1
|
de Oliveira HO, Siqueira JA, Medeiros DB, Fernie AR, Nunes-Nesi A, Araújo WL. Harnessing the dynamics of plant organic acids metabolism following abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109465. [PMID: 39787814 DOI: 10.1016/j.plaphy.2024.109465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
Plants encounter various environmental stresses throughout development, including shade, high light, drought, hypoxia, extreme temperatures, and metal toxicity, all of which adversely affect growth and productivity. Organic acids (OAs), besides serving as intermediates in the tricarboxylic acid (TCA) cycle, play crucial roles in multiple metabolic pathways and cellular compartments, including mitochondrial metabolism, amino acid metabolism, the glyoxylate cycle, and the photosynthetic mechanisms of C4 and CAM plants. OAs contribute to stress tolerance by acting as root chelating agents, regulating ATP production, and providing reducing power for detoxifying reactive oxygen species (ROS). They also participate in the biosynthesis of solutes involved in stress signaling and osmoregulation, particularly during stomatal movements. This review explores how OAs regulate plant metabolism in response to specific abiotic stresses, emphasizing the increased production of malate, citrate, and succinate, which enhance resilience to water deficits, metal toxicity, and flooding. Since these mechanisms involve intricate metabolic networks, changes in OA metabolism present promising and underexplored potential for agriculture. Understanding these mechanisms could lead to innovative strategies for developing crops with greater resilience to climate change, whether through genetic manipulation or by selecting varieties with favorable metabolic responses to stress.
Collapse
Affiliation(s)
- Hellen Oliveira de Oliveira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - David B Medeiros
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
2
|
Xiong H, Wang J, Gao X, Dong G, Zeng W, Wang W, Sun MX. Transcriptome and Metabolome Analyses Reveal a Complex Stigma Microenvironment for Pollen Tube Growth in Tobacco. Int J Mol Sci 2024; 25:12255. [PMID: 39596319 PMCID: PMC11594504 DOI: 10.3390/ijms252212255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, the success of fertilization depends on the rapid polar extension of a pollen tube, which delivers sperm cells to the female gametophyte for fertilization. Numerous studies have shown that the microenvironment in planta is more conducive to the growth and development of pollen tubes than that in vitro. However, how stigma factors coordinate to regulate pollen tube growth is still poorly understood. Here, we demonstrate that in tobacco, mature stigma extract, but not immature stigma extract, facilitates pollen tube growth. Comparative transcriptomic and qRT-PCR analyses showed that the differentially expressed genes during stigma maturation were mainly enriched in the metabolism pathway. Through metabolome analyses, about 500 metabolites were identified to be differently accumulated; the significantly increased metabolites in the mature stigmas mainly belonged to alkaloids, flavonoids, and terpenoids, while the downregulated differential metabolites were related to lipids, amino acids, and their derivatives. Among the different kinds of plant hormones, the cis-form contents of zeatin were significantly increased, and more importantly, cis-zeatin riboside promoted pollen tube growth in vitro. Thus, our results reveal an overall landscape of gene expression and a detailed nutritional microenvironment established for pollen tube growth during the process of stigma maturation, which provides valuable clues for optimizing in vitro pollen growth and investigating the pollen-stigma interaction.
Collapse
Affiliation(s)
- Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Junjie Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Xiaodi Gao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Wanyong Zeng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (H.X.); (J.W.); (X.G.); (G.D.); (W.Z.)
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
3
|
Mizuta Y, Sakakibara D, Nagahara S, Kaneshiro I, Nagae TT, Kurihara D, Higashiyama T. Deep imaging reveals dynamics and signaling in one-to-one pollen tube guidance. EMBO Rep 2024; 25:2529-2549. [PMID: 38773320 PMCID: PMC11169409 DOI: 10.1038/s44319-024-00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 05/23/2024] Open
Abstract
In the pistil of flowering plants, each ovule usually associates with a single pollen tube for fertilization. This one-to-one pollen tube guidance, which contributes to polyspermy blocking and efficient seed production, is largely different from animal chemotaxis of many sperms to one egg. However, the functional mechanisms underlying the directional cues and polytubey blocks in the depths of the pistil remain unknown. Here, we develop a two-photon live imaging method to directly observe pollen tube guidance in the pistil of Arabidopsis thaliana, clarifying signaling and cellular behaviors in the one-to-one guidance. Ovules are suggested to emit multiple signals for pollen tubes, including an integument-dependent directional signal that reaches the inner surface of the septum and adhesion signals for emerged pollen tubes on the septum. Not only FERONIA in the septum but ovular gametophytic FERONIA and LORELEI, as well as FERONIA- and LORELEI-independent repulsion signal, are involved in polytubey blocks on the ovular funiculus. However, these funicular blocks are not strictly maintained in the first 45 min, explaining previous reports of polyspermy in flowering plants.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| | - Daigo Sakakibara
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Shiori Nagahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Ikuma Kaneshiro
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, 444-8585, Japan
| | - Takuya T Nagae
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Kurihara
- Institute for Advanced Research (IAR), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bukyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Ahmad S, Fariduddin Q. "Deciphering the enigmatic role of gamma-aminobutyric acid (GABA) in plants: Synthesis, transport, regulation, signaling, and biological roles in interaction with growth regulators and abiotic stresses.". PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108502. [PMID: 38492486 DOI: 10.1016/j.plaphy.2024.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
Gamma-aminobutyric acid (GABA) is an amino acid with a four-carbon structure, widely distributed in various organisms. It exists as a zwitterion, possessing both positive and negative charges, enabling it to interact with other molecules and participate in numerous physiological processes. GABA is widely distributed in various plant cell compartments such as cytoplasm mitochondria, vacuoles, peroxisomes, and plastids. GABA is primarily synthesized from glutamate using glutamate decarboxylase and participates in the GABA shunt within mitochondria, regulating carbon and nitrogen metabolism in plants The transport of GABA is regulated by several intracellular and intercellular transporters such as aluminium-activated malate transporters (ALMTs), GABA transporters (GATs), bidirectional amino acid transporters (BATs), and cationic amino acid transporters (CATs). GABA plays a vital role in cellular transformations, gene expression, cell wall modifications, and signal transduction in plants. Recent research has unveiled the role of GABA as a signaling molecule in plants, regulating stomatal movement and pollen tube growth. This review provides insights into multifaceted impact of GABA on physiological and biochemical traits in plants, including cellular communication, pH regulation, Krebs cycle circumvention, and carbon and nitrogen equilibrium. The review highlights involvement of GABA in improving the antioxidant defense system of plants, mitigating levels of reactive oxygen species under normal and stressed conditions. Moreover, the interplay of GABA with other plant growth regulators (PGRs) have also been explored.
Collapse
Affiliation(s)
- Saif Ahmad
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Qazi Fariduddin
- Plant Physiology and Biochemistry Section, Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
6
|
Han J, Zhao X, Zhao X, Wang Q, Li P, Gu Q. Microbial-Derived γ-Aminobutyric Acid: Synthesis, Purification, Physiological Function, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14931-14946. [PMID: 37792666 DOI: 10.1021/acs.jafc.3c05269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
γ-Aminobutyric acid (GABA) is an important nonprotein amino acid that extensively exists in nature. At present, GABA is mainly obtained through chemical synthesis, plant enrichment, and microbial production, among which microbial production has received widespread attention due to its safety and environmental benefits. After using microbial fermentation to obtain GABA, it is necessary to be isolated and purified to ensure its quality and suitability for various industries such as food, agriculture, livestock, pharmaceutics, and others. This article provides a comprehensive review of the different sources of GABA, including its presence in nature and the synthesis methods. The factors affecting the production of microbial-derived GABA and its isolation and purification methods are further elucidated. Moreover, the main physiological functions of GABA and its application in different fields are also reviewed. By advancing our understanding of GABA, we can unlock its full potential and further utilize it in various fields to improve human health and well-being.
Collapse
Affiliation(s)
- Jiarun Han
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xilian Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xin Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
7
|
Sun Z, Bai C, Liu Y, Ma M, Zhang S, Liu H, Bai R, Han X, Yong JWH. Resilient and sustainable production of peanut (Arachis hypogaea) in phosphorus-limited environment by using exogenous gamma-aminobutyric acid to sustain photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115388. [PMID: 37611478 DOI: 10.1016/j.ecoenv.2023.115388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Globally, many low to medium yielding peanut fields have the potential for further yield improvement. Low phosphorus (P) limitation is one of the significant factors curtailing Arachis hypogaea productivity in many regions. In order to demonstrate the effects of gamma-aminobutyric acid (GABA) on peanuts growing under P deficiency, we used a pot-based experiment to examine the effects of exogenous GABA on alleviating P deficiency-induced physiological changes and growth inhibition in peanuts. The key physiological parameters examined were foliar gas exchange, photochemical efficiency, proton motive force, reactive oxygen species (ROS), and adenosine triphosphate (ATP) synthase activity of peanuts under cultivation with low P (LP, 0.5 mM P) and control conditions. During low P, the cyclic electron flow (CEF) maintained the high proton gradient (∆pH) induced by low ATP synthetic activity. Applying GABA during low P conditions stimulated CEF and reduced the concomitant ROS generation and thereby protecting the foliar photosystem II (PSII) from photoinhibition. Specifically, GABA enhanced the rate of electronic transmission of PSII (ETRII) by pausing the photoprotection mechanisms including non-photochemical quenching (NPQ) and ∆pH regulation. Thus, GABA was shown to be effective in restoring peanut growth when encountering P deficiency. Exogenous GABA alleviated two symptoms (increased root-shoot ratio and photoinhibition) of P-deficient peanuts. This is possibly the first report of using exogenous GABA to restore photosynthesis and growth under low P availability. Therefore, foliar applications of GABA could be a simple, safe and effective approach to overcome low yield imposed by limited P resources (low P in soils or P-fertilizers are unavailable) for sustainable peanut cultivation and especially in low to medium yielding fields.
