1
|
Zhang L, Jing P, Geng B, Shi J, Zhang J, Liang D, Yang Y, Qu Y, Huang J. Effect of glutathione reductase on photosystem II characterization and reactive oxygen species metabolism in cotton cytoplasmic male sterile line Jin A. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17217. [PMID: 39868512 DOI: 10.1111/tpj.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025]
Abstract
Glutathione reductase (GR) maintains the cellular redox state by reducing oxidized glutathione to glutathione (GSH), which regulates antioxidant defense. Additionally, GR plays an essential role in photosynthesis; however, the mechanism by which GR regulates photosystem II (PSII) is largely unknown. We identified six, three, and three GR genes in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii, respectively. We found that GhGR1 and GhGR3 proteins were localized in the chloroplasts, whereas GhGR5 was localized in the cell membrane. Cytoplasmic male sterile (CMS) line Jin A was ideal to explore GR functions because accumulation of reactive oxygen species (ROS) was increased and expression of GhGR was downregulated at the key stage of microspore abortion in anthers compared to maintainer Jin B. The GR activity and relative GhGR1, GhGR3, GhGR5 gene expressions decreased significantly at the key stage of microspore abortion in Jin A-CMS compared to that in Jin B, resulting in an increase in ROS and a decrease in photochemical efficiency in PSII. GhGR1 and GhGR3 overexpression in Arabidopsis decreased ROS levels in anthers and leaves compared to the wild-type. Biochemical analysis of GhGR1 and GhGR3 silencing in Gossypium L. showed that ROS content was increased and photochemical efficiency of PSII was inhibited in leaves. Complementation experiments in tobacco and yeast indicated that GhGR1 interacted with GhPsbX, which was one of the subunits of the PSII protein complex. Taken together, these findings suggest that chloroplast GR plays an important role in PSII and ROS metabolism by interacting with PsbX in cotton plants.
Collapse
Affiliation(s)
- Li Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Panpan Jing
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Biao Geng
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinjiang Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinlong Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Dong Liang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yujie Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yunfang Qu
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jinling Huang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| |
Collapse
|
2
|
Cárcamo-Fincheira P, Nunes-Nesi A, Soto-Cerda B, Inostroza-Blancheteau C, Reyes-Díaz M. Ascorbic acid metabolism: New knowledge on mitigation of aluminum stress in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109228. [PMID: 39467494 DOI: 10.1016/j.plaphy.2024.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Ascorbic acid (ASC) is an important antioxidant in plant cells, being the main biosynthesis pathway is L-galactose or Smirnoff-Wheeler. ASC is involved in plant growth and development processes, being a cofactor and regulator of multiple signaling pathways in response to abiotic stresses. Aluminum toxicity is an important stressor under acidic conditions, affecting plant root elongation, triggering ROS induction and accumulation of hydrogen peroxide (H2O2). To mitigate damage from Al-toxicity, plants have evolved mechanisms to resist stress conditions, such as Al-tolerance and Al-exclusion or avoidance, both strategies related to the forming of non-phytotoxic complexes or bind-chelates among Al and organic molecules like oxalate. Dehydroascorbate (DHA) degradation generates oxalate when ASC is recycled, and dehydroascorbate reductase (DHAR) expression is inhibited. An alternative strategy is ASC regeneration, mainly due to a higher level of DHAR gene expression and low monodehydroascorbate reductase (MDHAR) gene expression. Therefore, studies performed on Fagopyrum esculentum, Nicotiana tabacum, Poncirus trifoliate, and V. corymbosum suggest that ASC is associated with the Al-resistant mechanism, given the observed enhancements in defense mechanisms, including elevated antioxidant capacity and oxalate production. This review examines the potential involvement of ASC metabolism in Al-resistant mechanisms.
Collapse
Affiliation(s)
- Paz Cárcamo-Fincheira
- Laboratorio de Ecofisiología Molecular y Funcional de Plantas, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Braulio Soto-Cerda
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile; Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Laboratorio de Fisiología y Biotecnología Vegetal, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile; Nucleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 56-D, Temuco, Chile.
| | - Marjorie Reyes-Díaz
- Laboratorio de Ecofisiología Molecular y Funcional de Plantas, Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
3
|
O’Rourke JA, Graham MA. Investigating the Role of Known Arabidopsis Iron Genes in a Stress Resilient Soybean Line. Int J Mol Sci 2024; 25:11480. [PMID: 39519033 PMCID: PMC11545859 DOI: 10.3390/ijms252111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Genes involved in iron deficiency responses have been well characterized in Arabidopsis thaliana, but their roles in crop species have not been well explored. Reliance on model species may fail to identify novel iron stress mechanisms present within crop species, likely selected by hundreds of years of selection. Fiskeby III (PI 438471) is a soybean line from Sweden that demonstrates high levels of resilience to numerous stresses. Earlier Fiskeby III studies have identified a suite of genes responding to iron deficiency stress in Fiskeby III that are also associated with Arabidopsis iron deficiency responses. We were interested in determining how canonical iron genes function in Fiskeby III under normal and iron stress conditions. To investigate this, we used virus-induced gene silencing to knock down gene expression of three iron deficiency response genes (FER-like iron deficiency induced transcription factor (FIT), elongated hypocotyl 5 (HY5) and popeye (PYE)) in Fiskeby III. Analyses of RNAseq data generated from silenced plants in iron-sufficient and -deficient conditions found silencing FIT and HY5 altered general stress responses but did not impact iron deficiency tolerance, confirming Fiskeby III utilizes novel mechanisms to tolerate iron deficiency stress.
Collapse
Affiliation(s)
- Jamie A. O’Rourke
- Agricultural Research Service, Corn Insects, and Crop Genetics Research Unit, United States Department of Agriculture, Ames, IA 50010, USA;
| | | |
Collapse
|
4
|
Smirnoff N, Wheeler GL. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2604-2630. [PMID: 38300237 PMCID: PMC11066809 DOI: 10.1093/jxb/erad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, Faculty of Health and Life Sciences, Exeter EX4 4QD, UK
| | | |
Collapse
|
5
|
Singh A, Pankaczi F, Rana D, May Z, Tolnai G, Fodor F. Coated Hematite Nanoparticles Alleviate Iron Deficiency in Cucumber in Acidic Nutrient Solution and as Foliar Spray. PLANTS (BASEL, SWITZERLAND) 2023; 12:3104. [PMID: 37687350 PMCID: PMC10490057 DOI: 10.3390/plants12173104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Micronutrient iron (Fe) deficiency poses a widespread agricultural challenge with global implications. Fe deficiency affects plant growth and immune function, leading to reduced yields and contributing to the global "hidden hunger." While conventional Fe-based fertilizers are available, their efficacy is limited under certain conditions. Most recently, nanofertilizers have been shown as promising alternatives to conventional fertilizers. In this study, three nanohematite/nanoferrihydrite preparations (NHs) with different coatings were applied through the roots and shoots to Fe-deficient cucumber plants. To enhance Fe mobilization to leaves during foliar treatment, the plants were pre-treated with various acids (citric acid, ascorbic acid, and glycine) at a concentration of 0.5 mM. Multiple physiological parameters were examined, revealing that both root and foliar treatments resulted in improved chlorophyll content, biomass, photosynthetic parameters, and reduced ferric chelate reductase activity. The plants also significantly accumulated Fe in their developing leaves and its distribution after NHs treatment, detected by X-ray fluorescence mapping, implied long-distance mobilization in their veins. These findings suggest that the applied NHs effectively mitigated Fe deficiency in cucumber plants through both modes of application, highlighting their potential as nanofertilizers on a larger scale.
Collapse
Affiliation(s)
- Amarjeet Singh
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Lane 1/c, 1117 Budapest, Hungary; (A.S.); (F.P.); (D.R.)
- Doctoral School of Biological Sciences, ELTE Eötvös Loránd University, Pázmány Péter Lane 1/c, 1117 Budapest, Hungary
| | - Fruzsina Pankaczi
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Lane 1/c, 1117 Budapest, Hungary; (A.S.); (F.P.); (D.R.)
- Doctoral School of Biological Sciences, ELTE Eötvös Loránd University, Pázmány Péter Lane 1/c, 1117 Budapest, Hungary
| | - Deepali Rana
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Lane 1/c, 1117 Budapest, Hungary; (A.S.); (F.P.); (D.R.)
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány Péter Lane 1/a, 1117 Budapest, Hungary
| | - Zoltán May
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar Tudósok Blvd. 2, 1117 Budapest, Hungary;
| | | | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, Pázmány Péter Lane 1/c, 1117 Budapest, Hungary; (A.S.); (F.P.); (D.R.)
| |
Collapse
|
6
|
Romera FJ, García MJ, Lucena C, Angulo M, Pérez-Vicente R. NO Is Not the Same as GSNO in the Regulation of Fe Deficiency Responses by Dicot Plants. Int J Mol Sci 2023; 24:12617. [PMID: 37628796 PMCID: PMC10454737 DOI: 10.3390/ijms241612617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these responses is not totally known, but some hormones and signaling molecules, such as auxin, ethylene, glutathione (GSH), nitric oxide (NO) and S-nitrosoglutathione (GSNO), have been involved in their activation. Most of these substances, including auxin, ethylene, GSH and NO, increase their production in Fe-deficient roots while GSNO, derived from GSH and NO, decreases its content. This paradoxical result could be explained with the increased expression and activity in Fe-deficient roots of the GSNO reductase (GSNOR) enzyme, which decomposes GSNO to oxidized glutathione (GSSG) and NH3. The fact that NO content increases while GSNO decreases in Fe-deficient roots suggests that NO and GSNO do not play the same role in the regulation of Fe deficiency responses. This review is an update of the results supporting a role for NO, GSNO and GSNOR in the regulation of Fe deficiency responses. The possible roles of NO and GSNO are discussed by taking into account their mode of action through post-translational modifications, such as S-nitrosylation, and through their interactions with the hormones auxin and ethylene, directly related to the activation of morphological and physiological responses to Fe deficiency in dicot plants.
Collapse
Affiliation(s)
- Francisco Javier Romera
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - María José García
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Carlos Lucena
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| | - Macarena Angulo
- Department of Agronomy (DAUCO María de Maeztu Unit of Excellence 2021–2023), Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (F.J.R.); (M.A.)
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain; (C.L.); (R.P.-V.)
| |
Collapse
|
7
|
Li X, Kamran M, Saleem MH, Al-Ghamdi AA, Al-Hemaid FM, Elshikh MS, Zhao S, Riaz M. Potential application of melatonin in reducing boron toxicity in rice seedlings through improved growth, cell wall composition, proline, and defense mechanisms. CHEMOSPHERE 2023:139068. [PMID: 37257660 DOI: 10.1016/j.chemosphere.2023.139068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/02/2023]
Abstract
Melatonin (MT) has been demonstrated to provide defense against both biotic and abiotic stressors. Boron toxicity (BT) can significantly limit the growth and production of plants. However, few studies have been conducted on whether MT is effective in attenuating B toxicity in different plants. In order to evaluate the efficacy of exogenous MT treatment in reducing the negative impact of BT on rice seedlings, this study examined the influence of MT on growth, antioxidant capacity, cell wall composition, and proline metabolism in rice seedlings under hydroponics. Four treatments were established: MT (50 μM), MT + BT (50 μM MT + 800 μM B), BT (800 μM), and CK (control) in a completely randomized design. The results indicate that BT had a significant detrimental effect on the shoot length, root length, and root and shoot fresh weights of rice seedlings by 11.96%, 27.77%, 25.69%, and 18.67%, respectively as compared to the control treatment. However, exogenous MT application increased these parameters and reduced B accumulation in aboveground parts (14.05%) of the plant. Exogenous MT also increased the endogenous melatonin content and antioxidant enzyme activities (64.45%, 71.61%, 237.64%, and 55.42% increase in superoxide dismutase, ascorbate peroxidase, and peroxidase activities, respectively), while decreasing reactive oxygen species levels and oxidized forms of glutathione and ascorbic acid. Additionally, MT enhanced the biosynthesis of proline by decreasing proline dehydrogenase (ProDH) and increasing the GSH (glutathione) and ASA (ascorbic acid) contents. Exogenous MT also increased cell wall components that can increase B adsorption to the cell wall. Overall, these findings suggest that MT application can be a potential solution for strengthening the stress tolerance of rice seedlings, particularly under conditions of B toxicity. In regions where soil contains high levels of boron, the use of MT could enhance rice crop yields and quality.
