0700 and 1800 hours) during P1 and P2. As expected, pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate (+1.5 °C, +8.7 °C, and +86 bpm, respectively; P < 0.01) compared to their TN counterparts. Compared to TN, HS pigs had decreased feed intake (67%; P < 0.01) and significant BW loss (+1.5 vs. -1.9 kg, respectively; P < 0.01). Total GIT weight was decreased in HS relative to TN pigs (P < 0.01), and this was influenced by decreased luminal contents (2.43 vs. 3.26 kg, respectively; P < 0.01) and reduced empty GIT mass (3.21 vs. 3.48 kg, respectively; P = 0.03). Stomach contents remained similar between TN and HS pigs (P > 0.54) but tended to increase in MitoQ relative to CON pigs (0.90 vs. 0.63 kg, respectively; P = 0.08). Stomach content as a percentage of the previous 24 h feed intake was increased in HS compared to the TN controls (93% vs. 31%; P < 0.01). In contrast, small and large intestinal contents were decreased in HS compared to TN pigs (23% and 49%, respectively; P < 0.01). Liver weight decreased in HS relative to TN pigs (1.15 vs. 1.22 kg, respectively; P = 0.02), and was decreased in MitoQ compared to CON pigs (1.13 vs. 1.24 kg; P < 0.01). Circulating lymphocytes tended to be decreased in HS relative to TN pigs (16%; P = 0.07). In summary, acute HS increased all body temperature indices, negatively influenced animal performance, and differentially altered GIT motility as evidenced by decreased gastric emptying and increased intestinal transit. However, MitoQ supplementation did not appear to ameliorate these effects.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Alyssa D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Julie Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
42
|
Yang C, Luo P, Yang YT, Fu XL, Li BX, Shen X, Xu DN, Huang YM, Tian YB, Liu WJ. Drp1 regulated PINK1-dependent mitophagy protected duck follicular granulosa cells from acute heat stress injury. Poult Sci 2024; 103:103247. [PMID: 37980731 PMCID: PMC10685035 DOI: 10.1016/j.psj.2023.103247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023] Open
Abstract
The mitochondrial quality control system is crucial in maintaining cellular homeostasis during environmental stress. Granulosa cells are the main cells secreting steroid hormones, and mitochondria are the key organelles for steroid hormone synthesis. The impact of the mitochondrial quality control system on granulosa cells' steroid hormone synthesis and survival under heat stress is still unclear. Here, we showed that acute heat stress induces mitochondrial damage and significantly increases the number of mitophagy-like vesicles in the cytoplasm of duck ovary granulosa cells at the ultra-structural level. Meanwhile, we also found heat stress significantly increased mitochondrial fission and mitophagy-related protein expression levels both in vivo and in vitro. Furthermore, by confocal fluorescence analysis, we discovered that LC3 was distributed spot-like manner near the nucleus in the heat treatment group, and the LC3 spots and lysosomes were colocalized with Mito-Tracker in the heat treatment group. We further detected the mitophagy-related protein in the cytoplasm and mitochondria, respectively. Results showed that the PINK1 protein was significantly increased both in cytoplasm and mitochondria, while the LC3-Ⅱ/LC3-Ⅰ ratio increase only occurred in mitochondrial. In addition, the autophagy protein induced by acute heat treatment was effectively inhibited by the mitophagy inhibitor CysA. Finally, we demonstrated that the alteration of cellular mitophagy by siRNA interference with Drp1 and PINK1 inhibited the steroid synthesis of granulosa cells and increased cell apoptosis. Study provides strong evidence that the Drp1 regulated PINK1-dependent mitophagy pathway protects follicular granulosa cells from acute heat stress-induced injury.