Collapse
Affiliation(s)
- Zhiyu Sun
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia.
| | - Mingzhu Ma
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Huan Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
8
|
Doddaraju P, Dharmappa PM, Thiagarayaselvam A, Vijayaraghavareddy P, Bheemanahalli R, Basavaraddi PA, Malagondanahalli MKV, Kambalimath S, Thulasiram HV, Sreeman SM. Comprehensive analysis of physiological and metabolomic responses to drought reveals specific modulation of acquired tolerance mechanisms in rice. PHYSIOLOGIA PLANTARUM 2023; 175:e13917. [PMID: 37087573 DOI: 10.1111/ppl.13917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Mild stresses induce "acquired tolerance traits" (ATTs) that provide tolerance when stress becomes severe. Here, we identified the genetic variability in ATTs among a panel of rice germplasm accessions and demonstrated their relevance in protecting growth and productivity under water-limited conditions. Diverse approaches, including physiological screens, association mapping and metabolomics, were adopted and revealed 43 significant marker-trait associations. Nontargeted metabolomic profiling of contrasting genotypes revealed 26 "tolerance-related-induced" primary and secondary metabolites in the tolerant genotypes (AC-39000 and AC-39020) compared to the susceptible one (BPT-5204) under water-limited condition. Metabolites that help maintain cellular functions, especially Calvin cycle processes, significantly accumulated more in tolerant genotypes, which resulted in superior photosynthetic capacity and hence water use efficiency. Upregulation of the glutathione cycle intermediates explains the ROS homeostasis among the tolerant genotypes, maintaining spikelet fertility, and grain yield under stress. Bioinformatic dissection of a major effect quantitative trait locus on chromosome 8 revealed genes controlling metabolic pathways leading to the production of osmolites and antioxidants, such as GABA and raffinose. The study also led to the identification of specific trait donor genotypes that can be effectively used in translational crop improvement activities.
Collapse
Affiliation(s)
- Pushpa Doddaraju
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | - Prathibha M Dharmappa
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- ICAR-Indian Institute of Horticulture Research, Bengaluru, India
| | | | | | - Raju Bheemanahalli
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Priyanka A Basavaraddi
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | | | - Sumanth Kambalimath
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| | | | - Sheshshayee M Sreeman
- Department of Crop Physiology, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
9
|
Pollen tube emergence is mediated by ovary-expressed ALCATRAZ in cucumber. Nat Commun 2023; 14:258. [PMID: 36650145 PMCID: PMC9845374 DOI: 10.1038/s41467-023-35936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Pollen tube guidance within female tissues of flowering plants can be divided into preovular guidance, ovular guidance and a connecting stage called pollen tube emergence. As yet, no female factor has been identified to positively regulate this transition process. In this study, we show that an ovary-expressed bHLH transcription factor Cucumis sativus ALCATRAZ (CsALC) functions in pollen tube emergence in cucumber. CsALC knockout mutants showed diminished pollen tube emergence, extremely reduced entry into ovules, and a 95% reduction in female fertility. Further examination showed two rapid alkalinization factors CsRALF4 and CsRALF19 were less expressed in Csalc ovaries compared to WT. Besides the loss of male fertility derived from precocious pollen tube rupture as in Arabidopsis, Csralf4 Csralf19 double mutants exhibited a 60% decrease in female fertility due to reduced pollen tube distribution and decreased ovule targeting efficiency. In brief, CsALC regulates female fertility and promotes CsRALF4/19 expression in the ovary during pollen tube guidance in cucumber.
Collapse
|
10
|
Zhang S, Gao H, Wang L, Zhang Y, Zhou D, Anwar A, Li J, Wang F, Li C, Zhang Y, Gao J. Comparative Transcriptome and Co-Expression Network Analyses Reveal the Molecular Mechanism of Calcium-Deficiency-Triggered Tipburn in Chinese Cabbage ( Brassica rapa L. ssp. Pekinensis). PLANTS (BASEL, SWITZERLAND) 2022; 11:3555. [PMID: 36559667 PMCID: PMC9785529 DOI: 10.3390/plants11243555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Chinese cabbage tipburn is characterized by the formation of necrotic lesions on the margin of leaves, including on the insides of the leafy head. This physiological disorder is associated with a localized calcium deficiency during leaf development. However, little information is available regarding the molecular mechanisms governing Ca-deficiency-triggered tipburn. This study comprehensively analysed the transcriptomic comparison between control and calcium treatments (CK and 0 mM Ca) in Chinese cabbage to determine its molecular mechanism in tipburn. Our analysis identified that the most enriched gene ontology (GO) categories are photosynthesis, thylakoid and cofactor binding. Moreover, the KEGG pathway was most enriched in photosynthesis, carbon metabolism and carbon fixation. We also analyzed the co-expression network by functional categories and identified ten critical hub differentially expressed genes (DEGs) in each gene regulatory network (GRN). These DEGs might involve abiotic stresses, developmental processes, cell wall metabolism, calcium distribution, transcription factors, plant hormone biosynthesis and signal transduction pathways. Under calcium deficiency, CNX1, calmodulin-binding proteins and CMLs family proteins were downregulated compared to CK. In addition, plant hormones such as GA, JA, BR, Auxin and ABA biosynthesis pathways genes were downregulated under calcium treatment. Likewise, HATs, ARLs and TCP transcription factors were reported as inactive under calcium deficiency, and potentially involved in the developmental process. This work explores the specific DEGs' significantly different expression levels in 0 mM Ca and the control involved in plant hormones, cell wall developments, a light response such as chlorophylls and photosynthesis, transport metabolism and defence mechanism and redox. Our results provide critical evidence of the potential roles of the calcium signal transduction pathway and candidate genes governing Ca-deficiency-triggered tipburn in Chinese cabbage.
Collapse
Affiliation(s)
- Shu Zhang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hanzhong Gao
- Columbian College of Arts & Sciences, Phillips Hall, The George Washington University, 801 22nd St. NW., Washington, DC 20052, USA
| | - Lixia Wang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yihui Zhang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Sciences, Shandong Normal University, Jinan 250061, China
| | - Dandan Zhou
- College of Life Sciences, Shandong Normal University, Jinan 250061, China
| | - Ali Anwar
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jingjuan Li
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fengde Wang
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Cheng Li
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ye Zhang
- College of Life Science, Huangshan University, Huangshan 245061, China
| | - Jianwei Gao
- Institute of Vegetables, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Huanghuai Region Vegetable Scientific Station of Ministry of Agriculture (Shandong), Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
11
|
Jiao C, Guo Z, Gong J, Zuo Y, Li S, Vanegas D, McLamore ES, Shen Y. CML8 and GAD4 function in (Z)-3-hexenol-mediated defense by regulating γ-aminobutyric acid accumulation in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:135-144. [PMID: 35842997 DOI: 10.1016/j.plaphy.2022.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
(Z)-3-hexenol, a small gaseous molecule, is produced in plants under biotic stress and induces defense responses in neighboring plants. However, little is known about how (Z)-3-hexenol induces plant defense-related signaling. In this study, we uncovered how (Z)-3-hexenol treatment enhances plant resistance to insect attacks by increasing γ-aminobutyric acid (GABA) contents in Arabidopsis leaves. First, (Z)-3-hexenol increases the intracellular content of calcium as secondary messenger in Arabidopsis leaf mesophyll cells. Both intracellular and extracellular calcium stores regulate changes in calcium content. Then, CML8 and GAD4 transmit calcium signaling to affect (Z)-3-hexenol induced GABA content and plant resistance. Herein, CML8 interaction with GAD4 was examined via yeast two-hybrid assays, firefly luciferase complementation imaging, and GST pull-down assays. These results indicate that (Z)-3-hexenol treatment increased the GABA contents in Arabidopsis leaves based on CML8 and GAD4, thus increasing plant resistance to the insect Plutella xylostella. This study revealed the mechanism of activating plant insect defense induced by (Z)-3-hexenol, which guides the study of volatiles as biological pest control.
Collapse
Affiliation(s)
- Chunyang Jiao
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhujuan Guo
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junqing Gong
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yixin Zuo
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shuwen Li
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Diana Vanegas
- College of Engineering, Computing and Applied Sciences, Clemson University, Clemson, 29634, South Carolina, USA
| | - Eric S McLamore
- Agricultural Sciences, Clemson University, Clemson, 29634, South Carolina, USA
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
12
|
Wang JR, Song XH, Li LY, Gao SJ, Shang FH, Zhang XM, Yang Y. Metabolomic analysis reveals dynamic changes in secondary metabolites of Sophora japonica L. during flower maturation. FRONTIERS IN PLANT SCIENCE 2022; 13:916410. [PMID: 35991425 PMCID: PMC9386383 DOI: 10.3389/fpls.2022.916410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Sophora japonica L. is widely consumed in China because of its medicinal and nutritional value. Its quality is greatly affected by the accumulation of metabolites, which varies with the stage of flower development. However, changes in the characteristics of the secondary metabolites during flower maturity remain unclear. Ultra-high-performance liquid chromatography coupled with electrospray ionization-triple quadrupole-linear ion trap mass spectrometry (UPLC-ESI-QTRAP-MS/MS) revealed dynamic changes in the secondary metabolites of S. japonica during the five flower-maturity stages. We monitored 331 metabolites and screened 164. The differential metabolites showed seven trends during flower maturation, with flavonoids and phenolic acids having the most varied expressions. Flower buds (S2-S3) are rich in flavonoids and are thus suitable for use in high-quality medicine or industrial extraction. Our study provides an empirical basis for the informed harvesting of S. japonica based on its mode of utilization.
