1
|
de Miranda AM, da Silva LECM, Santiago MDSA, Rodrigues DM, Aldana Mejía JA, Perobelli JE, Vieira MJF, Bastos JK. Brazilian green propolis extracts modulate cholesterol homeostasis in a preclinical guinea pig model: an in vitro and in vivo study. Food Funct 2023; 14:2022-2033. [PMID: 36723264 DOI: 10.1039/d2fo03457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Green propolis produced by Apis melífera bees, having Baccharis dracunculifolia D.C. (Asteraceae) as the primary botanical source, has been used in traditional medicine to treat numerous disorders. However, studies evaluating propolis' potential in treating cardiovascular diseases via its effects on cholesterol metabolism are lacking. Therefore, this study investigated the effects of green propolis extracts on lipid metabolism in hypercholesterolemic guinea pigs. Chemical characterization of ethanolic extracts of green propolis samples was undertaken using HPLC. The in vitro characterization included an evaluation of the antioxidant capacity of the hydroalcoholic extract of green propolis (DPPH and FRAP assays) and its ability to act as an inhibitor of the HMG-CoA reductase enzyme. In vivo, we investigated the effect of the hydroalcoholic extract of green propolis on lipid metabolism in hypercholesterolemic guinea pigs. Results obtained validated previous reports of significant antioxidant activity. HPLC analysis confirmed that coumaric acid, artepillin C, and baccharin were the most common and abundant compounds in green propolis samples among the studied compounds. Furthermore, the compounds in these extracts acted as effective HMG-CoA reductase inhibitors in vitro. In vivo assays demonstrated that a hypercholesterolemic diet significantly reduced serum levels of the HDL cholesterol fraction. Simvastatin and propolis hydroalcoholic extracts promoted a significant increase in HDL cholesterol, suggesting that these extracts can improve the serum lipid profile of hypercholesterolemic guinea pigs. Results obtained in this study provide a perspective on the possible hypocholesterolemic effect of green propolis, suggesting that it can improve the serum lipid profile in hypercholesterolemic guinea pigs.
Collapse
Affiliation(s)
- Aline Mayrink de Miranda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | - Débora Munhoz Rodrigues
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Jennyfer Andrea Aldana Mejía
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Juliana Elaine Perobelli
- Laboratory of Experimental Toxicology, Instituto do Mar, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Maria José Fonseca Vieira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Xian X, Wang Y, Liu G. Genetically Engineered Hamster Models of Dyslipidemia and Atherosclerosis. Methods Mol Biol 2022; 2419:433-459. [PMID: 35237980 DOI: 10.1007/978-1-0716-1924-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Animal models of human diseases play an extremely important role in biomedical research. Among them, mice are widely used animal models for translational research, especially because of ease of generation of genetically engineered mice. However, because of the great differences in biology between mice and humans, translation of findings to humans remains a major issue. Therefore, the exploration of models with biological and metabolic characteristics closer to those of humans has never stopped.Although pig and nonhuman primates are biologically similar to humans, their genetic engineering is technically difficult, the cost of breeding is high, and the experimental time is long. As a result, the application of these species as model animals, especially genetically engineered model animals, in biomedical research is greatly limited.In terms of lipid metabolism and cardiovascular diseases, hamsters have several characteristics different from rats and mice, but similar to those in humans. The hamster is therefore an ideal animal model for studying lipid metabolism and cardiovascular disease because of its small size and short reproduction period. However, the phenomenon of zygote division, which was unexpectedly blocked during the manipulation of hamster embryos for some unknown reasons, had plagued researchers for decades and no genetically engineered hamsters have therefore been generated as animal models of human diseases for a long time. After solving the problem of in vitro development of hamster zygotes, we successfully prepared enhanced green fluorescent protein (eGFP) transgenic hamsters by microinjection of lentiviral vectors into the zona pellucida space of zygotes. On this basis, we started the development of cardiovascular disease models using the hamster embryo culture system combined with the novel genome editing technique of clustered regularly interspaced short palindromic repeats (CRISPR )/CRISPR associated protein 9 (Cas9). In this chapter, we will introduce some of the genetically engineered hamster models with dyslipidemia and the corresponding characteristics of these models. We hope that the genetically engineered hamster models can be further recognized and complement other genetically engineered animal models such as mice, rats, and rabbits. This will lead to new avenues and pathways for the study of lipid metabolism and its related diseases.
Collapse
Affiliation(s)
- Xunde Xian
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Liu G, Lai P, Guo J, Wang Y, Xian X. Genetically-engineered hamster models: applications and perspective in dyslipidemia and atherosclerosis-related cardiovascular disease. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:92-110. [PMID: 37724074 PMCID: PMC10388752 DOI: 10.1515/mr-2021-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in both developed and developing countries, in which atherosclerosis triggered by dyslipidemia is the major pathological basis. Over the past 40 years, small rodent animals, such as mice, have been widely used for understanding of human atherosclerosis-related cardiovascular disease (ASCVD) with the advantages of low cost and ease of maintenance and manipulation. However, based on the concept of precision medicine and high demand of translational research, the applications of mouse models for human ASCVD study would be limited due to the natural differences in metabolic features between mice and humans even though they are still the most powerful tools in this research field, indicating that other species with biological similarity to humans need to be considered for studying ASCVD in future. With the development and breakthrough of novel gene editing technology, Syrian golden hamster, a small rodent animal replicating the metabolic characteristics of humans, has been genetically modified, suggesting that gene-targeted hamster models will provide new insights into the precision medicine and translational research of ASCVD. The purpose of this review was to summarize the genetically-modified hamster models with dyslipidemia to date, and their potential applications and perspective for ASCVD.
Collapse
Affiliation(s)
- George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
4
|
Gaillard D, Masson D, Garo E, Souidi M, Pais de Barros JP, Schoonjans K, Grober J, Besnard P, Thomas C. Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. Int J Mol Sci 2021; 22:7163. [PMID: 34281217 PMCID: PMC8269105 DOI: 10.3390/ijms22137163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS Hypercholesterolemia is a major risk factor for atherosclerosis and cardiovascular diseases. Although resistant to hypercholesterolemia, the mouse is a prominent model in cardiovascular research. To assess the contribution of bile acids to this protective phenotype, we explored the impact of a 2-week-long dietary cholesterol overload on cholesterol and bile acid metabolism in mice. METHODS Bile acid, oxysterol, and cholesterol metabolism and transport were assessed by quantitative real-time PCR, western blotting, GC-MS/MS, or enzymatic assays in the liver, the gut, the kidney, as well as in the feces, the blood, and the urine. RESULTS Plasma triglycerides and cholesterol levels were unchanged in mice fed a cholesterol-rich diet that contained 100-fold more cholesterol than the standard diet. In the liver, oxysterol-mediated LXR activation stimulated the synthesis of bile acids and in particular increased the levels of hydrophilic muricholic acids, which in turn reduced FXR signaling, as assessed in vivo with Fxr reporter mice. Consequently, biliary and basolateral excretions of bile acids and cholesterol were increased, whereas portal uptake was reduced. Furthermore, we observed a reduction in intestinal and renal bile acid absorption. CONCLUSIONS These coordinated events are mediated by increased muricholic acid levels which inhibit FXR signaling in favor of LXR and SREBP2 signaling to promote efficient fecal and urinary elimination of cholesterol and neo-synthesized bile acids. Therefore, our data suggest that enhancement of the hydrophilic bile acid pool following a cholesterol overload may contribute to the resistance to hypercholesterolemia in mice. This work paves the way for new therapeutic opportunities using hydrophilic bile acid supplementation to mitigate hypercholesterolemia.
Collapse
Affiliation(s)
- Dany Gaillard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- Department of Cell & Developmental Biology, and The Rocky Mountain Taste & Smell Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Masson
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Biochemistry Department, University Hospital François Mitterrand, 21000 Dijon, France
| | - Erwan Garo
- IGBMC, CNRS UMR 7104, INSERM U 1258, 67400 Illkirch, France;
| | - Maamar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92260 Fontenay-aux-Roses, France;
| | - Jean-Paul Pais de Barros
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Lipidomic Facility, Université de Bourgogne Franche-Comté (UBFC), 21078 Dijon, France
| | - Kristina Schoonjans
- Institute of Bioengineering, Life Science Faculty, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Jacques Grober
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| | - Philippe Besnard
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
- Physiologie de la Nutrition, AgroSup Dijon, 21000 Dijon, France
| | - Charles Thomas
- Center for Translational Medicine, UMR1231 INSERM-uB-AgroSupDijon, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France; (D.G.); (D.M.); (J.-P.P.d.B.); (J.G.)