Collapse
Affiliation(s)
- Xinyu Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Muhammad Kamran
- School of Agriculture, Food, and Wine, The University of Adelaide, South Australia 5005, Australia
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Fahad M Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Shaopeng Zhao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| |
Collapse
|
8
|
Kesawat MS, Satheesh N, Kherawat BS, Kumar A, Kim HU, Chung SM, Kumar M. Regulation of Reactive Oxygen Species during Salt Stress in Plants and Their Crosstalk with Other Signaling Molecules-Current Perspectives and Future Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040864. [PMID: 36840211 PMCID: PMC9964777 DOI: 10.3390/plants12040864] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 05/14/2023]
Abstract
Salt stress is a severe type of environmental stress. It adversely affects agricultural production worldwide. The overproduction of reactive oxygen species (ROS) is the most frequent phenomenon during salt stress. ROS are extremely reactive and, in high amounts, noxious, leading to destructive processes and causing cellular damage. However, at lower concentrations, ROS function as secondary messengers, playing a critical role as signaling molecules, ensuring regulation of growth and adjustment to multifactorial stresses. Plants contain several enzymatic and non-enzymatic antioxidants that can detoxify ROS. The production of ROS and their scavenging are important aspects of the plant's normal response to adverse conditions. Recently, this field has attracted immense attention from plant scientists; however, ROS-induced signaling pathways during salt stress remain largely unknown. In this review, we will discuss the critical role of different antioxidants in salt stress tolerance. We also summarize the recent advances on the detrimental effects of ROS, on the antioxidant machinery scavenging ROS under salt stress, and on the crosstalk between ROS and other various signaling molecules, including nitric oxide, hydrogen sulfide, calcium, and phytohormones. Moreover, the utilization of "-omic" approaches to improve the ROS-regulating antioxidant system during the adaptation process to salt stress is also described.
Collapse
Affiliation(s)
- Mahipal Singh Kesawat
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Neela Satheesh
- Department of Food Nutrition and Dietetics, Faculty of Agriculture, Sri Sri University, Cuttack 754006, India
| | - Bhagwat Singh Kherawat
- Krishi Vigyan Kendra, Bikaner II, Swami Keshwanand Rajasthan Agricultural University, Bikaner 334603, India
| | - Ajay Kumar
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Hyun-Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Republic of Korea
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
Wang J, Moeen-ud-din M, Yin R, Yang S. ROS Homeostasis Involved in Dose-Dependent Responses of Arabidopsis Seedlings to Copper Toxicity. Genes (Basel) 2022; 14:11. [PMID: 36672752 PMCID: PMC9858908 DOI: 10.3390/genes14010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
As an essential element in plant nutrition, copper (Cu) can promote or inhibit plant growth depending on its concentration. However, the dose-dependent effects of copper, particularly on DNA damage associated with reactive oxygen species (ROS) homeostasis, are much less understood. In this work, we analyzed the dual effect of Cu (5, 20, and 60 μM) on the reproductive performance of Arabidopsis plants. Whereas Cu5 promoted inflorescence initiation and increased kilo seed weight, two higher concentrations, Cu20 and Cu60, delayed inflorescence initiation and negatively affected silique size. Excess Cu also induced changes in cellular redox homeostasis, which was examined by in situ visualization and measurements of ROS, including superoxide (O2•-), hydrogen peroxide (H2O2), malonyldialdehyde (MDA), and plasma membrane damage. The most dramatic increases in the production of O2•- and H2O2 along with increased activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX) and decreased activity of catalase (CAT) and ascorbate peroxidase (APX) were observed in roots with Cu60. Oxidative stress also modulated the expression levels of a number of genes involved in the DNA damage response (DDR), particularly those related to DNA repair. The Cu-induced chlorosis of Arabidopsis seedlings could be alleviated by exogenous addition of glutathione (GSH) and ascorbate (Asc), as the chlorophyll content was significantly increased. Overall, internal homeostasis ROS and the associated DDR pathway and the corresponding scavenging mechanisms play a central role in the response of Arabidopsis to oxidative stress induced by inhibitory Cu concentrations. Our results have shown, for the first time, that the biphasic responses of Arabidopsis seedlings to increasing Cu concentrations involve different DNA damage responses and oxidative reactions. They provide the basis for elucidating the network of Cu-induced DDR-related genes and the regulatory mechanism of the complex ROS production and scavenging system.
Collapse
Affiliation(s)
| | | | | | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Gul N, Ahmad P, Wani TA, Tyagi A, Aslam S. Glutathione improves low temperature stress tolerance in pusa sheetal cultivar of Solanum lycopersicum. Sci Rep 2022; 12:12548. [PMID: 35869119 PMCID: PMC9307597 DOI: 10.1038/s41598-022-16440-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
To investigate the impact of Glutathione (GSH) in mitigating low-temperature stress in Pusa Sheetal cv. of Solanum lycopersicum and imparting low-temperature tolerance by evaluating the different physiological responses. The plant under research was also being studied for its growth and stress tolerance. Low temperatures (LT) stress was applied to seedlings with or without GSH application 12 h before LT stress (prophylactic dose), after 12 h-LT (preemptive dose), and post 12-h recovery (curative dose). Different concentrations of GSH [0, G1 (0.5 mM), G2 (1 mM) and G3 (2 mM)] against LT stress were used. Antioxidant activities, photosynthesis, growth, and stress tolerance indices were quantified. LT stress caused an oxidative burst in S. lycopersicum seedlings of the Pusa Sheetal cv. as indicated by increased peroxidation of lipids and H2O2 concentration. Glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were enhanced. The best concentration was G2 (1 mM), which resulted in a rise in antioxidant activity. Moreover, a decline in lipid peroxidation and H2O2 levels was also seen. The purpose of this study is to identify the role of GSH in reducing LT stress and to find the best dose concentration. This is the first report to assess the GSH-mediated LT stress tolerance in S. lycopersicum (Pusa Sheetal cv.). Therefore, exogenous GSH application of optimal concentration of GSH to LT stressed S. lycopersicum can be an effective approach for augmenting the plant detoxification system and promoting its growth and development.
Collapse
|
11
|
Shee R, Ghosh S, Khan P, Sahid S, Roy C, Shee D, Paul S, Datta R. Glutathione regulates transcriptional activation of iron transporters via S-nitrosylation of bHLH factors to modulate subcellular iron homoeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:2176-2190. [PMID: 35394650 DOI: 10.1111/pce.14331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Glutathione (GSH) is known to regulate iron (Fe) deficiency response in plants but its involvement in modulating subcellular Fe homoeostasis remains elusive. In this study, we report that the GSH-deficient mutants, cad2-1 and pad2-1 displayed increased sensitivity to Fe deficiency with significant downregulation of the vacuolar Fe exporters, AtNRAMP3 and AtNRAMP4, and the chloroplast Fe importer, AtPIC1. Moreover, the pad2-1 mutant accumulated higher Fe levels in vacuoles but lower Fe levels in chloroplasts compared to wild type (Columbia ecotype [Col-0]) under Fe limited conditions. Exogenous GSH treatment enhanced chloroplast Fe contents in Col-0 but failed to do so in the nramp3nramp4 double mutants demonstrating that GSH plays a role in modulating subcellular Fe homoeostasis. Pharmacological experiments, mutant analysis, and promoter assays revealed that this regulation involves the transcriptional activation of Fe transporter genes by a GSH-S-nitrosoglutathione (GSNO) module. The Fe responsive bHLH transcription factors (TFs), AtbHLH29, AtbHLH38, and AtbHLH101 were found to interact with the promoters of these genes, which were, in turn, activated via S-nitrosylation (SNO). Taken together, the present study highlights the role of the GSH-GSNO module in regulating subcellular Fe homoeostasis by transcriptional activation of the Fe transporters AtNRAMP3, AtNRAMP4, and AtPIC1 via SNO of bHLH TFs during Fe deficiency.
Collapse
Affiliation(s)
- Ranjana Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Soumi Ghosh
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Pinki Khan
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| | - Salman Sahid
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Chandan Roy
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Dibyendu Shee
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Soumitra Paul
- Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Riddhi Datta
- Department of Botany, Dr. A. P. J. Abdul Kalam Government College, New Town, West Bengal, India
| |
Collapse
|
12
|
Therby-Vale R, Lacombe B, Rhee SY, Nussaume L, Rouached H. Mineral nutrient signaling controls photosynthesis: focus on iron deficiency-induced chlorosis. TRENDS IN PLANT SCIENCE 2022; 27:502-509. [PMID: 34848140 DOI: 10.1016/j.tplants.2021.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic organisms convert light energy into chemical energy stored in carbohydrates. To perform this process, an adequate supply of essential mineral elements, such as iron, is required in the chloroplast. Because iron plays a crucial role during electron transport and chlorophyll formation, iron deficiency alters photosynthesis and promotes chlorosis, or the yellowing of leaves. Intriguingly, iron deficiency-induced chlorosis can be reverted by the depletion of other micronutrients [i.e., manganese (Mn)] or macronutrients [i.e., sulfur (S) or phosphorus (P)], raising the question of how plants integrate nutrient status to control photosynthesis. Here, we review how improving our understanding of the complex relationship between nutrient homeostasis and photosynthesis has great potential for crop improvement.
Collapse
Affiliation(s)
| | - Benoit Lacombe
- BPMP, University of Montpellier, CNRS, INRAE, Montpellier, France
| | - Seung Y Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Laurent Nussaume
- DRF/BIAM/SBVME/SAVE UMR 7265 CEA-CNRS-Université Aix Marseille-CEA Cadarache, 13108 St Paul lez Durance, France
| | - Hatem Rouached
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
13
|
Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling. Nat Commun 2021; 12:7211. [PMID: 34893639 PMCID: PMC8664907 DOI: 10.1038/s41467-021-27548-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Iron deficiency hampers photosynthesis and is associated with chlorosis. We recently showed that iron deficiency-induced chlorosis depends on phosphorus availability. How plants integrate these cues to control chlorophyll accumulation is unknown. Here, we show that iron limitation downregulates photosynthesis genes in a phosphorus-dependent manner. Using transcriptomics and genome-wide association analysis, we identify two genes, PHT4;4 encoding a chloroplastic ascorbate transporter and bZIP58, encoding a nuclear transcription factor, which prevent the downregulation of photosynthesis genes leading to the stay-green phenotype under iron-phosphorus deficiency. Joint limitation of these nutrients induces ascorbate accumulation by activating expression of an ascorbate biosynthesis gene, VTC4, which requires bZIP58. Furthermore, we demonstrate that chloroplastic ascorbate transport prevents the downregulation of photosynthesis genes under iron-phosphorus combined deficiency through modulation of ROS homeostasis. Our study uncovers a ROS-mediated chloroplastic retrograde signaling pathway to adapt photosynthesis to nutrient availability.
