1
|
Sillo F, Blaser SRGA, Díaz-Tielas C, Clayton J, Araniti F, Sánchez-Moreiras AM, George TS, Balestrini R, Vetterlein D. Size Matters: Influence of Available Soil Volume on the Root Architecture and Plant Response at Transcriptomic and Metabolomic Levels in Barley. PLANT, CELL & ENVIRONMENT 2025; 48:4685-4702. [PMID: 40065576 DOI: 10.1111/pce.15457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 05/06/2025]
Abstract
Pot size is a critical factor in plant growth experiments, influencing root architecture, nutrient uptake, and overall plant development as well as sensing of stress. In controlled environments, variation in pot size can impact phenotypic and molecular outcomes and may bias experimental results. Here, we investigated how pot size affects the root system architecture and molecular responses of two barley genotypes, the landrace BERE and the modern elite CONCERTO, through assessment of shoot and root traits and by using X-ray computed tomography complemented by transcriptomic and metabolomic analyses. The two genotypes showed distinctly different adaptations to changes in pot size. The landrace showed greater stability and adaptability with consistent root traits and enhanced accumulation of osmoprotectant metabolites across different pot sizes with respect to CONCERTO. Conversely, the elite line was more sensitive to pot size variations, particularly showing altered root architecture and transcriptomic responses. Overall, this study highlights the importance of selecting an appropriate pot size for plant growth experiments, particularly when focused on root traits, and highlights the importance of considering the physiological and molecular changes due to growth environment choice in experimental design in barley.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Torino, Italy
| | - Sebastian R G A Blaser
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Carla Díaz-Tielas
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| | - Jessica Clayton
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia, Università Statale di Milano, Milano, Italy
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Vigo, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo - Campus Auga, Ourense, Spain
| | | | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Torino, Italy
- National Research Council, Institute of Biosciences and BioResources, Bari, Italy
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
2
|
Li Y, Huangfu X, Hua W, Bian Y, Ni Y, Xie Z. Shoot elongation patterns and regulatory genes controlling grapevine (Vitis vinifera L.) internode elongation. PLANT MOLECULAR BIOLOGY 2025; 115:62. [PMID: 40327187 DOI: 10.1007/s11103-025-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
The robust growth of grape shoots often results in diminished grape quality and increased labor costs in grape production. Investigating the patterns of shoot elongation and the underlying mechanisms is beneficial for simplifying cultivation processes and enhancing fruit quality. However, there is limited research on this topic. In this study, we found that lateral growth and elongation growth occurred simultaneously in each grape internode, and exhibited a similar sigmoid growth curve model. The dissection of the internode structure revealed that elongation of the cells in the middle of the stem was the primary reason for the rapid elongation of grape shoots, while the sharp increase in the xylem area significantly contributed to the lateral growth of the internodes. Transcriptome analysis indicated that genes associated with cell cycle organization, cell wall organization, and phytohormone activity play important roles in regulating the growth of grape internodes. One candidate gene, VvSAUR72, which is related to auxin signaling components, was characterized to promote internode elongation by overexpression in Arabidopsis. These results provide a foundation for further investigation into the regulatory mechanisms related to the internode elongation in grapevine.
Collapse
Affiliation(s)
- Youmei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Huangfu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Wenqin Hua
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Yiran Bian
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Yuanqian Ni
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Zhaosen Xie
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Shibata A, Yumoto G, Shimizu H, Honjo MN, Kudoh H. Flower movement induced by weather-dependent tropism satisfies attraction and protection. Nat Commun 2025; 16:4132. [PMID: 40319049 PMCID: PMC12049521 DOI: 10.1038/s41467-025-59337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 04/18/2025] [Indexed: 05/07/2025] Open
Abstract
Flowers have antagonistic demands for reproductive success, that is, pollinator attraction and flower protection. However, how flowers accommodate these antagonistic reproductive demands has not been thoroughly analysed. In this study, we elucidate the mechanisms and adaptive significance of weather-driven flower movement in Arabidopsis halleri. The auxin-based elongation of flower pedicels causes the change in flower orientation. Combinations of the circadian clock and light conditions activate either phototropism of the flower pedicels to make flowers upward-facing in the sun or gravitropism to make flowers downward-facing in the rain. The upward- and downward-facing flowers enhance pollinator attraction in the sun and flower protection in the rain, respectively, and both responses are required to increase reproductive success. The present study demonstrates that the weather-dependent tropism of flower pedicels functions to satisfy antagonistic reproductive demands under changing weather conditions.
Collapse
Affiliation(s)
- Akari Shibata
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan.
- Fukui City Museum of Natural History, Fukui, Fukui, Japan.
| | - Genki Yumoto
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Hanako Shimizu
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan.
| |
Collapse
|
4
|
Luo S, Tetteh C, Song Z, Zhang C, Jin P, Hao X, Liu Y, Ge S, Chen J, Ye K, Wang K, Zhang T, Zhang H. Positive regulation of BBX11 by NAC053 confers stomatal and apoplastic immunity against bacterial infection in Arabidopsis. THE NEW PHYTOLOGIST 2025; 246:1816-1833. [PMID: 40110940 DOI: 10.1111/nph.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Stomatal immunity and apoplastic immunity are critical for preventing microbial phytopathogenesis. However, the specific regulatory mechanisms of these resistances remain unclear. In this study, a BBX11 transcription factor (TF) was identified in Arabidopsis and was found to participate in stomatal and apoplast immunity. Phenotypic, biochemical, and genetic analyses revealed that NAC053 contributed to Arabidopsis resistance against Pseudomonas syringae pv tomato DC3000 (Pst DC3000) by positively regulating BBX11. BBX11 TF that was expressed constitutively in guard cells acts as a positive regulator of plant defense against Pst DC3000 through the suppression of coronatine (COR)-induced stomatal reopening, mitigating the virulence of COR and alleviating COR-triggered systemic susceptibility in the apoplast. BBX11 was found to be involved in PTI responses induced by flg22, such as stomatal closure, reactive oxygen species accumulation, MAPK activation, and callose deposition, thereby enhancing disease resistance. Yeast one-hybrid screening identified NAC053 as a potential TF that interacted with the promoter of BBX11. NAC053 also positively regulated resistance to Pst DC3000. These findings underscore the significance of transcriptional activation of BBX11 by NAC053 in stomatal and apoplastic immunity against Pst DC3000, enhancing understanding of plant regulatory mechanisms in response to bacterial pathogens.
Collapse
Affiliation(s)
- Sheng Luo
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Charles Tetteh
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiqiang Song
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Cheng Zhang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Pinyuan Jin
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xingqian Hao
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Yingjun Liu
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Shating Ge
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jiao Chen
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Keke Ye
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Kang Wang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Ting Zhang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Huajian Zhang
- Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
5
|
Thiébaut N, Sarthou M, Richtmann L, Pergament Persson D, Ranjan A, Schloesser M, Boutet S, Rezende L, Clemens S, Verbruggen N, Hanikenne M. Specific redox and iron homeostasis responses in the root tip of Arabidopsis upon zinc excess. THE NEW PHYTOLOGIST 2025; 246:1796-1815. [PMID: 40165747 DOI: 10.1111/nph.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Zinc (Zn) excess negatively impacts primary root growth in Arabidopsis thaliana. Yet, the effects of Zn excess on specific growth processes in the root tip (RT) remain largely unexplored. Transcriptomics, ionomics, and metabolomics were used to examine the specific impact of Zn excess on the RT compared with the remaining root (RR). Zn excess exposure resulted in a shortened root apical meristem and elongation zone, with differentiation initiating closer to the tip of the root. Zn accumulated at a lower concentration in the RT than in the RR. This pattern was associated with lower expression of Zn homeostasis and iron (Fe) deficiency response genes. A distinct distribution of Zn and Fe in RT and RR was highlighted by laser ablation inductively coupled plasma-mass spectrometry analysis. Specialized tryptophan (Trp)-derived metabolism genes, typically associated with redox and biotic stress responses, were specifically upregulated in the RT upon Zn excess, among those Phytoalexin Deficient 3 (PAD3) encoding the last enzyme of camalexin synthesis. In the roots of wild-type seedlings, camalexin concentration increased by sixfold upon Zn excess, and a pad3 mutant displayed increased Zn sensitivity and an altered ionome. Our results indicate that distinct redox and iron homeostasis mechanisms are key elements of the response to Zn excess in the RT.