Collapse
Affiliation(s)
- Chen Yang
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Pei Luo
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | | | - Xin-Liang Fu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Bing-Xin Li
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Xu Shen
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Dan-Ning Xu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Yun-Mao Huang
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Yun-Bo Tian
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China
| | - Wen-Jun Liu
- Zhongkai University of Agriculture and Engineering, Guangdong, Guangzhou 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangdong, Guangzhou 510225, China.
| |
Collapse
|
43
|
Zhang H, Pertiwi H, Majdeddin M, Michiels J. Mucosa-associated lymphoid tissue lymphoma translocation protein 1 inhibition alleviates intestinal impairment induced by chronic heat stress in finisher broilers. Poult Sci 2024; 103:103252. [PMID: 37980762 PMCID: PMC10685026 DOI: 10.1016/j.psj.2023.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023] Open
Abstract
Heat stress (HS) in poultry has deleterious effects on intestinal development and barrier function, along with inflammatory outbursts. In the present study, chronic HS reduced body weight of broilers and activated mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) /nuclear factor kappa B (NF-κB) signaling pathways to elicit the inflammatory cytokine response in jejunum. Subsequently, this study investigated the protective effects of the Malt1 inhibitor on the intestine of broilers under HS conditions. The 21-day-old male broilers were allocated to 8 pens housed in HS room (34°C for 7 h/d) until 28 d of age. During this period, 4 birds were selected from each heat-stressed pen and received intraperitoneal injection of 20 mg/kg body weight Mepazine (a Malt1 inhibitor) or the equivalent volume of phosphate buffer saline (PBS) every other day. When compared to PBS broilers, birds received Mepazine injection exhibited increased relative weight and higher villus height in jejunum (both P < 0.05). Mepazine treatment also increased (P < 0.05) the mRNA of zonula occludens-1 (ZO-1), claudin-1, and cadherin 1 of jejunum, which was companied by the reduced caspase-3 transcription under HS condition. Meanwhile, the gene expression levels of toll-like receptor 4 (TLR4), Malt1, NF-κB, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) in the jejunum were significantly downregulated by Mepazine administration (P < 0.05). Although there were no significant differences in the relative weight of the thymus and bursa, the transcription levels of T helper 1 (Th1)- and Th17-related cytokines were lower in thymus of birds injected with Mepazine. The cytokines of Treg cytokine transforming growth factor beta (TGF-β) and forkhead box protein P3 (Foxp3) in both the thymus and bursa were not influenced. These results suggest that inhibition of Malt1 protease activity can protect intestinal integrity by promoting the production of tight junction proteins and attenuating NF-κB-mediated intestinal inflammation response under HS conditions.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium.; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Herinda Pertiwi
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Maryam Majdeddin
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium..
| |
Collapse
|
44
|
Yang YY, An YC, Zhang SY, Huang MY, Ye XQ, Zhao ZH, Liu WC. Biogenic Selenium Nanoparticles Synthesized Using Alginate Oligosaccharides Attenuate Heat Stress-Induced Impairment of Breast Meat Quality via Regulating Oxidative Stress, Metabolome and Ferroptosis in Broilers. Antioxidants (Basel) 2023; 12:2032. [PMID: 38136152 PMCID: PMC10740886 DOI: 10.3390/antiox12122032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium (Se) is an indispensable trace element with versatile functions in antioxidant defense in poultry. In our previous study, we synthesized a novel type of biogenic selenium nanoparticle based on alginate oligosaccharides (SeNPs-AOS), and found that the particles are sized around 80 nm with an 8% Se content, and the dietary addition of 5 mg/kg of SeNPs-AOS could effectively alleviate the deleterious effects of heat stress (HS) in broilers, but it is still unclear whether SeNPs-AOS can improve the meat quality. Therefore, the aim of this study was to evaluate the protective effects of SeNPs-AOS on breast meat quality in heat-stressed broilers, and explore the relevant mechanisms. Birds