Collapse
|
14
|
Kim K, Kim C, Park J, Jeon HJ, Park YJ, Kim YH, Yang JO, Lee SE. Transcriptomic evaluation on methyl bromide-induced phytotoxicity in Arabidopsis thaliana and its mode of phytotoxic action via the occurrence of reactive oxygen species and uneven distribution of auxin hormones. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126419. [PMID: 34171674 DOI: 10.1016/j.jhazmat.2021.126419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The increase in worldwide trade has caused the quality maintenance of commercialized agriproducts to be crucial in keeping its economic value. In recent years, methyl bromide (MB) has been used dominantly during quarantine and pre-shipment, despite it being an environmental hazard with global repercussions. Through this study, it was shown that Arabidopsis thaliana's 2 h exposure to the MB treatment displayed no signs of phytotoxicity, whereas its 4 h exposure significantly interfered with growth. The transcriptomic analysis found the molecular modifications in A. thaliana after the MB fumigation with the up-regulation of genes specifically relative to the abiotic and oxidative stress, and the down-regulation of auxin transporter genes. Some important gene expressions were verified by RT-qPCR and their expression patterns were similar. Oxidative stresses via the reactive oxygen species (ROS) in relation to MB phytotoxicity were confirmed with the increased malondialdehyde in MB-4h-treated A. thaliana. Uneven distribution of auxins via lower expression of auxin transporter genes was also determined using UPLC-ESI-QqQ MS. Application of two ROS scavengers such as N-acetyl-cysteine and L-glutathione minimized MB phytotoxic effect in A. thaliana. Therefore, MB caused severe oxidative stress, and alternatives regarding the use of MB should be considered.
Collapse
Affiliation(s)
- Kyeongnam Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chaeeun Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jungeun Park
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hwang-Ju Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Park
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yoon-Ha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong Oh Yang
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
15
|
Peng JS, Zhang BC, Chen H, Wang MQ, Wang YT, Li HM, Cao SX, Yi HY, Wang H, Zhou YH, Gong JM. Galactosylation of rhamnogalacturonan-II for cell wall pectin biosynthesis is critical for root apoplastic iron reallocation in Arabidopsis. MOLECULAR PLANT 2021; 14:1640-1651. [PMID: 34171482 DOI: 10.1016/j.molp.2021.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/23/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Apoplastic iron (Fe) in roots represents an essential Fe storage pool. Reallocation of apoplastic Fe is of great importance to plants experiencing Fe deprivation, but how this reallocation process is regulated remains elusive, likely because of the highly complex cell wall structure and the limited knowledge about cell wall biosynthesis and modulation. Here, we present genetic and biochemical evidence to demonstrate that the Cdi-mediated galactosylation of rhamnogalacturonan-II (RG-II) is required for apoplastic Fe reallocation. Cdi is expressed in roots and up-regulated in response to Fe deficiency. It encodes a putative glycosyltransferase localized to the Golgi apparatus. Biochemical and mass spectrometry assays showed that Cdi catalyzes the transfer of GDP-L-galactose to the terminus of side chain A on RG-II. Disruption of Cdi essentially decreased RG-II dimerization and hence disrupted cell wall formation, as well as the reallocation of apoplastic Fe from roots to shoots. Further transcriptomic, Fourier transform infrared spectroscopy, and Fe desorption kinetic analyses coincidently suggested that Cdi mediates apoplastic Fe reallocation through extensive modulation of cell wall components and consequently the Fe adsorption capacity of the cell wall. Our study provides direct evidence demonstrating a link between cell wall biosynthesis and apoplastic Fe reallocation, thus indicating that the structure of the cell wall is important for efficient usage of the cell wall Fe pool.
Collapse
Affiliation(s)
- Jia-Shi Peng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bao-Cai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qi Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ting Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Hong-Mei Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shao-Xue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Ying Yi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Hua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| |
Collapse
|
16
|
Kaur G, Shukla V, Meena V, Kumar A, Tyagi D, Singh J, Kandoth PK, Mantri S, Rouached H, Pandey AK. Physiological and molecular responses to combinatorial iron and phosphate deficiencies in hexaploid wheat seedlings. Genomics 2021; 113:3935-3950. [PMID: 34606916 DOI: 10.1016/j.ygeno.2021.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/16/2023]
Abstract
Iron (Fe) and phosphorus (P) are the essential mineral nutrients for plant growth and development. However, the molecular interaction of the Fe and P pathways in crops remained largely obscure. In this study, we provide a comprehensive physiological and molecular analysis of hexaploid wheat response to single (Fe, P) and its combinatorial deficiencies. Our data showed that inhibition of the primary root growth occurs in response to Fe deficiency; however, growth was rescued when combinatorial deficiencies occurred. Analysis of RNAseq revealed that distinct molecular rearrangements during combined deficiencies with predominance for genes related to metabolic pathways and secondary metabolite biosynthesis primarily include genes for UDP-glycosyltransferase, cytochrome-P450s, and glutathione metabolism. Interestingly, the Fe-responsive cis-regulatory elements in the roots in Fe stress conditions were enriched compared to the combined stress. Our metabolome data also revealed the accumulation of distinct metabolites such as amino-isobutyric acid, arabinonic acid, and aconitic acid in the combined stress environment. Overall, these results are essential in developing new strategies to improve the resilience of crops in limited nutrients.
Collapse
Affiliation(s)
- Gazaldeep Kaur
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Punjab, India
| | - Vishnu Shukla
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Varsha Meena
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Anil Kumar
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Punjab, India
| | - Deepshikha Tyagi
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Punjab, India
| | - Pramod Kaitheri Kandoth
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Shrikant Mantri
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States of America; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, United States of America
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India.
| |
Collapse
|
17
|
Prity SA, El-Shehawi AM, Elseehy MM, Tahura S, Kabir AH. Early-stage iron deficiency alters physiological processes and iron transporter expression, along with photosynthetic and oxidative damage to sorghum. Saudi J Biol Sci 2021; 28:4770-4777. [PMID: 34354465 PMCID: PMC8324970 DOI: 10.1016/j.sjbs.2021.04.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
Iron (Fe) starvation in Strategy II plants is a major nutritional problem causing severe visual symptoms and yield reductions. This prompted us to investigate the physiological and molecular consequences of Fe deficiency responses at an early stage in sorghum plants. The Fe-starved sorghum did not show shoot biomass reduction, but the root length, biomass, and chlorophyll synthesis were severely affected. The chlorophyll a fluorescence analysis showed that the quantum yield efficiency of PSII (Fv/Fm) and photosynthesis performance index (Pi_ABS) in young leaves significantly reduced in response to low Fe. Besides, Fe concentration in root and shoot significantly declined in Fe-starved plants relative to Fe-sufficient plants. Accordingly, this Fe reduction in tissues was accompanied by a marked decrease in PS-release in roots. The qPCR experiment showed the downregulation of SbDMAS2 (deoxymugineic acid synthase 2), SbNAS3 (nicotianamine synthase 3), and SbYSL1 (Fe-phytosiderophore transporter yellow stripe 1) in Fe-deprived roots, suggesting that decreased rhizosphere mobilization of Fe(III)-PS contributes to reduced uptake and long-distance transport of Fe. The cis-acting elements of these gene promoters are commonly responsive to abscisic acid and methyl jasmonate, while SbYSL1 additionally responsive to salicylic acid. Further, antioxidant defense either through metabolites or antioxidant enzymes is not efficient in counteracting oxidative damage in Fe-deprived sorghum. These findings may be beneficial for the improvement of sorghum genotypes sensitive to Fe-deficiency through breeding or transgenic approaches.
Collapse
Affiliation(s)
- Sadia Akter Prity
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, Alexandria University Alexandria, Egypt
| | - Sharaban Tahura
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Ahmad Humayan Kabir
- Molecular Plant Physiology Laboratory, Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
18
|
Zhao H, Yang A, Kong L, Xie F, Wang H, Ao X. Proteome characterization of two contrasting soybean genotypes in response to different phosphorus treatments. AOB PLANTS 2021; 13:plab019. [PMID: 34150189 PMCID: PMC8209930 DOI: 10.1093/aobpla/plab019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/12/2021] [Indexed: 05/04/2023]
Abstract
Phosphorus (P) is an essential element for the growth and development of plants. Soybean (Glycine max) is an important food crop that is grown worldwide. Soybean yield is significantly affected by P deficiency in the soil. To investigate the molecular factors that determine the response and tolerance at low-P in soybean, we conducted a comparative proteomics study of a genotype with low-P tolerance (Liaodou 13, L13) and a genotype with low-P sensitivity (Tiefeng 3, T3) in a paper culture experiment with three P treatments, i.e. P-free (0 mmol·L-1), low-P (0.05 mmol·L-1) and normal-P (0.5 mmol·L-1). A total of 4126 proteins were identified in roots of the two genotypes. Increased numbers of differentially expressed proteins (DEPs) were obtained from low-P to P-free conditions compared to the normal-P treatment. All DEPs obtained in L13 (660) were upregulated in response to P deficiency, while most DEPs detected in T3 (133) were downregulated under P deficiency. Important metabolic pathways such as oxidative phosphorylation, glutathione metabolism and carbon metabolism were suppressed in T3, which could have affected the survival of the plants in P-limited soil. In contrast, L13 increased the metabolic activity in the 2-oxocarboxylic acid metabolism, carbon metabolism, glycolysis, biosynthesis of amino acids, pentose phosphatase, oxidative phosphorylation, other types of O-glycan biosynthesis and riboflavin metabolic pathways in order to maintain normal plant growth under P deficiency. Three key proteins I1KW20 (prohibitins), I1K3U8 (alpha-amylase inhibitors) and C6SZ93 (alpha-amylase inhibitors) were suggested as potential biomarkers for screening soybean genotypes with low-P tolerance. Overall, this study provides new insights into the response and tolerance to P deficiency in soybean.
Collapse
Affiliation(s)
- Hongyu Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Ahui Yang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Lingjian Kong
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Futi Xie
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiying Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Ao
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
19
|
Banerjee A, Roychoudhury A. Maghemite nano-fertilization promotes fluoride tolerance in rice by restoring grain yield and modulating the ionome and physiome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112055. [PMID: 33765592 DOI: 10.1016/j.ecoenv.2021.112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The present manuscript elucidated the ameliorative potential of nano-maghemite (FeNPs) against the hazardous effects of fluoride toxicity in the sensitive rice cultivar, IR-64. Fluoride pollution triggered bioaccumulation in root, shoot and spikelets which inhibited reproduction, agronomic development and mineral uptake. Suppressed activity of enzymatic antioxidants and excessive cobalt translocation manifested severe ROS-induced oxidative injuries. Seedling priming with FeNPs reduced fluoride bioaccumulation and promoted efficient uptake of macroelements and micronutrients like potassium, calcium, iron, zinc, copper, nickel, manganese, selenium and vanadium and reduced the translocation of cobalt in mature seedlings during stress. This altogether triggered growth and activated the enzymes like SOD, CAT, APX and GPOX. High accumulation of non-enzymatic antioxidants like proline, anthocyanins, flavonoids, phenolics along with stimulated GSH synthesis (determined from high GR, GST and GPX activity) and glyoxalase activity enabled FeNP-pulsed plants to efficiently scavenge ROS, O2-, H2O2 and methylglyoxal, and mitigate oxidative injuries. The ROS production was also lowered due to suppressed NADPH oxidase activity. This ensured subsequent revitalization of Hill activity and the level of photosynthetic pigments. Due to reduced fluoride partitioning and improved nutritional sink, the grain and panicle development in FeNP-primed, stressed seedlings were more stimulated than even control sets. Overall, our findings supported by statistical modelling established the potential of iron-nanotechnology in promoting safe rice cultivation even in fluoride-polluted environments.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata 700016, West Bengal, India.
| |
Collapse
|
20
|
Martín-Esquinas A, Hernández-Apaolaza L. Rice responses to silicon addition at different Fe status and growth pH. Evaluation of ploidy changes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:296-307. [PMID: 33892228 DOI: 10.1016/j.plaphy.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/10/2021] [Indexed: 05/14/2023]
Abstract
It has been described in rice that Si only plays a physical barrier that does not allow Fe to enter cell apoplast, causing Fe deficiency responses even under Fe sufficiency growth conditions. Most of the conclusions were attained at acidic pH, but rice is also grown at calcareous conditions, which especially induce Fe deficiency in the plants. In this study, we assay the effect of Si in rice suffering both Fe deficiency and sufficiency in hydroponics at two pHs (5.5 and 7.5). Plant biometric parameters, ROS concentration, enzymatic activities, and total phenolic compounds, as well as ploidy levels, have been determined. In general, both pHs promoted similar rice responses under Fe sufficiency and deficiency status, but at pH 7.5, stress was favored. Flow cytometry studies revealed that Fe deficiency increased the percentage of cells in higher ploidy levels. Moreover, under this Fe status, Si addition enhanced this effect. This increase contributed to maintaining chloroplast structure which may have preserved antioxidant activities, and fortified cell walls, diminishing Fe uptake. The first is considered a beneficial effect as plants presented acceptable SPAD values, well chloroplast structure, and qualitatively high fluorescence observed by confocal microscopy, even under Fe deficiency. But contributes to intensify the Fe shortage, by decreasing apoplast Fe pools. In summary, Si addition to rice plants may not only behave as an apoplastic barrier but may also protect plant chloroplast and alter the plant endoreplication cycle, giving a memory effect to cope with present and future stresses.