Collapse
Affiliation(s)
- Ji-Rui Wang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Xu-Hong Song
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Long-Yun Li
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Chongqing, China
| | - Si-Jia Gao
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Fang-Hong Shang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiao-Mei Zhang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yong Yang
- Three Grade Laboratory of Chinese Medicine Chemistry, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
13
|
Çetinbaş-Genç A, Conti V, Cai G. Let's shape again: the concerted molecular action that builds the pollen tube. PLANT REPRODUCTION 2022; 35:77-103. [PMID: 35041045 DOI: 10.1007/s00497-022-00437-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The pollen tube is being subjected to control by a complex network of communication that regulates its shape and the misfunction of a single component causes specific deformations. In flowering plants, the pollen tube is a tubular extension of the pollen grain required for successful sexual reproduction. Indeed, maintaining the unique shape of the pollen tube is essential for the pollen tube to approach the embryo sac. Many processes and molecules (such as GTPase activity, phosphoinositides, Ca2+ gradient, distribution of reactive oxygen species and nitric oxide, nonuniform pH values, organization of the cytoskeleton, balance between exocytosis and endocytosis, and cell wall structure) play key and coordinated roles in maintaining the cylindrical shape of pollen tubes. In addition, the above factors must also interact with each other so that the cell shape is maintained while the pollen tube follows chemical signals in the pistil that guide it to the embryo sac. Any intrinsic changes (such as erroneous signals) or extrinsic changes (such as environmental stresses) can affect the above factors and thus fertilization by altering the tube morphology. In this review, the processes and molecules that enable the development and maintenance of the unique shape of pollen tubes in angiosperms are presented emphasizing their interaction with specific tube shape. Thus, the purpose of the review is to investigate whether specific deformations in pollen tubes can help us to better understand the mechanism underlying pollen tube shape.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, 34722, Kadıköy, Istanbul, Turkey.
| | - Veronica Conti
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
14
|
Balfagón D, Gómez-Cadenas A, Rambla JL, Granell A, de Ollas C, Bassham DC, Mittler R, Zandalinas SI. γ-Aminobutyric acid plays a key role in plant acclimation to a combination of high light and heat stress. PLANT PHYSIOLOGY 2022; 188:2026-2038. [PMID: 35078231 PMCID: PMC8968390 DOI: 10.1093/plphys/kiac010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/30/2021] [Indexed: 05/29/2023]
Abstract
Plants are frequently subjected to different combinations of abiotic stresses, such as high light (HL) intensity, and elevated temperatures. These environmental conditions pose a threat to agriculture production, affecting photosynthesis, and decreasing yield. Metabolic responses of plants, such as alterations in carbohydrates and amino acid fluxes, play a key role in the successful acclimation of plants to different abiotic stresses, directing resources toward stress responses, and suppressing growth. Here we show that the primary metabolic response of Arabidopsis (Arabidopsis thaliana) plants to HL or heat stress (HS) is different from that of plants subjected to a combination of HL and HS (HL+HS). We further demonstrate that the combined stress results in a unique metabolic response that includes increased accumulation of sugars and amino acids coupled with decreased levels of metabolites participating in the tricarboxylic acid cycle. Among the amino acids exclusively accumulated during HL+HS, we identified the nonproteinogenic amino acid γ-aminobutyric acid (GABA). Analysis of different mutants deficient in GABA biosynthesis (GLUTAMATE DESCARBOXYLASE 3 [gad3]) as well as mutants impaired in autophagy (autophagy-related proteins 5 and 9 [atg5 and atg9]), revealed that GABA plays a key role in the acclimation of plants to HL+HS, potentially by promoting autophagy. Taken together, our findings identify a role for GABA in regulating plant responses to combined stress.
Collapse
Affiliation(s)
- Damián Balfagón
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - José L Rambla
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia, Valencia 46022, Spain
| | - Carlos de Ollas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
15
|
Xu B, Sai N, Gilliham M. The emerging role of GABA as a transport regulator and physiological signal. PLANT PHYSIOLOGY 2021; 187:2005-2016. [PMID: 35235673 PMCID: PMC8644139 DOI: 10.1093/plphys/kiab347] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/10/2021] [Indexed: 05/07/2023]
Abstract
While the proposal that γ-aminobutyric acid (GABA) acts a signal in plants is decades old, a signaling mode of action for plant GABA has been unveiled only relatively recently. Here, we review the recent research that demonstrates how GABA regulates anion transport through aluminum-activated malate transporters (ALMTs) and speculation that GABA also targets other proteins. The ALMT family of anion channels modulates multiple physiological processes in plants, with many members still to be characterized, opening up the possibility that GABA has broad regulatory roles in plants. We focus on the role of GABA in regulating pollen tube growth and stomatal pore aperture, and we speculate on its role in long-distance signaling and how it might be involved in cross talk with hormonal signals. We show that in barley (Hordeum vulgare), guard cell opening is regulated by GABA, as it is in Arabidopsis (Arabidopsis thaliana), to regulate water use efficiency, which impacts drought tolerance. We also discuss the links between glutamate and GABA in generating signals in plants, particularly related to pollen tube growth, wounding, and long-distance electrical signaling, and explore potential interactions of GABA signals with hormones, such as abscisic acid, jasmonic acid, and ethylene. We conclude by postulating that GABA encodes a signal that links plant primary metabolism to physiological status to fine tune plant responses to the environment.
Collapse
Affiliation(s)
- Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, South Australia 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
- Author for communication:
| | - Na Sai
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, South Australia 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, Glen Osmond, South Australia 5064, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
16
|
Li C, Zhu J, Sun L, Cheng Y, Hou J, Fan Y, Ge Y. Exogenous γ-aminobutyric acid maintains fruit quality of apples through regulation of ethylene anabolism and polyamine metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:92-101. [PMID: 34773806 DOI: 10.1016/j.plaphy.2021.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, 'Golden Delicious' apples were dipped with γ-aminobutyric acid (GABA) solution to investigate the changes of quality parameters, ethylene anabolism, polyamine metabolism and GABA shunt. Results showed that GABA distinctly suppressed respiratory rate, reduced titratable acidity, maintained higher soluble solid content and pericarp firmness of apples. Compared to the control, GABA also repressed the activities and gene expressions of polyamine oxidase (PAO) and diamine oxidase (DAO), enhanced MdMT, MdMS, MdSAMS, MdSAMDC, MdSPDS, MdODC, MdADC, and MdACL5 expressions, and accelerated the accumulation of putrescine, spermidine, and spermine in the exocarp of apples. Moreover, GABA decreased ethylene release, MdACS and MdACO gene expressions in the exocarp. In addition, exogenous GABA activated MdGAD, MdGDH, MdGS expressions and inhibited MdGABA-T and MdSSADH expressions in the GABA shunt, therefore increased endogenous GABA, pyruvic acid and glutamate contents in the exocarp. These findings suggest that exogenous GABA regulates ethylene anabolism, polyamine metabolism and GABA shunt to maintain fruit quality of 'Golden Delicious' apples.
Collapse
Affiliation(s)
- Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Lei Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yuan Cheng
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jiabao Hou
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yiting Fan
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| |
Collapse
|
17
|
Signaling at Physical Barriers during Pollen-Pistil Interactions. Int J Mol Sci 2021; 22:ijms222212230. [PMID: 34830110 PMCID: PMC8622735 DOI: 10.3390/ijms222212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.
Collapse
|
18
|
Siqueira JA, Oliveira de Oliveira H, Nunes-Nesi A, Araújo WL. Guard cell regulation: pulling the strings behind the scenes. TRENDS IN PLANT SCIENCE 2021; 26:1093-1095. [PMID: 34303605 DOI: 10.1016/j.tplants.2021.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The precise regulation of stomata is critical to plant growth and development, especially under drought conditions. Two recent studies (Dou et al., Xu et al.) shed new light on stomata physiology in response to dynamic environmental conditions, revealing novel key mechanisms related to microtubule dynamics and energy sensing within the guard cells.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | | | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
19
|
Yang H, You C, Yang S, Zhang Y, Yang F, Li X, Chen N, Luo Y, Hu X. The Role of Calcium/Calcium-Dependent Protein Kinases Signal Pathway in Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:633293. [PMID: 33767718 PMCID: PMC7985351 DOI: 10.3389/fpls.2021.633293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 05/21/2023]
Abstract
Pollen tube (PT) growth as a key step for successful fertilization is essential for angiosperm survival and especially vital for grain yield in cereals. The process of PT growth is regulated by many complex and delicate signaling pathways. Among them, the calcium/calcium-dependent protein kinases (Ca2+/CPKs) signal pathway has become one research focus, as Ca2+ ion is a well-known essential signal molecule for PT growth, which can be instantly sensed and transduced by CPKs to control myriad biological processes. In this review, we summarize the recent progress in understanding the Ca2+/CPKs signal pathway governing PT growth. We also discuss how this pathway regulates PT growth and how reactive oxygen species (ROS) and cyclic nucleotide are integrated by Ca2+ signaling networks.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chen You
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Shaoyu Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yuping Zhang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Fan Yang
- Department of Biology, Taiyuan Normal University, Jinzhong, China
| | - Xue Li
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Ning Chen
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanmin Luo
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
20
|
Paving the Way for Fertilization: The Role of the Transmitting Tract. Int J Mol Sci 2021; 22:ijms22052603. [PMID: 33807566 PMCID: PMC7961442 DOI: 10.3390/ijms22052603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023] Open
Abstract
Angiosperm reproduction relies on the precise growth of the pollen tube through different pistil tissues carrying two sperm cells into the ovules’ embryo sac, where they fuse with the egg and the central cell to accomplish double fertilization and ultimately initiate seed development. A network of intrinsic and tightly regulated communication and signaling cascades, which mediate continuous interactions between the pollen tube and the sporophytic and gametophytic female tissues, ensures the fast and meticulous growth of pollen tubes along the pistil, until it reaches the ovule embryo sac. Most of the pollen tube growth occurs in a specialized tissue—the transmitting tract—connecting the stigma, the style, and the ovary. This tissue is composed of highly secretory cells responsible for producing an extensive extracellular matrix. This multifaceted matrix is proposed to support and provide nutrition and adhesion for pollen tube growth and guidance. Insights pertaining to the mechanisms that underlie these processes remain sparse due to the difficulty of accessing and manipulating the female sporophytic tissues enclosed in the pistil. Here, we summarize the current knowledge on this key step of reproduction in flowering plants with special emphasis on the female transmitting tract tissue.