at the age of 21 days were randomly divided into four groups with six replicates per group (eight broilers per replicate) according to a 2 × 2 experimental design, using HS (33 ± 2 °C, 10 h/day vs. thermoneutral, TN, under 23 ± 1.5 °C) and SeNPs-AOS (5 mg/kg feed vs. no inclusion) as variables. The results showed that dietary SeNPs-AOS decreased the cooking loss (p < 0.05), freezing loss (p < 0.001), and shear force (p < 0.01) of breast muscle in heat-stressed broilers. The non-targeted metabolomics analysis of the breast muscle identified 78 differential metabolites between the HS and HS + SeNPs-AOS groups, mainly enriched in the arginine and proline metabolism, β-alanine metabolism, D-arginine and D-ornithine metabolism, pantothenate, and CoA biosynthesis pathways (p < 0.05). Meanwhile, supplementation with SeNPs-AOS increased the levels of the total antioxidant capacity (T-AOC), the activities of catalase (CAT) and glutathione peroxidase (GSH-Px), and decreased the content of malondialdehyde (MDA) in the breast muscle (p < 0.05) in broilers under HS exposure. Additionally, SeNPs-AOS upregulated the mRNA expression of CAT, GPX1, GPX3, heme oxygenase-1 (HO-1), masculoaponeurotic fibrosarcoma G (MafG), MafK, selenoprotein W (SELENOW), SELENOK, ferritin heavy polypeptide-1 (FTH1), Ferroportin 1 (Fpn1), and nuclear factor erythroid 2-related factor 2 (Nrf2) (p < 0.05), while it downregulated Kelch-like ECH-associated pro-36 tein 1 (Keap1) and prostaglandin-endoperoxide Synthase 2 (PTGS2) expression (p < 0.05) in broilers under HS. These findings demonstrated that the dietary addition of SeNPs-AOS mitigated HS-induced oxidative damage and metabolite changes in the breast muscle of broilers, which may be related to the regulation of the Nrf2 signaling pathway and selenoprotein synthesis. In addition, SeNPs-AOS upregulated the breast muscle gene expression of anti-ferroptosis-related molecules in broilers under HS, suggesting that SeNPs-AOS can be used as novel Se supplements against HS in broilers.
Collapse
Affiliation(s)
- Yu-Ying Yang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Yu-Chen An
- School of Computer Science and Engineering, Yangjiang Campus, Guangdong Ocean University, Yangjiang 529500, China;
| | - Shu-Yue Zhang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Meng-Yi Huang
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Xue-Qing Ye
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.-Y.Y.); (S.-Y.Z.); (M.-Y.H.); (X.-Q.Y.)
| |
Collapse
|
45
|
Fang M, Lei Z, Ruilin M, Jing W, Leqiang D. High temperature stress induced oxidative stress, gut inflammation and disordered metabolome and microbiome in tsinling lenok trout. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115607. [PMID: 37862746 DOI: 10.1016/j.ecoenv.2023.115607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Tsinling lenok trout (Brachymystax lenok tsinlingensis Li) is a species of cold-water salmon that faces serious challenges due to global warming. High temperature stress has been found to damage the gut integrity of cold-water fish, impacting their growth and immunity. However, limited research exists on the causal relationship between gut microbial disturbance and metabolic dysfunction in cold-water fish induced by high temperature stress. To address this gap, we conducted a study to investigate the effects of high temperature stress (24 °C) on the gut tissue structure, antioxidant capacity, gut microorganisms, and metabolome reactions of tsinling lenok trout. Our analysis using 16 S rDNA gene sequencing revealed significant changes in the gut microbial composition and metabolic profile. Specifically, the abundance of Firmicutes and Gemmatimonadetes decreased significantly with increasing temperature, while the abundance of Bacteroidetes increased significantly. Metabolic analysis revealed a significant decrease in the abundance of glutathione, which is synthesized from glutamate and glycine, under high temperature stress. Additionally, there was a notable reduction in the levels of adenosine, inosine, xanthine, guanosine, and deoxyguanosine, which are essential for DNA/RNA synthesis. Conversely, there was a significant increase in the abundance of D-glucose 6 P. Furthermore, high temperature stress adversely affects intestinal structure and barrier function. Our findings provide valuable insights into the mechanism of high temperature stress in cold-water fish and serve as a foundation for future research aimed at mitigating the decline in production performance caused by such stress.