Collapse
Affiliation(s)
- Alexandra Martín-Esquinas
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049, Madrid, Spain
| | - Lourdes Hernández-Apaolaza
- Department of Agricultural Chemistry and Food Science, Universidad Autónoma de Madrid, Av. Francisco Tomás y Valiente 7, 28049, Madrid, Spain.
| |
Collapse
|
21
|
An J, Kim SH, Bahk S, Vuong UT, Nguyen NT, Do HL, Kim SH, Chung WS. Naringenin Induces Pathogen Resistance Against Pseudomonas syringae Through the Activation of NPR1 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:672552. [PMID: 34093630 PMCID: PMC8173199 DOI: 10.3389/fpls.2021.672552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Flavonoids are well known for the coloration of plant organs to protect UV and ROS and to attract pollinators as well. Flavonoids also play roles in many aspects of physiological processes including pathogen resistance. However, the molecular mechanism to explain how flavonoids play roles in pathogen resistance was not extensively studied. In this study, we investigated how naringenin, the first intermediate molecule of the flavonoid biosynthesis, functions as an activator of pathogen resistances. The transcript levels of two pathogenesis-related (PR) genes were increased by the treatment with naringenin in Arabidopsis. Interestingly, we found that naringenin triggers the monomerization and nuclear translocation of non-expressor of pathogenesis-related genes 1 (NPR1) that is a transcriptional coactivator of PR gene expression. Naringenin can induce the accumulation of salicylic acid (SA) that is required for the monomerization of NPR1. Furthermore, naringenin activates MPK6 and MPK3 in ROS-dependent, but SA-independent manners. By using a MEK inhibitor, we showed that the activation of a MAPK cascade by naringenin is also required for the monomerization of NPR1. These results suggest that the pathogen resistance by naringenin is mediated by the MAPK- and SA-dependent activation of NPR1 in Arabidopsis.
Collapse
|
22
|
Jiang L, Strobbe S, Van Der Straeten D, Zhang C. Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. MOLECULAR PLANT 2021; 14:40-60. [PMID: 33545049 DOI: 10.1016/j.molp.2020.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 05/04/2023]
|
23
|
Tewari RK, Horemans N, Watanabe M. Evidence for a role of nitric oxide in iron homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:990-1006. [PMID: 33196822 DOI: 10.1093/jxb/eraa484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/13/2020] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO), once regarded as a poisonous air pollutant, is now understood as a regulatory molecule essential for several biological functions in plants. In this review, we summarize NO generation in different plant organs and cellular compartments, and also discuss the role of NO in iron (Fe) homeostasis, particularly in Fe-deficient plants. Fe is one of the most limiting essential nutrient elements for plants. Plants often exhibit Fe deficiency symptoms despite sufficient tissue Fe concentrations. NO appears to not only up-regulate Fe uptake mechanisms but also makes Fe more bioavailable for metabolic functions. NO forms complexes with Fe, which can then be delivered into target cells/tissues. NO generated in plants can alleviate oxidative stress by regulating antioxidant defense processes, probably by improving functional Fe status and by inducing post-translational modifications in the enzymes/proteins involved in antioxidant defense responses. It is hypothesized that NO acts in cooperation with transcription factors such as bHLHs, FIT, and IRO to regulate the expression of enzymes and proteins essential for Fe homeostasis. However, further investigations are needed to disentangle the interaction of NO with intracellular target molecules that leads to enhanced internal Fe availability in plants.
Collapse
Affiliation(s)
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK•CEN), Boeretang, Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, Agoralaan gebouw D, Diepenbeek, Belgium
| | - Masami Watanabe
- Laboratory of Plant Biochemistry, Chiba University, Inage-ward, Yayoicho, Chiba, Japan
| |
Collapse
|
24
|
Pérez-Martín L, Busoms S, Tolrà R, Poschenrieder C. Transcriptomics Reveals Fast Changes in Salicylate and Jasmonate Signaling Pathways in Shoots of Carbonate-Tolerant Arabidopsis thaliana under Bicarbonate Exposure. Int J Mol Sci 2021; 22:1226. [PMID: 33513755 PMCID: PMC7865540 DOI: 10.3390/ijms22031226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
High bicarbonate concentrations of calcareous soils with high pH can affect crop performance due to different constraints. Among these, Fe deficiency has mostly been studied. The ability to mobilize sparingly soluble Fe is a key factor for tolerance. Here, a comparative transcriptomic analysis was performed with two naturally selected Arabidopsis thaliana demes, the carbonate-tolerant A1(c+) and the sensitive T6(c-). Analyses of plants exposed to either pH stress alone (pH 5.9 vs. pH 8.3) or to alkalinity caused by 10 mM NaHCO3 (pH 8.3) confirmed better growth and nutrient homeostasis of A1(c+) under alkaline conditions. RNA-sequencing (RNA-seq) revealed that bicarbonate quickly (3 h) induced Fe deficiency-related genes in T6(c-) leaves. Contrastingly, in A1(c+), initial changes concerned receptor-like proteins (RLP), jasmonate (JA) and salicylate (SA) pathways, methionine-derived glucosinolates (GS), sulfur starvation, starch degradation, and cell cycle. Our results suggest that leaves of carbonate-tolerant plants do not sense iron deficiency as fast as sensitive ones. This is in line with a more efficient Fe translocation to aerial parts. In A1(c+) leaves, the activation of other genes related to stress perception, signal transduction, GS, sulfur acquisition, and cell cycle precedes the induction of iron homeostasis mechanisms yielding an efficient response to bicarbonate stress.
Collapse
Affiliation(s)
| | | | | | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, C/de la Vall Moronta s/n, E-08193 Bellaterra, Spain; (L.P.-M.); (S.B.); (R.T.)
| |
Collapse
|
25
|
Kaya C, Ashraf M, Alyemeni MN, Ahmad P. Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria × annassa) by up-regulating the ascorbate-glutathione cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:486-499. [PMID: 32302942 DOI: 10.1016/j.plaphy.2020.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 05/26/2023]
Abstract
Involvement of nitrate reductase (NR) and nitric oxide synthase (NOS)-like enzyme in 24-epibrassinolide (EB)-triggered nitric oxide (NO) synthesis to improve iron deficiency (ID) tolerance in strawberry plants was studied. EB was sprayed to strawberry plants every two days for two weeks. Then, the EB-treated plants were pre-treated with inhibitors of NR, tungstate, or NOS, L-NAME for 3 h. During the first three weeks, Fe was supplied as 100 μM EDTA-Fe or FeSO4 to Fe-sufficient or Fe-deficient plants, respectively. Thereafter, plants were subjected for further three weeks to control (100 μM EDTA-Fe) and Fe deficiency (ID; without Fe). ID reduced biomass, chlorophyll, and chlorophyll fluorescence, while increased oxidative stress parameters, ascorbate (AsA), glutathione (GSH), endogenous NO, and the activities of NR, NOS, and antioxidant enzymes. Pre-treatments with EB and EB + SNP improved ID tolerance of strawberry by improving leaf Fe2+, plant growth, and antioxidant enzyme activities, and causing a further elevation in AsA, GSH, NO, NR and NOS. L-NAME application reversed NOS activity, but it did not eliminate NO, however, tungstate application reversed both NR activity and NO synthesis in plants exposed to ID + EB, suggesting that NR is the main contributor of EB-induced NO synthesis to improve ID tolerance in strawberry plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | | | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia; Department of Botany, S.P. College, Srinagar, 190001, Jammu and Kashmir, India.
| |
Collapse
|
26
|
Kaur G, Shukla V, Kumar A, Kaur M, Goel P, Singh P, Shukla A, Meena V, Kaur J, Singh J, Mantri S, Rouached H, Pandey AK. Integrative analysis of hexaploid wheat roots identifies signature components during iron starvation. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6141-6161. [PMID: 31738431 PMCID: PMC6859736 DOI: 10.1093/jxb/erz358] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/24/2019] [Indexed: 05/05/2023]
Abstract
Iron (Fe) is an essential micronutrient for all organisms. In crop plants, Fe deficiency can decrease crop yield significantly; however, our current understanding of how major crops respond to Fe deficiency remains limited. Herein, the effect of Fe deprivation at both the transcriptomic and metabolic level in hexaploid wheat was investigated. Genome-wide gene expression reprogramming was observed in wheat roots subjected to Fe starvation, with a total of 5854 genes differentially expressed. Homoeologue and subgenome-specific analysis unveiled the induction-biased contribution from the A and B genomes. In general, the predominance of genes coding for nicotianamine synthase, yellow stripe-like transporters, metal transporters, ABC transporters, and zinc-induced facilitator-like protein was noted. Expression of genes related to the Strategy II mode of Fe uptake was also predominant. Our transcriptomic data were in agreement with the GC-MS analysis that showed the enhanced accumulation of various metabolites such as fumarate, malonate, succinate, and xylofuranose, which could be contributing to Fe mobilization. Interestingly, Fe starvation leads to a significant temporal increase of glutathione S-transferase at both the transcriptional level and enzymatic activity level, which indicates the involvement of glutathione in response to Fe stress in wheat roots. Taken together, our result provides new insight into the wheat response to Fe starvation at the molecular level and lays the foundation to design new strategies for the improvement of Fe nutrition in crops.
Collapse
Affiliation(s)
- Gazaldeep Kaur
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Vishnu Shukla
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Anil Kumar
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Mandeep Kaur
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Parul Goel
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Palvinder Singh
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Anuj Shukla
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Varsha Meena
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Shrikant Mantri
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
| | - Hatem Rouached
- BPMP, Université de Montpellier, INRA, CNRS, Montpellier SupAgro, Montpellier, France
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Mohali, Punjab, India
- Correspondence: or
| |
Collapse
|
27
|
Santos CS, Ozgur R, Uzilday B, Turkan I, Roriz M, Rangel AO, Carvalho SM, Vasconcelos MW. Understanding the Role of the Antioxidant System and the Tetrapyrrole Cycle in Iron Deficiency Chlorosis. PLANTS 2019; 8:plants8090348. [PMID: 31540266 PMCID: PMC6784024 DOI: 10.3390/plants8090348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/18/2022]
Abstract
Iron deficiency chlorosis (IDC) is an abiotic stress often experienced by soybean, owing to the low solubility of iron in alkaline soils. Here, soybean lines with contrasting Fe efficiencies were analyzed to test the hypothesis that the Fe efficiency trait is linked to antioxidative stress signaling via proper management of tissue Fe accumulation and transport, which in turn influences the regulation of heme and non heme containing enzymes involved in Fe uptake and ROS scavenging. Inefficient plants displayed higher oxidative stress and lower ferric reductase activity, whereas root and leaf catalase activity were nine-fold and three-fold higher, respectively. Efficient plants do not activate their antioxidant system because there is no formation of ROS under iron deficiency; while inefficient plants are not able to deal with ROS produced under iron deficiency because ascorbate peroxidase and superoxide dismutase are not activated because of the lack of iron as a cofactor, and of heme as a constituent of those enzymes. Superoxide dismutase and peroxidase isoenzymatic regulation may play a determinant role: 10 superoxide dismutase isoenzymes were observed in both cultivars, but iron superoxide dismutase activity was only detected in efficient plants; 15 peroxidase isoenzymes were observed in the roots and trifoliate leaves of efficient and inefficient cultivars and peroxidase activity levels were only increased in roots of efficient plants.