Collapse
Affiliation(s)
- Noémie Thiébaut
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Manon Sarthou
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Ludwig Richtmann
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Daniel Pergament Persson
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Alok Ranjan
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| | - Stéphanie Boutet
- INRAE, AgroParisTech, Institute Jean-Pierre Bourgin for Plant Sciences (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Lucas Rezende
- Hedera-22 SA, Boulevard du Rectorat 27b, B-4000, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology and Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95440, Bayreuth, Germany
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, B-4000, Liège, Belgium
| |
Collapse
|
6
|
Guo J, Liu ZZ, Su XM, Su YN, He XJ. The SAS chromatin-remodeling complex mediates inflorescence-specific chromatin accessibility for transcription factor binding. Nucleic Acids Res 2025; 53:gkaf316. [PMID: 40298113 PMCID: PMC12038394 DOI: 10.1093/nar/gkaf316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
While the role of transcription factors in flower development is well understood, the impact of chromatin remodeling on this process remains largely unclear. We conducted a comprehensive analysis to investigate the coordination of the SAS, BAS, and MAS-type SWI/SNF chromatin-remodeling complexes with transcription factors to regulate chromatin accessibility and gene transcription during flower development in Arabidopsis thaliana. Our findings indicate that the SAS complex binds to numerous genes related to flower development and is responsible for establishing chromatin accessibility of these genes in inflorescences. In contrast, the BAS and MAS complexes exhibit minimal involvement in regulating the accessibility of these genes. The SAS-bound genomic regions and the SAS-dependent accessible regions in infloresences are enriched with sites occupied by multiple MADS family transcription factors involved in flower development. Furthermore, we found that the SAS-dependent accessibility facilitates the binding of the MADS transcription factor AP1 to a subset of its target loci. This study highlights the dynamic role of the SAS complex in modulating the chromatin accessibility and genomic binding of transcription factors during plant development.
Collapse
Affiliation(s)
- Jing Guo
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
7
|
Zhao C, Liu X, Zhou A, Ji J, Wang Y, Zhuang M, Zhang Y, Yang L, Ma L, Chellappan BV, Artemyeva AM, Lv H. Transcriptome Analysis of Cabbage Near-Isogenic Lines Reveals the Involvement of the Plant Defensin Gene PDF1.2 in Fusarium Wilt Resistance. Int J Mol Sci 2025; 26:3770. [PMID: 40332410 DOI: 10.3390/ijms26083770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Fusarium wilt of cabbage (Brassica oleracea var. capitata), caused by Fusarium oxysporum f. sp. conglutinans (Foc), poses a significant threat to global cabbage production. Although resistance screening and the initial cloning of resistance genes in cabbage have been previously reported, the specific molecular mechanisms underlying cabbage resistance to Foc remain largely unknown. To elucidate the underlying mechanisms, we performed RNA sequencing analysis on a near-isogenic resistant line YR01_20 and a susceptible NIL line S01_20 by comparing both Foc-inoculated and mock-inoculated conditions. A total of 508.6 million sequencing raw reads (76.8 Gb data volume) were generated across all samples. Bioinformatics analysis of differentially expressed genes (DEGs) between S01_20 and YR01_20 revealed significant enrichment in plant hormone signaling and mitogen-activated protein kinase (MAPK) pathways. Notably, BolC06g030650.2J, encoding the plant defensin protein PDF1.2, was significantly upregulated in both pathways. Real-time quantitative PCR (RT-qPCR) analysis confirmed that PDF1.2 was significantly upregulated in the resistant line at 12 h post-inoculation and remained elevated for up to 144 h. Furthermore, transgenic cabbage overexpressing PDF1.2 exhibited significantly enhanced resistance to Foc. Taken together, these findings advance our understanding of the molecular mechanisms governing cabbage resistance to Fusarium wilt and identify PDF1.2 as a genetic target for breeding Foc-resistant cabbage cultivars through molecular approaches.
Collapse
Affiliation(s)
- Cunbao Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xing Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ailing Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Biju V Chellappan
- Department of Biological Science, College of Science, King Faisal University, Hofuf 31982, Saudi Arabia
| | - Anna M Artemyeva
- Federal Research Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 St. Petersburg, Russia
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Cheng H, Liu S, Zhang Y, Zuo D, Wang Q, Lv L, Yang Y, Hao L, Zhang X, Zhang S, Song G. Comparative single-cell transcriptomic map reveals divergence in leaves between two cotton species at cell type resolution. J Adv Res 2025:S2090-1232(25)00256-5. [PMID: 40228790 DOI: 10.1016/j.jare.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025] Open
Abstract
INTRODUCTION Leaves are important functional organs in plants that determine yield and quality of crops. Upland cotton and sea-island cotton contribute more than 90% of the cotton fiber production annually. Deciphering and utilizing the diversity of leaf cells and functional genes underlying their divergences will be highly meaningful for cotton breeding. OBJECTIVES To investigate the conserved and divergent cell types of leaves between upland cotton and sea-island cotton, identify functional genes, and explore functional cell types in response to biotic and abiotic stresses in both species. METHODS Nuclei were isolated from leaves of upland cotton CRI12 and sea-island cotton XH21, respectively, and single-nucleus RNA-seq (snRNA-seq) was performed. Based on the orthologous genes, comparative single-cell transcriptomic map (CSCTM) of two cotton species was constructed to investigate conservation and divergence of cell types, and funtional genes were validated by virus induced gene silencing. Combining CSCTM, comparative genomic and transcriptomic analysis, functional cell types were identified in response to biotic and abiotic stresses. RESULTS A total of 22 and 20 distinct clusters were identified representing 6 main cell types in CRI12 and XH21, respectively. CSCTM analysis revealed a sea-island cotton-specific cell cluster, in which specifically expressed GbNF-YA7's role in pathogen resistance was validated. Meanwhile, the divergence of pigment gland development was revealed among cotton species and WRKY15 was identified to influence gossypol content without affecting pigment gland number. Moreover, integrated CSCTM and comparative genomic and transcriptomic analysis revealed genome variations could influence the gene expression in an elaborate cell type-specifc manner, highlighted the function of cotton leaf vascular tissue cells in Verticillium wilt resistance and putative functional differentiation of conserved abiotic stresses response genes. Additionally, different cell types might assume distinct roles in dealing with various stresses, forming a complex stress response system. CONCLUSIONS This study uncovered the conservation and divergence in cell types of leaves of upland cotton and sea-island cotton, which will provide a better understanding of phenotypic variation of the two species.