Collapse
Affiliation(s)
- M Fang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou, Tianshui 741000, Gansu, PR China.
| | - Z Lei
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou, Tianshui 741000, Gansu, PR China
| | - M Ruilin
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou, Tianshui 741000, Gansu, PR China
| | - W Jing
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou, Tianshui 741000, Gansu, PR China
| | - D Leqiang
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou, Tianshui 741000, Gansu, PR China
| |
Collapse
|
46
|
das D Ribeiro JC, Drumond MM, Mancha-Agresti P, Guimarães JPF, da C Ferreira D, Martins MIA, de M Murata PM, de Carvalho AC, Pereira RT, Ribeiro Júnior V, de C Azevedo VA, de P Naves L. Diets Supplemented with Probiotics Improve the Performance of Broilers Exposed to Heat Stress from 15 Days of Age. Probiotics Antimicrob Proteins 2023; 15:1327-1341. [PMID: 36066817 DOI: 10.1007/s12602-022-09989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/10/2023]
Abstract
The poultry sector demands alternative additives to antibiotics that can be used as performance enhancers. Therefore, this experiment was conducted to evaluate the probiotics effects on performance, intestinal health, and redox status of 720 broilers exposed to heat stress from 15 days of age. Eight dietary treatments were evaluated: basal diet (BD) without antibiotic and probiotic (T1); BD supplemented with antibiotic zinc bacitracin (T2), BD supplemented with commercial probiotic of Bacillus subtilis DSM 17,299 (T3), BD supplemented with non-commercial probiotic of Lactococcus lactis NCDO 2118, Lactobacillus delbrueckii CNRZ 327, Escherichia coli CEC15, or Saccharomyces boulardii (T4 to T7), and BD simultaneously supplemented with the four non-commercial probiotics (T8). Feed intake, weight gain, and feed conversion were determined in the period from 1 to 42 days of age. Carcass and cuts yield, abdominal fat deposition, cloacal temperature, weight and length of intestine, activity of myeloperoxidase and eosinophilic peroxidase enzymes in the jejunum, jejunal histomorphometry, relative gene expression in the jejunum (occludin, zonulin, interleukin-8, cholecystokinin, ghrelin, and heat shock protein-70), and liver (heat shock protein-70), in addition to malondialdehyde level and superoxide dismutase activity in the intestine, liver, and blood, were measured in broilers at 42 days old. As main results, broilers fed T1 diet exhibited lower weight gain (3.222 kg) and worse feed conversion (1.70 kg/kg). However, diets containing non-commercial probiotics resulted in up to 3.584 kg of weight gain and improved feed conversion by up to 10%, similar to that observed for broilers of the T2 and T3 groups.
Collapse
Affiliation(s)
- Jéssica C das D Ribeiro
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Mariana M Drumond
- Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Minas Gerais, Belo Horizonte, 30421-169, Brazil
| | - Pamela Mancha-Agresti
- Departamento de Ciências Biológicas, Centro Federal de Educação Tecnológica de Minas Gerais, Minas Gerais, Belo Horizonte, 30421-169, Brazil
| | - João P F Guimarães
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Daiane da C Ferreira
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Maria I A Martins
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Pedro M de M Murata
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Andressa C de Carvalho
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Raquel T Pereira
- Departamento de Zootecnia, Universidade de São Paulo-ESALQ, Piracicaba, São Paulo, 13418-900, Brazil
| | - Valdir Ribeiro Júnior
- Departamento de Zootecnia, Universidade Federal de Sergipe, Nossa Senhora da Glória, Sergipe, 49680-000, Brazil
| | - Vasco A de C Azevedo
- Departamento de Genética, Universidade Federal de Minas Gerais, Minas Gerais, Ecologia e Evolução, Belo Horizonte, 31270-901, Brazil
| | - Luciana de P Naves
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
47
|
Al-Qaisi M, Abdelqader A, Abuajamieh M, Abedal-Majed MA, Al-Fataftah ARA. Impacts of dietary betaine on rectal temperature, laying performance, metabolism, intestinal morphology, and follicular development in heat-exposed laying hens. J Therm Biol 2023; 117:103714. [PMID: 37740994 DOI: 10.1016/j.jtherbio.2023.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