Collapse
Affiliation(s)
- Carla S. Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey (I.T.)
| | - Mariana Roriz
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - António O.S.S. Rangel
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
| | - Susana M.P. Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
- GreenUPorto – Research Centre for Sustainable Agrifood Production, Faculty of Sciences of University of Porto, Rua da Agrária 747, 4485-646 Vairão, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal; (C.S.S.); (M.R.)
- Correspondence:
| |
Collapse
|
28
|
Nikolic DB, Nesic S, Bosnic D, Kostic L, Nikolic M, Samardzic JT. Silicon Alleviates Iron Deficiency in Barley by Enhancing Expression of Strategy II Genes and Metal Redistribution. FRONTIERS IN PLANT SCIENCE 2019; 10:416. [PMID: 31024590 PMCID: PMC6460936 DOI: 10.3389/fpls.2019.00416] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
The beneficial effects of silicon (Si) have been shown on plants using reduction-based strategy for iron (Fe) acquisition. Here we investigated the influence of Si on Fe deficiency stress alleviation in barley (Hordeum vulgare), a crop plant which uses the chelation-based strategy for Fe acquisition. Analyses of chlorophyll content, ROS accumulation, antioxidative status, concentrations of Fe and other micronutrients, along with the expression of Strategy II genes were studied in response to Si supply. Si successfully ameliorated Fe deficiency in barley, diminishing chlorophyll and biomass loss, and improving the activity of antioxidative enzymes, resulting in lowered reactive oxidative species accumulation in the youngest leaves. Alleviation of Fe deficiency stress correlated well with the Si-induced increase of Fe content in the youngest leaves, while it was decreased in root. Moreover, Si nutrition lowered accumulation of other micronutrients in the youngest leaves of Fe deprived plants, by retaining them in the root. On the transcriptional level, Si led to an expedient increase in the expression of genes involved in Strategy II Fe acquisition in roots at the early stage of Fe deficiency stress, while decreasing their expression in a prolonged stress response. Expression of Strategy II genes was remarkably upregulated in the leaves of Si supplied plants. This study broadens the perspective of mechanisms of Si action, providing evidence for ameliorative effects of Si on Strategy II plants, including its influence on accumulation and distribution of microelements, as well as on the expression of the Strategy II genes.
Collapse
Affiliation(s)
- Dragana B. Nikolic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- *Correspondence: Dragana B. Nikolic,
| | - Sofija Nesic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Bosnic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miroslav Nikolic
- Plant Nutrition Research Group, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jelena T. Samardzic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
29
|
Lamara M, Parent GJ, Giguère I, Beaulieu J, Bousquet J, MacKay JJ. Association genetics of acetophenone defence against spruce budworm in mature white spruce. BMC PLANT BIOLOGY 2018; 18:231. [PMID: 30309315 PMCID: PMC6182838 DOI: 10.1186/s12870-018-1434-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Outbreaks of spruce budworm (SBW, Choristoneura fumiferana Clem.) cause major recurrent damage in boreal conifers such as white spruce (Picea glauca [Moench] Voss) and large losses of forest biomass in North America. Although defensive phenolic compounds have recently been linked to chemical resistance against SBW, their genetic basis remains poorly understood in forest trees, especially in conifers. Here, we used diverse association genetics approaches to discover genes and their variants that may control the accumulation of acetophenones, and dissect the genetic architecture of these defence compounds against SBW in white spruce mature trees. RESULTS Out of 4747 single nucleotide polymorphisms (SNPs) from 2312 genes genotyped in a population of 211 unrelated individuals, genetic association analyses identified 35 SNPs in 33 different genes that were significantly associated with the defence traits by using single-locus, multi-locus and multi-trait approaches. The multi-locus approach was particularly effective at detecting SNP-trait associations that explained a large fraction of the phenotypic variance (from 20 to 43%). Significant genes were regulatory including the NAC transcription factor, or they were involved in carbohydrate metabolism, falling into the binding, catalytic or transporter activity functional classes. Most of them were highly expressed in foliage. Weak positive phenotypic correlations were observed between defence and growth traits, indicating little or no evidence of defence-growth trade-offs. CONCLUSIONS This study provides new insights on the genetic architecture of tree defence traits, contributing to our understanding of the physiology of resistance mechanisms to biotic factors and providing a basis for the genetic improvement of the constitutive defence of white spruce against SBW.
Collapse
Affiliation(s)
- Mebarek Lamara
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | | | - Isabelle Giguère
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - Jean Beaulieu
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - Jean Bousquet
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| | - John J. MacKay
- Forest Research Centre and Institute for Systems and Integrative Biology, Département des sciences du bois et de la forêt, Université Laval, Qc, Québec, G1V 0A6 Canada
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB UK
- Canada Research Chair in Forest Genomics, Université Laval, Qc, Québec, G1V 0A6 Canada
| |
Collapse
|
30
|
Ben Abdallah H, Mai HJ, Slatni T, Fink-Straube C, Abdelly C, Bauer P. Natural Variation in Physiological Responses of Tunisian Hedysarum carnosum Under Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2018; 9:1383. [PMID: 30333841 PMCID: PMC6176081 DOI: 10.3389/fpls.2018.01383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/30/2018] [Indexed: 05/31/2023]
Abstract
Iron (Fe) is an essential element for plant growth and development. The cultivation of leguminous plants has generated strong interest because of their growth even on poor soils. Calcareous and saline soils with poor mineral availability are wide-spread in Tunisia. In an attempt to select better forage crops adapted to Tunisian soils, we characterized Fe deficiency responses of three different isolates of Hedysarum carnosum, an endemic Tunisian extremophile species growing in native stands in salt and calcareous soil conditions. H. carnosum is a non-model crop. The three isolates, named according to their habitats Karkar, Thelja, and Douiret, differed in the expression of Fe deficiency symptoms like morphology, leaf chlorosis with compromised leaf chlorophyll content and photosynthetic capacity and leaf metal contents. Across these parameters Thelja was found to be tolerant, while Karkar and Douiret were susceptible to Fe deficiency stress. The three physiological and molecular indicators of the iron deficiency response in roots, Fe reductase activity, growth medium acidification and induction of the IRON-REGULATED TRANSPORTER1 homolog, indicated that all lines responded to -Fe, however, varied in the strength of the different responses. We conclude that the individual lines have distinct adaptation capacities to react to iron deficiency, presumably involving mechanisms of whole-plant iron homeostasis and internal metal distribution. The Fe deficiency tolerance of Thelja might be linked with adaptation to its natural habitat on calcareous soil.
Collapse
Affiliation(s)
| | - Hans Jörg Mai
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tarek Slatni
- Laboratory of Extremophile Plant, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | | | - Chedly Abdelly
- Laboratory of Extremophile Plant, Center of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
31
|
García MJ, Corpas FJ, Lucena C, Alcántara E, Pérez-Vicente R, Zamarreño ÁM, Bacaicoa E, García-Mina JM, Bauer P, Romera FJ. A Shoot Fe Signaling Pathway Requiring the OPT3 Transporter Controls GSNO Reductase and Ethylene in Arabidopsis thaliana Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1325. [PMID: 30254659 PMCID: PMC6142016 DOI: 10.3389/fpls.2018.01325] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/23/2018] [Indexed: 05/12/2023]
Abstract
Ethylene, nitric oxide (NO) and glutathione (GSH) increase in Fe-deficient roots of Strategy I species where they participate in the up-regulation of Fe acquisition genes. However, S-nitrosoglutathione (GSNO), derived from NO and GSH, decreases in Fe-deficient roots. GSNO content is regulated by the GSNO-degrading enzyme S-nitrosoglutathione reductase (GSNOR). On the other hand, there are several results showing that the regulation of Fe acquisition genes does not solely depend on hormones and signaling molecules (such as ethylene or NO), which would act as activators, but also on the internal Fe content of plants, which would act as a repressor. Moreover, different results suggest that total Fe in roots is not the repressor of Fe acquisition genes, but rather the repressor is a Fe signal that moves from shoots to roots through the phloem [hereafter named LOng Distance Iron Signal (LODIS)]. To look further in the possible interactions between LODIS, ethylene and GSNOR, we compared Arabidopsis WT Columbia and LODIS-deficient mutant opt3-2 plants subjected to different Fe treatments that alter LODIS content. The opt3-2 mutant is impaired in the loading of shoot Fe into the phloem and presents constitutive expression of Fe acquisition genes. In roots of both Columbia and opt3-2 plants we determined 1-aminocyclopropane-1-carboxylic acid (ACC, ethylene precursor), expression of ethylene synthesis and signaling genes, and GSNOR expression and activity. The results obtained showed that both 'ethylene' (ACC and the expression of ethylene synthesis and signaling genes) and 'GSNOR' (expression and activity) increased in Fe-deficient WT Columbia roots. Additionally, Fe-sufficient opt3-2 roots had higher 'ethylene' and 'GSNOR' than Fe-sufficient WT Columbia roots. The increase of both 'ethylene' and 'GSNOR' was not related to the total root Fe content but to the absence of a Fe shoot signal (LODIS), and was associated with the up-regulation of Fe acquisition genes. The possible relationship between GSNOR(GSNO) and ethylene is discussed.
