1
|
Swanson KS, Allenspach K, Amos G, Auchtung TA, Bassett SA, Bjørnvad CR, Everaert N, Martín-Orúe SM, Ricke SC, Ryan EP, Fahey GC. Use of biotics in animals: impact on nutrition, health, and food production. J Anim Sci 2025; 103:skaf061. [PMID: 40036559 PMCID: PMC12010704 DOI: 10.1093/jas/skaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
Probiotics, prebiotics, and other biotic substances are not only effective ways to promote a healthy gastrointestinal tract, an effective immune system, and the overall health of humans, but also in agricultural and companion animals. Because key differences exist in regard to gastrointestinal tract anatomy and physiology, dietary management and feeding strategy, and disease susceptibility, however, biotic types and amounts often differ according to host species and life stage. Despite these differences, the literature demonstrates the value of biotics in agricultural and companion animal species. While high variability in responsiveness and efficacy has been reported, biotic substances may be effectively used to improve digestion, reduce morbidity, increase growth rate and/or efficiency in agricultural animals and promote gastrointestinal health and immune response in companion animals. As the oversight of antibiotic use intensifies, the population density of animals and humans increases, and production strategies of agricultural animals are more heavily scrutinized, the importance of biotics and other health promotors will continue to increase in the future. To date, the effects of animal biotic use have focused primarily on the farm, home, or veterinary clinic. In the future, their impact must be viewed on a larger scale. As global "One Health" approaches seek to reduce antimicrobial use and resistance and there are increasing demands for sustainable and safe food production, biotics will continue to be an important part of the solution. As knowledge of gastrointestinal microbiomes grows and the biotic field develops, more targeted and effective strategies for health promotion in these species are expected. At the 2023 International Scientific Association for Probiotics and Prebiotics meeting, experts were invited to participate in a discussion group focused on "The Use of Probiotics and Prebiotics in Agricultural and Companion Animals". This review reports the outcomes of that discussion, including the documented use of probiotics, prebiotics, and other biotic substances to promote health or treat disease in agricultural and companion animals, provide implications of animal biotic use on human health, and provide perspective on how scientific advances may impact the development and improvement of biotics in the future.
Collapse
Affiliation(s)
- Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Karin Allenspach
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Gregory Amos
- Waltham Petcare Science Institute, Melton Mowbray LE13, UK
| | | | - Shalome A Bassett
- Fonterra Limited, Fonterra Research & Development Centre, Palmerston North 4442, New Zealand
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Charlotte R Bjørnvad
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Susana M Martín-Orúe
- Department of Animal and Food Science, Animal Nutrition and Welfare Service, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80524, USA
| | - George C Fahey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Dasriya VL, Samtiya M, Ranveer S, Dhillon HS, Devi N, Sharma V, Nikam P, Puniya M, Chaudhary P, Chaudhary V, Behare PV, Dhewa T, Vemuri R, Raposo A, Puniya DV, Khedkar GD, Vishweswaraiah RH, Vij S, Alarifi SN, Han H, Puniya AK. Modulation of gut-microbiota through probiotics and dietary interventions to improve host health. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6359-6375. [PMID: 38334314 DOI: 10.1002/jsfa.13370] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Dietary patterns play an important role in regards to the modulation and control of the gut microbiome composition and function. The interaction between diet and microbiota plays an important role in order to maintain intestinal homeostasis, which ultimately affect the host's health. Diet directly impacts the microbes that inhabit the gastrointestinal tract (GIT), which then contributes to the production of secondary metabolites, such as short-chain fatty acids, neurotransmitters, and antimicrobial peptides. Dietary consumption with genetically modified probiotics can be the best vaccine delivery vector and protect cells from various illnesses. A holistic approach to disease prevention, treatment, and management takes these intrinsically linked diet-microbes, microbe-microbe interactions, and microbe-host interactions into account. Dietary components, such as fiber can modulate beneficial gut microbiota, and they have resulting ameliorative effects against metabolic disorders. Medical interventions, such as antibiotic drugs can conversely have detrimental effects on gut microbiota by disputing the balance between Bacteroides and firmicute, which contribute to continuing disease states. We summarize the known effects of various dietary components, such as fibers, carbohydrates, fatty acids, vitamins, minerals, proteins, phenolic acids, and antibiotics on the composition of the gut microbiota in this article in addition to the beneficial effect of genetically modified probiotics and consequentially their role in regards to shaping human health. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Soniya Ranveer
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Nishu Devi
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikas Sharma
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pranali Nikam
- College of Dairy Science and Food Technology, Dau Shri Vasudev Chandrakar, Kamdhenu University, Raipur, India
| | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, FDA Bhawan, New Delhi, India
| | - Priya Chaudhary
- Microbiology Department, VCSG Government Institute of Medical Science and Research, Srinagar, India
| | - Vishu Chaudhary
- University Institute of Biotechnology, Chandigarh University, Sahibzada Ajit Singh Nagar, India
| | - Pradip V Behare
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Ravichandra Vemuri
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Dharun Vijay Puniya
- Center of One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Gulab D Khedkar
- Paul Hebert Center for DNA Barcoding and Biodiversity Studies, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | | | - Shilpa Vij
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sehad N Alarifi
- Department of Food and Nutrition Science, Al-Quwayiyah College of Sciences and Humanities, Shaqra University, Shaqraa, Saudi Arabia
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
3
|
White CS, Froebel LE, Dilger RN. A review on the effect of soy bioactive components on growth and health outcomes in pigs and broiler chickens. J Anim Sci 2024; 102:skae261. [PMID: 39234891 PMCID: PMC11452720 DOI: 10.1093/jas/skae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024] Open
Abstract
While soy products have long been included in animal diets for their macronutrient fractions, more recent work has focused on the immunomodulatory potential of bioactive components of this feedstuff. This comprehensive review aims to identify the current state of knowledge on minor soy fractions and their impact on the health and growth of pigs and broiler chickens to better direct future research. A total of 7,683 publications were screened, yet only 151 were included in the review after exclusion criteria were applied, with the majority (n = 87) of these studies conducted in pigs. In both species, antinutritional factors and carbohydrates, like stachyose and raffinose, were the most frequently studied categories of bioactive components. For both categories, most publications were evaluating ways to decrease the prevalence of the examined components in soy products, especially when fed at earlier ages. Overall, most studies evaluated the effect of the bioactive component on performance-related outcomes (n = 137), followed by microbial analysis (n = 38) and intestinal structure and integrity measures (n = 37). As they were analyzed in the majority of publications, antinutritional factors were also the most frequently investigated category in relation to each specific outcome. This trend did not hold true for microbiota- or antioxidant-associated outcomes, which were most often studied with carbohydrates or polyphenols, respectively. Changes to the host microbiota have the potential to modulate the immune system, feed intake, and social behaviors through the microbiota-gut-brain axis, though few publications measured behavior and brain characteristics as an outcome. Other identified gaps in research included the study of soy saponins, as most research focused on saponins derived from other plants, the study of phytosterols outside of their role in cardiovascular or reproductive outcomes, and the general examination of bioactive peptides. Overall, given soy's popularity as a current constituent of animal feed, additional research into these bioactive components may serve to define the value of soy products through their potential ability to support the productivity, health, and well-being of animals.
Collapse
Affiliation(s)
- Cameron S White
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Laney E Froebel
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
4
|
Grześkowiak Ł, Saliu EM, Wessels AG, Martínez-Vallespín B, Männer K, Cerón JJ, Vahjen W, Zentek J. Clostridioides difficile-mesocolonic oedema in neonatal suckling piglets develops regardless of the fibre composition in sow's diets. Animal 2023; 17:100697. [PMID: 36621110 DOI: 10.1016/j.animal.2022.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Maternal dietary factors have been reported to influence Clostridioides difficile colonisation in the offspring. Twenty suckling piglets from sows fed diets supplemented with high-fermentable sugar beet pulp (SBP) or low-fermentable lignocellulose (LNC) fibres during gestation and lactation were dissected in the first week after birth. Postmortem analysis included clinical mesocolon and faecal scoring, concentration of C. difficile and respective toxins in colon digesta and faeces, immunoglobulins in serum and inflammatory markers in serum and colon tissues. Sow colostrum was assessed for nutrients, immunoglobulins and biogenic amines. Toxin-neutralising IgG antibodies were measured in colostrum and serum of the sows, and in colon digesta and serum of the piglets. Mesocolonic oedema of different severity was present in most of the piglets from both sows' feeding groups. Concentrations of C. difficile, toxins and calprotectin in colon digesta and faecal contents did not differ between the study piglets. Calprotectin correlated positively with mesocolon score (rho = 413, P = 0.07). Piglets from sows fed LNC vs SBP tended to have higher IgA (P = 0.089), IgG (P = 0.053), total Ig (P = 0.053), albumin (P = 0.075) and total protein content (P = 0.007) in serum. Colon tissues of piglets from the SFB vs LNC had upregulated expression of ZO-1 (P = 0.021), PCNA (P = 0.015) and TGF-β (P = 0.014). Titers of anti-toxin-IgG-antibodies in serum and colostrum and in piglet colon digesta and serum did not differ between sows from both dietary groups, but they all showed strong positive correlations. In conclusion, dietary sugar beet pulp or lignocellulose fed to sows did not influence the concentrations of C. difficile and toxins titers in colon digesta and faeces of neonatal piglets.
Collapse
Affiliation(s)
- Łukasz Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin 14195 Germany.
| | - Eva-Maria Saliu
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin 14195 Germany
| | - Anna Grete Wessels
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin 14195 Germany
| | | | - Klaus Männer
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin 14195 Germany
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100 Murcia, Spain
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin 14195 Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin 14195 Germany
| |
Collapse
|
5
|
Grześkowiak Ł, Saliu EM, Martínez-Vallespín B, Aschenbach JR, Brockmann GA, Fulde M, Hartmann S, Kuhla B, Lucius R, Metges CC, Rothkötter HJ, Vahjen W, Wessels AG, Zentek J. Dietary fiber and its role in performance, welfare, and health of pigs. Anim Health Res Rev 2022; 23:165-193. [PMID: 36688278 DOI: 10.1017/s1466252322000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Dietary fiber (DF) is receiving increasing attention, and its importance in pig nutrition is now acknowledged. Although DF for pigs was frowned upon for a long time because of reductions in energy intake and digestibility of other nutrients, it has become clear that feeding DF to pigs can affect their well-being and health. This review aims to summarize the state of knowledge of studies on DF in pigs, with an emphasis on the underlying mode of action, by considering research using DF in sows as well as suckling and weaned piglets, and fattening pigs. These studies indicate that DF can benefit the digestive tracts and the health of pigs, if certain conditions or restrictions are considered, such as concentration in the feed and fermentability. Besides the chemical composition and the impact on energy and nutrient digestibility, it is also necessary to evaluate the possible physical and physiologic effects on intestinal function and intestinal microbiota, to better understand the relation of DF to animal health and welfare. Future research should be designed to provide a better mechanistic understanding of the physiologic effects of DF in pigs.