- LipSTIC LabEx, Université de Bourgogne Franche-Comté (UBFC), 21000 Dijon, France
| |
Collapse
|
5
|
Radakovich LB, Marolf AJ, Culver LA, Santangelo KS. Calorie restriction with regular chow, but not a high-fat diet, delays onset of spontaneous osteoarthritis in the Hartley guinea pig model. Arthritis Res Ther 2019; 21:145. [PMID: 31196172 PMCID: PMC6567638 DOI: 10.1186/s13075-019-1925-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity is a leading risk factor for osteoarthritis (OA). In contrast, calorie restriction (CR) may lessen OA due to improved systemic inflammatory status and reduced weight-bearing. The aim of this study was to determine how CR with regular chow versus a high-fat diet (HFD) alters OA progression using the Hartley guinea pig model of disease. METHODS Twenty-four male guinea pigs were allocated to four groups at 2 months of age: (1) ad libitum regular chow (obese), (2) CR regular chow (lean), (3) ad libitum HFD, and (4) CR HFD. Animals in both HFD groups ate identical amounts and were combined into one HFD group for analyses. At 5 months, hind limbs were harvested for microcomputed tomography (microCT) and histopathologic evaluation of knee OA. Total body, gonad fat, and infrapatellar fat pad (IFP) masses were recorded. IFPs were collected for gene expression analysis. Immunohistochemistry for monocyte chemoattractant protein-1 (MCP-1) was performed on intact joints. Serum was utilized for protein C3 measurement. All data were compared using ordinary one-way ANOVA analyses with Tukey's post-hoc tests. RESULTS Body mass in the lean and HFD groups were similar and lower than the obese group. Despite this, gonad fat pads in the HFD group were comparable to the obese group. MicroCT and histologic OA scores were similar in obese and HFD groups; both scores were significantly lower in the lean group. Obese and HFD groups displayed increased gene expression of pro-inflammatory and catabolic mediators in IFPs relative to lean animals. Consistent with this, immunohistochemistry for MCP-1 in knee joints demonstrated strong positive staining in obese and HFD groups but was minimally detected in lean animals. Serum protein C3 levels were also statistically higher. CONCLUSIONS This study demonstrated that CR with a regular chow diet lessened knee OA in the Hartley guinea pig and was associated with decreased local and systemic inflammation compared to obese animals. HFD animals, although under CR conditions, had OA scores and inflammatory markers similar to obese animals. Thus, diet composition, and not solely body weight, may be a key factor in development of OA.
Collapse
Affiliation(s)
- Lauren B. Radakovich
- Department of Microbiology, Immunology, Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80521 USA
| | - Angela J. Marolf
- Department of Environmental and Radiological Health Sciences, Colorado State University, 123 Flint Cancer Center, Fort Collins, CO 80523 USA
| | - Lauren A. Culver
- Department of Microbiology, Immunology, Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80521 USA
| | - Kelly S. Santangelo
- Department of Microbiology, Immunology, Pathology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80521 USA
| |
Collapse
|
6
|
Podell BK, Ackart DF, Richardson MA, DiLisio JE, Pulford B, Basaraba RJ. A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment. Dis Model Mech 2017; 10:151-162. [PMID: 28093504 PMCID: PMC5312002 DOI: 10.1242/dmm.025593] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetes is a leading cause of morbidity and mortality among noncommunicable diseases, and additional animal models that more closely replicate the pathogenesis of human type 2 diabetes are needed. The goal of this study was to develop a model of type 2 diabetes in guinea pigs, in which diet-induced glucose intolerance precedes β-cell cytotoxicity, two processes that are crucial to the development of human type 2 diabetes. Guinea pigs developed impaired glucose tolerance after 8 weeks of feeding on a high-fat, high-carbohydrate diet, as determined by oral glucose challenge. Diet-induced glucose intolerance was accompanied by β-cell hyperplasia, compensatory hyperinsulinemia, and dyslipidemia with hepatocellular steatosis. Streptozotocin (STZ) treatment alone was ineffective at inducing diabetic hyperglycemia in guinea pigs, which failed to develop sustained glucose intolerance or fasting hyperglycemia and returned to euglycemia within 21 days after treatment. However, when high-fat, high-carbohydrate diet-fed guinea pigs were treated with STZ, glucose intolerance and fasting hyperglycemia persisted beyond 21 days post-STZ treatment. Guinea pigs with diet-induced glucose intolerance subsequently treated with STZ demonstrated an insulin-secretory capacity consistent with insulin-independent diabetes. This insulin-independent state was confirmed by response to oral antihyperglycemic drugs, metformin and glipizide, which resolved glucose intolerance and extended survival compared with guinea pigs with uncontrolled diabetes. In this study, we have developed a model of sequential glucose intolerance and β-cell loss, through high-fat, high-carbohydrate diet and extensive optimization of STZ treatment in the guinea pig, which closely resembles human type 2 diabetes. This model will prove useful in the study of insulin-independent diabetes pathogenesis with or without comorbidities, where the guinea pig serves as a relevant model species.
Collapse
Affiliation(s)
- Brendan K Podell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - David F Ackart
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael A Richardson
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - James E DiLisio
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Bruce Pulford
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Chen G, Song C, Jin S, Li S, Zhang Y, Huang R, Feng Y, Xu Y, Xiang Y, Jiang H. An integrated strategy for establishment of metabolite profile of endogenous lysoglycerophospholipids by two LC-MS/MS platforms. Talanta 2017; 162:530-539. [DOI: 10.1016/j.talanta.2016.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/01/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
|
8
|
van der Gronde T, Hartog A, van Hees C, Pellikaan H, Pieters T. Systematic review of the mechanisms and evidence behind the hypocholesterolaemic effects of HPMC, pectin and chitosan in animal trials. Food Chem 2015; 199:746-59. [PMID: 26776032 DOI: 10.1016/j.foodchem.2015.12.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/07/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023]
Abstract
Dietary fibres have diverse mechanisms in reducing plasma cholesterol, which could be useful for treating high levels of low-density lipoprotein cholesterol (LDL-C). The objective of this review is to determine the state of the evidence for the cholesterol-lowering effects of three selected fibres and their mechanisms, using the most recent animal trials. Therefore, a systematic review was conducted for hydroxypropyl methylcellulose (HPMC), pectin and chitosan in Pubmed, Embase and the Cochrane Library. All fibres reviewed reduced total cholesterol, very low-density lipoprotein cholesterol (VLDL-C) and LDL-C. Pectin gave a small, and chitosan an impressive rise in high-density lipoprotein cholesterol (HDL-C). A limitation of this study is the variety of animal models, each with distinct cholesterol profiles. Possible publication bias was also detected. In conclusion, chitosan seems to be the most promising of the studied fibres. A dietary fibre could be designed that yields the best cholesterol-lowering effect, using experiences in tailoring physicochemical properties and primarily exploiting the biophysical mechanisms of action.
Collapse
Affiliation(s)
- Toon van der Gronde
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Anita Hartog
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3583 CT Utrecht, The Netherlands
| | - Charlotte van Hees
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | | | - Toine Pieters
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands; Freudenthal Institute, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Abstract
In the 1960s, the thesis that dietary cholesterol contributes to blood cholesterol and heart disease risk was a rational conclusion based on the available science at that time. Fifty years later the research evidence no longer supports this hypothesis yet changing the dietary recommendation to limit dietary cholesterol has been a slow and at times contentious process. The preponderance of the clinical and epidemiological data accumulated since the original dietary cholesterol restrictions were formulated indicate that: (1) dietary cholesterol has a small effect on the plasma cholesterol levels with an increase in the cholesterol content of the LDL particle and an increase in HDL cholesterol, with little effect on the LDL:HDL ratio, a significant indicator of heart disease risk, and (2) the lack of a significant relationship between cholesterol intake and heart disease incidence reported from numerous epidemiological surveys. Over the last decade, many countries and health promotion groups have modified their dietary recommendations to reflect the current evidence and to address a now recognised negative consequence of ineffective dietary cholesterol restrictions (such as inadequate choline intake). In contrast, health promotion groups in some countries appear to suffer from cognitive dissonance and continue to promote an outdated and potentially hazardous dietary recommendation based on an invalidated hypothesis. This review evaluates the evidence for and against dietary cholesterol restrictions and the potential consequences of such restrictions.