Collapse
|
21
|
Li Z, Tang M, Cheng B, Han L. Transcriptional regulation and stress-defensive key genes induced by γ-aminobutyric acid in association with tolerance to water stress in creeping bentgrass. PLANT SIGNALING & BEHAVIOR 2021; 16:1858247. [PMID: 33470151 PMCID: PMC7889126 DOI: 10.1080/15592324.2020.1858247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
γ-Aminobutyric acid (GABA) acts as an important regulator involved in the mediation of cell signal transduction and stress tolerance in plants. However, the function of GABA in transcriptional regulation is not fully understood in plants under water stress. The creeping bentgrass (Agrostis stolonifera) was pretreated with or without GABA (0.5 mM) for 24 hours before being exposed to 5 days of water stress. Physiological analysis showed that GABA-treated plants maintained significantly higher endogenous GABA content, leaf relative water content, net photosynthetic rate, and lower osmotic potential than untreated plants under water stress. The GABA application also significantly alleviated stress-induced increases in superoxide anion (O2.-) content, hydrogen peroxide (H2O2) content, and electrolyte leakage through enhancing total antioxidant capacity, superoxide dismutase (SOD) activity, and peroxidase (POD) activity in response to water stress. The transcriptomic analysis demonstrated that the GABA-induced changes in differentially expressed genes (DEGs) involved in carbohydrates, amino acids, and secondary metabolism helped to maintain better osmotic adjustment, energy supply, and metabolic homeostasis when creeping bentgrass suffers from water stress. The GABA triggered Ca2+-dependent protein kinase (CDPK) signaling and improved transcript levels of DREB1/2 and WRKY1/24/41 that could be associated with the upregulation of stress-related functional genes such as POD, DHNs, and HSP70 largely contributing to improved tolerance to water stress in relation to the antioxidant, prevention of cell dehydration, and protein protection in leaves.
Collapse
Affiliation(s)
- Zhou Li
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingyan Tang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
22
|
Li L, Dou N, Zhang H, Wu C. The versatile GABA in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1862565. [PMID: 33404284 PMCID: PMC7889023 DOI: 10.1080/15592324.2020.1862565] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous four-carbon, non-protein amino acid. GABA has been widely studied in animal central nervous systems, where it acts as an inhibitory neurotransmitter. In plants, it is metabolized through the GABA shunt pathway, a bypass of the tricarboxylic acid (TCA) cycle. Additionally, it can be synthesized through the polyamine metabolic pathway. GABA acts as a signal in Agrobacterium tumefaciens-mediated plant gene transformation and in plant development, especially in pollen tube elongation (to enter the ovule), root growth, fruit ripening, and seed germination. It is accumulated during plant responses to environmental stresses and pathogen and insect attacks. A high concentration of GABA elevates plant stress tolerance by improving photosynthesis, inhibiting reactive oxygen species (ROS) generation, activating antioxidant enzymes, and regulating stomatal opening in drought stress. The transporters of GABA in plants are reviewed in this work. We summarize the recent research on GABA function and transporters with the goal of providing a review of GABA in plants.
Collapse
Affiliation(s)
- Li Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Na Dou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
23
|
Lora J, Perez V, Herrero M, Hormaza JI. Ovary Signals for Pollen Tube Guidance in Chalazogamous Mangifera indica L. FRONTIERS IN PLANT SCIENCE 2021; 11:601706. [PMID: 33643328 PMCID: PMC7902493 DOI: 10.3389/fpls.2020.601706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Most flowering plants show porogamy in which the pollen tubes reach the egg apparatus through the micropyle. However, several species show chalazogamy, an unusual pollen tube growth, in which the pollen tubes reach the embryo sac through the chalaza. While ovary signals for pollen tube growth and guidance have been extensively studied in porogamous species, few studies have addressed the process in chalazogamous species such as mango (Mangifera indica L.), one of the five most important fruit crops worldwide in terms of production. In this study, we characterize pollen-pistil interaction in mango, paying special attention to three key players known to be involved in the directional pollen tube growth of porogamous species such as starch, arabinogalactan proteins (AGPs), and γ-aminobutyric acid (GABA). Starch grains were observed in the style and in the ponticulus at anthesis, but their number decreased 1 day after anthesis. AGPs, revealed by JIM8 and JIM13 antibodies, were homogenously observed in the style and ovary, but were more conspicuous in the nucellus around the egg apparatus. GABA, revealed by anti-GABA antibodies, was specifically observed in the transmitting tissue, including the ponticulus. Moreover, GABA was shown to stimulate in vitro mango pollen tube elongation. The results support the heterotrophic growth of mango pollen tubes in the style at the expense of starch, similarly to the observations in porogamous species. However, unlike porogamous species, the micropyle of mango does not show high levels of GABA and starch, although they were observed in the ponticulus and could play a role in supporting the unusual pollen tube growth in chalazogamous species.
Collapse
Affiliation(s)
- Jorge Lora
- Subtropical Fruit Crops Department, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-CSIC-UMA), Algarrobo-Costa, Spain
| | - Veronica Perez
- Subtropical Fruit Crops Department, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-CSIC-UMA), Algarrobo-Costa, Spain
- Unidad Técnica del Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo de La Palma), Santa Cruz de La Palma, Spain
- Instituto de Productos Naturales y Agrobiologia (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Maria Herrero
- Pomology Department, Estación Experimental Aula Dei-CSIC, Zaragoza, Spain
| | - Jose I. Hormaza
- Subtropical Fruit Crops Department, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-CSIC-UMA), Algarrobo-Costa, Spain
| |
Collapse
|
24
|
Baluška F, Mancuso S. Individuality, self and sociality of vascular plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190760. [PMID: 33550947 DOI: 10.1098/rstb.2019.0760] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vascular plants are integrated into coherent bodies via plant-specific synaptic adhesion domains, action potentials (APs) and other means of long-distance signalling running throughout the plant bodies. Plant-specific synapses and APs are proposed to allow plants to generate their self identities having unique ways of sensing and acting as agents with their own goals guiding their future activities. Plants move their organs with a purpose and with obvious awareness of their surroundings and require APs to perform and control these movements. Self-identities allow vascular plants to act as individuals enjoying sociality via their self/non-self-recognition and kin recognition. Flowering plants emerge as cognitive and intelligent organisms when the major strategy is to attract and control their animal pollinators as well as seed dispersers by providing them with food enriched with nutritive and manipulative/addictive compounds. Their goal in interactions with animals is manipulation for reproduction, dispersal and defence. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
| | - Stefano Mancuso
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| |
Collapse
|
25
|
|
26
|
Zhao P, Zhou XM, Zhao LL, Cheung AY, Sun MX. Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility. Autophagy 2020; 16:2180-2192. [PMID: 31983274 PMCID: PMC7751669 DOI: 10.1080/15548627.2020.1719722] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 10/23/2019] [Accepted: 01/17/2020] [Indexed: 01/23/2023] Open
Abstract
In plants, macroautophagy/autophagy has mainly been associated with stress-related processes but how it impacts normal physiological and developmental processes remains largely unexplored. Pollen germination is the critical first step toward fertilization in flowering plants. It is metabolically demanding and relies on high levels of cytoplasmic reorganization activities to support a dramatic morphological transformation that underlies the development of a pollen tube as the conduit to deliver sperm for fertilization. The role of autophagy in this process remains unclear. Here we provide evidence that pollen germination is accompanied by elevated autophagic activity and successful pollen tube emergence depends on autophagy-mediated cytoplasmic deletion. Genetic and cytological experiments demonstrate that inhibition of autophagy prevents pollen germination while induces the persistence of a layer of undegraded cytoplasm at the germination aperture. Together, these results unveil a novel compartmentalized autophagy. Furthermore, high-throughput comparative lipidomic analyses show that suppressed autophagy-induced inhibition of pollen germination is accompanied by altered profiles of stored and signaling lipids. Proteomic analyses reveal that autophagy likely exert its role in pollen germination via downstream mitochondria-related pathways. These findings reveal a critical role for autophagy in initiating pollen germination and provide evidences for compartmental cytoplasmic deletion being crucial for male fertility. Abbreviations: 3-MA: 3-methyladenine; ATG: autophagy-related gene; Cer: ceramide; CL: cardiolipin; Con A: concanamycin A; DAG: diradylglycerol; GO: gene ontology; HAG: hour after germination; LC-MS: liquid chromatography-mass spectrometry; MAG: min after germination; MDC: monodansylcadaverine; PE: phosphatidylethanolamine; PI: phosphatidylinositol; PLD: phospholipase D; PtdIns3K: phosphatidylinositol 3-kinase; RT-qPCR: quantitative real-time reverse transcription PCR; TAG: triradylglycerol; TEM: transmission electron microscopy; TMT: tandem mass tagging.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xue-Mei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin-Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, MA, USA
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Deng X, Xu X, Liu Y, Zhang Y, Yang L, Zhang S, Xu J. Induction of γ-aminobutyric acid plays a positive role to Arabidopsis resistance against Pseudomonas syringae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1797-1812. [PMID: 32458527 PMCID: PMC7689811 DOI: 10.1111/jipb.12974] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/24/2020] [Indexed: 05/11/2023]
Abstract
Gamma-aminobutyric acid (GABA) is an important metabolite which functions in plant growth, development, and stress responses. However, its role in plant defense and how it is regulated are largely unknown. Here, we report a detailed analysis of GABA induction during the resistance response to Pseudomonas syringae in Arabidopsis thaliana. While searching for the mechanism underlying the pathogen-responsive mitogen-activated protein kinase (MPK)3/MPK6 signaling cascade in plant immunity, we found that activation of MPK3/MPK6 greatly induced GABA biosynthesis, which is dependent on the glutamate decarboxylase genes GAD1 and GAD4. Inoculation with Pseudomonas syringae pv tomato DC3000 (Pst) and Pst-avrRpt2 expressing the avrRpt2 effector gene induced GAD1 and GAD4 gene expression and increased the levels of GABA. Genetic evidence revealed that GAD1, GAD2, and GAD4 play important roles in both GABA biosynthesis and plant resistance in response to Pst-avrRpt2 infection. The gad1/2/4 triple and gad1/2/4/5 quadruple mutants, in which the GABA levels were extremely low, were more susceptible to both Pst and Pst-avrRpt2. Functional loss of MPK3/MPK6, or their upstream MKK4/MKK5, or their downstream substrate WRKY33 suppressed the induction of GAD1 and GAD4 expression after Pst-avrRpt2 treatment. Our findings shed light on both the regulation and role of GABA in the plant immunity to a bacterial pathogen.