Collapse
Affiliation(s)
- Ł Grześkowiak
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - E-M Saliu
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - B Martínez-Vallespín
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - G A Brockmann
- Breeding Biology and Molecular Animal Breeding, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - M Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - S Hartmann
- Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - B Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - R Lucius
- Institute of Molecular Parasitology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - C C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - H J Rothkötter
- Institute of Anatomy, Otto-von-Guericke-Universität, Medizinische Fakultät, Magdeburg, Germany
| | - W Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - A G Wessels
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
6
|
van Hees HM, Chiers K, den Hartog LA, van Kempen TA, Maes D, Millet S, Janssens GP. Supplementing oat hulls to the diet of suckling piglets altered their intestinal tract and colonic microbiota development. ANIMAL NUTRITION 2022; 12:284-296. [PMID: 37013081 PMCID: PMC10065989 DOI: 10.1016/j.aninu.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Current study evaluated the effect of a fine and coarsely ground insoluble dietary fibre source on the gastrointestinal development of suckling pigs. Oat hulls (OH) were selected as a model feedstuff, rich in cellulose, lignin, and insoluble dietary fibre. Three experimental supplemental diets were formulated: a finely ground, low fibre and nutrient dense diet served as control (CON). For the 2 high fibre diets, 15% heat-treated starch in CON was exchanged with OH, either finely (OH-f) or coarsely ground (OH-c). Litters of 10 primi- and multiparous sows (mean litter size 14.6 ± 0.84) were used. Within a litter, experimental diets were allotted to triplets of 4 piglets. From approximately 12 d of age, piglets' individual feed intakes were recorded 2 times per day when separated from their dam for 70 min. Piglets could suckle with their dam for the remainder of the day. On d 24 and 25, from the total pool of 120 piglets, seven healthy well-eating piglets per treatment were selected for post-mortem evaluation, resulting in 14 replicates per treatment. Consumption of OH-c and OH-f did not impede clinical health and production performance of piglets. The full stomach weights tended to be greater for OH-c compared to OH-f whereas CON was intermediate (P = 0.083). Supplementing OH significantly increased ileal villus height and caecal dry matter concentration (P < 0.05). For the colon, OH increased its length, contents weight, short-chain fatty acid concentration and reduced total bacterial count as well as γ-proteobacteria count and proportion (P < 0.05). The OH-c treatment specifically increased full gastrointestinal tract weight and caecum contents weight compared to piglets fed CON and OH-f. Furthermore, OH-c reduced colonic crypt depth when compared to OH-f (P = 0.018). In conclusion, supplementing OH to a diet for suckling piglets exerted subtle developmental effects on gastrointestinal morphology and colonic microbial community. These effects were largely independent from the particle size of the OH.
Collapse
|
7
|
Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9804014. [PMID: 35958108 PMCID: PMC9343081 DOI: 10.34133/2022/9804014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the past decade regarding our understanding of the gut microbiome's role in human health. Currently, however, a comprehensive and focused review marrying the two distinct fields of gut microbiome and material research is lacking. To bridge the gap, the current paper discusses critical aspects of the rapidly emerging research topic of "material engineering in the gut microbiome and human health." By engaging scientists with diverse backgrounds in biomaterials, gut-microbiome axis, neuroscience, synthetic biology, tissue engineering, and biosensing in a dialogue, our goal is to accelerate the development of research tools for gut microbiome research and the development of therapeutics that target the gut microbiome. For this purpose, state-of-the-art knowledge is presented here on biomaterial technologies that facilitate the study, analysis, and manipulation of the gut microbiome, including intestinal organoids, gut-on-chip models, hydrogels for spatial mapping of gut microbiome compositions, microbiome biosensors, and oral bacteria delivery systems. In addition, a discussion is provided regarding the microbiome-gut-brain axis and the critical roles that biomaterials can play to investigate and regulate the axis. Lastly, perspectives are provided regarding future directions on how to develop and use novel biomaterials in gut microbiome research, as well as essential regulatory rules in clinical translation. In this way, we hope to inspire research into future biomaterial technologies to advance gut microbiome research and gut microbiome-based theragnostics.
Collapse
Affiliation(s)
- Letao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Keely SJ, Barrett KE. Intestinal secretory mechanisms and diarrhea. Am J Physiol Gastrointest Liver Physiol 2022; 322:G405-G420. [PMID: 35170355 PMCID: PMC8917926 DOI: 10.1152/ajpgi.00316.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/31/2023]
Abstract
One of the primary functions of the intestinal epithelium is to transport fluid and electrolytes to and from the luminal contents. Under normal circumstances, absorptive and secretory processes are tightly regulated such that absorption predominates, thereby enabling conservation of the large volumes of water that pass through the intestine each day. However, in conditions of secretory diarrhea, this balance becomes dysregulated, so that fluid secretion, driven primarily by Cl- secretion, overwhelms absorptive capacity, leading to increased loss of water in the stool. Secretory diarrheas are common and include those induced by pathogenic bacteria and viruses, allergens, and disruptions to bile acid homeostasis, or as a side effect of many drugs. Here, we review the cellular and molecular mechanisms by which Cl- and fluid secretion in the intestine are regulated, how these mechanisms become dysregulated in conditions of secretory diarrhea, currently available and emerging therapeutic approaches, and how new strategies to exploit intestinal secretory mechanisms are successfully being used in the treatment of constipation.
Collapse
Affiliation(s)
- Stephen J Keely
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Kim E Barrett
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, California
| |
Collapse
|
9
|
Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. Ileal alkaline phosphatase is upregulated following functional amino acid supplementation in Salmonella Typhimurium-challenged pigs. J Anim Sci 2021; 100:6485855. [PMID: 34962518 PMCID: PMC8846338 DOI: 10.1093/jas/skab376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
We recently showed that functional amino acid (FAA) supplementation improves growth performance and immune status of Salmonella Typhimurium (ST)-challenged pigs, which was further improved by a longer adaptation period. It is expected that the effects are associated with increased activity of intestinal alkaline phosphatase (IAP). The objective of this study was to evaluate the effects of FAA supplementation and adaptation period on the ileal, cecal, and colonic activity of IAP in weaned pigs challenged with ST. In experiment 1, a total of 32 mixed-sex weanling pigs were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (FAA-) or FAA profile (FAA+; Thr, Met, and Trp at 120% of requirements) as factors. In experiment 2, a total of 32 mixed-sex weanling pigs were randomly assigned to one of four dietary treatments, being FAA- fed throughout the experimental period (FAA-) or an FAA profile fed only in the post-inoculation (FAA + 0), for 1 wk pre- and post-inoculation (FAA + 1), or throughout the experimental period (FAA + 2). In experiments 1 and 2, after a 7- and 14-d adaptation period, respectively, pigs were inoculated with saline solution containing ST (3.3 and 2.2 × 109 CFU/mL, respectively). Plasma alkaline phosphatase was measured on days 0 and 7 post-inoculation in experiment 1, and IAP (ileum, cecum, and colon) was measured in experiments 1 and 2. Correlations among ileal IAP and serum albumin and haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), and reduced:oxidized glutathione, ileal myeloperoxidase, ST shedding and ileal colonization, and post-inoculation average daily gain, feed intake (ADFI), and gain:feed were also analyzed. In experiment 1, plasma alkaline phosphatase was decreased with ST inoculation and the overall content was increased in LP-FAA+ compared with LP-FAA- (P < 0.05). Moreover, ileal IAP was increased in FAA+ compared with FAA- pigs in both studies (P < 0.05) regardless of adaptation time (P > 0.05). IAP was positively correlated with MDA and ADFI and negatively correlated with SOD and ST shedding in experiment 1 (P < 0.05). These results demonstrate a positive effect of FAA supplementation, but not adaptation period, on ileal alkaline phosphatase activity in Salmonella-challenged pigs, which may be associated with improvements in antioxidant balance.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Michael O Wellington
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | | | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada,Corresponding author:
| |
Collapse
|
10
|
Zeilinger K, Hellmich J, Zentek J, Vahjen W. Novel ex vivo screening assay to preselect farm specific pre- and probiotics in pigs. Benef Microbes 2021; 12:567-581. [PMID: 34420495 DOI: 10.3920/bm2020.0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel rapid ex vivo assay was developed as part of a concept to determine potential tailor-made combinations of pre- and probiotics for individual farms. Sow faecal slurries from 20 German pig farms were anaerobically incubated with pre- and probiotics or their combinations together with pathogenic strains that are of interest in pig production. Aliquots of these slurries were then incubated with media containing antibiotic mixtures allowing only growth of the specific pathogen. Growth was monitored and lag time was used to determine the residual fitness of the pathogenic strains. The background growth could be inhibited for an Escherichia coli- and a Clostridium difficile- but not for a Clostridium perfringens strain. The prebiotic fructo-oligosaccharides (FOS) and its combination with probiotics reduced the residual fitness of the E. coli strain in some farms. However, notable exceptions occurred in other farms where FOS increased the fitness of the E. coli strain. Generally, combinations of pre- and probiotics did not show additive effects on fitness for E. coli but displayed farm dependent differences. The effects of pre- and probiotics on the residual fitness of the C. difficile strain were less pronounced, but distinct differences between single application of prebiotics and their combination with probiotics were observed. It was concluded that the initial composition of the microbiota in the samples was more determinative for incubations with the C. difficile strain than for incubations with the E. coli strain, as the presumed fermentation of prebiotic products showed less influence on the fitness of the C. difficile strain. Farm dependent differences were pronounced for both pathogenic strains and therefore, this novel screening method offers a promising approach for pre-selecting pre- and probiotics for individual farms. However, evaluation of farm metadata (husbandry, feed, management) will be crucial in future studies to determine a tailor-made solution for combinations of pre- and probiotics for individual farms. Also, refinement of the ex vivo assay in terms of on-farm processing of samples and validation of unambiguous growth for pathogenic strains from individual farms should be addressed.