Collapse
Affiliation(s)
- Hailiang Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Shang Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyun Zuo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiaolian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yi Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Lingyu Hao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xue Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Shuo Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Guoli Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Zhou R, Feng J, Zhang Z, Liu Y. Identification of the SAUR Members in Woodland Strawberry ( Fragaria vesca) and Detection of Their Expression Profiles in Response to Auxin Signals. Int J Mol Sci 2025; 26:3638. [PMID: 40332146 DOI: 10.3390/ijms26083638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
The SAUR (Small Auxin-Upregulated RNA) family members are important early auxin responsive genes in plants, playing a key regulatory role in the auxin metabolism, signal transduction, plant organ development, and abiotic stress response. Auxin signaling is also crucial for strawberry fruit development, but its specific regulatory mechanism remains unclear. In this study, bioinformatics methods were used to systematically identify and evaluate the FvSAUR gene family members associated with the auxin signaling in strawberry. The woodland strawberry Yellow Wonder line 'YW5AF7' was used as the material to further investigate the expressional characteristics of FvSAUR members in response to the auxin signals. A total of 64 members of the SAUR gene family were identified in the woodland strawberry genome, associated with FvSAUR1-64. Further bioinformatics analysis revealed that the FvSAUR members have undergone significant structural differentiation during evolution, and their encoded proteins exhibit diversity in folding stability, physicochemical properties, and other aspects. The prediction of the cis-elements in the promoter sequences of these genes suggests that the FvSAUR genes may mediate multiple hormonal and environmental signals, participating in a wide range of biological processes. RNA seq data analysis combined with RT-qPCR analysis revealed a dynamic spatiotemporal expression pattern of the FvSAUR genes in the vegetative and reproductive organs of strawberries, particularly the high expression levels of FvSAUR11, 17, 19, 21, and other genes in flowers and young fruits, suggesting their potential regulatory roles in strawberry fruit development. Exogenous auxin treatment experiments further suggested that the expression of FvSAUR11 and FvSAUR19 is sensitive to the changes in auxin levels, indicating their potential involvement in auxin signal transduction during strawberry fruit development. Subcellular localization results showed that both proteins are located in the nucleus. The results of this study systematically analyzed the sequence structure characteristics, evolutionary history, expression patterns, and potential functions of the strawberry FvSAUR family members, providing important insights for further elucidating the roles of FvSAUR genes in strawberry fruit growth and development.
Collapse
Affiliation(s)
- Ruian Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiahui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuexue Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
10
|
Zhang Y, Yuan X, Zhang Y, Luo Y, Zhao K, Zu F, Tian Z, Li J, Zhang L, He X, Gao J, Fu M, Li G, Liu F. GWAS and WGCNA analysis uncover candidate genes associated with drought in Brassica juncea L. FRONTIERS IN PLANT SCIENCE 2025; 16:1551804. [PMID: 40256595 PMCID: PMC12007043 DOI: 10.3389/fpls.2025.1551804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Drought poses a major challenge to crop growth and yield, and exploring the drought tolerance of crops is an effective and economical approach to mitigating the effects of drought. To screen drought-tolerant germplasm resources and key functional genes related to drought tolerance in Brassica juncea L.(193 accessions), three treatments were applied at the germination and seedling stages:control(CK), moderate drought stress (M), and severe drought stress (S). Drought tolerance identification, GWAS, and RNA-Seq analysis of these materials under different treatments showed that drought stress significantly reduced the germination rate, aboveground and underground fresh weight at the seedling stage, harvest index at maturity, and expanded the root/shoot ratio. From the 193 materials, 24 drought-tolerant, 139 drought-tolerant medium, and 30 drought-sensitive materials were identified. The 77 SNPs identified by GWAS were associated with the relative germination rate at the germination stage, and the fresh weight of the aboveground and underground parts at the seedling stage, which could be integrated into 27 QTLs. WGCNA identified 15, 0, and 5 modules significantly related to drought tolerance in the aboveground and underground parts at the germination and seedling stages, respectively. By correlating the significant GWAS SNPs with the significant WGCNA modules, a total of 11 genes related to drought tolerance under moderate and severe drought stress were identified. These genes were involved in the regulation of auxin-responsive protein (SAUR), LEA protein, glucosidase, AP2/ERF, WRKY and GATA transcription factors, FLZ zinc finger domain, PRP, and b561 proteins. Among them, the BjuB035910 gene was detected in the underground parts of the seedling and germination stages under moderate drought stress. GWAS and selective sweep analysis jointly identified the 23.955-24.089 Mb region of chromosome B06, where four genes (BjuB022264, BjuB022292, BjuB022282, and BjuB022235) were located, as confirmed by WGCNA analysis. A total of 125 SNPs with high linkage disequilibrium were found in this region, and 12 haplotypes were detected, with Hap1 being present exclusively in drought-tolerant materials and Hap3-Hap12 distributed in drought-sensitive materials. These findings provide new insights into the drought tolerance mechanisms of B. juncea and will contribute to the breeding of drought-tolerant rapeseed varieties.
Collapse
Affiliation(s)
- Yusong Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Xiaoyan Yuan
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Yunyun Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Yanqing Luo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Kaiqin Zhao
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Feng Zu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Zhengshu Tian
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Jinfeng Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Lifan Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Xiaoying He
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Jinxiang Gao
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Minglian Fu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Genze Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Feihu Liu
- College of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
11
|
Osborne R, Labandera AM, Ryder AJ, Kanali A, Xu T, Akintewe O, Schwarze MA, Morgan CD, Hartman S, Kaiserli E, Gibbs DJ. VRN2-PRC2 facilitates light-triggered repression of PIF signaling to coordinate growth in Arabidopsis. Dev Cell 2025:S1534-5807(25)00122-4. [PMID: 40147448 DOI: 10.1016/j.devcel.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/29/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
VERNALIZATION2 (VRN2) is a flowering plant-specific subunit of the polycomb-repressive complex 2 (PRC2), a conserved eukaryotic holoenzyme that represses gene expression by depositing the histone H3 lysine 27 trimethylation (H3K27me3) mark in chromatin. Previous work established VRN2 as an oxygen-regulated target of the N-degron pathway that may function as a sensor subunit connecting PRC2 activity to the perception of endogenous and environmental cues. Here, we show that VRN2 is enriched in the hypoxic shoot apex and emerging leaves of Arabidopsis, where it negatively regulates growth by establishing a stable and conditionally repressed chromatin state in key PHYTOCHROME INTERACTING FACTOR (PIF)-regulated genes that promote cell expansion. This function is required to keep these genes poised for repression via a light-responsive signaling cascade later in leaf development. Thus, we identify VRN2-PRC2 as a core component of a developmentally and spatially encoded epigenetic mechanism that coordinates plant growth through facilitating the signal-dependent suppression of PIF signaling.
Collapse
Affiliation(s)
- Rory Osborne
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | | | - Alex J Ryder
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | - Anastasia Kanali
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | - Tianyuan Xu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | - Sjon Hartman
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B152TT, UK.
| |
Collapse
|
12
|
Shi H, Qanmber G, Yang Z, Guo Y, Ma S, Shu S, Li Y, Lin Z, Li F, Liu Z. An AP2/ERF transcription factor GhERF109 negatively regulates plant growth and development in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112365. [PMID: 39710152 DOI: 10.1016/j.plantsci.2024.112365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Cotton is an important source of natural fibers. The AP2/ethylene response factor (ERF) family is one of the largest plant-specific transcription factors (TFs) groups, playing key roles in plant growth and development. However, the role of ERF TFs in cotton's growth and development remains unclear. In this study, we identified GhERF109, a nuclear-localized ERF, which showed significant expression differences between ZM24 and pag1 cotton. Heterologous overexpression of GhERF109 in Arabidopsis resulted in reduced plant height, shortened root length, and reduced silique lengths compared to wild-type (WT) plants. In contrast, silencing GhERF109 in cotton led to a significant increase in plant height due to the elongation of stem cells. Overexpression of GhERF109 in cotton also produced a compact plant type with a notable reduction in height. RNA-seq analysis of GhERF109-silenced plants revealed 4123 differentially expressed genes (DEGs), with many upregulated genes involved in auxin response, polar transport, cell expansion, cell cycle regulation, brassinolide (BL) biosynthesis, and very long-chain fatty acid (VLCFA) pathways. These findings suggest that GhERF109 integrates auxin and other signaling pathways to suppress plant growth, providing valuable genetic material for breeding programs to improve mechanized cotton harvesting.