Collapse
|
10
|
Aslan M, Ozcan F, Kucuksayan E. Increased Small Dense LDL and Decreased Paraoxonase Enzyme Activity Reveals Formation of an Atherogenic Risk in Streptozotocin-Induced Diabetic Guinea Pigs. J Diabetes Res 2013; 2013:860190. [PMID: 23691522 PMCID: PMC3647573 DOI: 10.1155/2013/860190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
This study aimed to investigate LDL subfraction distribution as well as serum cholesteryl ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and paraoxonase (PON1) activity in streptozotocin-induced diabetic guinea pigs. Materials/Methods. Guinea pigs were given a single intraperitoneal (ip) injection of streptozotocin (STZ) and animals having fasting blood glucose levels greater than 200 mg/dl, were considered diabetic. Protein levels of LCAT and CETP were determined via ELISA. Paraoxonase activity was measured kinetically by the formation of phenol while LDL subfraction analysis was done by disc polyacrylamide gel electrophoresis. Results. Plasma glucose and high-density lipoprotein (HDL) cholesterol were significantly increased while total cholesterol and LDL cholesterol were significantly decreased in diabetic guinea pigs compared to controls. LDL subfraction analysis revealed a significant decrease in nonatherogenic LDL-2 subfraction and a significant increase in atherogenic LDL-4 subfraction in diabetic guinea pigs compared to controls. Plasma CETP and PON1 levels were significantly decreased while LCAT showed no significant difference in diabetic guinea pigs compared to controls. Conclusion. Decreased non-atherogenic LDL-1, LDL-2 subfractions, increased small dense LDL-4 subfraction, and decreased PON1 activity, reveals formation of an atherogenic risk in diabetic guinea pigs. Decrease in CETP levels supports the observed increase in HDL cholesterol levels in diabetic guinea pigs.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, 07070 Antalya, Turkey
- *Mutay Aslan:
| | - Filiz Ozcan
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, 07070 Antalya, Turkey
| | - Ertan Kucuksayan
- Department of Medical Biochemistry, Akdeniz University, Faculty of Medicine, 07070 Antalya, Turkey
| |
Collapse
|
11
|
Ye P, Cheah IK, Halliwell B. High fat diets and pathology in the guinea pig. Atherosclerosis or liver damage? Biochim Biophys Acta Mol Basis Dis 2012. [PMID: 23195951 DOI: 10.1016/j.bbadis.2012.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Animal models have been widely used to investigate the relationship between diet and atherosclerosis and also to study disease etiology and possible interventions. Guinea pigs have been suggested to be a more "realistic" model for atherosclerosis due to their many similarities to humans. However, few published studies actually reported observations of characteristic atherosclerotic lesions and even fewer of advanced lesions. Studies, by our group, of guinea pigs fed on a high-fat diet revealed similar observations, with indications primarily of fatty streaks but little evidence of atherosclerotic plaques. This review discusses the feasibility of the guinea pig as a model for dietary-induced atherosclerosis. As it stands, current evidence raises doubt as to whether guinea pigs could serve as a realistic model for atherosclerosis. However, our own data and the literature suggest that they could be useful models for studying lipoprotein metabolism, non-alcoholic fatty liver disease, and dietary interventions which may help regulate these conditions.
Collapse
Affiliation(s)
- Peng Ye
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore
| | | | | |
Collapse
|
12
|
Fuster JJ, Castillo AI, Zaragoza C, Ibáñez B, Andrés V. Animal models of atherosclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:1-23. [PMID: 22137427 DOI: 10.1016/b978-0-12-394596-9.00001-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cardiovascular disease is currently the predominant cause of mortality worldwide and its incidence is expected to increase significantly during the next decades owing to the unhealthy effects of modern lifestyle habits (e.g., obesity and lack of physical exercise). Cardiovascular death is frequently associated with acute myocardial infarction or stroke, which are generally the ultimate consequence of an underlying atherosclerotic process. Small and big animal models are valuable tools to understand the molecular mechanisms underlying atherosclerotic plaque formation and progression, as well as the occurrence of associated ischemic events. Moreover, animal models of atherosclerosis are pivotal for testing mechanistic hypothesis and for translational research, including the assessment of dietary and/or pharmacological interventions and the development of imaging technologies and interventional devices. In this chapter, we will describe the most widely used animal models that have permitted major advances in atherosclerosis research and significant improvements in the treatment and diagnosis of atherosclerotic disease.
Collapse
Affiliation(s)
- José J Fuster
- Department of Epidemiology, Atherothrombosis and Imaging, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | |
Collapse
|
13
|
Yokoyama W, Anderson WHK, Albers DR, Hong YJ, Langhorst ML, Hung SC, Lin JT, Young SA. Dietary hydroxypropyl methylcellulose increases excretion of saturated and trans fats by hamsters fed fast food diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11249-11254. [PMID: 21913668 DOI: 10.1021/jf2020914] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In animal studies, hydroxypropyl methylcellulose (HPMC) intake results in increased fecal fat excretion; however, the effects on dietary saturated fatty acids (SATs) and trans-fatty acids (TRANS) remain unknown. This study investigated the effect of HPMC on digestion and absorption of lipids in male Golden Syrian hamsters fed either freeze-dried ground pizza (PZ), pound cake (PC), or hamburger and fries (BF) supplemented with dietary fiber from either HPMC or microcrystalline cellulose (MCC) for 3 weeks. We observed greater excretion of SATs and TRANS by both diets supplemented with HPMC or MCC as compared to the feed. SAT, TRANS, and unsaturated fatty acids (UNSAT) contents of feces of the PZ diet supplemented with HPMC were 5-8 times higher than diets supplemented with MCC and tended to be higher in the PC- and BF-HPMC supplemented diets as well. We also observed significant increases in fecal excretion of bile acids (2.6-3-fold; P < 0.05), sterols (1.1-1.5-fold; P < 0.05), and unsaturated fatty acids (UNSAT, 1.7-4.5-fold; P < 0.05). The animal body weight gain was inversely correlated with the excretion of fecal lipid concentrations of bile acids (r = -0.56; P < 0.005), sterols (r = -0.48; P < 0.005), SAT (r = -0.69; P < 0.005), UNSAT (r = -0.67; P < 0.005), and TRANS (r = -0.62; P < 0.005). Therefore, HPMC may be facilitating fat excretion in a biased manner with preferential fecal excretion of both TRANS and SAT in hamsters fed fast food diets.
Collapse
Affiliation(s)
- Wallace Yokoyama
- Processed Foods Research, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Xiangdong L, Yuanwu L, Hua Z, Liming R, Qiuyan L, Ning L. Animal models for the atherosclerosis research: a review. Protein Cell 2011; 2:189-201. [PMID: 21468891 PMCID: PMC4875304 DOI: 10.1007/s13238-011-1016-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 01/30/2011] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is a leading cause of death worldwide, and its mechanisms are still unclear. However, various animal models have significantly advanced our understanding of the mechanisms involved in atherosclerosis and have allowed the evaluation of therapeutic options. The aim of this paper is to review those animal models (i.e., rabbits, mice, rats, guinea pigs, hamsters, avian, carnivores, swine, and, non-human primates) that have been used to study atherosclerosis. Though there is no single perfect animal model that completely replicates the stages of human atherosclerosis, cholesterol feeding and mechanical endothelial injury are two common features shared by most models of atherosclerosis. Further, with the development of genetically modified animals, these models are significantly broadening our understanding of the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Li Xiangdong
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 China
| | - Liu Yuanwu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 China
| | - Zhang Hua
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 China
| | - Ren Liming
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 China
| | - Li Qiuyan
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 China
| | - Li Ning
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
15
|
Kang SN, Song YM, Kim CW, Kim TW, Chu GM, Yang BS, Jin SK, Kim IS. Effect of Feeding High Carbohydrate-Low Fat Fermented Feed on the Meat Quality Characteristics in Finishing Pigs. Korean J Food Sci Anim Resour 2010. [DOI: 10.5851/kosfa.2010.30.5.826] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Tannock LR, King VL. Animal models of atherosclerosis: More than mice. Atherosclerosis 2010; 212:32-3. [DOI: 10.1016/j.atherosclerosis.2010.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
|
17
|