Collapse
Affiliation(s)
- K Zeilinger
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Hellmich
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - J Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| | - W Vahjen
- Institute of Animal Nutrition, Freie Universität Berlin, Königin-Luise-Str. 49, 14195 Berlin, Germany
| |
Collapse
|
11
|
Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. Int J Mol Sci 2021; 22:6729. [PMID: 34201613 PMCID: PMC8268081 DOI: 10.3390/ijms22136729] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Disruptions in the intestinal epithelial barrier can result in devastating consequences and a multitude of disease syndromes, particularly among preterm neonates. The association between barrier dysfunction and intestinal dysbiosis suggests that the intestinal barrier function is interactive with specific gut commensals and pathogenic microbes. In vitro and in vivo studies demonstrate that probiotic supplementation promotes significant upregulation and relocalization of interepithelial tight junction proteins, which form the microscopic scaffolds of the intestinal barrier. Probiotics facilitate some of these effects through the ligand-mediated stimulation of several toll-like receptors that are expressed by the intestinal epithelium. In particular, bacterial-mediated stimulation of toll-like receptor-2 modulates the expression and localization of specific protein constituents of intestinal tight junctions. Given that ingested prebiotics are robust modulators of the intestinal microbiota, prebiotic supplementation has been similarly investigated as a potential, indirect mechanism of barrier preservation. Emerging evidence suggests that prebiotics may additionally exert a direct effect on intestinal barrier function through mechanisms independent of the gut microbiota. In this review, we summarize current views on the effects of pro- and prebiotics on the intestinal epithelial barrier as well as on non-epithelial cell barrier constituents, such as the enteric glial cell network. Through continued investigation of these bioactive compounds, we can maximize their therapeutic potential for preventing and treating gastrointestinal diseases associated with impaired intestinal barrier function and dysbiosis.
Collapse
Affiliation(s)
- Elizabeth C. Rose
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA;
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Amanda L. Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| |
Collapse
|
12
|
Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. A longer adaptation period to a functional amino acid-supplemented diet improves growth performance and immune status of Salmonella Typhimurium-challenged pigs. J Anim Sci 2021; 99:skab146. [PMID: 33955450 PMCID: PMC8153703 DOI: 10.1093/jas/skab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 01/02/2023] Open
Abstract
We recently showed that dietary supplementation with key functional amino acids (FAA) improves growth performance and immune status of Salmonella Typhimurium (ST)-challenged pigs. It is not known if ST-challenged pigs will benefit from a longer adaptation period to FAA. The objective of this study was to evaluate the effects of different adaptation periods to diets containing FAA above requirements for growth on performance and immune response of weaned pigs subsequently challenged with ST. A total of 32 mixed-sex weanling pigs (11.6 ± 0.3 kg) were randomly assigned to 1 of 4 dietary treatments, being a basal amino acid (AA) profile fed throughout the experimental period (FAA-) or a functional AA profile (FAA+; Thr, Met, and Trp at 120% of requirements) fed only in the postinoculation (FAA+0), for 1 wk pre- and postinoculation (FAA+1), or throughout the experimental period (FAA+2). After a 14-d adaptation period, pigs were inoculated with ST (2.15 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, score for ST shedding in feces and intestinal colonization, and fecal and digesta myeloperoxidase (MPO) were measured pre- and postinoculation. Postinoculation body temperature and fecal score, serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), and fecal MPO were increased while serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) were reduced compared to pre-inoculation (P < 0.05). Average daily gain and G:F were greater in FAA+2 pigs compared to FAA- pigs (P < 0.05). Serum albumin was higher in FAA+2 and FAA+1 compared to FAA+0 and FAA- pigs (P < 0.05) while FAA+2 pigs had lower haptoglobin compared to FAA- (P < 0.05). Plasma SOD was increased and GSH:GSSG was decreased in FAA- pigs compared to the other treatments (P < 0.05). Score for ST shedding in feces was progressively lower from d 1 to 6 regardless of treatment (P < 0.05) and was lower in FAA+2 pigs compared to FAA- and FAA+0 (P < 0.05). Counts of ST in colon digesta were higher in FAA- and FAA+0 pigs compared to FAA+2 (P < 0.05). Fecal and colonic digesta MPO were lower in FAA+2 and FAA+1 pigs compared to FAA- (P < 0.05). These results demonstrate a positive effect of a longer adaptation period to FAA-supplemented diets on performance and immune status of weaned pigs challenged with Salmonella.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., S7H 5N9, Saskatoon,Canada
- Department of Animal and Poultry Science, University of Saskatchewan, S7N 5A8, Saskatoon,Canada
| | - Michael O Wellington
- Prairie Swine Centre, Inc., S7H 5N9, Saskatoon,Canada
- Department of Animal and Poultry Science, University of Saskatchewan, S7N 5A8, Saskatoon,Canada
| | | | - John K Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, S7N 5A8, Saskatoon,Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., S7H 5N9, Saskatoon,Canada
- Department of Animal and Poultry Science, University of Saskatchewan, S7N 5A8, Saskatoon,Canada
| |
Collapse
|
13
|
Radlowski EC, Wang M, Monaco MH, Comstock SS, Donovan SM. Combination-Feeding Causes Differences in Aspects of Systemic and Mucosal Immune Cell Phenotypes and Functions Compared to Exclusive Sow-Rearing or Formula-Feeding in Piglets. Nutrients 2021; 13:1097. [PMID: 33801785 PMCID: PMC8065485 DOI: 10.3390/nu13041097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/03/2023] Open
Abstract
Combination feeding (human milk and formula) is common and influences immune development compared to exclusive breastfeeding. Infant formulas contain prebiotics, which influence immune development. Herein, immune development of combination-fed (CF), sow-reared (SR) and formula-fed (FF) piglets, and the effect of prebiotics was tested. Piglets (n = 47) were randomized to: SR, FF, CF, FF+prebiotic (FP), and CF+prebiotic (CP). FP and CP received formula with galactooligosaccharides and inulin (4 g/L in a 4:1 ratio). CF and CP piglets were sow-reared for until d5 and then rotated between a sow and formula every 12 h. On day 21, piglets received an intraperitoneal injection of lipopolysaccharide 2 h prior to necropsy. Immune cells from blood, mesenteric lymph nodes (MLN), and spleen were phenotyped. Classical (nitric oxide synthase) and alternative (arginase activity) activation pathways were measured in isolated macrophages. Serum IL-6 and TNF-α were measured by ELISA. SR piglets had lower (p < 0.0001) CD4+ T-helper cells and higher (p < 0.0001) B-cells in PBMC than all other groups. CP piglets had higher (p < 0.0001) arginase activity compared to all other groups. FF piglets had higher (p < 0.05) IL-6 compared to both CF and SR, but were similar to FP and CP. Thus, CF, with or without prebiotics, differentially affected immunity compared to exclusively fed groups.
Collapse
Affiliation(s)
- Emily C. Radlowski
- Department of Nutritional Sciences, Dominican University, River Forest, IL 60305, USA;
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (M.W.); (M.H.M.)
| | - Marcia H. Monaco
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (M.W.); (M.H.M.)
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA;
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA; (M.W.); (M.H.M.)
| |
Collapse
|
14
|
Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. Functional amino acid supplementation, regardless of dietary protein content, improves growth performance and immune status of weaned pigs challenged with Salmonella Typhimurium. J Anim Sci 2021; 99:6126666. [PMID: 33529342 DOI: 10.1093/jas/skaa365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA-) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA- in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA- (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA- pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA- fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA- (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Michael O Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | | | - John K Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Reddy KE, Kim M, Kim KH, Ji SY, Baek Y, Chun JL, Jung HJ, Choe C, Lee HJ, Kim M, Lee SD. Effect of commercially purified deoxynivalenol and zearalenone mycotoxins on microbial diversity of pig cecum contents. Anim Biosci 2020; 34:243-255. [PMID: 32777887 PMCID: PMC7876725 DOI: 10.5713/ajas.20.0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Deoxynivalenol (DON) and zearalenone (ZEN) are mycotoxins that frequently contaminate maize and grain cereals, imposing risks to the health of both humans and animals and leading to economic losses. The gut microbiome has been shown to help combat the effects of such toxins, with certain microorganisms reported to contribute significantly to the detoxification process. METHODS We examined the cecum contents of three different dietary groups of pigs (control, as well as diets contaminated with 8 mg DON/kg feed or 0.8 mg ZEN/kg feed). Bacterial 16S rRNA gene amplicons were acquired from the cecum contents and evaluated by next-generation sequencing. RESULTS A total of 2,539,288 sequences were generated with ~500 nucleotide read lengths. Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla, occupying more than 96% of all three groups. Lactobacillus, Bacteroides, Megasphaera, and Campylobacter showed potential as biomarkers for each group. Particularly, Lactobacillus and Bacteroides were more abundant in the DON and ZEN groups than in the control. Additionally, 52,414 operational taxonomic units were detected in the three groups; those of Bacteroides, Lactobacillus, Campylobacter, and Prevotella were most dominant and significantly varied between groups. Hence, contamination of feed by DON and ZEN affected the cecum microbiota, while Lactobacillus and Bacteroides were highly abundant and positively influenced the host physiology. CONCLUSION Lactobacillus and Bacteroides play key roles in the process of detoxification and improving the immune response. We, therefore, believe that these results may be useful for determining whether disturbances in the intestinal microflora, such as the toxic effects of DON and ZEN, can be treated by modulating the intestinal bacterial flora.
Collapse
Affiliation(s)
- Kondreddy Eswar Reddy
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang Yun Ji
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Youlchang Baek
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ju Lan Chun
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyun Jung Jung
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.,Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Changyong Choe
- Division of Animal Disease and Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyun Jeong Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.,Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Minseok Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.,Department of Animal Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Korea
| | - Sung Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
16
|
Forgie AJ, Fouhse JM, Willing BP. Diet-Microbe-Host Interactions That Affect Gut Mucosal Integrity and Infection Resistance. Front Immunol 2019; 10:1802. [PMID: 31447837 PMCID: PMC6691341 DOI: 10.3389/fimmu.2019.01802] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract microbiome plays a critical role in regulating host innate and adaptive immune responses against pathogenic bacteria. Disease associated dysbiosis and environmental induced insults, such as antibiotic treatments can lead to increased susceptibility to infection, particularly in a hospital setting. Dietary intervention is the greatest tool available to modify the microbiome and support pathogen resistance. Some dietary components can maintain a healthy disease resistant microbiome, whereas others can contribute to an imbalanced microbial population, impairing intestinal barrier function and immunity. Characterizing the effects of dietary components through the host-microbe axis as it relates to gastrointestinal health is vital to provide evidence-based dietary interventions to mitigate infections. This review will cover the effect of dietary components (carbohydrates, fiber, proteins, fats, polyphenolic compounds, vitamins, and minerals) on intestinal integrity and highlight their ability to modulate host-microbe interactions as to improve pathogen resistance.