Collapse
Affiliation(s)
- Huiyun Shi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China
| | - Yuling Guo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Shuya Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Sheng Shu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yujun Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Xinjiang Key Laboratory of Crop Gene Editing and Germplasm Innovation, Institute of Western Agricultural of CAAS, Changji, Xinjiang 831100, China.
| | - Zhao Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
13
|
Gautrat P, Matton SEA, Oskam L, Shetty SS, van der Velde KJ, Pierik R. Lights, location, action: shade avoidance signalling over spatial scales. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:695-711. [PMID: 38767295 PMCID: PMC11805592 DOI: 10.1093/jxb/erae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.
Collapse
Affiliation(s)
- Pierre Gautrat
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lisa Oskam
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Siddhant S Shetty
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kyra J van der Velde
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
14
|
Salgado MG, Maity PJ, Lundin D, Pawlowski K. The auxin phenylacetic acid induces NIN expression in the actinorhizal plant Datisca glomerata, whereas cytokinin acts antagonistically. PLoS One 2025; 20:e0315798. [PMID: 39899489 PMCID: PMC11790169 DOI: 10.1371/journal.pone.0315798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/30/2024] [Indexed: 02/05/2025] Open
Abstract
All nitrogen-fixing root nodule symbioses of angiosperms-legume and actinorhizal symbioses-possess a common ancestor. Molecular processes for the induction of root nodules are modulated by phytohormones, as is the case of the first nodulation-related transcription factor NODULE INCEPTION (NIN), whose expression can be induced by exogenous cytokinin in legumes. The process of actinorhizal nodule organogenesis is less well understood. To study the changes exerted by phytohormones on the expression of the orthologs of CYCLOPS, NIN, and NF-YA1 in the actinorhizal host Datisca glomerata, an axenic hydroponic system was established and used to examine the transcriptional responses (RT-qPCR) in roots treated with the synthetic cytokinin 6-Benzylaminopurine (BAP), the natural auxin Phenylacetic acid (PAA), and the synthetic auxin 1-Naphthaleneacetic acid (NAA). The model legume Lotus japonicus was used as positive control. Molecular readouts for auxins and cytokinin were established: DgSAUR1 for PAA, DgGH3.1. for NAA, and DgARR9 for BAP. L. japonicus NIN was induced by BAP, PAA, and NAA in a dosage- and time-dependent manner. While expression of D. glomerata NIN2 could not be induced in roots, D. glomerata NIN1 was induced by PAA; this induction was abolished in the presence of exogenous BAP. Furthermore, the induction of DgNIN1 expression by PAA required ethylene and gibberellic acid. This study suggests that while cytokinin signaling is central for cortex-induced nodules of L. japonicus, it acts antagonistically to the induction of nodule primordia of D. glomerata by PAA in the root pericycle.
Collapse
Affiliation(s)
- Marco Guedes Salgado
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
15
|
Li X, Chen L, Li D, You M, Li Y, Yan L, Yan J, Gou W, Chang D, Ma X, Bai S, Peng Y. Integrated comparative physiological and transcriptomic analyses of Elymus sibiricus L. reveal the similarities and differences in the molecular mechanisms in response to drought and cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109459. [PMID: 39736257 DOI: 10.1016/j.plaphy.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/01/2025]
Abstract
Drought and cold crucially affect plant growth and distribution. Plants have evolved complex molecular mechanisms to adapt to such adverse environmental conditions. This study examines two Elymus sibiricus (Es) germplasms differing in resilience to these stresses. Analyzing physiological responses and gene expression changes under drought and cold, it reveals the similarities and differences in their molecular mechanisms that underlie these responses. The results indicate that both drought stress and cold stress severely damage the integrity of the cell membrane in Es. Notably, under cold stress, the accumulation of osmotic regulation substances in Es is more significant, which may be related to the regulation of carbohydrate metabolism (CM)-related genes in cold environments. Furthermore, the response to oxidative stress triggered by cold stress in Es is partially inhibited. The enrichment analysis showed that the DEGs responsive to drought stress in Es were mainly related to the pathway of photosynthesis, whereas the DEGs responsive to cold stress were more associated with the protein processing in endoplasmic reticulum (PPER), highlighting distinct molecular responses. In addition, we discovered that the abscisic acid (ABA) signaling transduction plays a dominant role in mediating the drought resistance mechanism of Es. We have identified 86 key candidate genes related to photosynthesis, Phst, CM, and PPER, including 5 genes that can respond to both drought and cold stress. This study provides a foundation for the molecular mechanisms underlying cold and drought resistance in Es, with insight into its future genetic improvement for stress resistance.
Collapse
Affiliation(s)
- Xinrui Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Lili Chen
- Sichuan Provincial Work Station of Grassland, Sichuan Provincial Bureau of Forestry and Grassland, Chengdu, 610081, China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Yingzhu Li
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Jiajun Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenlong Gou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dan Chang
- Sichuan Academy of Grassland Science, Chengdu, 610097, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
16
|
Omondi E, Barchi L, Gaccione L, Portis E, Toppino L, Tassone MR, Alonso D, Prohens J, Rotino GL, Schafleitner R, van Zonneveld M, Giuliano G. Association analyses reveal both anthropic and environmental selective events during eggplant domestication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17229. [PMID: 39918113 PMCID: PMC11803709 DOI: 10.1111/tpj.17229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 02/11/2025]
Abstract
Eggplant (Solanum melongena) is one of the four most important Solanaceous crops, widely cultivated and consumed in Asia, the Mediterranean basin, and Southeast Europe. We studied the genome-wide association of historical genebank phenotypic data on a genotyped worldwide collection of 3449 eggplant accessions. Overall, 334 significant associations for key agronomic traits were detected. Significant correlations were obtained between different types of phenotypic data, some of which were not obvious, such as between fruit size/yield and fruit color components, suggesting simultaneous anthropic selection for genetically unrelated traits. Anthropic selection of traits like leaf prickles, fruit color, and yield, acted on distinct genomic regions in the two domestication centers (India and Southeast Asia), further confirming the multiple domestication of eggplant. To discriminate anthropic from environmental selection in domestication centers, we conducted a genotype-environment association (GEA) on a subset of georeferenced accessions from the Indian subcontinent. The population structure in this area revealed four genetic clusters, corresponding to a latitudinal gradient, and environmental factors explained 31% of the population structure when the effect of spatial distances was removed. GEA and outlier association identified 305 candidate regions under environmental selection, containing genes for abiotic stress responses, plant development, and flowering transition. Finally, in the Indian domestication center anthropic and environmental selection acted largely independently, and on different genomic regions. These data allow a better understanding of the different effects of environmental and anthropic selection during domestication of a crop, and the different world regions where some traits were initially selected by humans.