This experiment assessed the influences of betaine (BET; 2000 mg/kg) on rectal temperature (Tr), laying performance, metabolism, intestinal morphology, and follicular development in heat-stressed hens. One-hundred and twenty-eight Hisex white hens (42wks) were housed in 4 battery cages (8 pens/cage; 4 hens/pen) and divided into 4 treatments: 1) thermoneutral (TN) environments and a control diet (TNCON), 2) TN and a diet accompanied with BET (TNBET), 3) heat stress (HS) environments and a control diet (HSCON), or 4) HS and a diet accompanied with BET (HSBET). Following acclimation (15d), hens of TNCON and TNBET remained in TN, while HSCON and HSBET hens were subjected to cyclical HS (5d; 16.9-37.5 °C). Cyclical HS increased Tr compared with TN hens (1.6 °C; P < 0.01), but supplemental BET decreased Tr (0.4 °C; P < 0.01). Relative to TN treatments, HS declined egg production, weight, and mass (18, 4.2, and 26%, respectively; P < 0.01), but BET ameliorated the egg production and mass (13.1 and 16.2%, respectively; P < 0.01). Compared with HSCON, feed conversion ratio and survival rate were improved in HSBET hens (12.3 and 6.25%, respectively; P ≥ 0.03). Relative to TN hens, HS elevated glucose and blood urea nitrogen (BUN) levels (15 and 4%, respectively; P ≤ 0.04). Supplemental BET decreased BUN levels (6.6%; P < 0.01) relative to HSCON hens. Furthermore, HS diminished jejunal villus height and villus surface area (∼27 and 35%, respectively; P < 0.01) relative to TN hens but were unaltered by BET supplementation. Relative to TN hens, HS decreased oviduct's weight, ovary's length, and ovarian primordial and primary follicles count (18, 23, 34 and 44%, respectively; P < 0.01) and caused fibrosis in shell gland (3-fold; P = 0.05). Collectively, HS impaired productivity, metabolism, intestinal architecture, and reproductive efficiency. Feeding BET reduced Tr, improved laying performance, and slightly altered metabolism but did not affect intestinal and follicular measurements in heat-stressed hens.
Collapse
Affiliation(s)
- Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, 11942, Jordan.
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Mohannad Abuajamieh
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | - Mohamed A Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, 11942, Jordan
| | | |
Collapse
|
48
|
Onagbesan OM, Uyanga VA, Oso O, Tona K, Oke OE. Alleviating heat stress effects in poultry: updates on methods and mechanisms of actions. Front Vet Sci 2023; 10:1255520. [PMID: 37841463 PMCID: PMC10569619 DOI: 10.3389/fvets.2023.1255520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heat stress is a threat that can lead to significant financial losses in the production of poultry in the world's tropical and arid regions. The degree of heat stress (mild, moderate, severe) experienced by poultry depends mainly on thermal radiation, humidity, the animal's thermoregulatory ability, metabolic rate, age, intensity, and duration of the heat stress. Contemporary commercial broiler chickens have a rapid metabolism, which makes them produce higher heat and be prone to heat stress. The negative effect of heat stress on poultry birds' physiology, health, production, welfare, and behaviors are reviewed in detail in this work. The appropriate mitigation strategies for heat stress in poultry are equally explored in this review. Interestingly, each of these strategies finds its applicability at different stages of a poultry's lifecycle. For instance, gene mapping prior to breeding and genetic selection during breeding are promising tools for developing heat-resistant breeds. Thermal conditioning during embryonic development or early life enhances the ability of birds to tolerate heat during their adult life. Nutritional management such as dietary manipulations, nighttime feeding, and wet feeding often, applied with timely and effective correction of environmental conditions have been proven to ameliorate the effect of heat stress in chicks and adult birds. As long as the climatic crises persist, heat stress may continue to require considerable attention; thus, it is imperative to explore the current happenings and pay attention to the future trajectory of heat stress effects on poultry production.