Collapse
Affiliation(s)
- Xiangxiong Deng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Xuwen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Liuyi Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Shuqun Zhang
- Division of BiochemistryUniversity of MissouriColumbiaMissouri65211USA
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
28
|
Fromm H. GABA signaling in plants: targeting the missing pieces of the puzzle. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6238-6245. [PMID: 32761202 DOI: 10.1093/jxb/eraa358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 05/25/2023]
Abstract
The adaptation of plants to unstable environments relies on their ability to sense their surroundings and to generate and transmit corresponding signals to different parts of the plant to evoke changes necessary for optimizing growth and defense. Plants, like animals, contain a huge repertoire of intra- and intercellular signals, including organic and inorganic molecules. The occurrence of neurotransmitter-like signaling molecules in plants has been an intriguing field of research. Among these, γ-aminobutyric acid (GABA) was discovered in plants over half a century ago, and studies of its roles as a primary metabolite have been well documented, particularly in the context of stress responses. In contrast, evidence of the potential mechanism by which GABA acts as a signaling molecule in plants has only recently been reported. In spite of this breakthrough, the roles of GABA as a signaling molecule in plants have yet to be established and several aspects of the complexity of the GABA signaling system remain obscure. This review summarizes the uncertainties in GABA signaling in plants and suggests research directions and technologies that would help in answering unsolved questions.
Collapse
Affiliation(s)
- Hillel Fromm
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Gramazio P, Takayama M, Ezura H. Challenges and Prospects of New Plant Breeding Techniques for GABA Improvement in Crops: Tomato as an Example. FRONTIERS IN PLANT SCIENCE 2020; 11:577980. [PMID: 33014001 PMCID: PMC7500313 DOI: 10.3389/fpls.2020.577980] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 05/28/2023]
Abstract
Over the last seven decades, γ-aminobutyric acid (GABA) has attracted great attention from scientists for its ubiquity in plants, animals and microorganisms and for its physiological implications as a signaling molecule involved in multiple pathways and processes. Recently, the food and pharmaceutical industries have also shown significantly increased interest in GABA, because of its great potential benefits for human health and the consumer demand for health-promoting functional compounds, resulting in the release of a plethora of GABA-enriched products. Nevertheless, many crop species accumulate appreciable GABA levels in their edible parts and could help to meet the daily recommended intake of GABA for promoting positive health effects. Therefore, plant breeders are devoting much effort into breeding elite varieties with improved GABA contents. In this regard, tomato (Solanum lycopersicum), the most produced and consumed vegetable worldwide and a fruit-bearing model crop, has received much consideration for its accumulation of remarkable GABA levels. Although many different strategies have been implemented, from classical crossbreeding to induced mutagenesis, new plant breeding techniques (NPBTs) have achieved the best GABA accumulation results in red ripe tomato fruits along with shedding light on GABA metabolism and gene functions. In this review, we summarize, analyze and compare all the studies that have substantially contributed to tomato GABA breeding with further discussion and proposals regarding the most recent NPBTs that could bring this process to the next level of precision and efficiency. This document also provides guidelines with which researchers of other crops might take advantage of the progress achieved in tomato for more efficient GABA breeding programs.
Collapse
Affiliation(s)
- Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mariko Takayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
30
|
Li Z, Cheng B, Zeng W, Zhang X, Peng Y. Proteomic and Metabolomic Profilings Reveal Crucial Functions of γ-Aminobutyric Acid in Regulating Ionic, Water, and Metabolic Homeostasis in Creeping Bentgrass under Salt Stress. J Proteome Res 2020; 19:769-780. [PMID: 31916766 DOI: 10.1021/acs.jproteome.9b00627] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The global emergence of soil salinization poses a serious challenge to many countries and regions. γ-Aminobutyric acid (GABA) is involved in systemic regulation of plant adaptation to salt stress but the underlying molecular and metabolic mechanism still remains largely unknown. The elevated endogenous GABA level by the application of exogenous GABA improved salt tolerance associated with the enhancement of antioxidant capacity, photosynthetic characteristics, osmotic adjustment (OA), and water use efficiency in creeping bentgrass. GABA strongly upregulated transcript levels of AsPPa2, AsATPaB2, AsNHX2/4/6, and AsSOS1/20 in roots involved in enhanced capacity of Na+ compartmentalization and mitigation of Na+ toxicity in the cytosol. Significant downregulation of AsHKT1/4 expression could be induced by GABA in leaves in relation to maintenance of the significantly lower Na+ content and higher K+/Na+ ratio. GABA-depressed aquaporin expression and accumulation induced declines in stomatal conductance and transpiration, thereby reducing water loss in leaves during salt stress. For metabolic regulation, GABA primarily enhanced sugar and amino acid accumulation and metabolism, largely contributing to improved salt tolerance through maintaining OA and metabolic homeostasis. Other major pathways could be related to GABA-induced salt tolerance including increases in antioxidant defense, heat shock proteins, and myo-inositol accumulation in leaves. Integrative analyses of molecular, protein, metabolic, and physiological changes reveal systemic functions of GABA in regulating ionic, water, and metabolic homeostasis in nonhalophytic creeping bentgrass under salt stress.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| | - Weihang Zeng
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu 611130 , China
| |
Collapse
|
31
|
Li Z, Yong B, Cheng B, Wu X, Zhang Y, Zhang X, Peng Y. Nitric oxide, γ-aminobutyric acid, and mannose pretreatment influence metabolic profiles in white clover under water stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:1255-1273. [PMID: 30609265 DOI: 10.1111/jipb.12770] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Nitric oxide (NO), γ-aminobutyric acid (GABA), and mannose (MAS) could be important regulators of plant growth and adaptation to water stress. The application of sodium nitroprusside (SNP, a NO donor), GABA, and MAS improved plant growth under water-sufficient conditions and effectively mitigated water stress damage to white clover. The metabonomic analysis showed that both SNP and GABA application resulted in a significant increase in myo-inositol content; the accumulation of mannose was commonly regulated by SNP and MAS; GABA and MAS induced the accumulation of aspartic acid, quinic acid, trehalose, and glycerol under water deficit. In addition, citric acid was uniquely up-regulated by SNP associated with tricarboxylic acid (TCA) cycle under water stress. GABA specially induced the accumulation of GABA, glycine, methionine, and aconitic acid related to GABA shunt, amino acids metabolism, and TCA cycle in response to water stress. MAS uniquely enhanced the accumulation of asparagine, galactose, and D-pinitol in association with amino acids and sugars metabolism under water stress. SNP-, GABA-, and MAS-induced changes of metabolic profiles and associated metabolic pathways could contribute to enhanced stress tolerance via involvement in the TCA cycle for energy supply, osmotic adjustment, antioxidant defense, and signal transduction for stress defense in white clover.
Collapse
Affiliation(s)
- Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Yong
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xing Wu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
32
|
Santiago JP, Sharkey TD. Pollen development at high temperature and role of carbon and nitrogen metabolites. PLANT, CELL & ENVIRONMENT 2019; 42:2759-2775. [PMID: 31077385 DOI: 10.1111/pce.13576] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 05/11/2023]
Abstract
Fruit and seed crop production heavily relies on successful stigma pollination, pollen tube growth, and fertilization of female gametes. These processes depend on production of viable pollen grains, a process sensitive to high-temperature stress. Therefore, rising global temperatures threaten worldwide crop production. Close observation of plant development shows that high-temperature stress causes morpho-anatomical changes in male reproductive tissues that contribute to reproductive failure. These changes include early tapetum degradation, anther indehiscence, and deformity of pollen grains, all of which are contributing factors to pollen fertility. At the molecular level, reactive oxygen species (ROS) accumulate when plants are subjected to high temperatures. ROS is a signalling molecule that can be beneficial or detrimental for plant cells depending on its balance with the endogenous cellular antioxidant system. Many metabolites have been linked with ROS over the years acting as direct scavengers or molecular stabilizers that promote antioxidant enzyme activity. This review highlights recent advances in research on anther and pollen development and how these might explain the aberrations seen during high-temperature stress; recent work on the role of nitrogen and carbon metabolites in anther and pollen development is discussed including their potential role at high temperature.