Collapse
Affiliation(s)
| | - Lorenzo Barchi
- DISAFA – Plant GeneticsUniversity of TurinGrugliascoTO10095Italy
| | - Luciana Gaccione
- DISAFA – Plant GeneticsUniversity of TurinGrugliascoTO10095Italy
| | - Ezio Portis
- DISAFA – Plant GeneticsUniversity of TurinGrugliascoTO10095Italy
| | - Laura Toppino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - Maria Rosaria Tassone
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | - David Alonso
- Universitat Politècnica de ValènciaCamino de Vera 1446022ValenciaSpain
| | - Jaime Prohens
- Universitat Politècnica de ValènciaCamino de Vera 1446022ValenciaSpain
| | - Giuseppe Leonardo Rotino
- CREA Research Centre for Genomics and BioinformaticsVia Paullese 28Montanaso LombardoLO26836Italy
| | | | | | | |
Collapse
|
17
|
Xu Z, Zhang L, Kong K, Kong J, Ji R, Liu Y, Liu J, Li H, Ren Y, Zhou W, Zhao T, Zhao T, Liu B. Creeping Stem 1 regulates directional auxin transport for lodging resistance in soybean. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:377-394. [PMID: 39535932 PMCID: PMC11772330 DOI: 10.1111/pbi.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Soybean, a staple crop on a global scale, frequently encounters challenges due to lodging under high planting densities, which results in significant yield losses. Despite extensive research, the fundamental genetic mechanisms governing lodging resistance in soybeans remain elusive. In this study, we identify and characterize the Creeping Stem 1 (CS1) gene, which plays a crucial role in conferring lodging resistance in soybeans. The CS1 gene encodes a HEAT-repeat protein that modulates hypocotyl gravitropism by regulating amyloplast sedimentation. Functional analysis reveals that the loss of CS1 activity disrupts polar auxin transport, vascular bundle development and the biosynthesis of cellulose and lignin, ultimately leading to premature lodging and aberrant root development. Conversely, increasing CS1 expression significantly enhances lodging resistance and improves yield under conditions of high planting density. Our findings shed light on the genetic mechanisms that underlie lodging resistance in soybeans and highlight the potential of CS1 as a valuable target for genetic engineering to improve crop lodging resistance and yield.
Collapse
Affiliation(s)
- Zhiyong Xu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry‐Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of AgricultureNanjing Agricultural UniversityNanjingChina
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
- Beijing Dabeinong Technology Group Co., LtdChina
| | - Liya Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Keke Kong
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry‐Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Jiejie Kong
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry‐Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Ronghuan Ji
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yi Liu
- Beijing Dabeinong Technology Group Co., LtdChina
| | - Jun Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hongyu Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wenbin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Tao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry‐Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of AgricultureNanjing Agricultural UniversityNanjingChina
| | - Bin Liu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
18
|
Wang J, Jin D, Deng Z, Zheng L, Guo P, Ji Y, Song Z, Zeng HY, Kinoshita T, Liao Z, Chen H, Deng XW, Wei N. The apoplastic pH is a key determinant in the hypocotyl growth response to auxin dosage and light. NATURE PLANTS 2025; 11:279-294. [PMID: 39953357 PMCID: PMC11842274 DOI: 10.1038/s41477-025-01910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/20/2024] [Indexed: 02/17/2025]
Abstract
Auxin is a core phytohormone regulating plant elongation growth. While auxin typically promotes hypocotyl elongation, excessive amounts of auxin inhibit elongation. Moreover, auxin usually promotes light-grown, but inhibits dark-grown hypocotyl elongation. How dosage and light condition change the plant's response to auxin, also known as auxin's biphasic effect or dual effect, has long been mysterious. Auxin induces cell expansion primarily through apoplastic acidification and the subsequent 'acid growth' mechanism. Here we show that this pathway operates for both stimulatory and inhibitory auxin doses and under both dark and light conditions. Regardless of the dosage, more auxin induces more transcripts of SAURs (Small Auxin-Up RNAs), leading to a stronger activation of plasma membrane H+-ATPases (AHAs) and progressive acidification of the apoplast in hypocotyl epidermis. Apoplastic acidification promotes growth but only above a certain pH threshold, below which excessive acidification inhibits elongation. Auxin overdosage-triggered hypocotyl inhibition can be alleviated by suppressing the AHA activity or raising the apoplastic pH. Light-grown hypocotyls exhibit a higher apoplastic pH, which impedes cell elongation and counteracts auxin-induced over-acidification. Auxin and light antagonistically regulate the SAUR-PP2C.D-AHA pathway in the hypocotyl and influence plant elongation growth. Our findings suggest that the biphasic effect of auxin results from the biphasic response of hypocotyl cells to decreasing apoplastic pH.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing, China
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhaoguo Deng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lidan Zheng
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Pengru Guo
- Microlens Technologies Co. Ltd., Beijing, China
| | - Yusi Ji
- Microlens Technologies Co. Ltd., Beijing, China
| | - Zihao Song
- School of Life Sciences, Southwest University, Chongqing, China
| | - Hai Yue Zeng
- School of Life Sciences, Southwest University, Chongqing, China
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
19
|
Hussain S, Chang J, Li J, Chen L, Ahmad S, Song Z, Zhang B, Chen X. Multifunctional Role of Cytokinin in Horticultural Crops. Int J Mol Sci 2025; 26:1037. [PMID: 39940806 PMCID: PMC11816932 DOI: 10.3390/ijms26031037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 02/16/2025] Open
Abstract
Cytokinins (CKs) are a class of phytohormones identified in the early 1960s and are mainly responsible for stimulating cell division. Following the discovery, research to help understand the pluralistic roles of CKs in plant growth and stress biology increased. With their fascinating ability, CKs serve as an important element in regulating the defense-growth trade-off. Herein, we demonstrate how the CK fine-tuning the organogenesis of different parts of horticultural plants is discussed. CK's role in tailoring reproductive biology (flowering, sex differentiation, fruit set, and fruit attributes) has been presented. An extensive explanation of the CK-mediated response of horticultural crops to abiotic (temperature, drought, and salinity) and biotic stresses (fungal, bacterial, and nematodes) is provided. Finally, we posit the unexplored roles of CKs and highlight the research gaps worth addressing.
Collapse
Affiliation(s)
- Shahid Hussain
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Jingjing Chang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Jing Li
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Lei Chen
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Sheraz Ahmad
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
| | - Zhao Song
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| | - Xiao Chen
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (S.H.); (J.C.); (J.L.); (L.C.); (Z.S.); (B.Z.)
| |
Collapse
|
20
|
Jia C, Shi Y, Wang H, Zhang Y, Luo F, Li Z, Tian Y, Lu X, Pei Z. Genome-wide identification and expression analysis of SMALL AUXIN UP RNA ( SAUR) genes in rice ( Oryza sativa). PLANT SIGNALING & BEHAVIOR 2024; 19:2391658. [PMID: 39148317 PMCID: PMC11328882 DOI: 10.1080/15592324.2024.2391658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 08/17/2024]
Abstract
SMALL AUXIN UP RNAs (SAURs), the largest family of early auxin response genes, plays crucial roles in multiple processes, including cell expansion, leaf growth and senescence, auxin transport, tropic growth and so on. Although the rice SAUR gene family was identified in 2006, it is necessary to identify the rice SAUR gene due to the imperfection of its analysis methods. In this study, a total of 60 OsSAURs (including two pseudogenes) distributed on 10 chromosomes were identified in rice (Oryza sativa). Bioinformatics tools were used to systematically analyze the physicochemical properties, subcellular localization, motif compositions, chromosomal location, gene duplication, evolutionary relationships, auxin-responsive cis-elements of the OsSAURs. In addition, the expression profiles obtained from microarray data analysis showed that OsSAUR genes had different expression patterns in different tissues and responded to auxin treatment, indicating functional differences among members of OsSAUR gene family. In a word, this study provides basic information for SAUR gene family of rice and lays a foundation for further study on the role of SAUR in rice growth and development.