Collapse
Affiliation(s)
| | | | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Li Q, Burrough ER, Gabler NK, Loving CL, Sahin O, Gould SA, Patience JF. A soluble and highly fermentable dietary fiber with carbohydrases improved gut barrier integrity markers and growth performance in F18 ETEC challenged pigs1. J Anim Sci 2019; 97:2139-2153. [PMID: 30888017 PMCID: PMC6488326 DOI: 10.1093/jas/skz093] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/18/2019] [Indexed: 11/13/2022] Open
Abstract
This study aimed to evaluate the effects of a source of dietary soluble (SF) and insoluble fiber (IF) without or with exogenous carbohydrases (xylanase, β-glucanase, and pectinase) on diarrhea incidence, selected immune responses, and growth performance in enterotoxigenic Escherichia coli (ETEC)-challenged pigs. Sixty weaned pigs (6.9 ± 0.1 kg BW, ~23 d of age) were blocked by initial BW and placed in individual pens. Pens were randomly assigned to one of six treatments (n = 10 per treatment), including a nonchallenged control (NC), a positive challenge control (PC), the PC + a soluble fiber diet (10% sugar beet pulp) without (SF-) or with carbohydrases (SF+), and PC + an IF diet (15% corn distillers dried grains with solubles) without (IF-) or with carbohydrases (IF+). The control diet was primarily based on corn and soybean meal with 13.5% whey powder. The two sources of fiber were added at the expense of cornstarch in the control diet. Pigs were orally inoculated with 6 mL hemolytic F18 ETEC (~3.5 × 109 cfu/mL) or sham infected with 6 mL phosphate-buffered saline on day 7 (0 d postinoculation, dpi) postweaning. All ETEC challenged pigs were confirmed to be genetically susceptible to F18 ETEC. Pigs had free access to feed and water throughout the 14-d trial. Pig BW and feed intake were recorded on dpi -7, 0, and 7 or 8. Fecal swabs were collected on dpi -7, 0, 1, 2, 3, 5, and 7 or 8 to evaluate hemolytic E. coli shedding. Fecal score was visually ranked daily postchallenge to evaluate diarrhea incidence. Blood samples were collected on dpi -1, 3, and 7 or 8 at necropsy and intestinal tissues were collected at necropsy. Pigs on PC had lower dpi 1 to 7 ADG and ADFI than those on NC (P < 0.05). Compared with PC pigs, SF+ pigs had greater ADG during both pre- and postchallenge period (P < 0.05). The IF- increased postchallenge diarrhea incidence compared with PC (P < 0.05). Pigs on SF- had lower ileal E. coli attachment than PC (P < 0.05). The SF+ reduced haptoglobin and IF+ reduced C-reactive protein on dpi 3 compared with PC (P < 0.05). Compared with PC pigs, SF+ pigs tended to have lower ileal tumor necrosis factor alpha and greater ileal occludin (OCLN) mRNA (P < 0.10) and had greater (P < 0.05) colonic OCLN mRNA levels. Collectively, IF- increased incidence of diarrhea and fecal E. coli shedding compared with PC. The SF+ pigs had improved growth compared with PC pigs, likely due in part to a reduction in inflammatory intermediates.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Animal Science, Iowa State University, Ames, IA
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | | | | | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA
| | - Stacie A Gould
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
18
|
Jha R, Fouhse JM, Tiwari UP, Li L, Willing BP. Dietary Fiber and Intestinal Health of Monogastric Animals. Front Vet Sci 2019; 6:48. [PMID: 30886850 PMCID: PMC6409295 DOI: 10.3389/fvets.2019.00048] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023] Open
Abstract
Animal performance, feed efficiency, and overall health are heavily dependent on gut health. Changes in animal production systems and feed regulations away from the use of antibiotic growth promoters (AGP) have necessitated the identification of strategies to optimize gut health in novel and effective ways. Among alternatives to AGP, the inclusion of dietary fibers (DF) in monogastric diets has been attempted with some success. Alternative feedstuffs and coproducts are typically rich in fiber and can be used in the diets to reduce feed costs and optimize gut health. DF are naturally occurring compounds with a diverse composition and are present in all plant-based feedstuffs. DF stimulate the growth of health-promoting gut bacteria, are fermented in the distal small intestine and large intestine to short-chain fatty acids and have beneficial effects on the immune system. Maternal DF supplementation is one novel strategy suggested to have a beneficial programming effect on the microbial and immune development of their offspring. One mechanism by which DF improves gut health is through maintenance of an anaerobic intestinal environment that subsequently prevents facultative anaerobic pathogens from flourishing. Studies with pigs and poultry have shown that fermentation characteristics and their beneficial effects on gut health vary widely based on type, form, and the physico-chemical properties of the DF. Therefore, it is important to have information on the different types of DF and their role in optimizing gut health. This review will provide information and updates on different types of DF used in monogastric nutrition and its contribution to gut health including microbiology, fermentation characteristics, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Janelle M. Fouhse
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Utsav P. Tiwari
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Linge Li
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Benjamin P. Willing
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Abstract
Since the renaissance of microbiome research in the past decade, much insight has accumulated in comprehending forces shaping the architecture and functionality of resident microorganisms in the human gut. Of the multiple host-endogenous and host-exogenous factors involved, diet emerges as a pivotal determinant of gut microbiota community structure and function. By introducing dietary signals into the nexus between the host and its microbiota, nutrition sustains homeostasis or contributes to disease susceptibility. Herein, we summarize major concepts related to the effect of dietary constituents on the gut microbiota, highlighting chief principles in the diet-microbiota crosstalk. We then discuss the health benefits and detrimental consequences that the interactions between dietary and microbial factors elicit in the host. Finally, we present the promises and challenges that arise when seeking to incorporate microbiome data in dietary planning and portray the anticipated revolution that the field of nutrition is facing upon adopting these novel concepts.
Collapse
Affiliation(s)
- Niv Zmora
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Gastroenterology Unit, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jotham Suez
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Chen Q, Ren Y, Lu J, Bartlett M, Chen L, Zhang Y, Guo X, Liu C. A Novel Prebiotic Blend Product Prevents Irritable Bowel Syndrome in Mice by Improving Gut Microbiota and Modulating Immune Response. Nutrients 2017; 9:nu9121341. [PMID: 29232851 PMCID: PMC5748791 DOI: 10.3390/nu9121341] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder yet it still lacks effective prevention therapies. The aim of this study is to determine whether a novel prebiotic blend (PB) composed of fructo-oligosaccharide (FOS), galactooligosaccharide (GOS), inulin and anthocyanins could be effective in preventing the development of IBS. We explored the possible mechanisms both in animal and in cells. Post-infectious IBS models in C57BL/6 mice were established and were pretreated with the PB, PB and probiotic strains 8 weeks in advance of infection. Eight weeks after infection, intestinal tissues were collected for assessing histomorphology, visceral sensitivity, barrier function, pro-inflammatory cytokines expression and proteomics analysis. Fecal samples were also collected for microbiota analysis. The pro-inflammatory cytokines expression in Caco-2 cells were evaluated after co-incubation with PB and Salmonella typhimurium 14028. The results showed that PB significantly decreased the pro-inflammatory cytokines both in infected Caco-2 cells and PI-IBS models. The loss of body weight, decreased expression of tight junction protein Occludin (OCLN), and changes of the microbiota composition induced by infections could be greatly improved by PB intervention (p < 0.05). The proteomics analysis revealed that this function was associated with Peroxisome proliferator-activated receptor (PPAR)γ pathway.
Collapse
Affiliation(s)
- Qian Chen
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yiping Ren
- Center for Anti-Aging Research, Nu Skin Enterprises, Shanghai 201401, China.
| | - Jihong Lu
- Center for Anti-Aging Research, Nu Skin Enterprises, Shanghai 201401, China.
| | - Mark Bartlett
- Nu Skin Enterprises Anti-Aging Research Center, Provo, UT 84601, USA.
| | - Lei Chen
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yan Zhang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Chang Liu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
21
|
Barba-Vidal E, Buttow Roll VF, Garcia Manzanilla E, Torrente C, Moreno Muñoz JA, Pérez JF, Martín-Orúe SM. Blood parameters as biomarkers in a Salmonella spp. disease model of weaning piglets. PLoS One 2017; 12:e0186781. [PMID: 29073182 PMCID: PMC5658074 DOI: 10.1371/journal.pone.0186781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/06/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The weaning pig is used as an experimental model to assess the impact of diet on intestinal health. Blood parameters (BP) are considered a useful tool in humans, but there is very scarce information of such indicators in the weaning pig. The objective of the present study is to evaluate the use of different BP as indicators in an experimental model of salmonellosis. METHODOLOGY Seventy-two 28-day-old piglets were divided into four groups in a 2x2 factorial arrangement, with animals receiving or not a probiotic combination based on B. infantis IM1® and B. lactis BPL6 (109 colony forming units (cfu)/d) and orally challenged or not a week later with Salmonella Typhimurium (5x108 cfu). Blood samples of one animal per pen (N = 24) were taken four days post-inoculation for the evaluation of different BP using an I-stat® System and of plasmatic concentrations of zinc, iron and copper. PRINCIPAL FINDINGS Results reported marginal deficiencies of zinc in piglets at weaning. Moreover, plasmatic zinc, copper and iron presented good correlations with weight gain (r 0.57, r -0.67, r 0.54 respectively; P < 0.01). Blood electrolytes (Na+, Cl- and K+) decreased (P < 0.01) only when the performance of the animals was seriously compromised and clinical symptoms were more apparent. Acid-base balance parameters such as HCO3-, TCO2 and BEecf significantly correlated with weight gain, but only in the challenged animals (r -0.54, r -0.55, and r -0.51, respectively; P < 0.05), suggesting metabolic acidosis depending on Salmonella infection. Glucose was affected by the challenge (P = 0.040), while Htc and Hgb increased with the challenge and decreased with the probiotic (P < 0.05). Furthermore, correlations of Glu, Htc and Hgb with weight gain were observed (P < 0.05). Overall, BP could be regarded as simple, useful indexes to assess performance and health of weaning piglets.