Beaulieu J, Millette E, Trottier E, Précourt LP, Dupont C, Lemieux P. Regulatory function of a malleable protein matrix as a novel fermented whey product on features defining the metabolic syndrome. J Med Food 2010; 13:509-19. [PMID: 20406141 DOI: 10.1089/jmf.2009.0083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, we reported that a malleable protein matrix (MPM), composed of whey fermented by a proprietary Lactobacillus kefiranofaciens strain, has immunomodulatory and anti-inflammatory properties. MPM consumption leads to a considerable reduction in the cytokine and chemokine production (tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6), thus lowering chronic inflammation or metaflammation. Inhibition of metaflammation should provide positive impact, particularly in the context of dyslipidemia, insulin resistance, and hypertension. In this study, we investigated whether short-term MPM supplementation ameliorates those features of metabolic syndrome (MetS). The ability of MPM to potentially regulate triglyceride level, cholesterol level, blood glucose level, and hypertension was evaluated in different animal models. MPM lowers triglyceride level by 37% (P < .05) in a poloxamer 407 dyslipidemia-induced rat model. It also reduces total cholesterol by 18% (P < .05) and low-density lipoprotein-cholesterol level by 32% (P < .05) and raises high-density lipoprotein-cholesterol level by 17% (P < .01) in Syrian Golden hamsters fed a high fat/high cholesterol diet for 2 weeks. MPM reestablishes the fasting glucose insulin ratio index to normal levels (P = .07) in this latter model and lowers the plasma glucose level area under the curve (-10%, P = .09) in fructose-fed rats after 2 weeks of treatment. In spontaneously hypertensive rats, MPM-treated animals showed a reduction of SBP by at least 13% (P < .05) for 4 weeks. Results from this study suggest that MPM is a functional ingredient with beneficial effects on lipid metabolism, blood glucose control, and hypertension that might contribute to the management of MetS and thus reducing the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- J Beaulieu
- Technologie Biolactis Inc., Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Chang NW, Wu CT, Wang SY, Pei RJ, Lin CF. Alpinia pricei Hayata rhizome extracts have suppressive and preventive potencies against hypercholesterolemia. Food Chem Toxicol 2010; 48:2350-6. [PMID: 20561946 DOI: 10.1016/j.fct.2010.05.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 04/13/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
The aim of this study was to investigate the effects of 70% ethanol extracts of Alpinia pricei (APE) on lipid profiles and lipid peroxidation. Syrian hamsters were fed a chow-based hypercholesterolemic diet (HCD) for 2 weeks to induce hypercholesterolemia (>250 mg/dl). To evaluate the potency of APE in suppressing hypercholesterolemia, hamsters were then fed HCD plus a high dose (500 mg/kg body weight) or a low dose (250 mg/kg body weight) of APE, or only HCD for another 4 weeks. We found that hypercholesterolemic hamsters fed a high dose of APE had lower serum total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) levels, lower thiobarbituric acid reactive substances (TBARS) and alanine aminotransferase (ALT) activities, lower atherogenic indices (LDL-C/HDL-C and TC/HDL-C ratios), and lower hepatic protein expression of peroxisome proliferators activated receptor gamma (PPARgamma) than hamsters fed a HCD diet. In addition, we also determined the preventive effects of APE on hamsters fed a HCD for 6 weeks. The hypocholesterolemic effects were also found in hamsters co-fed a high dose of APE and HCD for 6weeks. These results suggest that APE has both suppressive and preventive potencies against hypercholesterolemia and has the potency to protect against lipid peroxidation.
Collapse
Affiliation(s)
- N W Chang
- Departments of Biochemistry, College of Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taichung, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
19
|
Vega-López S, Matthan NR, Ausman LM, Harding SV, Rideout TC, Ai M, Otokozawa S, Freed A, Kuvin JT, Jones PJ, Schaefer EJ, Lichtenstein AH. Altering dietary lysine:arginine ratio has little effect on cardiovascular risk factors and vascular reactivity in moderately hypercholesterolemic adults. Atherosclerosis 2009; 210:555-62. [PMID: 20042191 DOI: 10.1016/j.atherosclerosis.2009.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/23/2009] [Accepted: 12/02/2009] [Indexed: 01/28/2023]
Abstract
BACKGROUND Information is scarce regarding the effect of dietary protein type, with specific focus on the lysine-to-arginine (Lys:Arg) ratio, on cardiovascular risk factors and vascular reactivity in humans. OBJECTIVE Determine the effect of dietary Lys:Arg ratio on cardiovascular risk factors and vascular reactivity in moderately hypercholesterolemic adults. DESIGN Randomized cross-over design of two 35-day diet phases; thirty adults (21 females and 9 males, >or=50 years, LDL cholesterol>or=120 mg/dL). Diets had 20% energy (E) protein, 30%E fat, 50%E carbohydrate and were designed to have low (0.7) or high (1.4) Lys:Arg ratio. Measures included fasting and postprandial lipid, lipoprotein, apolipoprotein concentrations; fasting high sensitivity C-reactive protein (hsCRP), small dense LDL (sdLDL) cholesterol, remnant lipoprotein cholesterol (RemLC), glycated albumin, adiponectin and immunoreactive insulin concentrations, endogenous cholesteryl ester transfer protein (CETP) and lecithin:cholesterol acyl transferase (LCAT) activities; cholesterol fractional synthesis rate (FSR); and flow mediated dilation (FMD) and peripheral artery tonometry (PAT). RESULTS No differences were observed in fasting and/or postprandial total, LDL, HDL and sdLDL cholesterol, RemLC, Lp(a) or apo B concentrations, LCAT and CETP activities, FSR, glycated albumin, immunoreactive insulin, FMD or PAT. The low, relative to the high, Lys:Arg ratio diet resulted in lower postprandial VLDL cholesterol (-24%, P=0.001) and triglycerides (-23%, P=0.001), and small but significant differences in fasting (-3%, P=0.003) and postprandial (-3%, P=0.018) apo AI, and fasting adiponectin concentrations (+7%, P=0.035). Fasting and postprandial hsCRP concentrations were 23% lower after the low Lys:Arg ratio diet (P=0.020 for both). CONCLUSIONS Diets differing in Lys:Arg ratios had no or small effects on cardiovascular risk factors and vascular reactivity.
Collapse
Affiliation(s)
- Sonia Vega-López
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hung SC, Bartley G, Young SA, Albers DR, Dielman DR, Anderson WHK, Yokoyama W. Dietary fiber improves lipid homeostasis and modulates adipocytokines in hamsters. J Diabetes 2009; 1:194-206. [PMID: 20923539 DOI: 10.1111/j.1753-0407.2009.00034.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The hypocholesterolemic and hypoglycemic effects of various natural and semisynthetic dietary fibers have been studied for their potential use in the prevention and improvement of metabolic syndrome. Of these dietary fibers, hydroxypropyl methylcellulose (HPMC) has been shown to lower plasma cholesterol and reduce weight gain. However, the underlying mechanisms are not known. In the present study, we examined associations between plasma adipocytokine levels and both lipid metabolism and insulin sensitivity after HPMC intake in golden Syrian hamsters. In addition, endogenous adiponectin from hamster plasma was purified and characterized. METHODS Hamsters were treated with HPMC (2% and 4% in a high-fat diet) or 2% or 4% microcrystalline cellulose (MCC; control diet) for 8 weeks. Plasma glucose, insulin, lipids, adiponectin, leptin, and hepatic lipid levels were assessed using standard techniques. RESULTS After 8 weeks of feeding, plasma total cholesterol and triglyceride levels in hamsters fed the 4% HPMC-supplemented diet were significantly lower than in hamsters fed the control diet. Moreover, a significant increase in adiponectin levels and a decrease in leptin levels were observed in hamsters fed the 4% HPMC-supplemented diet. Hamster adiponectin was found to be comprised of 244 amino acid residues with an apparent molecular weight of 30 kDa, consistent with the adiponectin reported in other species. CONCLUSIONS Reductions in plasma cholesterol and triglyceride levels were correlated with a decrease in plasma leptin and an increase in adiponectin. These results suggest that adipocytokines are regulated by HPMC and may play a pivotal role in the hypocholesterolemic effect.
Collapse
|
21
|
Rideout TC, Harding SV, Jones PJ, Fan MZ. Guar gum and similar soluble fibers in the regulation of cholesterol metabolism: current understandings and future research priorities. Vasc Health Risk Manag 2009; 4:1023-33. [PMID: 19183750 PMCID: PMC2605338 DOI: 10.2147/vhrm.s3512] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The hypocholesterolemic effects associated with soluble fiber consumption are clear from animal model and human clinical investigations. Moreover, the modulation of whole-body cholesterol metabolism in response to dietary fiber consumption, including intestinal cholesterol absorption and fecal sterol and bile acid loss, has been the subject of many published reports. However, our understanding of how dietary fibers regulate molecular events at the gene/protein level and alter cellular cholesterol metabolism is limited. The modern emphasis on molecular nutrition and rapid progress in 'high-dimensional' biological techniques will permit further explorations of the role of genetic polymorphisms in determining the variable interindividual responses to soluble fibers. Furthermore, with traditional molecular biology tools and the application of 'omic' technology, specific insight into how fibers modulate the expression of genes and proteins that regulate intestinal cholesterol absorption and alter hepatic sterol balance will be gained. Detailed knowledge of the molecular mechanisms by which soluble fibers reduce plasma cholesterol concentrations is paramount to developing novel fiber-based "cocktails" that target specific metabolic pathways to gain maximal cholesterol reductions.