Collapse
Affiliation(s)
- Chenhao Jia
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Yujiao Shi
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Hao Wang
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Yaofang Zhang
- College of Basic Sciences, Tianjin Agricultural University, Tianjin, China
| | - Feng Luo
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Zhibin Li
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Yubing Tian
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xiangrui Lu
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| | - Zhongyou Pei
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
21
|
Hsiang TF, Yamane H, Lin YJ, Sugimori M, Nishiyama S, Nagasaka K, Nakano R, Tao R. The haplotype-phased genome assembly facilitated the deciphering of the bud dormancy-related QTLs in Prunus mume. DNA Res 2024; 32:dsae034. [PMID: 39656749 PMCID: PMC11747360 DOI: 10.1093/dnares/dsae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
Bud dormancy is a vital physiological process in woody perennials, facilitating their adaptation to seasonal environmental changes. Satisfying genotype-specific chilling requirements (CR) and heat requirements (HR) through exposure to specific chilling and warm temperatures is essential for dormancy release and the subsequent resumption of growth. The genetic mechanisms regulating bud dormancy traits in Prunus mume remain unclear. In this study, we first assembled the genome of 'Nanko', the leading P. mume cultivar in Japan, in a haplotype-resolved manner. Using an F1 segregating population from a cross between 'Nanko' (high-chill) and 'SC' (low-chill), a cultivar adapted to subtropical conditions, we identified quantitative trait loci (QTLs) for vegetative bud dormancy traits on chromosome 4 (LG4 QTLs) in the 'Nanko' genome and for CR and HR on chromosome 7 (LG7 QTL) in the 'SC' genome. A notable 5.6 Mb chromosome inversion was overlapped with LG4 QTL interval in one of the 'Nanko' haplotypes. We also identified candidate genes based on haplotyping, differential expression between the parents or the presence of trait-correlated variants in coding regions. Notably, genes such as PmuMAIN, PmuNAC2, PmuDOG1, PmuSUI1, PmuATG8CL, PmubZIP44, and PmuSAUR50 were identified. This study provides valuable insights into the genetic regulation of vegetative bud dormancy in Prunus species.
Collapse
Affiliation(s)
- Tzu-Fan Hsiang
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yuan-Jui Lin
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Miku Sugimori
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | - Kyoka Nagasaka
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto 619-0218, Japan
| | - Ryohei Nakano
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kyoto 619-0218, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
22
|
Dong Z, Jin S, Fan R, Sun P, Shao L, Zhao T, Jiang H, Zhang Z, Shang H, Guan X, Hu Y, Zhang T, Zhu F, Fang L. High-quality genome of Firmiana hainanensis provides insights into the evolution of Malvaceae subfamilies and the mechanism of their wood density formation. J Genet Genomics 2024:S1673-8527(24)00362-X. [PMID: 39709049 DOI: 10.1016/j.jgg.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
The Malvaceae family, the most diverse family in the order Malvales, consists of nine subfamilies. Within the Firmiana genus of the Sterculioideae subfamily, most species are considered globally vulnerable, yet their genomes remain unexplored. Here, we present a chromosome-level genome assembly for a representative Firmiana species, F. hainanensis, 2n = 40, totaling 1536 Mb. Phylogenomic analysis shows that F. hainanensis and Durio zibethinus have the closest evolutionary relationship, with an estimated divergence time of approximately 21 MYA and distinct polyploidization events in their histories. Evolutionary trajectory analyses indicate that fissions and fusions may play a crucial role in chromosome number variation (2n = 14 to 2n = 96). Analysis of repetitive elements among Malvaceae reveals that the Tekay subfamily (belonging to the Gypsy group) contributes to variation in genome size (ranging from 324 Mb to 1620 Mb). Additionally, genes associated with P450, peroxidase, and microtubules, and thereby related to cell wall biosynthesis, are significantly contracted in F. hainanensis, potentially leading to its lower wood density relative to Hopea hainanensis. Overall, our study provides insights into the evolution of chromosome number, genome size, and the genetic basis of cell wall biosynthesis in Malvaceae species.
Collapse
Affiliation(s)
- Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shangkun Jin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rui Fan
- Spices and Beverages Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China
| | - Pengcheng Sun
- College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lei Shao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Haojie Jiang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| | - Fuyuan Zhu
- College of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant Factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, The Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China.
| |
Collapse
|
23
|
Carey SB, Aközbek L, Lovell JT, Jenkins J, Healey AL, Shu S, Grabowski P, Yocca A, Stewart A, Jones T, Barry K, Rajasekar S, Talag J, Scutt C, Lowry PP, Munzinger J, Knox EB, Soltis DE, Soltis PS, Grimwood J, Schmutz J, Leebens-Mack J, Harkess A. ZW sex chromosome structure in Amborella trichopoda. NATURE PLANTS 2024; 10:1944-1954. [PMID: 39587314 DOI: 10.1038/s41477-024-01858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Sex chromosomes have evolved hundreds of times across the flowering plant tree of life; their recent origins in some members of this clade can shed light on the early consequences of suppressed recombination, a crucial step in sex chromosome evolution. Amborella trichopoda, the sole species of a lineage that is sister to all other extant flowering plants, is dioecious with a young ZW sex determination system. Here we present a haplotype-resolved genome assembly, including highly contiguous assemblies of the Z and W chromosomes. We identify a ~3-megabase sex-determination region (SDR) captured in two strata that includes a ~300-kilobase inversion that is enriched with repetitive sequences and contains a homologue of the Arabidopsis METHYLTHIOADENOSINE NUCLEOSIDASE (MTN1-2) genes, which are known to be involved in fertility. However, the remainder of the SDR does not show patterns typically found in non-recombining SDRs, such as repeat accumulation and gene loss. These findings are consistent with the hypothesis that dioecy is derived in Amborella and the sex chromosome pair has not significantly degenerated.
Collapse
Affiliation(s)
- Sarah B Carey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Laramie Aközbek
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Adam L Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul Grabowski
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Ada Stewart
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Teresa Jones
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, Tucson, AZ, USA
| | - Charlie Scutt
- Laboratoire Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon-1, CNRS, INRA, Lyon, France
| | - Porter P Lowry
- Missouri Botanical Garden, St Louis, MO, USA
- Institut de Systématique, Évolution, et Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, École Pratique des Hautes Études, Université des Antilles, Paris, France
| | - Jérôme Munzinger
- AMAP, Univ. Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
| | - Eric B Knox
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
| |
Collapse
|
24
|
He Y, Wang Z, Cui W, Zhang Q, Zheng M, Li W, Gao J, Yang Z, You J. Comparative quantitative phosphoproteomic and parallel reaction monitoring analysis of soybean roots under aluminum stress identify candidate phosphoproteins involved in aluminum resistance capacity. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135485. [PMID: 39208632 DOI: 10.1016/j.jhazmat.2024.135485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Aluminum (Al) toxicity adversely impacts soybean (Glycine max) growth in acidic soil. Reversible protein phosphorylation plays an important role in adapting to adverse environmental conditions by regulating multiple physiological processes including signal transduction, energy coupling and metabolism adjustment in higher plant. This study aimed to reveal the Al-responsive phosphoproteins to understand their putative function and involvement in the regulation of Al resistance in soybean root. We used immobilized metal affinity chromatography to enrich the key phosphoproteins from soybean root apices at 0, 4, or 24 h Al exposure. These phosphoproteins were detected using liquid chromatography-tandem mass spectrometry measurement, verified by parallel reaction monitoring (PRM), and functionally characterized via overexpression in soybean hairy roots. A total of 638 and 686 phosphoproteins were identified as differentially enriched between the 4-h and 0-h, and the 24-h and 0-h Al treatment comparison groups, respectively. Typically, the phosphoproteins involved in biological processes including cell wall modification, and RNA and protein metabolic regulation displayed patterns of decreasing enrichment (clusters 3, 5 and 6), however, the phosphoproteins involved in the transport and metabolic processes of various substrates, and signal transduction pathways showed increased enrichment after 24 h of Al treatment. The enrichment of phosphoproteins in organelle organization bottomed after 4 h of Al treatment (cluster 1). Next, we selected 26 phosphoproteins from the phosphoproteomic profiles, assessed their enrichment status using PRM, and detected enrichment patterns similar to those observed via phosphoproteomic analysis. Among them, 15 phosphoproteins were found to reduce the accumulation of Al and callose in Al-stressed soybean root apices when their corresponding genes were individually overexpressed in soybean hairy roots. In summary, the findings of this study facilitated a comprehensive understanding of the protein phosphorylation events involved in Al resistance responses and revealed some critical phosphoproteins that enhance Al resistance in soybean roots.