Collapse
Affiliation(s)
- James P Santiago
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824
| | - Thomas D Sharkey
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan, 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
33
|
Liu T, Liu Z, Li Z, Peng Y, Zhang X, Ma X, Huang L, Liu W, Nie G, He L. Regulation of Heat Shock Factor Pathways by γ-aminobutyric Acid (GABA) Associated with Thermotolerance of Creeping Bentgrass. Int J Mol Sci 2019; 20:ijms20194713. [PMID: 31547604 PMCID: PMC6801925 DOI: 10.3390/ijms20194713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023] Open
Abstract
Activation and enhancement of heat shock factor (HSF) pathways are important adaptive responses to heat stress in plants. The γ-aminobutyric acid (GABA) plays an important role in regulating heat tolerance, but it is unclear whether GABA-induced thermotolerance is associated with activation of HSF pathways in plants. In this study, the changes of endogenous GABA level affecting physiological responses and genes involved in HSF pathways were investigated in creeping bentgrass during heat stress. The increase in endogenous GABA content induced by exogenous application of GABA effectively alleviated heat damage, as reflected by higher leaf relative water content, cell membrane stability, photosynthesis, and lower oxidative damage. Contrarily, the inhibition of GABA accumulation by the application of GABA biosynthesis inhibitor further aggravated heat damage. Transcriptional analyses showed that exogenous GABA could significantly upregulate transcript levels of genes encoding heat shock factor HSFs (HSFA-6a, HSFA-2c, and HSFB-2b), heat shock proteins (HSP17.8, HSP26.7, HSP70, and HSP90.1-b1), and ascorbate peroxidase 3 (APX3), whereas the inhibition of GABA biosynthesis depressed these genes expression under heat stress. Our results indicate GABA regulates thermotolerance associated with activation and enhancement of HSF pathways in creeping bentgrass.
Collapse
Affiliation(s)
- Ting Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhaoqiao Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wei Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Liwen He
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
34
|
Seifikalhor M, Aliniaeifard S, Hassani B, Niknam V, Lastochkina O. Diverse role of γ-aminobutyric acid in dynamic plant cell responses. PLANT CELL REPORTS 2019; 38:847-867. [PMID: 30739138 DOI: 10.1007/s00299-019-02396-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/02/2019] [Indexed: 05/05/2023]
Abstract
Gamma-aminobutyric acid (GABA), a four-carbon non-protein amino acid, is found in most prokaryotic and eukaryotic organisms. Although, ample research into GABA has occurred in mammals as it is a major inhibitory neurotransmitter; in plants, a role for GABA has often been suggested as a metabolite that changes under stress rather than as a signal, as no receptor or motif for GABA binding was identified until recently and many aspects of its biological function (ranging from perception to function) remain to be answered. In this review, flexible properties of GABA in regulation of plant responses to various environmental biotic and abiotic stresses and its integration in plant growth and development either as a metabolite or a signaling molecule are discussed. We have elaborated on the role of GABA in stress adaptation (i.e., salinity, hypoxia/anoxia, drought, temperature, heavy metals, plant-insect interplay and ROS-related responses) and its contribution in non-stress-related biological pathways (i.e., involvement in plant-microbe interaction, contribution to the carbon and nitrogen metabolism and governing of signal transduction pathways). This review aims to represent the multifunctional contribution of GABA in various biological and physiological mechanisms under stress conditions; the objective is to review the current state of knowledge about GABA role beyond stress-related responses. Our effort is to place findings about GABA in an organized and broader context to highlight its shared metabolic and biologic functions in plants under variable conditions. This will provide potential modes of GABA crosstalk in dynamic plant cell responses.
Collapse
Affiliation(s)
- Maryam Seifikalhor
- Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| | - Batool Hassani
- Department of Plant Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Niknam
- Department of Plant Biology, Center of Excellence in Phylogeny of Living Organisms in Iran, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Oksana Lastochkina
- Bashkir Research Institute of Agriculture, Russian Academy of Sciences, Ufa, Russia
- Institute of Biochemistry and Genetics, Russian Academy of Sciences, Ufa, Russia
| |
Collapse
|
35
|
Jiao C, Duan Y. The Role of IP3 in NO-Enhanced Chilling Tolerance in Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8312-8318. [PMID: 31287303 DOI: 10.1021/acs.jafc.9b02871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The role of inositol 1,4,5-trisphosphate (IP3) in nitric oxide (NO)-reduced chilling injury (CI) in peach fruit was investigated. The fruit were immersed in sodium nitroprusside (SNP) (NO donor) and neomycin (IP3 inhibitor). Results showed that chilling tolerance was enhanced upon exogenous SNP in postharvest peach fruit. Further, GABA accumulation was stimulated by SNP. The increase in protein expression and activity for enzymes in GABA biosynthesis, including glutamate decarboxylase (GAD), polyamine oxidase (PAO), and amino aldehyde dehydrogenase (AMADH), upon SNP treatment was also observed. Also, the up-regulation of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine d-aminotransferase (OAT) and the down-regulation of proline dehydrogenase (PDH) were induced by SNP treatment, thereby accelating proline production. Additionally, SNP treatment elevated protein expression and activity of alternative oxidase (AOX). The above effects induced upon SNP were partly weakened by neomycin. Therefore, IP3 mediated NO-activated GABA and proline accumulation as well as AOX, thus inducing chilling tolerance in postharvest peach fruit.
Collapse
Affiliation(s)
- Caifeng Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process , Ministry of Agriculture and Rural Affairs , Beijing 100193 , People's Republic of China
| | - Yuquan Duan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process , Ministry of Agriculture and Rural Affairs , Beijing 100193 , People's Republic of China
| |
Collapse
|
36
|
Ma Y, Wang P, Gu Z, Tao Y, Shen C, Zhou Y, Han Y, Yang R. Ca 2+ involved in GABA signal transduction for phenolics accumulation in germinated hulless barley under NaCl stress. Food Chem X 2019; 2:100023. [PMID: 31432010 PMCID: PMC6694854 DOI: 10.1016/j.fochx.2019.100023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/16/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, in order to investigate the role of Ca2+ in GABA signal transduction involved in phenolics accumulation in barley seedlings under NaCl stress, the seedlings were treated with exogenous GABA and its synthesis inhibitor, 3-mercaplopropionic acid (3-MP), as well as Ca2+ channel blockers La3+, Ca2+ chelator EGTA, and Ca2+ release channel inhibitor 2-aminoethoxydiphenyl borate (2-APB). The results showed that GABA significantly enhanced phenolics, calcium and calmodulin content. It also induced Ca2+ influx in barley root tips cells, and altered the distribution of Ca2+, making calcium precipitates more uniform and intensive. While, 3-MP treatment led to opposite changes, which suggested that GABA was essential for calcium content increase. In addition, accumulation of phenolics was inhibited by LaCl3, EGTA and 2-APB treatments, and this inhibition could be alleviated partly by exogenous GABA. Taken together, Ca2+ was involved in GABA signal transduction for phenolics accumulation in barley seedlings under NaCl stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
37
|
Joly V, Tebbji F, Nantel A, Matton DP. Pollination Type Recognition from a Distance by the Ovary Is Revealed Through a Global Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E185. [PMID: 31238522 PMCID: PMC6630372 DOI: 10.3390/plants8060185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
Abstract
Sexual reproduction in flowering plants involves intimate contact and continuous interactions between the growing pollen tube and the female reproductive structures. These interactions can trigger responses in distal regions of the flower well ahead of fertilization. While pollination-induced petal senescence has been studied extensively, less is known about how pollination is perceived at a distance in the ovary, and how specific this response is to various pollen genotypes. To address this question, we performed a global transcriptomic analysis in the ovary of a wild potato species, Solanum chacoense, at various time points following compatible, incompatible, and heterospecific pollinations. In all cases, pollen tube penetration in the stigma was initially perceived as a wounding aggression. Then, as the pollen tubes grew in the style, a growing number of genes became specific to each pollen genotype. Functional classification analyses revealed sharp differences in the response to compatible and heterospecific pollinations. For instance, the former induced reactive oxygen species (ROS)-related genes while the latter affected genes associated to ethylene signaling. In contrast, incompatible pollination remained more akin to a wound response. Our analysis reveals that every pollination type produces a specific molecular signature generating diversified and specific responses at a distance in the ovary in preparation for fertilization.