Collapse
Affiliation(s)
- Emili Barba-Vidal
- Animal Nutrition and Welfare Service, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona; Bellaterra, Spain
| | - Victor Fernando Buttow Roll
- Federal University of Pelotas, Faculty of Agronomy Eliseu Maciel, Department of Animal Science; Pelotas, RS, Brazil
| | - Edgar Garcia Manzanilla
- Pig Development Department, Animal and Grassland Research and Innovation Centre, TEAGASC, The Irish Food and Agriculture Authority, Moorepark; Fermoy, Co. Cork, Ireland
| | - Carlos Torrente
- Emergency and Critical Care Service FHCV-UAB, Departament de Medecina i Cirurgia animal, Universitat Autònoma de Barcelona; Bellaterra, Spain
| | | | - José Francisco Pérez
- Animal Nutrition and Welfare Service, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona; Bellaterra, Spain
| | - Susana María Martín-Orúe
- Animal Nutrition and Welfare Service, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona; Bellaterra, Spain
| |
Collapse
|
22
|
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14:491-502. [PMID: 28611480 DOI: 10.1038/nrgastro.2017.75] [Citation(s) in RCA: 3088] [Impact Index Per Article: 386.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In December 2016, a panel of experts in microbiology, nutrition and clinical research was convened by the International Scientific Association for Probiotics and Prebiotics to review the definition and scope of prebiotics. Consistent with the original embodiment of prebiotics, but aware of the latest scientific and clinical developments, the panel updated the definition of a prebiotic: a substrate that is selectively utilized by host microorganisms conferring a health benefit. This definition expands the concept of prebiotics to possibly include non-carbohydrate substances, applications to body sites other than the gastrointestinal tract, and diverse categories other than food. The requirement for selective microbiota-mediated mechanisms was retained. Beneficial health effects must be documented for a substance to be considered a prebiotic. The consensus definition applies also to prebiotics for use by animals, in which microbiota-focused strategies to maintain health and prevent disease is as relevant as for humans. Ultimately, the goal of this Consensus Statement is to engender appropriate use of the term 'prebiotic' by relevant stakeholders so that consistency and clarity can be achieved in research reports, product marketing and regulatory oversight of the category. To this end, we have reviewed several aspects of prebiotic science including its development, health benefits and legislation.
Collapse
Affiliation(s)
- Glenn R Gibson
- Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, PO Box 226, Reading RG6 6AP, UK
| | - Robert Hutkins
- Department of Food Science and Technology, 258 Food Innovation Center, University of Nebraska - Lincoln, Lincoln, Nebraska 68588-6205, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, 7119 S. Glencoe Court, Centennial, Colorado 80122, USA
| | - Susan L Prescott
- School of Paediatrics and Child Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Raylene A Reimer
- Faculty of Kinesiology and Department of Biochemistry and Molecular Biology, 2500 University Drive, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Seppo J Salminen
- Functional Foods Forum, Faculty of Medicine, Itäinen Pitkäkatu 4A, FI-20014, University of Turku, Turku 20014, Finland
| | - Karen Scott
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, AB21 9SB, UK
| | - Catherine Stanton
- Teagasc Moorepark Food Research Centre, Fermoy, Cork, P61 C996, Ireland
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W Gregory Drive, Urbana, Illinois 61801, USA
| | - Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, 73 Avenue E Mounier, WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Metabolism and Nutrition Research Group, 1200 Brussels, Belgium
| | - Kristin Verbeke
- Translational Research in Gastrointestinal Disorders, KU Leuven, Targid - Herestraat 49, Leuven, Belgium and Leuven Food Science and Nutrition Research Centre, BE 3001, Leuven, Belgium
| | - Gregor Reid
- Lawson Health Research Institute, University of Western Ontario, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada
| |
Collapse
|
23
|
Maternal short-chain fructo-oligosaccharide supplementation increases intestinal cytokine secretion, goblet cell number, butyrate concentration and Lawsonia intracellularis humoral vaccine response in weaned pigs. Br J Nutr 2017; 117:83-92. [PMID: 28115029 DOI: 10.1017/s0007114516004268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Prebiotic supplementation modulates immune system development and function. However, less is known about the effects of maternal prebiotic consumption on offspring intestinal defences and immune system responsiveness. We investigated the effects of maternal short-chain fructo-oligosaccharide (scFOS) supplementation on mucin-secreting cells, ileal secretory IgA and cytokine secretion of weaned offspring and their humoral response to an oral vaccine against obligate intracellular Lawsonia intracellularis. Sows were fed a control diet (CTRL) or scFOS-supplemented diet during the last third of gestation and throughout lactation. At weaning, each litter was divided into two groups receiving a post-weaning CTRL or scFOS diet for a month. Pigs from the four groups were either non-vaccinated (n 16) or vaccinated (n 117) at day 33. Biomarkers related to intestinal defences and immune parameters were analysed 3 weeks later. SCFA production was assessed over time in suckling and weaned pigs. Maternal scFOS supplementation improved ileal cytokine secretions (interferon (IFN)-γ, P<0·05; IL-4, P=0·07) and tended to increase caecal goblet cell number (P=0·06). It increased IgA vaccine response in the serum (P<0·01) and ileal mucosa (P=0·08). Higher bacterial fermentative activity was observed during lactation (total faecal SCFA, P<0·001) and after weaning (colonic butyrate, P=0·10) in pigs from scFOS-supplemented mothers. No synergistic effect between maternal and post-weaning scFOS supplementation was observed. Therefore, maternal scFOS supplementation has long-lasting consequences by strengthening gut defences and immune response to a vaccine against an intestinal obligate intracellular pathogen. Prebiotic consumption by gestating and lactating mothers is decisive in modulating offspring intestinal immunity.
Collapse
|
24
|
Mustafa AF, Baurhoo B. Effects of feeding dried broccoli floret residues on performance, ileal and total digestive tract nutrient digestibility, and selected microbial populations in broiler chickens. J APPL POULTRY RES 2016. [DOI: 10.3382/japr/pfw038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Abstract
For the important foodborne pathogen Salmonella enterica to cause disease or persist in pigs, it has evolved an intricate set of interactions between itself, the host, and the indigenous microflora of the host. S. enterica must evade the host's immune system and must also overcome colonization resistance mediated by the pig's indigenous microflora. The inflammatory response against S. enterica provides the bacteria with unique metabolites and is thus exploited by S. enterica for competitive advantage. During infection, changes in the composition of the indigenous microflora occur that have been associated with a breakdown in colonization resistance. Healthy pigs that are low-level shedders of S. enterica also exhibit alterations in their indigenous microflora similar to those in ill animals. Here we review the literature on the interactions that occur between swine, S. enterica, and the indigenous microflora and discuss methods to reduce or prevent colonization of pigs with S. enterica.
Collapse
Affiliation(s)
- Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Chungnam, South Korea 31116;
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108;
| |
Collapse
|
26
|
Impact of replacing starch by digestible fibre, at two levels of lignocellulose, on digestion, growth and digestive health of the rabbit. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1357729800058793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractFour diets were arranged using a 2 ✕ 2 factorial design with two levels of lignocellulose, a high ‘HF’ or a low level ‘LF’ (acid-detergent fibre (ADF) = 191 v. 155 g/kg), combined with two levels of starch replacing 50 g/kg of digestible fibre (DF = hemicelluloses + pectins), a high starch (low DF) ‘HS’ or a low starch (high DF) level ‘LS’ (starch = 193 v. 123 g/kg). Two trials were conducted to measure digestive efficiency and rate of passage, respectively. A third trial was performed in a network of six French experimental breeding units to measure growth and digestive health on 507 rabbits per diet. Foods were offered ad libitum from weaning to slaughter.No significant interactions were detected between the effect of the level of lignocellulose and the effect of starch replacement by DF, on rabbit digestion, performance or digestive health. A proportional increase of overall food digestibility (organic matter (OM) or energy) was observed with the decrease of ADF level. When 50 g/kg of DF was replaced by starch we observed a significant improvement of OM and energy digestibility ( + 0·03 units). The whole-tract mean retention time of particles was 21 h. It was significantly longer with a lower ADF level ( + 5·4 h for LF v. HF diets), and it tended to increase when DF was substituted by starch ( + 2·2 h for HS v. LS diets).Between weaning and slaughter, food intake was mainly affected by the ADF level (139 v. 130 g/day respectively for HF and LF diets) and to a lesser extent by the replacement of DF by starch (136·2 v. 133·4 g/day, respectively for LS and HS diets). The weight gain was only slightly higher for high starch (low DF) diets ( +1 g/day) without an effect of the ADF level.Between weaning and slaughter, morbidity and mortality rates (from acute diarrhoea) were significantly reduced with high-fibre diets (-6 and -4 units respectively), while the replacement of DF by starch had no significant effect.
Collapse
|
27
|
Donovan SM. The Role of Lactoferrin in Gastrointestinal and Immune Development and Function: A Preclinical Perspective. J Pediatr 2016; 173 Suppl:S16-28. [PMID: 27234407 DOI: 10.1016/j.jpeds.2016.02.072] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The early postnatal period is a critical time for gastrointestinal (GI) and immune development. Neonates fed mother's milk have more rapid GI and immune development than fed-formula infants. In addition, clinical and epidemiologic data provide strong evidence that breastfeeding reduces the incidence and/or severity of infectious diseases. Lactoferrin is a 77 kDa, iron-binding glycoprotein that is present at high concentration in human milk compared with bovine milk and infant formula. It is a multifunctional protein that mediates many of the physiological processes in which breastfed infants have advantages over their formula-fed peers, including promoting GI and immune development, protection from infections, and improved cognitive development. Feeding bovine lactoferrin or recombinant human lactoferrin was well tolerated and stimulated intestinal cell proliferation and increased villus length and crypt depth in piglets. Lactoferrin also influenced both systemic and GI immune development by stimulating a balanced T-helper-1/T-helper-2 cytokine immune response. Further, there was a tendency for immune cells to secrete more anti-inflammatory cytokines in an unstimulated state, while being primed for a robust pro-inflammatory response when presented with a bacterial trigger in piglets fed lactoferrin. These findings support clinical studies demonstrating benefits of dietary lactoferrin in the prevention of infections, late onset sepsis, and necrotizing enterocolitis.