Collapse
Affiliation(s)
- María J. García
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Francisco J. Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council, Granada, Spain
| | - Carlos Lucena
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Esteban Alcántara
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Pérez-Vicente
- Department of Botany, Ecology and Plant Physiology, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| | - Ángel M. Zamarreño
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Eva Bacaicoa
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - José M. García-Mina
- Department of Environmental Biology, Faculty of Sciences, University of Navarra, Pamplona, Spain
| | - Petra Bauer
- Institute of Botany, University of Düsseldorf, Düsseldorf, Germany
| | - Francisco J. Romera
- Department of Agronomy, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
32
|
Noshi M, Tanabe N, Okamoto Y, Mori D, Ohme-Takagi M, Tamoi M, Shigeoka S. Clade Ib basic helix-loop-helix transcription factor, bHLH101, acts as a regulatory component in photo-oxidative stress responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:101-108. [PMID: 30080593 DOI: 10.1016/j.plantsci.2018.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/22/2018] [Accepted: 05/17/2018] [Indexed: 05/22/2023]
Abstract
The accumulation of reactive oxygen species (ROS) leads to oxidative damage; however, ROS also acts as signaling molecules. We previously demonstrated that the inducible silencing of thylakoid membrane-bound ascorbate peroxidase Arabidopsis plants (IS-tAPX) accumulated H2O2 in their chloroplasts, resulting in the clarification of ROS-responsive genes. In IS-tAPX plants, the transcript levels of the basic helix-loop-helix (bHLH) transcription factor bHLH101, which belongs to clade Ib bHLH, were down-regulated. In order to investigate the participation of bHLH101 in chloroplastic H2O2-mediated signaling, we isolated dominant negative expression mutants of bHLH101 (DN-bHLH101). DN-bHLH101 plants showed a significant phenotype that was sensitive to a methylviologen treatment, even under iron-sufficient conditions. Furthermore, the knock out mutant of bHLH101 showed a photo-oxidative sensitive phenotype, indicating that other clade Ib bHLHs do not compensate for the function of bHLH101. Thus, bHLH101 appears to act as a regulatory component in photo-oxidative stress responses. We also found that ferric chelate reductase activity was stronger in IS-tAPX plants than in control plants, suggesting that there is a close relationship between iron metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Masahiro Noshi
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan
| | - Noriaki Tanabe
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
| | - Yutaka Okamoto
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan
| | - Daisuke Mori
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan
| | - Masaru Ohme-Takagi
- National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8562, Japan; Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, 338-8570, Japan
| | - Masahiro Tamoi
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nakamachi, Nara, 631-8505, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, 332-0012, Japan.
| |
Collapse
|
33
|
Kailasam S, Wang Y, Lo JC, Chang HF, Yeh KC. S-Nitrosoglutathione works downstream of nitric oxide to mediate iron-deficiency signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:157-168. [PMID: 29396986 DOI: 10.1111/tpj.13850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 01/10/2018] [Indexed: 05/18/2023]
Abstract
Iron (Fe) is essential for plant growth and development. Knowledge of Fe signaling, from the beginning of perception to activation of the uptake process, is critical for crop improvement. Here, by using chemical screening, we identified a small molecule 3-amino-N-(3-methylphenyl)thieno[2,3-b]pyridine-2-carboxamide named R7 ('R' denoting repressor of IRON-REGULATED TRANSPORTER 1), that modulates Fe homeostasis of Arabidopsis. R7 treatment led to reduced Fe levels in plants, thus causing severe chlorosis under Fe deficiency. Expression analysis of central transcription factors, FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT) and subgroup Ib basic helix-loop-helix (Ib bHLH) genes bHLH38/39/100/101, revealed that R7 targets the FIT-dependent transcriptional pathway. Exogenously supplying S-nitrosoglutathione (GSNO), but not other nitric oxide (NO) donors sodium nitroprusside (SNP) and S-nitroso-N-acetyl-dl-penicillamine (SANP), alleviated the inhibitory effects of R7 on Fe homeostasis. R7 did not inhibit cellular levels of NO or glutathione but decreased GSNO level in roots. We demonstrate that NO is involved in regulating not only the FIT transcriptional network but also the Ib bHLH networks. In addition, GSNO, from S-nitrosylation of glutathione, specifically mediates the Fe-starvation signal to FIT, which is distinct from the NO to Ib bHLH signal. Our work dissects the molecular connection between NO and the Fe-starvation response. We present a new signaling route whereby GSNO acts downstream of NO to trigger the Fe-deficiency response in Arabidopsis.
Collapse
Affiliation(s)
- Sakthivel Kailasam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
| | - Ying Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Fang Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
34
|
Wang M, Lee J, Choi B, Park Y, Sim HJ, Kim H, Hwang I. Physiological and Molecular Processes Associated with Long Duration of ABA Treatment. FRONTIERS IN PLANT SCIENCE 2018; 9:176. [PMID: 29515601 PMCID: PMC5826348 DOI: 10.3389/fpls.2018.00176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/30/2018] [Indexed: 05/27/2023]
Abstract
Plants need to respond to various environmental stresses such as abiotic stress for proper development and growth. The responses to abiotic stress can be biochemically demanding, resulting in a trade-off that negatively affects plant growth and development. Thus, plant stress responses must be fine-tuned depending on the stress severity and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic stress. Here, we investigated time-dependent physiological and molecular responses to long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT), and then gradually decreased with time whereas ABA-GE was maintained at lower levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed by a gradual decline at later time points. Many genes involved in dehydration stress responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual decreases in induction fold or even suppression at later time points. At the physiological level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and inhibited chloroplast division in addition to the growth suppression whereas short-term ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling and plant responses: active mobilization of cellular resources at early time points and suppressive responses at later time points.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, China
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Juhun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Bongsoo Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Youngmin Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Hee-Jung Sim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, South Korea
- Environmental Toxicology Research Center, Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju, South Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
35
|
Yu H, Yang J, Shi Y, Donelson J, Thompson SM, Sprague S, Roshan T, Wang DL, Liu J, Park S, Nakata PA, Connolly EL, Hirschi KD, Grusak MA, Cheng N. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1045. [PMID: 28674546 DOI: 10.3389/fpls.2017.01045/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 05/28/2023]
Abstract
Iron (Fe) is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS). Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17) plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.
Collapse
Affiliation(s)
- Han Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Jian Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Yafei Shi
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jimmonique Donelson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Sean M Thompson
- Department of Horticultural Sciences, Texas A&M University, College StationTX, United States
| | - Stuart Sprague
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Tony Roshan
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Da-Li Wang
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jianzhong Liu
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Erin L Connolly
- Department of Plant Science, Penn State University, University ParkPA, United States
| | - Kendal D Hirschi
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- Vegetable and Fruit Improvement Center, Texas A&M University, College StationTX, United States
| | - Michael A Grusak
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- USDA/ARS Red River Valley Agricultural Research Center, FargoND, United States
| | - Ninghui Cheng
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| |
Collapse
|
36
|
Dai M, Lu H, Liu W, Jia H, Hong H, Liu J, Yan C. Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:272-279. [PMID: 28161586 DOI: 10.1016/j.ecoenv.2017.01.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Mangrove ecosystems are vulnerable to environmental threats. In order to elucidate the effect of phosphorus (P) on cadmium (Cd) tolerance and physiological responses in mangroves under Cd stress, a mangrove specie with salt exclusion Kandelia obovata and a specie with salt secretion Avicennia marina were compared in a hydroponic experiment. The results showed that most Cd was accumulated in mangrove roots and that P addition induced Cd immobilisation in them. Cd stress significantly increased malonaldehyde content, whereas P significantly decreased malonaldehyde in mangroves. Phosphorus positively regulated the photosynthetic pigment, proline content and synthesis of non-protein thiols, glutathione and phytochelatins in the leaves under Cd stress conditions. The results suggest different adaptive strategies adopted by two mangroves in a complex environment and A. marina showed a stronger Cd tolerance than K. obovata. The study provides a theoretical basis for P mediated detoxification of Cd in mangrove plants.
Collapse
Affiliation(s)
- Minyue Dai
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Haoliang Lu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Wenwen Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Hui Jia
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jingchun Liu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
37
|
Distéfano AM, Martin MV, Córdoba JP, Bellido AM, D'Ippólito S, Colman SL, Soto D, Roldán JA, Bartoli CG, Zabaleta EJ, Fiol DF, Stockwell BR, Dixon SJ, Pagnussat GC. Heat stress induces ferroptosis-like cell death in plants. J Cell Biol 2017; 216:463-476. [PMID: 28100685 PMCID: PMC5294777 DOI: 10.1083/jcb.201605110] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Juan Pablo Córdoba
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Andrés Martín Bellido
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Sebastián D'Ippólito
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Silvana Lorena Colman
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Débora Soto
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Juan Alfredo Roldán
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Carlos Guillermo Bartoli
- Instituto de Fisiología Vegetal, Facultad de Ciencias Naturales, Universidad Nacional de La Plata Centro Científico Technológico La Plata CONICET, 1900 La Plata, Argentina
| | - Eduardo Julián Zabaleta
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027.,Department of Chemistry, Columbia University, New York, NY 10027
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| |
Collapse
|
38
|
Guo K, Tu L, Wang P, Du X, Ye S, Luo M, Zhang X. Ascorbate Alleviates Fe Deficiency-Induced Stress in Cotton ( Gossypium hirsutum) by Modulating ABA Levels. FRONTIERS IN PLANT SCIENCE 2017; 7:1997. [PMID: 28101095 PMCID: PMC5209387 DOI: 10.3389/fpls.2016.01997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/16/2016] [Indexed: 05/30/2023]
Abstract
Fe deficiency causes significant losses to crop productivity and quality. To understand better the mechanisms of plant responses to Fe deficiency, we used an in vitro cotton ovule culture system. We found that Fe deficiency suppressed the development of ovules and fibers, and led to tissue browning. RNA-seq analysis showed that the myo-inositol and galacturonic acid pathways were activated and cytosolic APX (ascorbate peroxidase) was suppressed in Fe-deficient treated fibers, which increased ASC (ascorbate) concentrations to prevent tissue browning. Suppression of cytosolic APX by RNAi in cotton increased ASC contents and delayed tissue browning by maintaining ferric reduction activity under Fe-deficient conditions. Meanwhile, APX RNAi line also exhibited the activation of expression of iron-regulated transporter (IRT1) and ferric reductase-oxidase2 (FRO2) to adapt to Fe deficiency. Abscisic acid (ABA) levels were significantly decreased in Fe-deficient treated ovules and fibers, while the upregulated expression of ABA biosynthesis genes and suppression of ABA degradation genes in Fe-deficient ovules slowed down the decreased of ABA in cytosolic APX suppressed lines to delay the tissue browning. Moreover, the application of ABA in Fe-deficient medium suppressed the development of tissue browning and completely restored the ferric reduction activity. In addition, ABA 8'-hydroxylase gene (GhABAH1) overexpressed cotton has a decreased level of ABA and shows more sensitivity to Fe deficiency. Based on the results, we speculate that ASC could improve the tolerance to Fe deficiency through activating Fe uptake and maintaining ABA levels in cotton ovules and fibers, which in turn reduces symptom formation.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Xueqiong Du
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| | - Shue Ye
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest UniversityChongqing, China
| | - Ming Luo
- Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture, Biotechnology Research Center, Southwest UniversityChongqing, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
39
|
Yu H, Yang J, Shi Y, Donelson J, Thompson SM, Sprague S, Roshan T, Wang DL, Liu J, Park S, Nakata PA, Connolly EL, Hirschi KD, Grusak MA, Cheng N. Arabidopsis Glutaredoxin S17 Contributes to Vegetative Growth, Mineral Accumulation, and Redox Balance during Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1045. [PMID: 28674546 PMCID: PMC5474874 DOI: 10.3389/fpls.2017.01045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/31/2017] [Indexed: 05/08/2023]
Abstract
Iron (Fe) is an essential mineral nutrient and a metal cofactor required for many proteins and enzymes involved in the processes of DNA synthesis, respiration, and photosynthesis. Iron limitation can have detrimental effects on plant growth and development. Such effects are mediated, at least in part, through the generation of reactive oxygen species (ROS). Thus, plants have evolved a complex regulatory network to respond to conditions of iron limitations. However, the mechanisms that couple iron deficiency and oxidative stress responses are not fully understood. Here, we report the discovery that an Arabidopsis thaliana monothiol glutaredoxin S17 (AtGRXS17) plays a critical role in the plants ability to respond to iron deficiency stress and maintain redox homeostasis. In a yeast expression assay, AtGRXS17 was able to suppress the iron accumulation in yeast ScGrx3/ScGrx4 mutant cells. Genetic analysis indicated that plants with reduced AtGRXS17 expression were hypersensitive to iron deficiency and showed increased iron concentrations in mature seeds. Disruption of AtGRXS17 caused plant sensitivity to exogenous oxidants and increased ROS production under iron deficiency. Addition of reduced glutathione rescued the growth and alleviates the sensitivity of atgrxs17 mutants to iron deficiency. These findings suggest AtGRXS17 helps integrate redox homeostasis and iron deficiency responses.