Collapse
Affiliation(s)
- Ying He
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Zhengbiao Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wenmo Cui
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Qingxiu Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Meihui Zheng
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Wen Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jie Gao
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Zhenming Yang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiangfeng You
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
25
|
Cerruti P, Campobenedetto C, Montrucchio E, Agliassa C, Contartese V, Acquadro A, Bertea CM. Antioxidant activity and comparative RNA-seq analysis support mitigating effects of an algae-based biostimulant on drought stress in tomato plants. PHYSIOLOGIA PLANTARUM 2024; 176:e70007. [PMID: 39703136 DOI: 10.1111/ppl.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Drought is a significant global environmental stress. Biostimulants offer a sustainable solution to enhance crop tolerance and mitigate productivity losses. This study assessed the impact of foliar application of ERANTHIS®, a biostimulant derived from the algae Ascophyllum nodosum and Laminaria digitata and yeast extracts, on tomato plants under mild water stress. Evaluations were conducted at 5 and 24 hours after the third treatment. Under optimal water conditions, the biostimulant showed a priming effect, with an early increase of stress markers and a timing-specific modulation of ROS non enzymatic and enzymatic ROS scavenging activities. Under drought stress, the biostimulant later decreased stress markers, by aligning the majority of analyzed ROS scavengers closer to levels in well-irrigated plants. Transcriptome analysis using RNA-seq data revealed differentially expressed genes (DEGs) and multivariate data highlighted groups of co-regulated genes (k-means clustering). Genes involved in water channel activity, transcription regulator activity, and oxidoreductase activity were significantly modulated. Cluster analysis identified distinct gene clusters influenced by the biostimulant under optimal conditions, including early responses (cell wall modification, hormone signaling) and late responses (RNA modification, nutrient uptake process). Under water stress, early responses involved actin filament organization and MAPK signaling, while late responses were related to plasma membrane components and cell wall organization. This study, integrating biochemical and transcriptomic data, provides a comprehensive understanding of how a biostimulant primes plants under optimal conditions and mitigates water stress effects, offering valuable insights for sustainable agriculture.
Collapse
Affiliation(s)
- Paolo Cerruti
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | | | - Elisa Montrucchio
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | | | | | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| |
Collapse
|
26
|
Lin Q, Wang J, Gong J, Meng Z, Jin Y, Zhang L, Zhang Z, Sun J, Kai L, Qi S. Tomato SlARF5 participate in the flower organ initiation process and control plant height. BMC PLANT BIOLOGY 2024; 24:993. [PMID: 39438786 PMCID: PMC11515655 DOI: 10.1186/s12870-024-05707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Plant height is a critical agronomic trait closely linked to yield, primarily regulated by Gibberellins (GA) and auxins, which interact in complex ways. However, the mechanism underlying their interactions remain incompletely understood. In this study, we identified a tomato mutant exhibiting significantly reduced plant height. Through gene cloning and bulked segregant analysis (BSA) sequencing, we found that the mutant gene corresponds to the tomato auxin response factor gene SlARF5/MP. Here, we show that overexpression of SlARF5/MP significantly enhances plant height. Additionally, treatment with GA3 restored the plant height of the mutant to wild-type (WT) levels, indicating that GA content is a key factor influencing plant height. We also observed significant upregulation of GA-biosynthesis genes, including GA2-oxidases GA20ox3 and GA20ox4, as well as the GA3 biosynthesis gene GA3ox1, in SlARF5-overexpressing plants. Furthermore, we demonstrated that SlARF5 directly binds to SlGA2ox3, which mediates the conversion of GA3 to inactive GA, therebyregulating its expression. Our findings suggest that SlARF5 modulates GA3 metabolism by regulating GA synthesis genes, ultimately leading to alterations in plant height.
Collapse
Affiliation(s)
- Qingfang Lin
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jianyong Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Jiaxin Gong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - ZiZi Meng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yuting Jin
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lei Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Zhiliang Zhang
- Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Shilian Qi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
27
|
Wang D, Feng Q, Wang X, Sun Y, Zhou W, Zhan X. Indole-3-acetic acid enhances the co-transport of proton and phenanthrene mediated by TaSAUR80-5A in wheat roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124522. [PMID: 38986759 DOI: 10.1016/j.envpol.2024.124522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollution that can accumulate in crops and hazard human health. This study used phenanthrene (PHE) as a model PAH and employed hydroponic experiments to illustrate the role of indole-3-acetic acid (IAA) in the regulation of PHE accumulation in wheat roots. At optimal concentrations, wheat roots treated with PHE + IAA showed a 46.9% increase in PHE concentration, whereas treatment with PHE + P-chlorophenoxyisobutyric acid resulted in a 38.77% reduction. Transcriptome analysis identified TaSAUR80-5A as the crucial gene for IAA-enhancing PHE uptake. IAA increases plasma membrane H+-ATPase activity, promoting active transport of PHE via the PHE/H+ cotransport mechanism. These results provide not only the theoretical basis necessary to better understand the function of IAA in PAHs uptake and transport by staple crops, but also a strategy for controlling PAHs accumulation in staple crops and enhancing phytoremediation of PAH-contaminated environments.
Collapse
Affiliation(s)
- Dongru Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xuke Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Yilei Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Wenhui Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
28
|
Li S, Lu K, Zhang L, Fan L, Lv W, Liu DJ, Feng G. Low-dose 60Co-γ-ray irradiation promotes the growth of cucumber seedlings by inducing CsSAUR37 expression. PLANT MOLECULAR BIOLOGY 2024; 114:107. [PMID: 39333431 DOI: 10.1007/s11103-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Cucumber (Cucumis sativus L.) is a major vegetable crop grown globally, with a cultivation history of more than 3000 years. The limited genetic diversity, low rate of intraspecific variation, and extended periods of traditional breeding have resulted in slow progress in their genetic research and the development of new varieties. Gamma (γ)-ray irradiation potentially accelerates the breeding progress; however, the biological and molecular effects of γ-ray irradiation on cucumbers are unknown. Exposing cucumber seeds to 0, 50, 100, 150, 200, and 250 Gy doses of 60Co-γ-ray irradiation, this study aimed to investigate the resulting phenotype and physiological characteristics of seedling treatment to determine the optimal irradiation dose. The results showed that low irradiation doses (50-100 Gy) enhanced root growth, hypocotyl elongation, and lateral root numbers, promoting seedling growth. However, high irradiation doses (150-250 Gy) significantly inhibited seed germination and growth, decreasing the survival rate of seedlings. More than 100 Gy irradiation significantly decreased the total chlorophyll content while increasing the malondialdehyde (MDA) and H2O2 content in cucumber. Transcriptome sequencing analysis at 0, 50, 100, 150, 200, and 250 Gy doses showed that gene expression significantly differed between low and high irradiation doses. Gene Ontology enrichment and functional pathway enrichment analyses revealed that the auxin response pathway played a crucial role in seedling growth under low irradiation doses. Further, gene function analysis revealed that small auxin up-regulated gene CsSAUR37 was a key gene that was overexpressed in response to low irradiation doses, promoting primary root elongation and enhancing lateral root numbers by regulating the expression of protein phosphatase 2Cs (PP2Cs) and auxin synthesis genes.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - Ke Lu
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - La Zhang
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - Lianxue Fan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Lv
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China
| | - Da Jun Liu
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China.
| | - Guojun Feng
- Key Laboratory of Sugar Beet Genetic Breeding, College of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin, 150080, China.