Collapse
Affiliation(s)
- Todd C Rideout
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
22
|
Carbohydrate restriction and dietary cholesterol distinctly affect plasma lipids and lipoprotein subfractions in adult guinea pigs. J Nutr Biochem 2008; 19:856-63. [DOI: 10.1016/j.jnutbio.2007.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 11/14/2007] [Accepted: 11/16/2007] [Indexed: 11/22/2022]
|
23
|
MacQueen HA, Sadler DA, Moore SA, Daya S, Brown JY, Shuker DE, Seaman M, Wassif WS. Deleterious effects of a cafeteria diet on the livers of nonobese rats. Nutr Res 2007. [DOI: 10.1016/j.nutres.2006.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Aggarwal D, Fernandez ML, Soliman GA. Rapamycin, an mTOR inhibitor, disrupts triglyceride metabolism in guinea pigs. Metabolism 2006; 55:794-802. [PMID: 16713440 DOI: 10.1016/j.metabol.2006.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/30/2006] [Indexed: 12/29/2022]
Abstract
This study was designed to define some of the mechanisms by which rapamycin (RAPA), an mTOR inhibitor, induces hypertriglyceridemia when used as an immunosuppressive or antiproliferative agent and to determine whether low doses result in less undesirable side effects. Thirty male guinea pigs (n=10 per group) were randomly assigned to control (no RAPA), low-RAPA (0.08 mg/d), or high-RAPA (0.85 mg/d) treatment for 3 weeks. Rapamycin treatment resulted in more than a 2-fold increase in plasma triglycerides (TG) (P<.01), whereas no differences were observed in plasma cholesterol between RAPA and control groups. Low-RAPA treatment resulted in lower concentrations of cholesterol in the aorta (28.6%) and lower hepatic acyl-CoA cholesteryl acyltransferase activity compared to control and high-RAPA groups (P<.01). In addition, acyl-CoA cholesteryl acyltransferase activity was positively correlated with aortic cholesterol (r=0.43, P<.05). In contrast, aortic TG concentrations were higher in RAPA-treated guinea pigs than in control (P<.01). Very low density lipoprotein and low-density lipoprotein particles isolated from guinea pigs treated with RAPA were larger in size and contained more TG molecules than particles from control animals. Interestingly, plasma free fatty acids and fasting plasma glucose were 65% and 72% higher in the high-RAPA group than in control (P<.01). Tumor necrosis factor-alpha concentrations in the aorta were 3.6- and 10.4-fold higher in the low-RAPA and high-RAPA groups than in control guinea pigs (P<.01). These results suggest that RAPA interferes with TG metabolism by altering the insulin signaling pathway, inducing increased secretion of very low density lipoprotein and promoting deposition of TG in the aorta. Low RAPA was found to decrease cholesterol accumulation in tissue (liver and aorta) compared to high RAPA, suggesting that lower doses could be less detrimental to transplant patients.
Collapse
Affiliation(s)
- Dimple Aggarwal
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
25
|
Fernandez ML, Volek JS. Guinea pigs: a suitable animal model to study lipoprotein metabolism, atherosclerosis and inflammation. Nutr Metab (Lond) 2006; 3:17. [PMID: 16566831 PMCID: PMC1435897 DOI: 10.1186/1743-7075-3-17] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 03/27/2006] [Indexed: 02/08/2023] Open
Abstract
Numerous animal models have been used to study diet effects on cholesterol and lipoprotein metabolism. However, most of those models differ from humans in the plasma distribution of cholesterol and in the processing of lipoproteins in the plasma compartment. Although transgenic or knock-out mice have been used to study a specific pathway involved in cholesterol metabolism, these data are of limited use because other metabolic pathways and responses to interventions may differ from the human condition. Carbohydrate restricted diets have been shown to reduce plasma triglycerides, increase HDL cholesterol and promote the formation of larger, less atherogenic LDL. However, the mechanisms behind these responses and the relation to atherosclerotic events in the aorta have not been explored in detail due to the lack of an appropriate animal model. Guinea pigs carry the majority of the cholesterol in LDL and possess cholesterol ester transfer protein and lipoprotein lipase activities, which results in reverse cholesterol transport and delipidation cascades equivalent to the human situation. Further, carbohydrate restriction has been shown to alter the distribution of LDL subfractions, to decrease cholesterol accumulation in aortas and to decrease aortic cytokine expression. It is the purpose of this review to discuss the use of guinea pigs as useful models to evaluate diet effects on lipoprotein metabolism, atherosclerosis and inflammation with an emphasis on carbohydrate restricted diets.
Collapse
Affiliation(s)
- Maria Luz Fernandez
- Department of Nutritional Sciences University of Connecticut, Storrs, CT 06269, USA
| | - Jeff S Volek
- Department of Kinesiology University of Connecticut, Storrs CT 06269, USA
| |
Collapse
|
26
|
Li RW, Douglas TD, Maiyoh GK, Adeli K, Theriault AG. Green tea leaf extract improves lipid and glucose homeostasis in a fructose-fed insulin-resistant hamster model. JOURNAL OF ETHNOPHARMACOLOGY 2006; 104:24-31. [PMID: 16202550 DOI: 10.1016/j.jep.2005.08.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 05/04/2023]
Abstract
The present study evaluated the effect of green tea (Camellia sinensis L.) leaf extract on triglyceride and glucose homeostasis in a fructose-fed hypertriglyceridemic, insulin-resistant hamster model. There was a significant decrease in plasma triglyceride levels following supplementation of the green tea epigallocatechin gallate-enriched extract (42% at 150 mg/(kg day) to 62% at 300 mg/(kg day) for 4 weeks). Compared to baseline, the fructose control group at the end of the study showed elevated serum insulin and apolipoprotein B levels, and decreased serum adiponectin levels. The fructose/green tea extract group showed a reversal in all of these metabolic defects, including an improvement in glucose levels during a glucose tolerance test. Triglyceride content was also examined in various tissues and compared to the control fructose group; supplementation of the green tea extract (300 mg/kg) reduced triglyceride content in liver and heart tissues. There was molecular evidence of improved lipid and glucose homeostasis based on peroxisome proliferator-activated receptor (PPAR) protein expression. Compared to the control fructose group, supplementation of the green tea extract (300 mg/kg) significantly increased PPARalpha and PPARgamma protein expression. In summary, the data suggest that intake of the green tea extract ameliorated the fructose-induced hypertriglyceridemia and the insulin-resistant state in part through PPAR.
Collapse
Affiliation(s)
- Rachel W Li
- Division of Medical Technology, John A. Burns School of Medicine, University of Hawaii at Manoa, Bio C-206, 1960 East-West Road, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|
27
|
Torres-Gonzalez M, Volek JS, Sharman M, Contois JH, Fernandez ML. Dietary carbohydrate and cholesterol influence the number of particles and distributions of lipoprotein subfractions in guinea pigs. J Nutr Biochem 2006; 17:773-9. [PMID: 16563725 DOI: 10.1016/j.jnutbio.2006.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 11/24/2022]
Abstract
Guinea pigs (n=10/group) were fed one of three diets: a high carbohydrate (CHO) (42% energy), low cholesterol (0.04%) diet (LChHC), a diet with the same amount of CHO but with 0.25% cholesterol (HChHC) or a diet with 11% of energy from CHO and 0.25% cholesterol (HChLC) for 12 weeks. VLDL- and LDL cholesterol (LDL-C) were higher in the HChLC and HChHC groups than in the LChHC group (P<.0001). Lipoprotein subclasses and size were analyzed by nuclear magnetic resonance. Dietary cholesterol (HChHC and HChLC groups) resulted in larger VLDL particles (71.1+/-6.9, 78.9+/-3.33 nm, respectively) than those in the LChHC group (44.3+/-10.8 nm). In addition, there were higher concentrations of the large VLDL (>60 nm) and the medium VLDL (>35 nm) in the high cholesterol groups (P<.01). Similarly, the concentration of the medium (>8.2 nm) and small HDL (>7.2 nm) was higher in the HChHC and HChLC groups (P<.001). In contrast, CHO restriction affected the concentrations of LDL subfractions. The number of total LDL particles was lower in the HChLC (291.3+/-85.0 nmol/L) than in the HChHC group (467.6+/-113.1 nmol/L), indicating that the cholesterol in LDL was distributed in less particles in the former group. The concentrations of medium LDL (>19.8 nm) (98.4+/-90.8) and small LDL (>18 nm) (29.3+/-24.9 nmol/L) were lower in the HChLC group than in the HChHC group (261.8+/-105.8 and 64.9+/-27.9 nmol/L, respectively). These results indicate that dietary cholesterol increased the atherogenicity of both VLDL and HDL while CHO restriction increased the number of large LDL and decreased the concentrations of the more atherogenic smaller LDL subfractions.