Collapse
Affiliation(s)
- Han Yu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Jian Yang
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Yafei Shi
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jimmonique Donelson
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Sean M. Thompson
- Department of Horticultural Sciences, Texas A&M University, College StationTX, United States
| | - Stuart Sprague
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Tony Roshan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Da-Li Wang
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Jianzhong Liu
- College of Chemistry and Life Science, Zhejiang Normal UniversityJinhua, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, ManhattanKS, United States
| | - Paul A. Nakata
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Erin L. Connolly
- Department of Plant Science, Penn State University, University ParkPA, United States
| | - Kendal D. Hirschi
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- Vegetable and Fruit Improvement Center, Texas A&M University, College StationTX, United States
| | - Michael A. Grusak
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- USDA/ARS Red River Valley Agricultural Research Center, FargoND, United States
| | - Ninghui Cheng
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
- *Correspondence: Ninghui Cheng,
| |
Collapse
|
40
|
Wang Z, Li Q, Wu W, Guo J, Yang Y. Cadmium stress tolerance in wheat seedlings induced by ascorbic acid was mediated by NO signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:75-81. [PMID: 27693680 DOI: 10.1016/j.ecoenv.2016.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Ascorbic acid (AsA) and nitric oxide (NO) are well known and widespread antioxidants and gaseous molecules that regulate plant tolerance to several stresses. However, the relationship between them in plant response to stress, especially heavy stress, is largely unclear. This study demonstrated that both AsA and NO could enhance the tolerance of wheat seedlings to cadmium stress evidenced by root length change, which resulted from their roles in maintaining the balance in reactive oxygen species (ROS) and reducing the absorption of Cd. Furthermore, exogenous AsA led to a significant increase of NO content and endogenous AsA content in wheat roots, which could be weakened by the NO scavenger c-PTIO. In addition, c-PTIO also inhibits the NO-induced production of endogenous AsA. Although the AsA synthesis inhibitor lycorine significantly inhibited the inductive effect of exogenous AsA on endogenous AsA production, it has little effect on NO content. In addition, we found that the protective effects of NO and AsA on Cd stress were removed by c-PTIO and lycorine. These results indicated that NO accumulation could be necessary for exogenous AsA-induced cadmium tolerance and endogenous AsA production, and the exogenous AsA-induced endogenous AsA production was likely mediated by NO signaling pathways and together they induced the tolerance of wheat to cadmium stress.
Collapse
Affiliation(s)
- Zhaofeng Wang
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Qien Li
- Tibetan medical college, Qinghai University, Xining 810016, PR China
| | - Weiguo Wu
- Economic Crops and Beer Material Institute, Gansu Academy of Agricultural Science, Lanzhou 730070, PR China
| | - Jie Guo
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China
| | - Yingli Yang
- School of Life Science, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
41
|
Sun C, Wu T, Zhai L, Li D, Zhang X, Xu X, Ma H, Wang Y, Han Z. Reactive Oxygen Species Function to Mediate the Fe Deficiency Response in an Fe-Efficient Apple Genotype: An Early Response Mechanism for Enhancing Reactive Oxygen Production. FRONTIERS IN PLANT SCIENCE 2016; 7:1726. [PMID: 27899933 PMCID: PMC5110569 DOI: 10.3389/fpls.2016.01726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 05/09/2023]
Abstract
Reactive oxygen species (ROS) are important signaling molecules in plants that contribute to stress acclimation. This study demonstrated that ROS play a critical role in Fe deficiency-induced signaling at an early stage in Malus xiaojinensis. Once ROS production has been initiated, prolonged Fe starvation leads to activation of ROS scavenging mechanisms. Further, we demonstrated that ROS scavengers are involved in maintaining the cellular redox homeostasis during prolonged Fe deficiency treatment. Taken together, our results describe a feedback repression loop for ROS to preserve redox homeostasis and maintain a continuous Fe deficiency response in the Fe-efficient woody plant M. xiaojinensis. More broadly, this study reveals a new mechanism in which ROS mediate both positive and negative regulation of plant responses to Fe deficiency stress.
Collapse
Affiliation(s)
- Chaohua Sun
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Ting Wu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Longmei Zhai
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Duyue Li
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Xinzhong Zhang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Xuefeng Xu
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, China Agricultural UniversityBeijing, China
| | - Huiqin Ma
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
| | - Yi Wang
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
| | - Zhenhai Han
- Institute for Horticultural Plants, College of Horticulture, China Agricultural UniversityBeijing, China
- Key Laboratory of Physiology and Molecular Biology of Tree Fruit of Beijing, China Agricultural UniversityBeijing, China
| |
Collapse
|
42
|
Li S, Wang J, Yu Y, Wang F, Dong J, Huang R. D27E mutation of VTC1 impairs the interaction with CSN5B and enhances ascorbic acid biosynthesis and seedling growth in Arabidopsis. PLANT MOLECULAR BIOLOGY 2016; 92:473-482. [PMID: 27561782 DOI: 10.1007/s11103-016-0525-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/05/2016] [Indexed: 05/22/2023]
Abstract
Our previous investigation revealed that GDP-Man pyrophosphorylase (VTC1), a vital ascorbic acid (AsA) biosynthesis enzyme, could be degraded through interaction with the photomorphogenic factor COP9 signalosome subunit 5B (CSN5B) in the darkness, demonstrating the posttranscriptional regulation of light signal in AsA production. Here, we further report that a point mutation in D27E of VTC1 disables the interaction with CSN5B, resulting in enhancement of AsA biosynthesis and seedling growth in Arabidopsis thaliana. To identify the interaction sites with CSN5B, we first predicted the key amino acids in VTC1 via bioinformatics analysis. And then we biochemically and genetically demonstrated that the 27th Asp was the amino acid that influenced the interaction of VTC1 with CSN5B in plants. Moreover, transgenic lines overexpressing the site-specific mutagenesis from D27 (Asp) into E27 (Glu) in VTC1 showed enhanced AsA accumulation and reduced H2O2 content in Arabidopsis seedlings, compared with the lines overexpressing the mutation from D27 into N27 (Asn) in VTC1. In addition, this regulation of VTC1 D27E mutation promoted seedling growth. Together, our data reveal that the 27th amino acid of VTC1 confers a key regulation in the interaction with CSN5B and AsA biosynthesis, as well as in Arabidopsis seedling growth.
Collapse
Affiliation(s)
- Shenghui Li
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, 100081, China
| | - Yanwen Yu
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengru Wang
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China
| | - Jingao Dong
- College of Life Sciences, Agricultural University of Hebei, Baoding, 071001, China.
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, 100081, China.
| |
Collapse
|
43
|
Fisher B, Yarmolinsky D, Abdel-Ghany S, Pilon M, Pilon-Smits EA, Sagi M, Van Hoewyk D. Superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of chloroplastic ferredoxin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:228-35. [PMID: 27182957 DOI: 10.1016/j.plaphy.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 05/23/2023]
Abstract
Selenium assimilation in plants is facilitated by several enzymes that participate in the transport and assimilation of sulfate. Manipulation of genes that function in sulfur metabolism dramatically affects selenium toxicity and accumulation. However, it has been proposed that selenite is not reduced by sulfite reductase. Instead, selenite can be non-enzymatically reduced by glutathione, generating selenodiglutathione and superoxide. The damaging effects of superoxide on iron-sulfur clusters in cytosolic and mitochondrial proteins are well known. However, it is unknown if superoxide damages chloroplastic iron-sulfur proteins. The goals of this study were twofold: to determine whether decreased activity of sulfite reductase impacts selenium tolerance in Arabidopsis, and to determine if superoxide generated from the glutathione-mediated reduction of selenite damages the iron-sulfur cluster of ferredoxin. Our data demonstrate that knockdown of sulfite reductase in Arabidopsis does not affect selenite tolerance or selenium accumulation. Additionally, we provide in vitro evidence that the non-enzymatic reduction of selenite damages the iron-sulfur cluster of ferredoxin, a plastidial protein that is an essential component of the photosynthetic light reactions. Damage to ferredoxin's iron-sulfur cluster was associated with formation of apo-ferredoxin and impaired activity. We conclude that if superoxide damages iron-sulfur clusters of ferredoxin in planta, then it might contribute to photosynthetic impairment often associated with abiotic stress, including toxic levels of selenium.
Collapse
Affiliation(s)
- Brian Fisher
- Coastal Carolina University, Biology Department, Conway, SC, 29526, USA.
| | - Dmitry Yarmolinsky
- Ben-Gurion University, Blaustein Institutes for Desert Research, Beer Sheva, Israel.
| | - Salah Abdel-Ghany
- Colorado State University, Biology Department, Fort Collins, CO, 80523, USA.
| | - Marinus Pilon
- Colorado State University, Biology Department, Fort Collins, CO, 80523, USA.
| | | | - Moshe Sagi
- Ben-Gurion University, Blaustein Institutes for Desert Research, Beer Sheva, Israel.
| | - Doug Van Hoewyk
- Coastal Carolina University, Biology Department, Conway, SC, 29526, USA.
| |
Collapse
|
44
|
Khan M, Daud MK, Basharat A, Khan MJ, Azizullah A, Muhammad N, Muhammad N, Ur Rehman Z, Zhu SJ. Alleviation of lead-induced physiological, metabolic, and ultramorphological changes in leaves of upland cotton through glutathione. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8431-40. [PMID: 26782322 DOI: 10.1007/s11356-015-5959-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/10/2015] [Indexed: 05/24/2023]
Abstract
Plants face changes in leaves under lead (Pb) toxicity. Reduced glutathione (GSH) has several functions in plant metabolism, but its role in alleviating Pb toxicity in cotton leaves is still unknown. In the present study, cotton seedlings (28 days old) were exposed to 500 μM Pb and 50 μM GSH, both alone and in combination, for a period of 10 days, in the Hoagland solution under controlled growth conditions. Results revealed Pb-induced changes in cotton's leaf morphology, photosynthesis, and oxidative metabolism. However, exogenous application of GSH restored leaf growth. GSH triggered build up of chlorophyll a, chlorophyll b, and carotenoid contents and boosted fluorescence ratios (F v/F m and F v/F 0). Moreover, GSH reduced the malondialdehyde (MDA), hydrogen peroxide (H2O2), and Pb contents in cotton leaves. Results further revealed that total soluble protein contents were decreased under Pb toxicity; however, exogenously applied GSH improved these contents in cotton leaves. Activities of antioxidant enzymes (catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione reductase (GR), and ascorbate peroxidase (APX)) were also increased by GSH application under Pb toxicity. Microscopic analysis showed that excess Pb shattered thylakoid membranes in chloroplasts. However, GSH stabilized ultrastructure of Pb-stressed cotton leaves. These findings suggested that exogenously applied GSH lessened the adverse effects of Pb and improved cotton's tolerance to oxidative stress.
Collapse
Affiliation(s)
- Mumtaz Khan
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - M K Daud
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Ali Basharat
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Muhammad Jamil Khan
- Department of Soil and Environmental Sciences, Faculty of Agriculture, Gomal University, Dera Ismail Khan, 29050, KPK, Pakistan
| | - Azizullah Azizullah
- Department of Botany, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, KPK, Pakistan
| | - Shui Jin Zhu
- Institute of Crop Science, Department of Agronomy, College of Agriculture and Biotechnology Zijingang Campus, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
45
|
Shanmugam V, Wang YW, Tsednee M, Karunakaran K, Yeh KC. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:464-77. [PMID: 26333047 DOI: 10.1111/tpj.13011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/17/2015] [Accepted: 08/25/2015] [Indexed: 05/18/2023]
Abstract
Iron (Fe) deficiency is a common agricultural problem that affects both the productivity and nutritional quality of plants. Thus, identifying the key factors involved in the tolerance of Fe deficiency is important. In the present study, the zir1 mutant, which is glutathione deficient, was found to be more sensitive to Fe deficiency than the wild type, and grew poorly in alkaline soil. Other glutathione-deficient mutants also showed various degrees of sensitivity to Fe-limited conditions. Interestingly, we found that the glutathione level was increased under Fe deficiency in the wild type. By contrast, blocking glutathione biosynthesis led to increased physiological sensitivity to Fe deficiency. On the other hand, overexpressing glutathione enhanced the tolerance to Fe deficiency. Under Fe-limited conditions, glutathione-deficient mutants, zir1, pad2 and cad2 accumulated lower levels of Fe than the wild type. The key genes involved in Fe uptake, including IRT1, FRO2 and FIT, are expressed at low levels in zir1; however, a split-root experiment suggested that the systemic signals that govern the expression of Fe uptake-related genes are still active in zir1. Furthermore, we found that zir1 had a lower accumulation of nitric oxide (NO) and NO reservoir S-nitrosoglutathione (GSNO). Although NO is a signaling molecule involved in the induction of Fe uptake-related genes during Fe deficiency, the NO-mediated induction of Fe-uptake genes is dependent on glutathione supply in the zir1 mutant. These results provide direct evidence that glutathione plays an essential role in Fe-deficiency tolerance and NO-mediated Fe-deficiency signaling in Arabidopsis.