Collapse
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL.
| |
Collapse
|
28
|
Liu TW, Cephas KD, Holscher HD, Kerr KR, Mangian HF, Tappenden KA, Swanson KS. Nondigestible Fructans Alter Gastrointestinal Barrier Function, Gene Expression, Histomorphology, and the Microbiota Profiles of Diet-Induced Obese C57BL/6J Mice. J Nutr 2016; 146:949-56. [PMID: 27052535 DOI: 10.3945/jn.115.227504] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/24/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Obesity is associated with compromised intestinal barrier function and shifts in gastrointestinal microbiota that may contribute to inflammation. Fiber provides benefits, but impacts of fiber type are not understood. OBJECTIVE We aimed to determine the impact of cellulose compared with fructans on the fecal microbiota and gastrointestinal physiology in obese mice. METHODS Eighteen-wk-old male diet-induced obese C57BL/6J mice (n = 6/group; 40.5 g) were fed high-fat diets (45% kcal fat) containing 5% cellulose (control), 10% cellulose, 10% short-chain fructooligosaccharides (scFOS), or 10% inulin for 4 wk. Cecal and colon tissues were collected to assess barrier function, histomorphology, and gene expression. Fecal DNA extracts were subjected to 16S ribosomal RNA amplicon-based Illumina MiSeq sequencing to assess microbiota. RESULTS Body weight gain was greater (P < 0.05) in scFOS-fed than in 10% cellulose-fed mice. Both groups of fructan-fed mice had greater (P < 0.05) cecal crypt depth (scFOS: 141 μm; inulin: 145 μm) than both groups of cellulose-fed mice (5% and 10%: 109 μm). Inulin-fed mice had greater (P < 0.05) cecal transmural resistance (101 Ω × cm(2)) than 5% cellulose-fed controls (45 Ω × cm(2)). Inulin-fed mice had lower (P < 0.05) colonic mRNA abundance of Ocln (0.41) and Mct1 (0.35) than those fed 10% cellulose (Ocln: 1.28; Mct1: 0.90). Fructan and cellulose groups had different UniFrac distances of fecal microbiota (P < 0.05) and α diversity, which demonstrated lower (P < 0.01) species richness in fructan-fed mice. Mice fed scFOS had greater (P < 0.05) Actinobacteria (15.9%) and Verrucomicrobia (Akkermansia) (17.0%) than 5% controls (Actinobacteria: 0.07%; Akkermansia: 0.08%). Relative abundance of Akkermansia was positively correlated (r = 0.56, P < 0.01) with cecal crypt depth. CONCLUSIONS Fructans markedly shifted gut microbiota and improved intestinal physiology in obese mice, but the mechanisms by which they affect gut integrity and inflammation in the obese are still unknown.
Collapse
Affiliation(s)
| | | | - Hannah D Holscher
- Department of Animal Sciences, and Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | | | - Kelly A Tappenden
- Division of Nutritional Sciences, Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kelly S Swanson
- Division of Nutritional Sciences, Department of Animal Sciences, and
| |
Collapse
|
29
|
Yang C, Zhu X, Liu N, Chen Y, Gan H, Troy FA, Wang B. Lactoferrin up-regulates intestinal gene expression of brain-derived neurotrophic factors BDNF, UCHL1 and alkaline phosphatase activity to alleviate early weaning diarrhea in postnatal piglets. J Nutr Biochem 2014; 25:834-42. [PMID: 24824862 DOI: 10.1016/j.jnutbio.2014.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/19/2023]
Abstract
The molecular mechanisms underlying how dietary lactoferrin (Lf) impacts gut development and maturation and protects against early weaning diarrhea are not well understood. In this study, we supplemented postnatal piglets with an Lf at a dose level of 155 and 285 mg/kg/day from 3 to 38 days following birth. Our findings show that the high dose of Lf up-regulated messenger RNA expression levels of genes encoding brain-derived neurotrophic factor (BDNF) and ubiquitin carboxy-terminal hydrolase L1 (ubiquitin thiolesterase (UCHL1) and, to a lesser extent, glial cell line-derived neurotrophic factor, in the duodenum (P<.05). Piglets in the high and low Lf group had 30% and 7% larger jejunal crypts compared with the control group (P<.05). Escherichia coli 16S rRNA copy number per gram of ascending colon contents was significantly reduced (P=.001), while the copy number of Bifidobacteria and Lactobacillus spp. was not affected. In addition, Lf increased intestinal alkaline phosphatase activity (P<.05) and delayed the onset of food transitional diarrhea, reducing its frequency and duration (P<.05). The incidence of diarrhea in the high and low Lf groups was decreased 54% and 15%, respectively, compared with the control group (P=.035). In summary, these findings provide new evidence that dietary Lf supplementation up-regulated gene expression of BDNF and UCHL1, decreased the colon microbiota of E. coli, improved gut maturation and reduced early weaning diarrhea in piglets. The molecular basis underlying these findings suggests that Lf may enhance gut development and immune function by providing new insight into the gut-brain-microbe axis that has not been previously reported.
Collapse
Affiliation(s)
- Changwei Yang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xi Zhu
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ni Liu
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yue Chen
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hexia Gan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Frederic A Troy
- School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, CA 95616, USA
| | - Bing Wang
- School of Medicine, Xiamen University, Xiamen, 361102, China; School of Animal and Veterinary Science, Charles Sturt University NSW 2678, Australia.
| |
Collapse
|
30
|
Odle J, Lin X, Jacobi SK, Kim SW, Stahl CH. The suckling piglet as an agrimedical model for the study of pediatric nutrition and metabolism. Annu Rev Anim Biosci 2013; 2:419-44. [PMID: 25384150 DOI: 10.1146/annurev-animal-022513-114158] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neonatal pig ranks among the most prominent research models for the study of pediatric nutrition and metabolism. Its precocial development at birth affords ready adaptation to artificial rearing systems, and research using this model spans a wide array of nutrients. Sophisticated in vitro and in vivo methodologies supporting both invasive, reduction-science research as well as whole-animal preclinical investigations have been developed. Potential applications may dually benefit both agricultural and medical sciences (e.g., "agrimedical research"). The broad scope of this review is to outline the fundamental elements of the piglet model and to highlight key aspects of relevance to various macronutrients, including lipids, carbohydrates, proteins/amino acids, and calcium/phosphorus. The review examines similarities between piglets and infants and also piglet idiosyncrasies, concluding that, overall, the piglet represents an adaptable and robust model for pediatric nutrition and metabolism research.
Collapse
Affiliation(s)
- Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, North Carolina 27695; , , , ,
| | | | | | | | | |
Collapse
|
31
|
Dietary inulin alters the intestinal absorptive and barrier function of piglet intestine after weaning. Res Vet Sci 2013; 95:249-54. [DOI: 10.1016/j.rvsc.2013.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/28/2012] [Accepted: 02/22/2013] [Indexed: 01/13/2023]
|
32
|
Wang M, Radlowski EC, Monaco MH, Fahey GC, Gaskins HR, Donovan SM. Mode of delivery and early nutrition modulate microbial colonization and fermentation products in neonatal piglets. J Nutr 2013; 143:795-803. [PMID: 23616518 DOI: 10.3945/jn.112.173096] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Colonization of the intestinal microbiota after birth plays an important role in development of the neonatal gastrointestinal and immune systems. Two key environmental factors that influence the colonization pattern are delivery mode and nutrition. In this study, the impact of delivery mode and nutrition on microbial colonization and metabolic activity was investigated in the pig model. Vaginally (VD) or caesarean- (CD) delivered piglets were sow-reared (SR) or fed formula alone (FF) or with 4 g/L prebiotics [1:1 ratio of short-chain fructo-oligosaccharides (scFOS) and polydextrose (PDX); FP]. Intestinal contents were collected on d 7 and 14. SR piglets harbored different microbial populations from FF and FP piglets in ileum and ascending colon (AC). On d 7, FF piglets had a greater abundance of Clostridium XIVa in AC, but lower total bacteria, Clostridium XIVa, and Lactobacillus spp. in ileum and Fecalibacterium prausnitzii in AC compared with FP piglets. On d 14, total bacteria were more abundant in FP than FF piglets. Butyrate, isobutyrate, valerate, and isovalerate concentrations in AC were greater in SR piglets compared with FF or FP piglets. At both sampling days, acetate concentrations in AC were similar between the SR and FF groups, whereas propionate was higher in the SR compared with FF group. Delivery mode also significantly affected microbial populations. Bacterial densities differed in AC for Bacteroides-Prevotella at d 7 and Clostridium XIVa at d 14, being higher in VD piglets. Correspondingly, VD piglets had higher propionate in ileum and propionate and butyrate in AC compared with CD piglets. Our results indicate that both delivery mode and nutrition affect microbial composition and metabolic activity. Supplementation of scFOS/PDX to formula modulates microbial colonization and produces a SCFA pattern closer to that of SR piglets.
Collapse
Affiliation(s)
- Mei Wang
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | | | | | | | | | | |
Collapse
|
33
|
Laflamme DP, Xu H, Cupp CJ, Kerr WW, Ramadan Z, Long GM. Evaluation of canned therapeutic diets for the management of cats with naturally occurring chronic diarrhea. J Feline Med Surg 2012; 14:669-77. [PMID: 22577048 PMCID: PMC11104099 DOI: 10.1177/1098612x12446906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dietary therapy plays an important role in the management of most gastrointestinal disorders. This study was designed to test the efficacy of a new therapeutic diet for cats with diarrhea, compared to the top selling brand. Sixteen adult cats with chronic diarrhea were grouped and assigned to diet X (Hill's Prescription Diet i/d Feline) or diet Y (Purina Veterinary Diets EN Gastroenteric Feline Formula). Following baseline evaluations, cats were fed their assigned test diet for 4 weeks. Fecal scores (FS; 7=very watery; 1=extremely dry and firm) were recorded daily during the last week on each diet. Each cat was then switched to the alternate test diet and the procedure was repeated. Fifteen cats completed the study. Both therapeutic diets resulted in a significant improvement in average FS and diet Y also resulted in significantly better results compared with diet X. Average FS improved at least one unit in 40% of the cats while fed diet X and in 67% of the cats while fed diet Y, resulting in normal stools (average FS≤3) in 13.3% of cats fed diet X and 46.7% of cats fed diet Y. This study confirms the value of dietary change in the management of chronic diarrhea in cats.