Collapse
|
28
|
Aggarwal D, West KL, Zern TL, Shrestha S, Vergara-Jimenez M, Fernandez ML. JTT-130, a microsomal triglyceride transfer protein (MTP) inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs. BMC Cardiovasc Disord 2005; 5:30. [PMID: 16188040 PMCID: PMC1262701 DOI: 10.1186/1471-2261-5-30] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/27/2005] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Microsomal transfer protein inhibitors (MTPi) have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG). However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver. METHODS Male guinea pigs (n = 10 per group) were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control), 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7th week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism. RESULTS Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P < 0.05). Atorvastatin had the most pronounced hypolipidemic effects with a 35% reduction in LDL cholesterol and 40% reduction in TG. JTT-130 did not induce hepatic lipid accumulation compared to controls. Cholesteryl ester transfer protein (CETP) activity was reduced in a dose dependent manner by increasing doses of MTPi and guinea pigs treated with atorvastatin had the lowest CETP activity (P < 0.01). In addition the number of molecules of cholesteryl ester in LDL and LDL diameter were lower in guinea pigs treated with atorvastatin. In contrast, hepatic enzymes involved in maintaining cholesterol homeostasis were not affected by drug treatment. CONCLUSION These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations.
Collapse
Affiliation(s)
- Dimple Aggarwal
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Kristy L West
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Tosca L Zern
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Sudeep Shrestha
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
29
|
Casaschi A, Maiyoh GK, Adeli K, Theriault AG. Increased diacylglycerol acyltransferase activity is associated with triglyceride accumulation in tissues of diet-induced insulin-resistant hyperlipidemic hamsters. Metabolism 2005; 54:403-9. [PMID: 15736121 DOI: 10.1016/j.metabol.2004.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over-accumulation of triglyceride (TG) in insulin-sensitive tissues is associated with the development of insulin resistance. We investigated whether enhanced de novo lipogenesis via diacylglycerol acyltransferase (DGAT) may contribute to the over-accumulation of TG in various tissues (liver, adipose, muscle, and intestine) using 2 well-characterized hyperlipidemic, insulin-resistant hamster models. In general, a marked increase in TG accumulation was noted in most tissues. Interestingly, the increase in TG accumulation corresponded to an increase in microsomal DGAT activity which ranged from 114% to 575% in all of the examined tissues (n = 7 per group). To delineate the mechanism for the increase in DGAT activity, we measured the expression of DGAT-1 and DGAT-2 messenger RNA by relative reverse transcriptase polymerase chain reaction (RT-PCR). In general, DGAT gene expression changed with DGAT-1 changing the most in the liver and adipose tissue, whereas DGAT-2 showed responses mainly in muscle and intestine. The increases in messenger RNA expression were not remarkable (averaging 35%; n = 4 per group) indicating that posttranscriptional mechanism(s) may play a larger role in regulating DGAT activity. In summary, the data suggest that elevated DGAT activity/expression and the subsequent increase in de novo lipogenesis could in part induce the insulin-resistant state.
Collapse
Affiliation(s)
- Adele Casaschi
- Division of Medical Technology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
30
|
Herron KL, Lofgren IE, Sharman M, Volek JS, Fernandez ML. High intake of cholesterol results in less atherogenic low-density lipoprotein particles in men and women independent of response classification. Metabolism 2004; 53:823-30. [PMID: 15164336 DOI: 10.1016/j.metabol.2003.12.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of a high-cholesterol diet on the atherogenicity of the low-density lipoprotein (LDL) particle was examined by measuring LDL peak diameter and composition, LDL susceptibility to oxidation, and the distribution of cholesterol between LDL subclasses. The crossover intervention randomly assigned 27 premenopausal women and 25 men (18 to 50 years) to an egg (640 mg/d additional dietary cholesterol) or placebo (0 mg/d additional dietary cholesterol) diet for 30 days, followed by a 3-week washout period. Subjects were classified as either hyperresponders (>2.5 mg/dL increase in plasma cholesterol for each 100 mg additional dietary cholesterol consumed) or hyporesponders to dietary cholesterol. Sex was found to have a significant effect on 3 of the parameters examined. LDL peak diameter was significantly larger (P <.005) in females (26.78 +/- 0.59 nm, n = 27) as compared with males (26.52 +/- 0.49 nm, n = 25), regardless of response to dietary cholesterol. The LDL particles of the male participants also had a higher number of triglyceride (TG) and cholesteryl ester (CE) molecules (P <.01); however, cholesterol ester transfer protein (CETP) activity was higher in females (P <.05). Response classification also revealed significant differences in the determination of LDL subclasses. Independent of sex, the LDL-1 particle (P <.05), which is considered to be less atherogenic, was predominant in hyperresponders and this finding was associated with increased cholesterol intake (interactive effect, P <.001). In addition, CETP and lecithin: cholesterol acyltransferase (LCAT) activities were higher in hyperresponders during the egg period (interactive effect, P <.05). Sex, response to cholesterol intake, and diet were not found to affect the susceptibility of LDL to oxidation (P > 0.5). Because LDL peak diameter was not decreased and the larger LDL-1 subclass was greater in hyperresponders following egg intake, these data indicate that the consumption of a high-cholesterol diet does not negatively influence the atherogenicity of the LDL particle.
Collapse
Affiliation(s)
- Kristin L Herron
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | | | | | | | |
Collapse
|
31
|
West KL, Zern TL, Butteiger DN, Keller BT, Fernandez ML. SC-435, an ileal apical sodium co-dependent bile acid transporter (ASBT) inhibitor lowers plasma cholesterol and reduces atherosclerosis in guinea pigs. Atherosclerosis 2003; 171:201-10. [PMID: 14644388 DOI: 10.1016/j.atherosclerosis.2003.08.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Male Hartley guinea pigs were randomly allocated to one of four treatments, 10 guinea pigs per group, for 12 weeks. The control diet contained no ASBT inhibitor (ASBTi) or simvastatin. Low ASBTi (LowASBTi) and high ASBTi (HighASBTi) were monotherapies containing 0.03 g/100 g and 0.1 g/100 g of the ASBTi SC-435. Combination therapy (COMBO) was a combination therapy consisting of 0.03 g/100 g ASBTi and 0.05 g/100 g simvastatin. Based on food consumption, guinea pigs received 17.2 and 47.8 mg/kg per day ASBTi in the ASBTi groups or 13.7 mg/kg per day ASBTi and 21.4 mg/kg per day simvastatin in the COMBO group. The amount of cholesterol in each diet was 0.25 g/100 g. LDL cholesterol was 40 and 70% lower with the HighASBTi and COMBO treatments compared to controls. Plasma triglycerides (TG) were 70% lower with COMBO therapy while HDL cholesterol was 43-47% higher with all treatments. Hepatic free cholesterol was reduced 60-80% with all treatments. Cholesterol content in the aortic arch was reduced by 25 and 42% in the HighASBTi and COMBO groups. Fecal bile acids were increased by 2.5- and 4-fold with HighASBTi and COMBO treatments. These data suggest that the interruption in the enterohepatic circulation of bile acids by ASBTi and statin co-administration therapy cause a significant reduction in plasma cholesterol concentrations and attenuate the progression of atherosclerosis in guinea pigs.
Collapse
Affiliation(s)
- Kristy L West
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
32
|
Zern TL, West KL, Fernandez ML. Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. J Nutr 2003; 133:2268-72. [PMID: 12840191 DOI: 10.1093/jn/133.7.2268] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Female ovariectomized guinea pigs, a model for menopausal women, were fed either a control diet or a diet containing 10 g/100 g of a lyophilized grape preparation for 12 wk. The macronutrient composition of the grape preparation was: simple carbohydrates, 90 g/100 g; protein, 4 g/100 g; and dietary fiber, 6 g/100 g. Control and grape diets had the same composition except for the percentage of macronutrients provided by the grape preparation. Polyphenols were present in the grape preparation at 0.58 g/100 g and included flavans, anthocyanins, quercetin, myricetin, kaempferol and resveratrol. Dietary cholesterol was 0.33 g/100 g to raise plasma cholesterol concentrations and ensure the development of atherosclerosis. Plasma LDL cholesterol concentrations did not differ between groups, whereas plasma triglycerides and VLDL cholesterol were 39 and 50% lower, respectively in guinea pigs fed the grape diet compared with controls (P < 0.05). Significant modifications in LDL particles included 58 and 30% lower triglycerides and phospholipids, respectively (P < 0.0001). Hepatic acyl CoA:cholesteryl acyltransferase activity was 27% lower (P < 0.05) in the grape diet-fed group compared with controls. In addition, concentrations of cholesterol in the aorta were 33% lower (P < 0.05) in guinea pigs fed the grape diet. These results suggest that grape intake in ovariectomized guinea pigs alters hepatic cholesterol metabolism, which may affect VLDL secretion rates and result in less accumulation of cholesterol in the aorta.