Collapse
Affiliation(s)
- Valentin Joly
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| | - Faïza Tebbji
- CRCHU de Québec, Université Laval, Québec, QC G1V 4G2, Canada.
| | - André Nantel
- National Research Council Canada, Montréal, QC H4P 2R2, Canada.
| | - Daniel P Matton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
38
|
Lopes AL, Moreira D, Ferreira MJ, Pereira AM, Coimbra S. Insights into secrets along the pollen tube pathway in need to be discovered. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2979-2992. [PMID: 30820535 DOI: 10.1093/jxb/erz087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The process of plant fertilization provides an outstanding example of refined control of gene expression. During this elegant process, subtle communication occurs between neighboring cells, based on chemical signals, that induces cellular mechanisms of patterning and growth. Having faced an immediate issue of self-incompatibility responses, the pathway to fertilization starts once the stigmatic cells recognize a compatible pollen grain, and it continues with numerous players interacting to affect pollen tube growth and the puzzling process of navigation along the transmitting tract. The pollen tube goes through a guidance process that begins with a preovular stage (i.e. prior to the influence of the target ovule), with interactions with factors from the transmitting tissue. In the subsequent ovular-guidance stage a specific relationship develops between the pollen tube and its target ovule. This stage is divided into the funicular and micropylar guidance steps, with numerous receptors working in signalling cascades. Finally, just after the pollen tube has passed beyond the synergids, fusion of the gametes occurs and the developing seed-the ultimate aim of the process-will start to mature. In this paper, we review the existing knowledge of the crucial biological processes involved in pollen-pistil interactions that give rise to the new seed.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute - BioISI, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| | - Diana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Maria João Ferreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Marta Pereira
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milano, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| |
Collapse
|
39
|
Global Ubiquitome Profiling Revealed the Roles of Ubiquitinated Proteins in Metabolic Pathways of Tea Leaves in Responding to Drought Stress. Sci Rep 2019; 9:4286. [PMID: 30862833 PMCID: PMC6414630 DOI: 10.1038/s41598-019-41041-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/26/2019] [Indexed: 01/07/2023] Open
Abstract
Drought stress often affects the expression of genes and proteins in tea plants. However, the global profiling of ubiquitinated (Kub) proteins in tea plants remains unearthed. Here, we performed the ubiquitome in tea leaves under drought stress using antibody-based affinity enrichment coupled with LC-MS/MS analysis. In total, 1,409 lysine Kub sites in 781 proteins were identified, of which 14 sites in 12 proteins were up-regulated and 123 sites in 91 proteins down-regulated under drought stress. The identified Kub proteins were mainly located in the cytosol (31%), chloroplast (27%) and nuclear (19%). Moreover, 5 conserved motifs in EKub, EXXXKub, KubD, KubE and KubA were extracted. Several Kub sites in ubiquitin-mediated proteolysis-related proteins, including RGLG2, UBC36, UEV1D, RPN10 and PSMC2, might affect protein degradation and DNA repair. Plenty of Kub proteins related to catechins biosynthesis, including PAL, CHS, CHI and F3H, were positively correlated with each other due to their co-expression and co-localization. Furthermore, some Kub proteins involved in carbohydrate and amino acid metabolism, including FBPase, FBA and GAD1, might promote sucrose, fructose and GABA accumulation in tea leaves under drought stress. Our study preliminarily revealed the global profiling of Kub proteins in metabolic pathways and provided an important resource for further study on the functions of Kub proteins in tea plants.
Collapse
|
40
|
Han S, Nan Y, Qu W, He Y, Ban Q, Lv Y, Rao J. Exogenous γ-Aminobutyric Acid Treatment That Contributes to Regulation of Malate Metabolism and Ethylene Synthesis in Apple Fruit during Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13473-13482. [PMID: 30512945 DOI: 10.1021/acs.jafc.8b04674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic acid is an important indicator of fruit quality, and malate is the predominant organic acid in apple fruit. However, the regulation of malate metabolism in postharvest fruit is rarely reported. Here, we found that, compared with a control treatment, a 10 mM γ-aminobutyric acid (GABA) treatment remarkably delayed the loss of tiftratable acidity and malate and increased the succinate and oxalate contents in "Cripps Pink" fruit stored in polyethylene bags at room temperature. The higher malate levels in GABA-treated fruit were accompanied by higher activities of cytosolic nicotinamide adenine dinucleotide-dependent malate dehydrogenase (cyNAD-MDH) and phosphoenolpyruvate carboxylase (PEPC) but lower cytosolic NAD phosphate-dependent malic enzyme (cyNADP-ME) and phosphoenolpyruvate carboxykinase (PEPCK) activities than those seen in control fruit. Notably, ethylene production was significantly reduced by GABA treatment, paralleling the downregulation of MdACS, MdACO, and MdERF expression. Meanwhile, GABA treatment also enhanced the activity of the GABA shunt and promoted the accumulation of GABA. This study provides new insights into the regulation of malate metabolism and reports for the first time the possible interplay between GABA and ethylene signaling pathways in apple fruit during postharvest storage.
Collapse
Affiliation(s)
- Shoukun Han
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yuyu Nan
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Wei Qu
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yiheng He
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Qiuyan Ban
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Yanrong Lv
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| | - Jingping Rao
- College of Horticulture , Northwest A&F University , Yangling , Shaanxi 712100 , China
| |
Collapse
|
41
|
Zhou LZ, Dresselhaus T. Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 2018; 131:453-496. [PMID: 30612627 DOI: 10.1016/bs.ctdb.2018.11.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
42
|
Zheng YY, Lin XJ, Liang HM, Wang FF, Chen LY. The Long Journey of Pollen Tube in the Pistil. Int J Mol Sci 2018; 19:E3529. [PMID: 30423936 PMCID: PMC6275014 DOI: 10.3390/ijms19113529] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
In non-cleistogamous plants, the male gametophyte, the pollen grain is immotile and exploits various agents, such as pollinators, wind, and even water, to arrive to a receptive stigma. The complex process of pollination involves a tubular structure, i.e., the pollen tube, which delivers the two sperm cells to the female gametophyte to enable double fertilization. The pollen tube has to penetrate the stigma, grow in the style tissues, pass through the septum, grow along the funiculus, and navigate to the micropyle of the ovule. It is a long journey for the pollen tube and its two sperm cells before they meet the female gametophyte, and it requires very accurate regulation to perform successful fertilization. In this review, we update the knowledge of molecular dialogues of pollen-pistil interaction, especially the progress of pollen tube activation and guidance, and give perspectives for future research.
Collapse
Affiliation(s)
- Yang-Yang Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xian-Ju Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hui-Min Liang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fang-Fei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Li-Yu Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
43
|
Cheng D, Tan M, Yu H, Li L, Zhu D, Chen Y, Jiang M. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genomics 2018; 19:709. [PMID: 30257650 PMCID: PMC6158873 DOI: 10.1186/s12864-018-5109-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Background Metal tolerance is often an integrative result of metal uptake and distribution, which are fine-tuned by a network of signaling cascades and metal transporters. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, comparative RNAseq-based transcriptome analysis was conducted to dissect differentially expressed genes (DEGs) in maize roots exposed to cadmium (Cd) stress. Results To unveil conserved Cd-responsive genes in cereal plants, the obtained 5166 maize DEGs were compared with 2567 Cd-regulated orthologs in rice roots, and this comparison generated 880 universal Cd-responsive orthologs groups composed of 1074 maize DEGs and 981 rice counterparts. More importantly, most of the orthologous DEGs showed coordinated expression pattern between Cd-treated maize and rice, and these include one large orthologs group of pleiotropic drug resistance (PDR)-type ABC transporters, two clusters of amino acid transporters, and 3 blocks of multidrug and toxic compound extrusion (MATE) efflux family transporters, and 3 clusters of heavy metal-associated domain (HMAD) isoprenylated plant proteins (HIPPs), as well as all 4 groups of zinc/iron regulated transporter protein (ZIPs). Additionally, several blocks of tandem maize paralogs, such as germin-like proteins (GLPs), phenylalanine ammonia-lyases (PALs) and several enzymes involved in JA biosynthesis, displayed consistent co-expression pattern under Cd stress. Out of the 1074 maize DEGs, approximately 30 maize Cd-responsive genes such as ZmHIPP27, stress-responsive NAC transcription factor (ZmSNAC1) and 9-cis-epoxycarotenoid dioxygenase (NCED, vp14) were also common stress-responsive genes reported to be uniformly regulated by multiple abiotic stresses. Moreover, the aforementioned three promising Cd-upregulated genes with rice counterparts were identified to be novel Cd-responsive genes in maize. Meanwhile, one maize glutamate decarboxylase (ZmGAD1) with Cd co-modulated rice ortholog was selected for further analysis of Cd tolerance via heterologous expression, and the results suggest that ZmGAD1 can confer Cd tolerance in yeast and tobacco leaves. Conclusions These novel findings revealed the conserved function of Cd-responsive orthologs and paralogs, which would be valuable for elucidating the genetic basis of the plant response to Cd stress and unraveling Cd tolerance genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-5109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Cheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Haijuan Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Liang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dandan Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
44
|
Podlešáková K, Ugena L, Spíchal L, Doležal K, De Diego N. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N Biotechnol 2018; 48:53-65. [PMID: 30048769 DOI: 10.1016/j.nbt.2018.07.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/20/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
In plants, γ-aminobutyric acid (GABA) accumulates rapidly in response to environmental stress and variations in its endogenous concentration have been shown to affect plant growth. Exogenous application of GABA has also conferred higher stress tolerance by modulating the expression of genes involved in plant signalling, transcriptional regulation, hormone biosynthesis, reactive oxygen species production and polyamine metabolism. Plant hormones play critical roles in adaptation of plants to adverse environmental conditions through a sophisticated crosstalk among them. Several studies have provided evidence for the relationships between GABA, polyamines and hormones such as abscisic acid, cytokinins, auxins, gibberellins and ethylene, among others, focussing on the effect that one specific group of compounds exerts over the metabolic and signalling pathways of others. In this review, we bring together information obtained from plants exposed to several stress conditions and discuss the possible links among these different groups of molecules. The analysis supports the view that highly conserved pathways connect primary and secondary metabolism, with an overlap of regulatory functions related to stress responses and tolerance among phytohormones, amino acids and polyamines.