Collapse
|
34
|
Abstract
Dietary nutrients are essential for gastrointestinal (GI) growth and function, and nutritional support of GI growth and development is a significant component of infant care. For healthy full-term neonates, nutritional provisions of the mother's milk and/or formula will support normal maturation of structure and function of the GI tract in most infants. The composition of breast milk affects GI barrier function and development of a competent mucosal immune system. The functional nutrients and other bioactive components of milk support a microenvironment for gut protection and maturation. However, premature infants struggle with feeding tolerance impairing normal GI function, leading to intestinal dysfunction and even death. The high prevalence worldwide of enteric diseases and dysfunction in neonates has led to much interest in understanding the role of nutrients and food components in the establishment and maintenance of a functioning GI tract. Neonates who do not receive enteral feeding as either mother's milk or formula are supported by total parental nutrition (TPN). The lack of enteral nutrition can compound intestinal dysfunction, leading to high morbidity and mortality in intestinally compromised infants. Reciprocally, enteral stimulation of an immature GI tract can also compound intestinal dysfunction. Therefore, further understanding of nutrient interactions with the mucosa is necessary to define nutritional requirements of the developing GI tract to minimize intestinal complications and infant morbidity. Piglet models of intestinal development and function are similar to humans, and this review summarizes recent findings regarding nutrient requirements for growth and maintenance of intestinal health. In particular, this article reviews the role of specific amino acids (arginine, glutamine, glutamate, and threonine), fatty acids (long chain polyunsaturated, medium chain, and short chain), various prebiotic carbohydrates (short-chain fructo-oligosaccharide, fructo--oligosaccharide, lacto-N-neotetraose, human milk oligosaccharide, polydextrose, and galacto-oligosaccharide), and probiotics that have been examined in the suckling piglet model of intestinal health.
Collapse
Affiliation(s)
- Sheila K Jacobi
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
35
|
Willamil J, Badiola I, Devillard E, Geraert PA, Torrallardona D. Wheat-barley-rye- or corn-fed growing pigs respond differently to dietary supplementation with a carbohydrase complex. J Anim Sci 2012; 90:824-32. [PMID: 22345107 DOI: 10.2527/jas.2010-3766] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thirty-six pigs (22 kg of BW) were used to evaluate a carbohydrase preparation, with xylanase and β-glucanase as main activities, added to either wheat-barley-rye- (WBR) or corn-based diets on performance, intestinal environment, and nutrient digestibility. Pigs were offered 1 of 4 different dietary treatments for 27 d according to a factorial arrangement of treatments (a 2 × 2) with 2 cereal types (WBR or corn) and 2 levels of supplemental carbohydrase (0 or 0.01%). Pig growth and feed intake were individually measured every week until the end of the experiment when pigs were slaughtered to obtain samples of digesta and tissues. Cereal type affected performance only during wk 1, in which WBR improved ADG (590 vs. 440 g/d; P = 0.008) and G:F (0.61 vs. 0.43; P = 0.045) compared with corn. The WBR also increased the viscosity of the digestive contents in stomach (1.95 vs. 1.23 mPa·s; P = 0.001) and ileum (6.53 vs. 2.80 mPa·s; P = 0.001) and resulted in greater cecal starch digestibility (95.7 vs. 93.9%; P = 0.012). However, trends for a reduction in digestibility were observed for glucose in the nonstarch polysaccharide (NSP) fraction in the ileum (64.4 vs. 75.8%; P = 0.074) and galactose in the NSP fraction in the cecum (1.4 vs. 1.8%; P = 0.055). The use of the enzyme preparation increased ADFI during wk 2 (1,328 vs. 1,215 g/d; P = 0.028), and increased villus height (423 vs. 390 µm; P = 0.045) and tended to reduce relative pancreas weight (0.16 vs. 0.17% BW; P = 0.079) at d 27. The enzyme also improved cecal starch digestibility (95.5 vs. 94.1%; P = 0.043) and tended to improve ileal energy digestibility (61.3 vs. 53.7%; P = 0.090) and cecal glucose digestibility in the NSP fraction (76.0 vs. 54.5%; P = 0.055). However, it reduced the cecal digestibility of mannose in the NSP fraction (27.0 vs. 50.5%; P = 0.016). Interactions (P < 0.05) between cereal type and enzyme supplementation were observed for ADG and G:F during wk 2, BW and ADG during wk 3, and BW and ADFI over the whole trial; and also for villus-height-to-crypt-depth ratio and for cecal DM digestibility. In all instances, whereas the added enzyme had no effect in the case of the corn diet, improvements were observed with WBR. In conclusion, the multi-enzyme tested had different effects depending on the type of cereal present in the diet.
Collapse
Affiliation(s)
- J Willamil
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
36
|
Bifidobacterium infantis 35624 protects against salmonella-induced reductions in digestive enzyme activity in mice by attenuation of the host inflammatory response. Clin Transl Gastroenterol 2012; 3:e15. [PMID: 23238232 PMCID: PMC3367613 DOI: 10.1038/ctg.2012.9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES: Salmonella-induced damage to the small intestine may decrease the villi-associated enzyme activity, causing malabsorption of nutrients and diarrhea, and thus contribute to the symptoms of infection. The objective of this study was to determine the mechanism by which different doses and durations of Salmonella infection and lipopolysaccharide (LPS) affect brush border enzyme activity in the mouse, and to determine if the probiotic Bifidobacterium longum subspecies infantis 35624 could attenuate the intestinal damage. METHODS: BALB/c mice were challenged with Salmonella enterica serovar Typhimurium UK1 at various doses (102–108 colony-forming unit (CFU)) and durations (106 CFU for 1–6 days). Mice were also treated with B. longum subsp. infantis 35624 for 2 weeks before and during a 6-day S. Typhimurium challenge (106 CFU), or before injection of LPS. The small intestine was assessed for morphological changes, mRNA expression of cytokines, and activity of the brush border enzymes sucrase–isomaltase, maltase, and alkaline phosphatase. RESULTS: S. Typhimurium infection significantly reduced the activity of all brush border enzymes in a dose- and time-dependent manner (P<0.05). This also occurred following injection of LPS. Pre-treatment with B. longum subsp. infantis 35624 prevented weight loss, protected brush border enzyme activity, reduced the small intestinal damage, and inhibited the increase in interleukin (IL)-10 and IL-8 expression due to Salmonella challenge. CONCLUSIONS: Salmonella infection reduces the small intestinal brush border enzyme activity in mice, with the level of reduction and associated weight loss increasing with dose and duration of infection. B. longum subsp. infantis 35624 treatment attenuated the effect of Salmonella infection on brush border enzyme activity and weight loss, which may be due to modulation of the host immune response.
Collapse
|
37
|
Barnes JL, Hartmann B, Holst JJ, Tappenden KA. Intestinal adaptation is stimulated by partial enteral nutrition supplemented with the prebiotic short-chain fructooligosaccharide in a neonatal intestinal failure piglet model. JPEN J Parenter Enteral Nutr 2012; 36:524-37. [PMID: 22517051 DOI: 10.1177/0148607112444131] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Butyrate has been shown to stimulate intestinal adaptation when added to parenteral nutrition (PN) following small bowel resection but is not available in current PN formulations. The authors hypothesized that pre- and probiotic administration may be a clinically feasible method to administer butyrate and stimulate intestinal adaptation. METHODS AND MATERIALS Neonatal piglets (48 hours old, n = 87) underwent placement of a jugular catheter and an 80% jejunoileal resection and were randomized to one of the following treatment groups: control (20% standard enteral nutrition/80% standard PN), control plus prebiotic (10 g/L short-chain fructooligosaccharides [scFOS]), control plus probiotic (1 × 10(9) CFU Lactobacillus rhamnosus GG [LGG]), or control plus synbiotic (scFOS + LGG). Animals received infusions for 24 hours, 3 days, or 7 days, and markers of intestinal adaptation were assessed. RESULTS Prebiotic treatment increased ileal mucosa weight compared with all other treatments (P = .017) and ileal protein compared with control (P = .049), regardless of day. Ileal villus length increased in the prebiotic and synbiotic group (P = .011), regardless of day, specifically due to an increase in epithelial proliferation (P = .003). In the 7-day prebiotic group, peptide transport was upregulated in the jejunum (P = .026), whereas glutamine transport was increased in both the jejunum and colon (P = .001 and .003, respectively). CONCLUSIONS Prebiotic and/or synbiotic supplementation resulted in enhanced structure and function throughout the residual intestine. Identification of a synergistic prebiotic and probiotic combination may enhance the promising results obtained with prebiotic treatment alone.
Collapse
|
38
|
May KD, Wells JE, Maxwell CV, Oliver WT. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs1. J Anim Sci 2012; 90:1118-25. [DOI: 10.2527/jas.2011-4297] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Mateos G, Jiménez-Moreno E, Serrano M, Lázaro R. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J APPL POULTRY RES 2012. [DOI: 10.3382/japr.2011-00477] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
|
41
|
Wales AD, Cook AJC, Davies RH. Producing Salmonella-free pigs: a review focusing on interventions at weaning. Vet Rec 2011; 168:267-76. [PMID: 21498180 DOI: 10.1136/vr.d1125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Salmonella infection in pig production is typically endemic and largely asymptomatic. It is a cause of substantial concern among food safety bodies, prompting voluntary and legislative responses aimed at monitoring and reducing the number of Salmonella-infected animals entering the human food chain. Elimination of the problem at an early stage of production is highly desirable, and to this end the present review examines published evidence on the carriage of Salmonella by piglets before and after weaning, as well as evidence on the dynamics of Salmonella infection in the weaner and grower stages of pig production, the effects of maternal immunity, and risk factors for Salmonella excretion after weaning. Various interventions to reduce or eliminate Salmonella infection in young pigs have been tried, such as vaccination, competitive exclusion, treatments in feed and water, antibiotic administration, disinfection of animals, and segregated weaning to clean accommodation. The evidence on the effectiveness of these is considered, and the last is examined in some detail, as it appears currently to offer the best chance of eliminating Salmonella from growing stock.