Collapse
Affiliation(s)
- Tosca L Zern
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
33
|
West KL, Ramjiganesh T, Roy S, Keller BT, Fernandez ML. 1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane methanesulfonate (SC-435), an ileal apical sodium-codependent bile acid transporter inhibitor alters hepatic cholesterol metabolism and lowers plasma low-density lipoprotein-cholesterol concentrations in guinea pigs. J Pharmacol Exp Ther 2002; 303:293-9. [PMID: 12235263 DOI: 10.1124/jpet.102.038711] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Male Hartley guinea pigs (10/group) were assigned either to a control diet (no drug treatment) or to diets containing 0.4, 2.2, or 7.3 mg/day of an ileal apical sodium-codependent bile acid transporter (ASBT) inhibitor, 1-[4-[4[(4R,5R)-3,3-dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2] octane methanesulfonate (SC-435). Based on food consumption, guinea pigs received 0, 0.8, 3.7, or 13.4 mg/kg/day of the ASBT inhibitor. The amount of cholesterol in the four diets was maintained at 0.17%, equivalent to 1200 mg/day in the human situation. Guinea pigs treated with 13.4 mg/kg/day SC-435 had 41% lower total cholesterol and 44% lower low-density lipoprotein (LDL)-cholesterol concentrations compared with control (P < 0.01), whereas no significant differences were observed with either of the lower doses of SC-435. Hepatic cholesterol esters were significantly reduced by 43, 56, and 70% in guinea pigs fed 0.8, 3.7, and 13.4 mg/kg/day of the ASBT inhibitor, respectively (P < 0.01). In addition, the highest dose of the inhibitor resulted in a 42% increase in the number of very low-density lipoprotein (VLDL) triacylglycerol molecules and a larger VLDL diameter compared with controls (P < 0.05). Acyl-CoA cholesterol/acyltransferase activity was 30% lower with the highest dose treatment, whereas cholesterol 7alpha-hydroxylase, the regulatory enzyme of bile acid synthesis, was 30% higher with the highest ASBT inhibitor dose (P < 0.05). Furthermore, bile acid excretion increased 2-fold with the highest dose of SC-435 compared with the control group (P < 0.05). These results suggest that the reduction in total and LDL-cholesterol concentrations by the ASBT inhibitor is a result of alterations in hepatic cholesterol metabolism due to modifications in the enterohepatic circulation of bile acids.
Collapse
Affiliation(s)
- Kristy L West
- Department of Nutritional Sciences, University of Connecticut, Storrs 06269, USA.
| | | | | | | | | |
Collapse
|
34
|
Roy S, Freake HC, Fernandez ML. Gender and hormonal status affect the regulation of hepatic cholesterol 7alpha-hydroxylase activity and mRNA abundance by dietary soluble fiber in the guinea pig. Atherosclerosis 2002; 163:29-37. [PMID: 12048119 DOI: 10.1016/s0021-9150(01)00749-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dietary soluble fiber (SF) consistently lowers plasma LDL cholesterol (LDL-C) concentrations, however, secondary mechanisms governing this reduction are not completely defined. Moreover, these mechanisms appear to differ with gender. Male, female and ovariectomized (to mimic menopause) guinea pigs were used to assess effects of gender, hormonal status and SF on activity and expression of hepatic cholesterol 7alpha-hydroxylase (CYP7). Diets were identical except for fiber source (control 10% cellulose, SF 5% psyllium/5% pectin). SF intake resulted in 44% lower plasma total cholesterol, 51% lower plasma LDL-C and 22% lower plasma triacylglycerol (TAG) concentrations. However, ovariectomized guinea pigs fed either the control or SF diets, had the highest plasma LDL-C and TAG levels (P<0.01). SF altered hepatic cholesterol metabolism by effectively reducing hepatic free cholesterol, TAG and microsomal free cholesterol, while activity of CYP7, the rate-limiting enzyme of cholesterol catabolism, was up-regulated. Hepatic CYP7 mRNA abundance paralleled the increase in enzyme activity. Ovariectomized guinea pigs had lowest activity and expression of hepatic CYP7 even after intervention with SF. These results suggest that induction of hepatic CYP7 activity may account, in large part, for the hypocholesterolemic effect of SF. Gender and hormonal status influence metabolic responses to dietary SF with estrogen deprivation leading to the most detrimental lipid profile.
Collapse
Affiliation(s)
- Suheeta Roy
- Department of Nutritional Sciences, University of Connecticut, 3624 Horsebarn Road Extension, U-17, Storrs, CT 06269, USA
| | | | | |
Collapse
|
35
|
Romero AL, West KL, Zern T, Fernandez ML. The seeds from Plantago ovata lower plasma lipids by altering hepatic and bile acid metabolism in guinea pigs. J Nutr 2002; 132:1194-8. [PMID: 12042433 DOI: 10.1093/jn/132.6.1194] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Psyllium, the husks from Plantago ovata (PO), is recognized as a potent agent in lowering plasma cholesterol. In this study, we tested the potential hypolipidemic effects of the seeds from PO and the mechanisms associated with the lowering of plasma lipids. Male Hartley guinea pigs (n = 30; 10 per group) were fed either a control diet or diets containing 7.5 or 10 g/100 g PO for 4 wk. Diets were identical in composition except for the fiber source. The control diet contained 10 g/100 g cellulose and 2.5 g/100 g guar gum, whereas the PO diets were adjusted to a total of 12.5 g/100 g fiber with cellulose. Although a dose response was not observed, plasma triglycerides and LDL cholesterol were 34 and 23% lower in the PO groups compared with the control (P < 0.01). Lecithin cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) activities were significantly affected by the PO diets. The control group had 100 and 36% higher LCAT and CETP (P < 0.01) activities, respectively, compared with the PO groups. Hepatic total and free cholesterol concentrations were not affected by PO, but cholesteryl ester concentrations were 50% (P < 0.01) lower in the PO groups compared with the control. The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of cholesterol synthesis was up-regulated in the PO groups by 37%. Similarly, the activity of cholesterol 7alpha-hydroxylase, the regulatory enzyme of cholesterol catabolism to bile acids was 33% higher in the PO groups (P < 0.02). Fecal bile acids were 3 times higher in the PO groups than in the control group. These results suggest that PO exerts its hypolipidemic effect by affecting bile acid absorption and altering hepatic cholesterol metabolism.
Collapse
Affiliation(s)
- Ana Lourdes Romero
- Department of Food Science, University of Sonora, Hermosillo, Sonora State, Mexico
| | | | | | | |
Collapse
|
36
|
Cos E, Ramjiganesh T, Roy S, Yoganathan S, Nicolosi RJ, Fernandez ML. Soluble fiber and soybean protein reduce atherosclerotic lesions in guinea pigs. Sex and hormonal status determine lesion extension. Lipids 2001; 36:1209-16. [PMID: 11795853 DOI: 10.1007/s11745-001-0834-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
These studies were undertaken to assess guinea pigs as potential models for early atherosclerosis development. For that purpose, male, female, and ovariectomized (to mimic menopause) guinea pigs were fed a control or a TEST diet for 12 wk. Differences between diets were the type of protein (60% casein/40% soybean vs. 100% soybean) and the type of fiber (12.5% cellulose vs. 2.5% cellulose/5% pectin/5% psyllium) for control and TEST diets, respectively. Diet had no effect on plasma cholesterol or triacylglycerol (TAG) concentrations; however, there were significant effects related to sex/hormonal status. Ovariectomized guinea pigs had higher plasma cholesterol and TAG concentrations than males or females (P < 0.01). In contrast to effects on plasma lipids, hepatic cholesterol and TAG were 50% lower in the TEST groups (P < 0.01) compared to controls. Low density lipoproteins (LDL) from guinea pigs fed the TEST diet had a lower number of cholesteryl ester (CE) molecules and a smaller diameter than LDL from controls. Atherosclerotic lesions were modulated by both diet (P < 0.0001) and sex (P < 0.0001). Guinea pigs fed the TEST diet had 25% less lesion extension whereas males had 20% larger occlusion of the arteries compared to both female and ovariectomized guinea pigs. Significant positive correlations were found between LDL CE and atherosclerotic lesions (r = 0.495, P < 0.05) and LDL size and fatty streak area (r = 0.56, P < 0.01). In addition, females fed the TEST diet had the lowest plasma and hepatic cholesterol concentrations, the smallest LDL particles, and the least atherosclerosis involvement compared to the other groups. These data indicate that dietary factors and sex/hormonal status play a role in determining plasma lipids and atherosclerosis in guinea pigs.