Collapse
Affiliation(s)
- Kateřina Podlešáková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic.
| |
Collapse
|
45
|
Wen W, Jin M, Li K, Liu H, Xiao Y, Zhao M, Alseekh S, Li W, de Abreu E Lima F, Brotman Y, Willmitzer L, Fernie AR, Yan J. An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:1116-1128. [PMID: 29381266 DOI: 10.1111/tpj.13835] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
Primary metabolism plays a pivotal role in normal plant growth, development and reproduction. As maize is a major crop worldwide, the primary metabolites produced by maize plants are of immense importance from both calorific and nutritional perspectives. Here a genome-wide association study (GWAS) of 61 primary metabolites using a maize association panel containing 513 inbred lines identified 153 significant loci associated with the level of these metabolites in four independent tissues. The genome-wide expression level of 760 genes was also linked with metabolite levels within the same tissue. On average, the genetic variants at each locus or transcriptional variance of each gene identified here were estimated to have a minor effect (4.4-7.8%) on primary metabolic variation. Thirty-six loci or genes were prioritized as being worthy of future investigation, either with regard to functional characterization or for their utility for genetic improvement. This target list includes the well-known opaque 2 (O2) and lkr/sdh genes as well as many less well-characterized genes. During our investigation of these 36 loci, we analyzed the genetic components and variations underlying the trehalose, aspartate and aromatic amino acid pathways, thereby functionally characterizing four genes involved in primary metabolism in maize.
Collapse
Affiliation(s)
- Weiwei Wen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Lothar Willmitzer
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
46
|
Li R, Li R, Li X, Fu D, Zhu B, Tian H, Luo Y, Zhu H. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. PLANT BIOTECHNOLOGY JOURNAL 2018; 16. [PMID: 28640983 PMCID: PMC5787826 DOI: 10.1111/pbi.12781] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent years, the type II CRISPR system has become a widely used and robust technique to implement site-directed mutagenesis in a variety of species including model and crop plants. However, few studies manipulated metabolic pathways in plants using the CRISPR system. Here, we introduced the pYLCRISPR/Cas9 system with one or two single-site guide RNAs to target the tomato phytoene desaturase gene. An obvious albino phenotype was observed in T0 regenerated plants, and more than 61% of the desired target sites were edited. Furthermore, we manipulated the γ-aminobutyric acid (GABA) shunt in tomatoes using a multiplex pYLCRISPR/Cas9 system that targeted five key genes. Fifty-three genome-edited plants were obtained following single plant transformation, and these samples represented single to quadruple mutants. The GABA accumulation in both the leaves and fruits of genomically edited lines was significantly enhanced, and the GABA content in the leaves of quadruple mutants was 19-fold higher than that in wild-type plants. Our data demonstrate that the multiplex CRISPR/Cas9 system can be exploited to precisely edit tomato genomic sequences and effectively create multisite knockout mutations, which could shed new light on plant metabolic engineering regulations.
Collapse
Affiliation(s)
- Rui Li
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Ran Li
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Xindi Li
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Daqi Fu
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Benzhong Zhu
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Huiqin Tian
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Yunbo Luo
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Hongliang Zhu
- The College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
47
|
Mizuta Y, Higashiyama T. Chemical signaling for pollen tube guidance at a glance. J Cell Sci 2018; 131:131/2/jcs208447. [DOI: 10.1242/jcs.208447] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
Pollen tube guidance is a unique navigating system that is required for the successful sexual reproduction of plants. As plant sperm cells are non-motile and egg cells are embedded deep inside the female tissues, a pollen tube delivers the two sperm cells that it contains by growing towards the ovule, in which the egg cell resides. Pollen tube growth towards the ovule is precisely controlled and divided into two stages, preovular and ovular guidance. In this Cell Science at a Glance article and accompanying poster, we provide a comprehensive overview of pollen tube guidance and highlight some of the attractant peptides used during ovular guidance. We further discuss the precise one-to-one guidance system that exists in multi-ovular plants. The pollen tube-blocking system, which is mediated by male–female crosstalk communication, to avoid attraction of multiple pollen tubes, is also reviewed.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
48
|
Rotsch AH, Kopka J, Feussner I, Ischebeck T. Central metabolite and sterol profiling divides tobacco male gametophyte development and pollen tube growth into eight metabolic phases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:129-146. [PMID: 28685881 DOI: 10.1111/tpj.13633] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 05/23/2023]
Abstract
While changes in the transcriptome and proteome of developing pollen have been investigated in tobacco and other species, the metabolic consequences remain rather unclear. Here, a broad range of metabolites was investigated in close succession of developmental stages. Thirteen stages of tobacco male gametophyte development were collected, ranging from tetrads to pollen tubes. Subsequently, the central metabolome and sterol composition were analyzed by GC-mass spectrometry (MS), monitoring 77 metabolites and 29 non-identified analytes. The overall results showed that development and tube growth could be divided into eight metabolic phases with the phase including mitosis I being most distinct. During maturation, compounds such as sucrose and proline accumulated. These were degraded after rehydration, while γ-aminobutyrate transiently increased, possibly deriving from proline breakdown. Sterol analysis revealed that tetrads harbor similar sterols as leaves, but throughout maturation unusual sterols increased. Lastly, two further sterols exclusively accumulated in pollen tubes. This study allows a deeper look into metabolic changes during the development of a quasi-single cell type. Metabolites accumulating during maturation might accelerate pollen germination and tube growth, protect from desiccation, and feed pollinators. Future studies of the underlying processes orchestrating the changes in metabolite levels might give valuable insights into cellular regulation of plant metabolism.
Collapse
Affiliation(s)
- Alexander H Rotsch
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Department of Plant Biochemistry, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
| |
Collapse
|
49
|
Ji J, Zheng L, Yue J, Yao X, Chang E, Xie T, Deng N, Chen L, Huang Y, Jiang Z, Shi S. Identification of two CiGADs from Caragana intermedia and their transcriptional responses to abiotic stresses and exogenous abscisic acid. PeerJ 2017. [PMID: 28626614 PMCID: PMC5473354 DOI: 10.7717/peerj.3439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glutamate decarboxylase (GAD), as a key enzyme in the γ -aminobutyric acid (GABA) shunt, catalyzes the decarboxylation of L-glutamate to form GABA. This pathway has attracted much interest because of its roles in carbon and nitrogen metabolism, stress responses, and signaling in higher plants. The aim of this study was to isolate and characterize genes encoding GADs from Caragana intermedia, an important nitrogen-fixing leguminous shrub. METHODS Two full-length cDNAs encoding GADs (designated as CiGAD1 and CiGAD2) were isolated and characterized. Multiple alignment and phylogenetic analyses were conducted to evaluate their structures and identities to each other and to homologs in other plants. Tissue expression analyses were conducted to evaluate their transcriptional responses to stress (NaCl, ZnSO4, CdCl2, high/low temperature, and dehydration) and exogenous abscisic acid. RESULTS The CiGADs contained the conserved PLP domain and calmodulin (CaM)-binding domain in the C-terminal region. The phylogenetic analysis showed that they were more closely related to the GADs of soybean, another legume, than to GADs of other model plants. According to Southern blotting analysis, CiGAD1 had one copy and CiGAD2-related genes were present as two copies in C. intermedia. In the tissue expression analyses, there were much higher transcript levels of CiGAD2 than CiGAD1 in bark, suggesting that CiGAD2 might play a role in secondary growth of woody plants. Several stress treatments (NaCl, ZnSO4, CdCl2, high/low temperature, and dehydration) significantly increased the transcript levels of both CiGADs, except for CiGAD2 under Cd stress. The CiGAD1 transcript levels strongly increased in response to Zn stress (74.3-fold increase in roots) and heat stress (218.1-fold increase in leaves). The transcript levels of both CiGADs significantly increased as GABA accumulated during a 24-h salt treatment. Abscisic acid was involved in regulating the expression of these two CiGADs under salt stress. DISCUSSION This study showed that two CiGADs cloned from C. intermedia are closely related to homologs in another legume, soybean. CiGAD2 expression was much higher than that of CiGAD1 in bark, indicating that CiGAD2 might participate in the process of secondary growth in woody plants. Multiple stresses, interestingly, showed that Zn and heat stresses had the strongest effects on CiGAD1 expression, suggesting that CiGAD1 plays important roles in the responses to Zn and heat stresses. Additionally, these two genes might be involved in ABA dependent pathway during stress. This result provides important information about the role of GADs in woody plants' responses to environmental stresses.
Collapse
Affiliation(s)
- Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Lingyu Zheng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China.,Chongqing University of Technology, Chongqing, China
| | - Jianyun Yue
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Xiamei Yao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Tiantian Xie
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Nan Deng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Risk Assessment Laboratory for Bee Products, Quality and Safety of Ministry of Agriculture, Beijing, China
| | - Yuwen Huang
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Research Institute of Forestry, Beijing, China
| |
Collapse
|
50
|
Shelp BJ, Zarei A. Subcellular compartmentation of 4-aminobutyrate (GABA) metabolism in arabidopsis: An update. PLANT SIGNALING & BEHAVIOR 2017; 12:e1322244. [PMID: 28448196 PMCID: PMC5501244 DOI: 10.1080/15592324.2017.1322244] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 05/18/2023]
Abstract
This addendum discusses the compartmentation of γ-aminobutyrate (GABA) metabolism, highlighting recent progress with Arabidopsis thaliana and raising new questions about the roles of mitochondria, plastids and peroxisomes in abiotic stress tolerance.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
- CONTACT Barry J. Shelp Plant Agriculture, University of Guelph, 50 Stone Rd. E, Guelph, Ontario N1G 2W1, Canada
| | - Adel Zarei
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|