Collapse
Affiliation(s)
- A D Wales
- Department of Bacteriology, Veterinary Laboratories Agency - Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB.
| | | | | |
Collapse
|
42
|
Cannon S, Fahey G, Pope L, Bauer L, Wallace R, Miller B, Drackley J. Inclusion of psyllium in milk replacer for neonatal calves. 2. Effects on volatile fatty acid concentrations, microbial populations, and gastrointestinal tract size. J Dairy Sci 2010; 93:4744-58. [DOI: 10.3168/jds.2010-3077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022]
|
43
|
Cannon S, Fahey G, Murphy M, Dikeman C, Miller B, Drackley J. Inclusion of psyllium in milk replacer for neonatal calves. 1. Effects on growth, digesta viscosity, rate of passage, nutrient digestibilities, and metabolites in blood. J Dairy Sci 2010; 93:3652-60. [DOI: 10.3168/jds.2009-2731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/04/2010] [Indexed: 11/19/2022]
|
44
|
Liu P, Piao XS, Thacker PA, Zeng ZK, Li PF, Wang D, Kim SW. Chito-oligosaccharide reduces diarrhea incidence and attenuates the immune response of weaned pigs challenged with Escherichia coli K88. J Anim Sci 2010; 88:3871-9. [PMID: 20656977 DOI: 10.2527/jas.2009-2771] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seventy-two barrows (Landrace × Large White, initial BW of 4.9 ± 0.3 kg and 17 ± 3 d old) were used to determine if dietary chito-oligosaccharides can replace antibiotics as a means to reduce signs associated with infection in weaned pigs challenged with Escherichia coli. Pigs were assigned to 1 of 4 treatments in a randomized complete block design using 6 pens per treatment with 3 pigs per pen. The treatments consisted of pigs fed the unsupplemented corn-soybean meal diet challenged or unchallenged with E. coli K88 and pigs fed the same diet supplemented with 160 mg of chito-oligosaccharides or 100 mg of cyadox/kg and challenged with E. coli K88. On d 7, 1 group of pigs fed the unsupplemented diet, as well as all pigs fed diets containing chito-oligosaccharides or cyadox, were orally dosed with 30 mL of an alkaline broth containing E. coli K88. Another group of pigs fed the unsupplemented diet was orally dosed with 30 mL of sterilized alkaline broth. Fecal consistency was visually assessed each morning from d 7 to 14. Blood samples were collected at 0, 24, 48, and 168 h postinfection. On d 14 postchallenge, all pigs were killed to evaluate intestinal morphology and determine E. coli concentrations in the intestine. During the postchallenge period (wk 2), unsupplemented pigs challenged with E. coli had decreased (P < 0.05) BW gain, feed intake, fecal consistency, villus height, villus height:crypt depth ratio, and plasma IGF-1, and increased (P < 0.05) diarrhea incidence, E. coli counts in the intestine, plasma interleukin-1β, plasma IL-10, and IGA-positive cells in the jejunal and ileal lamina propria, compared with unchallenged pigs. Supplementation with cyadox largely mitigated these effects. Although chito-oligosaccharide reduced the incidence of diarrhea, the growth performance of E. coli-challenged pigs supplemented with chito-oligosaccharide was not better than that of unsupplemented pigs challenged with E. coli. Therefore, chito-oligosaccharide, at the amount used in this experiment, does not seem to be an effective substitute for antibiotics as a growth promoter for newly weaned pigs challenged with E. coli.
Collapse
Affiliation(s)
- P Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Yasuda K, Dawson HD, Wasmuth EV, Roneker CA, Chen C, Urban JF, Welch RM, Miller DD, Lei XG. Supplemental dietary inulin influences expression of iron and inflammation related genes in young pigs. J Nutr 2009; 139:2018-23. [PMID: 19776179 DOI: 10.3945/jn.109.110528] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have previously shown improved hemoglobin (Hb) repletion efficiency by supplementing a 50:50 mixture of short (P95) and long-chain (HP) inulin (Synergy 1, BENEO-Orafti) into a corn-soybean meal-basal diet (BD) for young pigs. In this study, weanling pigs (5 or 6 wk old) were fed the BD or the BD + 4% of P95, HP, or Synergy 1 (50:50 mixtures of HP and P95) for 5-7 wk. Blood Hb concentrations of pigs were measured weekly and digesta samples were collected at the end of the trial. In a replicate experiment, total RNA was isolated from the liver and mucosa of duodenum, ileum, cecum, and colon of all pigs at the end of the trial. Relative mRNA expression of 27 genes, including iron and inflammation-related genes, was quantified using real-time quantitative-PCR. Although all 3 types of inulin resulted in similar improvements (P < 0.05) in blood Hb concentration and liver ferritin protein amount, neither type of inulin was detectable in the digesta of cecum or colon. Supplemental inulin enhanced the expression of iron-storing protein genes but decreased that of inflammation-related genes. Such effects were more pronounced (P < 0.05) in the mucosa of the lower than the upper gut and were seen on 7 genes in liver. In conclusion, all 3 types of inulin shared similar efficacy and possibly similar modes of action in improving dietary iron utilization by young pigs. Suppressing inflammation-induced genes that can negatively influence iron metabolism might help explain the benefit of inulin.
Collapse
Affiliation(s)
- Koji Yasuda
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Donovan SM, Andres A, Mathai RA, Kuhlenschmidt TB, Kuhlenschmidt MS. Soy formula and isoflavones and the developing intestine. Nutr Rev 2009; 67 Suppl 2:S192-200. [DOI: 10.1111/j.1753-4887.2009.00240.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Martín-Peláez S, Manzanilla E, Anguita M, Fondevila M, Martín M, Mateu E, Martín-Orúe S. Different fibrous ingredients and coarsely ground maize affect hindgut fermentation in the pig in vitro but not Salmonella Typhimurium survival. Anim Feed Sci Technol 2009. [DOI: 10.1016/j.anifeedsci.2009.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Herfel TM, Jacobi SK, Lin X, Walker DC, Jouni ZE, Odle J. Safety evaluation of polydextrose in infant formula using a suckling piglet model. Food Chem Toxicol 2009; 47:1530-7. [PMID: 19358872 DOI: 10.1016/j.fct.2009.03.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 03/19/2009] [Accepted: 03/29/2009] [Indexed: 11/24/2022]
Abstract
Oligosaccharides, the third largest component in human milk, are virtually absent from cow's milk and most infant formula. Prebiotic carbohydrates like polydextrose (PDX) have been proposed as surrogates for human milk oligosaccharides. Safety assessments of novel infant formula ingredients include dose-response experiments in appropriate neonatal animal models such as the suckling pig. To further substantiate the safety of the ingredient, one-day old pigs were fed a cow's milk-based formula supplemented with PDX (1.7, 4.3, 8.5 or 17 g/L) for 18 days (n=13/dose) and compared to appropriate control (unsupplemented formula; n=13) and reference groups (day 0 pigs, and sow-reared pigs; n=13). Growth rate, formula intake, stool consistency, behavior score, blood chemistry and hematology, relative organ weights (% of body weight), tissue morphology (i.e. liver, kidney and pancreas) and pancreas biochemistry did not differ among formula-fed pigs (P>0.1). Polydextrose mimicked other prebiotic carbohydrates and had no adverse effect at the highest tested level 17.0 g PDX/L, equivalent to a dose of 8.35 g/kg of body weight per day.
Collapse
Affiliation(s)
- T M Herfel
- Laboratory of Developmental Nutrition, Department of Animal Science, North Carolina State University, Box 7621, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
49
|
Martín-Peláez S, Gibson GR, Martín-Orúe SM, Klinder A, Rastall RA, La Ragione RM, Woodward MJ, Costabile A. In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems. FEMS Microbiol Ecol 2008; 66:608-19. [PMID: 19049655 DOI: 10.1111/j.1574-6941.2008.00610.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to evaluate in vitro the influence of fermentable carbohydrates on the activity of porcine microbiota and survival of Salmonella Typhimurium in a batch culture system simulating the porcine hindgut. The carbohydrates tested were xylooligosaccharides, a mixture of fructooligosaccharides/inulin (FIN), fructooligosaccharides (FOS), gentiooligosaccharides (GEO) and lactulose (LAC). These ingredients stimulated the growth of selected Bifidobacterium and Lactobacillus species in pure cultures. In batch cultures, the carbohydrates influenced some fermentation parameters. For example, GEO and FIN significantly increased lactic acids compared with the control (no added carbohydrate). With the exception of LAC, the test carbohydrates increased the production of short-chain fatty acid (SCFA) and modified SCFA profiles. Quantitative analysis of bacterial populations by FISH revealed increased counts of the Bifidobacterium group compared with control and, with exception of FOS, increased Lactobacillus, Leuconostoc and Weissella spp. counts. Salmonella numbers were the lowest during the fermentation of LAC. This work has looked at carbohydrate metabolism by porcine microbiota in a pH-controlled batch fermentation system. It provides an initial model to analyse interactions with pathogens.
Collapse
Affiliation(s)
- Sandra Martín-Peláez
- Animal Nutrition, Management and Welfare Research Group, Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Awad W, Ghareeb K, Böhm J, Zentek J. A nutritional approach for the management of deoxynivalenol (DON) toxicity in the gastrointestinal tract of growing chickens. Int J Mol Sci 2008; 9:2505-2514. [PMID: 19330089 PMCID: PMC2635658 DOI: 10.3390/ijms9122505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 11/20/2008] [Accepted: 12/03/2008] [Indexed: 11/17/2022] Open
Abstract
It has been shown that DON has negative effects on the active transport of some nutrients in the small intestine of chickens. The plausible interactions between food contaminants and natural components could be high. The present study investigated the effects of DON on the presence or absence of dietary inulin on the electrophysiological response of the gut to glucose. Ussing chamber studies were conducted with isolated jejunal epithelia at the age of 35 days. Electrophysiology of the epithelia was recorded and the changes of the short-circuit current (Isc) were determined. The addition of d-glucose on the luminal side of the isolated mucosa increased (P < 0.05) the Isc in the control group and inulin supplemented group. The oligosaccharides did not increase glucose absorption in young healthy chickens compared with the controls. In the second experiment, after preincubation of tissues with DON, the addition of glucose did not increase the Isc in jejunum and colon in the control group (P > 0.05). However, in the dietary inulin supplemented group in both jejunum and colon, the addition of glucose after preincubation of tissues with DON increased the Isc, suggesting that the dietary inulin supplementation of the broilers regulated and improved the glucose absorption in the presence of DON and kept it at normal levels.
Collapse
Affiliation(s)
- Wageha Awad
- Institute of Nutrition, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Khaled Ghareeb
- Institute of Nutrition, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
- Department of animal Behaviour and Management, Faculty of Veterinary Medicine, South Valley University Qena, Egypt
| | - Josef Böhm
- Institute of Nutrition, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie University of Berlin, Brümmerstr. 34, D-14195 Berlin, Germany
| |
Collapse
|