Collapse
Affiliation(s)
- E Cos
- Department of Nutritional Sciences, University of Connecticut, Storrs 06269, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
The association between elevated plasma LDL-cholesterol concentrations and increased risk for heart disease has made the scientific community aware of dietary sources that might effectively reduce plasma cholesterol levels. Several large-scale cohort studies have documented that dietary fiber lowers the risk for coronary heart disease. In addition, there is substantial evidence from randomized controlled clinical trials that a mean reduction of 9% in LDL-cholesterol can be achieved by intake of different sources of soluble fiber. Incorporating fiber sources into our diet may provide a useful adjunct to a low-saturated fat diet, and may have a further beneficial effect for individuals who have mild-to-moderate hypercholesterolemia. The physicochemical properties of soluble fiber result in important modifications in volume, bulk and viscosity in the intestinal lumen, which will alter metabolic pathways of hepatic cholesterol and lipoprotein metabolism, resulting in lowering of plasma LDL-cholesterol.
Collapse
Affiliation(s)
- M L Fernandez
- Department of Nutritional Sciences, The University of Connecticut, Storrs, Connecticut 06269, USA.
| |
Collapse
|
38
|
Ramjiganesh T, Roy S, McIntyre JC, Luz Fernandez M. The hypocholesterolaemic effects of sitostanol in the guinea pig are in part related to changes in hepatic lipids and lipoprotein composition. Br J Nutr 2001; 85:165-72. [PMID: 11242484 DOI: 10.1079/bjn2000246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To evaluate some of the mechanisms involved in the plasma cholesterol lowering of sitostanol (SI), male Hartley guinea pigs were fed diets containing cholesterol (0.25 g/100 g) and four doses of SI: either 0 (control), 0.75, 1.5 or 2.25 g/100 g. In addition a negative control (-C) group with dietary cholesterol (0.04 g/100 g) was included. Corn oil was used as the source of fat and the contribution of fat energy was 35 %. Plasma total cholesterol was 43, 49 and 53 % (P < 0.0001) lower after SI intake compared to the control. Plasma LDL concentrations were 47, 53 and 61 % lower with increasing doses of SI. In addition, intake of SI resulted in 26-42 % lower hepatic total cholesterol. Hepatic esterified cholesterol and triacylglycerols were 32-60 % and 55-61 % lower after SI intake. SI intake resulted in favourable plasma and hepatic cholesterol concentrations similar to those in guinea pigs fed low levels of dietary cholesterol (-C). The LDL obtained from the control group had a higher number of molecules of free and esterified cholesterol than the SI groups. SI intake resulted in 69-71 % higher cholesterol excretion compared to the control. SI treatment enhanced the total faecal neutral sterol excretion by 54-58 % compared to control and by 70-76 % compared to the (-C) group. These results suggest that SI might have its hypocholesterolaemic effect by reducing cholesterol absorption, which results in lower concentration of cholesterol in liver. This reduction in hepatic cholesterol might possibly alter hepatic cholesterol metabolism and affect lipoprotein concentration and composition.
Collapse
Affiliation(s)
- T Ramjiganesh
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
Guinea pigs carry the majority of their plasma cholesterol in LDL, making them a unique animal model with which to study hepatic cholesterol and lipoprotein metabolism. In this review, the benefits and advantages of using this particular model are discussed. How dietary factors such as soluble fiber, cholesterol and fatty acids that vary in saturation and chain length affect hepatic cholesterol homeostasis and influence the synthesis, intravascular processing and catabolism of lipoproteins is reviewed. In addition, alterations in hepatic cholesterol metabolism and plasma lipoproteins as affected by treatment with cholestyramine or 3-hydroxyl-3-methylglutaryl coenzyme A reductase inhibitors, exercise, marginal intake of vitamin C, ovariectomy (a model for menopause) and similarities to the human situation are addressed. A review of guinea pigs as models for early atherosclerosis development is also presented.
Collapse
Affiliation(s)
- M L Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06269-4017, USA.
| |
Collapse
|
40
|
Ramjiganesh T, Roy S, Nicolosi RJ, Young TL, McIntyre JC, Fernandez ML. Corn husk oil lowers plasma LDL cholesterol concentrations by decreasing cholesterol absorption and altering hepatic cholesterol metabolism in guinea pigs. J Nutr Biochem 2000; 11:358-66. [PMID: 11044630 DOI: 10.1016/s0955-2863(00)00091-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To test the hypocholesterolemic mechanisms of corn husk oil (CoHO), male Hartley guinea pigs were fed diets containing increasing doses of CoHO, either 0 (control), 5, 10, or 15 g/100 g, and 0.25 g/100 g cholesterol. A positive control group (LC) with low dietary cholesterol (0.04 g/100 g) was also included. Fat was adjusted to 15 g/100 g in all diets by the addition of regular corn oil. Plasma low density lipoprotein (LDL) cholesterol concentrations were 32, 55, and 57% (P < 0.0005) lower with increasing doses of CoHO. In addition, intake of CoHO resulted in 32 to 43% lower hepatic total and esterified cholesterol and 55 to 60% lower triacylglycerol concentrations compared with the control group (P < 0.01). CoHO intake resulted in plasma and hepatic cholesterol concentrations similar to those in guinea pigs from the LC group. The number of cholesteryl ester and free cholesterol molecules was higher in LDL from the control group than in LDL from the CoHO or the LC groups. Hepatic beta-hydroxy-beta-methylglutaryl-coenzyme A reductase activity was not modified by CoHO intake whereas cholesterol 7alpha-hydroxylase was up-regulated by 45 to 49% (P < 0.01) in the 10 and 15 g/100 g CoHO groups. Hepatic acyl coenzyme A cholesterol acyltransferase activity was down-regulated in a dose-dependent manner by 54, 58, and 63% with increasing doses of CoHO. CoHO intake resulted in increased fecal cholesterol excretion by 40 to 55% compared with the control and LC groups. Total fecal neutral sterol excretion was enhanced 42 to 55% by CoHO compared with the control group and by 59 to 68% compared with the LC group. The data from these studies suggest that CoHO has its hypocholesterolemic effect by decreasing cholesterol absorption and increasing bile acid output. These alterations in the intestinal lumen alter hepatic cholesterol metabolism and may affect the synthesis and catabolism of lipoproteins.
Collapse
Affiliation(s)
- T Ramjiganesh
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
41
|
Roy S, Vega-Lopez S, Fernandez ML. Gender and hormonal status affect the hypolipidemic mechanisms of dietary soluble fiber in guinea pigs. J Nutr 2000; 130:600-7. [PMID: 10702591 DOI: 10.1093/jn/130.3.600] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to assess the effects of gender on the secondary mechanisms by which dietary soluble fiber lowers plasma LDL cholesterol. For that purpose, male, female and ovariectomized (to mimic menopause) guinea pigs (8-10 per group) were allocated to two dietary treatments. Diets were identical in composition except for the fiber source: the control diet contained 10 g/100 of cellulose and 2.5 g/100 g of guar gum, while the soluble fiber (SF) diet contained 5 g/100 of psyllium, 5 g/100 of pectin and 2.5 g/100 g of guar gum. SF intake resulted in 44% lower plasma LDL cholesterol, 64% lower apo B and 22% lower plasma triacylglycerol (TAG) concentrations (P < 0.01) compared to guinea pigs fed the control diet. However, ovariectomized guinea pigs had higher plasma cholesterol, apo B and TAG concentrations (P < 0.01) compared to males and females, even those fed SF. Plasma HDL-cholesterol was higher in females than in males (P < 0.05). LDL size, as measured by LDL composition and fast protein liquid chromatography, was larger in females than males. Guinea pigs fed SF had smaller LDL than controls. LDL susceptibility to oxidation was 80% lower in male and females fed the SF diet (P < 0.001) than in controls, while there was no effect of diet in ovariectomized guinea pigs. Hepatic free cholesterol and TAG were lower, and activities of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase and cholesterol 7alpha-hydroxylase were higher in guinea pigs fed SF (P < 0.05) than in controls. These results indicate that gender plays an important role in the metabolic responses to dietary soluble fiber and that estrogen deprivation leads to a detrimental lipoprotein profile.
Collapse
Affiliation(s)
- S Roy
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|