Collapse
Affiliation(s)
| | | | - Oluwadamilola Oso
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Kokou Tona
- Centre of Excellence in Avian Sciences, University of Lome, Lomé, Togo
| | - Oyegunle Emmanuel Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
49
|
Fang X, Nong K, Qin X, Liu Z, Gao F, Jing Y, Fan H, Wang Z, Wang X, Zhang H. Effect of purple sweet potato-derived anthocyanins on heat stress response in Wenchang chickens and preliminary mechanism study. Poult Sci 2023; 102:102861. [PMID: 37390559 PMCID: PMC10466256 DOI: 10.1016/j.psj.2023.102861] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
This study was conducted to investigate the beneficial effect of purple sweet potato anthocyanins (PSPA) on growth performance, oxidative status, immune response, intestinal morphology, and intestinal flora homeostasis in heat-stressed Wenchang chickens. A total of 100 Wenchang chickens (50-day-old) were randomly assigned to 5 groups, including the thermoneutral environment (TN) group (26°C); high-temperature stressed (HS) group (33°C ± 1°C); low-dose PSPA treatment (L_HS) group (8 mg/kg body weight, 33°C ± 1°C); medium-dose PSPA treatment (M_HS) group and high-dose PSPA treatment (H_HS) group (16 mg/kg and 32 mg/kg body weight, respectively, 33°C ± 1°C). The results showed that PSPA reversed the adverse effects of heat stress on growth performance, meat quality, and carcass characteristics. And the effect was associated with the concentration of PSPA partially. Heat stress increased the serum lipids of Wenchang chickens. LDL-C, TG, TC, and FFA in the serum were significantly decreased, and HDL-C and LPS in the serum were increased by PSPA treatment. The digestive enzymes in duodenal chyme were significantly (P < 0.05) increased by PSPA treatment. And PSPA treatment significantly (P < 0.05) enhanced the redox status by improving antioxidant parameters (GSH-Px and SOD) and decreasing the MDA level in the serum and liver. Moreover, the level of inflammatory cytokines was significantly (P < 0.05) regulated by PSPA treatment compared to the HS group. The villus length and goblet cell numbers after PSPA treatment were significantly higher than HS group. Furthermore, PSPA also played protection on the intestine structure by decreasing the level of D-LA and DAO. 16S rRNA sequencing revealed the microbial composition was altered by PSPA, and Acetanaerobacterium and Oscillibacter were dominant in the H_HS group. Microbial functional prediction indicated that function pathways based on KEGG and metacyc database were regulated by PSPA, and intestinal flora correlated with metabolic function significantly. The spearman correlation analysis showed that Saccharibacteria and Clostridium_IV correlated with the serum lipids, antioxidant, and inflammatory cytokines. Collectively, these findings suggest that PSPA has a positive effect against heat stress in poultry.
Collapse
Affiliation(s)
- Xin Fang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Keyi Nong
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xinyun Qin
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zhineng Liu
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Feng Gao
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Yuanli Jing
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haokai Fan
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Zihan Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Xuemei Wang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China
| | - Haiwen Zhang
- College of Animal Science and Technology of Hainan University, Haikou 570228, China.
| |
Collapse
|
50
|
Kikusato M, Toyomizu M. Mechanisms underlying the Effects of Heat Stress on Intestinal Integrity, Inflammation, and Microbiota in Chickens. J Poult Sci 2023; 60:2023021. [PMID: 37560151 PMCID: PMC10406517 DOI: 10.2141/jpsa.2023021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Poultry meat and egg production benefits from a smaller carbon footprint, as well as feed and water consumption, per unit of product, than other protein sources. Therefore, maintaining a sustainable production of poultry meat is important to meet the increasing global demand for this staple. Heat stress experienced during the summer season or in tropical/subtropical areas negatively affects the productivity and health of chickens. Crucially, its impact is predicted to grow with the acceleration of global warming. Heat stress affects the physiology, metabolism, and immune response of chickens, causing electrolyte imbalance, oxidative stress, endocrine disorders, inflammation, and immunosuppression. These changes do not occur independently, pointing to a systemic mechanism. Recently, intestinal homeostasis has been identified as an important contributor to nutrient absorption and the progression of systemic inflammation. Its mechanism of action is thought to involve neuroendocrine signaling, antioxidant response, the presence of oxidants in the diet, and microbiota composition. The present review focuses on the effect of heat stress on intestinal dysfunction in chickens and the underlying causative factors. Understanding these mechanisms will direct the design of strategies to mitigate the negative effect of heat stress, while benefiting both animal health and sustainable poultry production.
Collapse
Affiliation(s)
- Motoi Kikusato
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| | - Masaaki Toyomizu
- Animal Nutrition, Life Sciences, Graduate School of Agricultural Science,
Tohoku University, Sendai, Japan
| |
Collapse
|