Collapse
Affiliation(s)
| | - Yi-Wen Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Krithika Karunakaran
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
46
|
Bertrand B, Bardil A, Baraille H, Dussert S, Doulbeau S, Dubois E, Severac D, Dereeper A, Etienne H. The Greater Phenotypic Homeostasis of the Allopolyploid Coffea arabica Improved the Transcriptional Homeostasis Over that of Both Diploid Parents. PLANT & CELL PHYSIOLOGY 2015; 56:2035-51. [PMID: 26355011 PMCID: PMC4679393 DOI: 10.1093/pcp/pcv117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/07/2015] [Indexed: 05/02/2023]
Abstract
Polyploidy impacts the diversity of plant species, giving rise to novel phenotypes and leading to ecological diversification. In order to observe adaptive and evolutionary capacities of polyploids, we compared the growth, primary metabolism and transcriptomic expression level in the leaves of the newly formed allotetraploid Coffea arabica species compared with its two diploid parental species (Coffea eugenioides and Coffea canephora), exposed to four thermal regimes (TRs; 18-14, 23-19, 28-24 and 33-29°C). The growth rate of the allopolyploid C. arabica was similar to that of C. canephora under the hottest TR and that of C. eugenioides under the coldest TR. For metabolite contents measured at the hottest TR, the allopolyploid showed similar behavior to C. canephora, the parent which tolerates higher growth temperatures in the natural environment. However, at the coldest TR, the allopolyploid displayed higher sucrose, raffinose and ABA contents than those of its two parents and similar linolenic acid leaf composition and Chl content to those of C. eugenioides. At the gene expression level, few differences between the allopolyploid and its parents were observed for studied genes linked to photosynthesis, respiration and the circadian clock, whereas genes linked to redox activity showed a greater capacity of the allopolyploid for homeostasis. Finally, we found that the overall transcriptional response to TRs of the allopolyploid was more homeostatic compared with its parents. This better transcriptional homeostasis of the allopolyploid C. arabica afforded a greater phenotypic homeostasis when faced with environments that are unsuited to the diploid parental species.
Collapse
Affiliation(s)
- Benoît Bertrand
- CIRAD, UMR IPME, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Amélie Bardil
- University of Neuchâtel, Institute of Biology, Laboratory of Evolutionary Botany, Emile Argand 11, CP 158, 2000 Neuchâtel, Switzerland
| | - Hélène Baraille
- Université de Reims, Unité de Recherche Vignes et Vins de Champagne, Laboratoire de stress, défenses et reproduction des plantes, Campus Moulin de la Housse, 51687 Reims Cedex 2, France
| | - Stéphane Dussert
- IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Sylvie Doulbeau
- IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Emeric Dubois
- CNRS, Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, Montpellier Cedex 34, France
| | - Dany Severac
- CNRS, Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, Montpellier Cedex 34, France
| | - Alexis Dereeper
- IRD, UMR IPME, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | - Hervé Etienne
- CIRAD, UMR IPME, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| |
Collapse
|
47
|
Mai HJ, Lindermayr C, von Toerne C, Fink-Straube C, Durner J, Bauer P. Iron and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent regulation of proteins and genes in Arabidopsis thaliana
roots. Proteomics 2015; 15:3030-47. [DOI: 10.1002/pmic.201400351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/10/2015] [Accepted: 04/30/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Hans-Jörg Mai
- Institute of Botany; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Christian Lindermayr
- Helmholtz Zentrum München (GmbH); German Research Center for Environmental Health; Institute of Biochemical Plant Pathology (BIOP); Neuherberg Germany
| | - Christine von Toerne
- Research Unit Protein Science; Helmholtz Zentrum München (GmbH); German Research Center for Environmental Health; Neuherberg Germany
| | | | - Jörg Durner
- Helmholtz Zentrum München (GmbH); German Research Center for Environmental Health; Institute of Biochemical Plant Pathology (BIOP); Neuherberg Germany
| | - Petra Bauer
- Institute of Botany; Heinrich Heine University Düsseldorf; Düsseldorf Germany
- CEPLAS Cluster of Excellence on Plant Sciences; Heinrich Heine Universität Düsseldorf; Düsseldorf Germany
| |
Collapse
|
48
|
Santos CS, Roriz M, Carvalho SMP, Vasconcelos MW. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants (Glycine max L.). FRONTIERS IN PLANT SCIENCE 2015; 6:325. [PMID: 26029227 PMCID: PMC4428275 DOI: 10.3389/fpls.2015.00325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/24/2015] [Indexed: 05/20/2023]
Abstract
Iron (Fe) deficiency chlorosis (IDC) leads to leaf yellowing, stunted growth and drastic yield losses. Plants have been differentiated into 'Fe-efficient' (EF) if they resist to IDC and 'Fe-inefficient' (IN) if they do not, but the reasons for this contrasting efficiency remain elusive. We grew EF and IN soybean plants under Fe deficient and Fe sufficient conditions and evaluated if gene expression and the ability to partition Fe could be related to IDC efficiency. At an early growth stage, Fe-efficiency was associated with higher chlorophyll content, but Fe reductase activity was low under Fe-deficiency for EF and IN plants. The removal of the unifoliate leaves alleviated IDC symptoms, increased shoot:root ratio, and trifoliate leaf area. EF plants were able to translocate Fe to the aboveground plant organs, whereas the IN plants accumulated more Fe in the roots. FRO2-like gene expression was low in the roots; IRT1-like expression was higher in the shoots; and ferritin was highly expressed in the roots of the IN plants. The efficiency trait is linked to Fe partitioning and the up-regulation of Fe-storage related genes could interfere with this key process. This work provides new insights into the importance of mineral partitioning among different plant organs at an early growth stage.
Collapse
Affiliation(s)
- Carla S. Santos
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
| | - Mariana Roriz
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
| | - Susana M. P. Carvalho
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- Horticultural and Product Physiology Group, Department of Plant Sciences, Wageningen UniversityWageningen, Netherlands
- Faculty of Sciences, University of PortoPorto, Portugal
| | - Marta W. Vasconcelos
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
| |
Collapse
|
49
|
Jing X, Hou P, Lu Y, Deng S, Li N, Zhao R, Sun J, Wang Y, Han Y, Lang T, Ding M, Shen X, Chen S. Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. FRONTIERS IN PLANT SCIENCE 2015; 6:23. [PMID: 25657655 PMCID: PMC4302849 DOI: 10.3389/fpls.2015.00023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/16/2014] [Indexed: 05/25/2023]
Abstract
Na(+) uptake and transport in Kandelia candel and antioxidative defense were investigated under rising NaCl stress from 100 to 300 mM. Salinized K. candel roots had a net Na(+) efflux with a declined flux rate during an extended NaCl exposure. Na(+) buildup in leaves enhanced H2O2 levels, superoxide dismutase (SOD) activity, and increased transcription of CSD gene encoding a Cu/Zn SOD. Sequence and subcellular localization analyses have revealed that KcCSD is a typical Cu/Zn SOD in chloroplast. The transgenic tobacco experimental system was used as a functional genetics model to test the effect of KcCSD on salinity tolerance. KcCSD-transgenic lines were more Na(+) tolerant than wild-type (WT) tobacco in terms of lipid peroxidation, root growth, and survival rate. In the latter, 100 mM NaCl led to a remarkable reduction in chlorophyll content and a/b ratio, decreased maximal chlorophyll a fluorescence, and photochemical efficiency of photosystem II. NaCl stress in WT resulted from H2O2 burst in chloroplast. Na(+) injury to chloroplast was less pronounced in KcCSD-transgenic plants due to upregulated antioxidant defense. KcCSD-transgenic tobacco enhanced SOD activity by an increment in SOD isoenzymes under 100 mM NaCl stress from 24 h to 7 day. Catalase activity rose in KcCSD overexpressing tobacco plants. KcCSD-transgenic plants better scavenged NaCl-elicited reactive oxygen species (ROS) compared to WT ones. In conclusion, K. candel effectively excluded Na(+) in roots during a short exposure; and increased CSD expression to reduce ROS in chloroplast in a long-term and high saline environment.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Peichen Hou
- Department of Bio-Instruments, National Engineering Research Center for Information Technology in AgricultureBeijing, China
| | - Yanjun Lu
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Shurong Deng
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Niya Li
- Department of Biology, College of Life Science, Hainan Normal UniversityHaikou, China
| | - Rui Zhao
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Jian Sun
- Department of Plant Science, College of Life Science, Jiangsu Normal UniversityXuzhou, China
| | - Yang Wang
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Yansha Han
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Tao Lang
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Mingquan Ding
- Department of Crop Science, College of Agricultural and Food Science, Zhejiang Agricultural and Forestry UniversityHangzhou, China
| | - Xin Shen
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Shaoliang Chen
- Department of Plant Science, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
50
|
Bocchini M, Bartucca ML, Ciancaleoni S, Mimmo T, Cesco S, Pii Y, Albertini E, Del Buono D. Iron deficiency in barley plants: phytosiderophore release, iron translocation, and DNA methylation. FRONTIERS IN PLANT SCIENCE 2015; 6:514. [PMID: 26217365 PMCID: PMC4496560 DOI: 10.3389/fpls.2015.00514] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
All living organisms require iron (Fe) to carry out many crucial metabolic pathways. Despite its high concentrations in the geosphere, Fe bio-availability to plant roots can be very scarce. To cope with Fe shortage, plants can activate different strategies. For these reasons, we investigated Fe deficient Hordeum vulgare L. plants by monitoring growth, phytosiderophores (PS) release, iron content, and translocation, and DNA methylation, with respect to Fe sufficient ones. Reductions of plant growth, roots to shoots Fe translocation, and increases in PS release were found. Experiments on DNA methylation highlighted significant differences between fully and hemy-methylated sequences in Fe deficient plants, with respect to Fe sufficient plants. Eleven DNA bands differently methylated were found in starved plants. Of these, five sequences showed significant alignment to barley genes encoding for a glucosyltransferase, a putative acyl carrier protein, a peroxidase, a β-glucosidase and a transcription factor containing a Homeodomin. A resupply experiment was carried out on starved barley re-fed at 13 days after sowing (DAS), and it showed that plants did not recover after Fe addition. In fact, Fe absorption and root to shoot translocation capacities were impaired. In addition, resupplied barley showed DNA methylation/demethylation patterns very similar to that of barley grown in Fe deprivation. This last finding is very encouraging because it indicates as these variations/modifications could be transmitted to progenies.
Collapse
Affiliation(s)
- Marika Bocchini
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Maria Luce Bartucca
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Simona Ciancaleoni
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of BolzanoBolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of BolzanoBolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of BolzanoBolzano, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
- *Correspondence: Emidio Albertini, Department of Agriculture, Food and Environmental Sciences, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Daniele Del Buono
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| |
Collapse
|