| |
Collapse
|
29
|
Li L, Wonder J, Helming T, van Asselt G, Pantazopoulou CK, van de Kaa Y, Kohlen W, Pierik R, Kajala K. Evaluation of the roles of brassinosteroid, gibberellin and auxin for tomato internode elongation in response to low red:far-red light. PHYSIOLOGIA PLANTARUM 2024; 176:e14558. [PMID: 39360434 DOI: 10.1111/ppl.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
In this study, we explore the interplay between the plant hormones gibberellins (GA), brassinosteroids (BR), and Indole-3-Acetic Acid (IAA) in their collective impact on plant shade avoidance elongation under varying light conditions. We focus particularly on low Red:Far-red (R:FR) light conditions achieved by supplementing the background light with FR. We characterized the tomato internode response to low R:FR and, with RNA-seq analysis, we were able to identify some of the potential regulatory hormonal pathways. Through a series of exogenous pharmacological modulations of GA, IAA, and BR, we demonstrate that GA and BR are sufficient but also necessary for inducing stem elongation under low R:FR light conditions. Intriguingly, while IAA alone shows limited effects, its combination with GA yields significant elongation, suggesting a nuanced hormonal balance. Furthermore, we unveil the complex interplay of these hormones under light with low R:FR, where the suppression of one hormone's effect can be compensated by the others. This study provides insights into the hormonal mechanisms governing plant adaptation to light, highlighting the intricate and adaptable nature of plant growth responses. Our findings have far-reaching implications for agricultural practices, offering potential strategies for optimizing plant growth and productivity in various lighting environments.
Collapse
Affiliation(s)
- Linge Li
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Jesse Wonder
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ticho Helming
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Gijs van Asselt
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Chrysoula K Pantazopoulou
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Yorrit van de Kaa
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Wouter Kohlen
- Laboratory of Cell and Developmental Biology, Cluster Plant Developmental Biology, Wageningen University & Research, Wageningen, PB, The Netherlands
| | - Ronald Pierik
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Kaisa Kajala
- Experimental & Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
Ke D, Xie Y, Li H, Hu L, He Y, Guo C, Zhai Y, Guo J, Li K, Chu Z, Zhang J, Zhang X, Al-Babili S, Jiang K, Miao Y, Jia KP. Anchorene, a carotenoid-derived growth regulator, modulates auxin homeostasis by suppressing GH3-mediated auxin conjugation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39185936 DOI: 10.1111/jipb.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Anchorene, identified as an endogenous bioactive carotenoid-derived dialdehyde and diapocarotenoid, affects root development by modulating auxin homeostasis. However, the precise interaction between anchorene and auxin, as well as the mechanisms by which anchorene modulates auxin levels, remain largely elusive. In this study, we conducted a comparative analysis of anchorene's bioactivities alongside auxin and observed that anchorene induces multifaceted auxin-like effects. Through genetic and pharmacological examinations, we revealed that anchorene's auxin-like activities depend on the indole-3-pyruvate-dependent auxin biosynthesis pathway, as well as the auxin inactivation pathway mediated by Group II Gretchen Hagen 3 (GH3) proteins that mainly facilitate the conjugation of indole-3-acetic acid (IAA) to amino acids, leading to the formation of inactivated storage forms. Our measurements indicated that anchorene treatment elevates IAA levels while reducing the quantities of inactivated IAA-amino acid conjugates and oxIAA. RNA sequencing further revealed that anchorene triggers the expression of numerous auxin-responsive genes in a manner reliant on Group II GH3s. Additionally, our in vitro enzymatic assays and biolayer interferometry (BLI) assay demonstrated anchorene's robust suppression of GH3.17-mediated IAA conjugation with glutamate. Collectively, our findings highlight the significant role of carotenoid-derived metabolite anchorene in modulating auxin homeostasis, primarily through the repression of GH3-mediated IAA conjugation and inactivation pathways, offering novel insights into the regulatory mechanisms of plant bioactive apocarotenoids.
Collapse
Affiliation(s)
- Danping Ke
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
- Sanya Institute of Henan University, Sanya, 572025, China
| | - Yinpeng Xie
- State Key Laboratory for Crop Stress Resistance and High-Eficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Haipeng Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
- Sanya Institute of Henan University, Sanya, 572025, China
| | - Liqun Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
| | - Yi He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
| | - Chao Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
| | - Yahui Zhai
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
| | - Jinggong Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
- Sanya Institute of Henan University, Sanya, 572025, China
| | - Kun Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
- Sanya Institute of Henan University, Sanya, 572025, China
| | - Zongyan Chu
- Sanya Institute of Henan University, Sanya, 572025, China
| | - Junli Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
| | - Xuebin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kai Jiang
- Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Yuchen Miao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
- Sanya Institute of Henan University, Sanya, 572025, China
| | - Kun-Peng Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng, 450046, China
- Sanya Institute of Henan University, Sanya, 572025, China
| |
Collapse
|
31
|
Ma Y, Ma C, Zhou P, Gao F, Tan W, Huang X, Bai Y, Li M, Wang Z, Hayat F, Shi T, Ni Z, Gao Z. PmLBD3 links auxin and brassinosteroid signalling pathways on dwarfism in Prunus mume. BMC Biol 2024; 22:184. [PMID: 39183294 PMCID: PMC11346286 DOI: 10.1186/s12915-024-01985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Grafting with dwarf rootstock is an efficient method to control plant height in fruit production. However, the molecular mechanism remains unclear. Our previous study showed that plants with Prunus mume (mume) rootstock exhibited a considerable reduction in plant height, internode length, and number of nodes compared with Prunus persica (peach) rootstock. The present study aimed to investigate the mechanism behind the regulation of plant height by mume rootstocks through transcriptomic and metabolomic analyses with two grafting combinations, 'Longyan/Mume' and 'Longyan/Peach'. RESULTS There was a significant decrease in brassinolide levels in plants that were grafted onto mume rootstocks. Plant hormone signal transduction and brassinolide production metabolism gene expression also changed significantly. Flavonoid levels, amino acid and fatty acid metabolites, and energy metabolism in dwarf plants decreased. There was a notable upregulation of PmLBD3 gene expression in plant specimens that were subjected to grafting onto mume rootstocks. Auxin signalling cues promoted PmARF3 transcription, which directly controlled this upregulation. Through its binding to PmBAS1 and PmSAUR36a gene promoters, PmLBD3 promoted endogenous brassinolide inactivation and inhibited cell proliferation. CONCLUSIONS Auxin signalling and brassinolide levels are linked by PmLBD3. Our findings showed that PmLBD3 is a key transcription factor that regulates the balance of hormones through the auxin and brassinolide signalling pathways and causes dwarf plants in stone fruits.
Collapse
Affiliation(s)
- Yufan Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chengdong Ma
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengyu Zhou
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feng Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Tan
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiao Huang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yang Bai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minglu Li
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ziqi Wang
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Faisal Hayat
- College of Horticulture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaojun Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
Váczy KZ, Otto M, Gomba-Tóth A, Geiger A, Golen R, Hegyi-Kaló J, Cels T, Geml J, Zsófi Z, Hegyi ÁI. Botrytis cinerea causes different plant responses in grape ( Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence. FRONTIERS IN PLANT SCIENCE 2024; 15:1433161. [PMID: 39166245 PMCID: PMC11333459 DOI: 10.3389/fpls.2024.1433161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
The complexity of the interaction between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can result in the formation of either the preferred noble rot (NR) or the loss-making grey rot (GR), depending on the prevailing climatic conditions. In this study, we focus on the functional gene set of V. vinifera by performing multidimensional scaling followed by differential expression and enrichment analyses. The aim of this study is to identify the differences in gene expression between grape berries in the phases of grey rot, noble rot, and developing rot (DR, in its early stages) phases. The grapevine transcriptome at the NR phase was found to exhibit significant differences from that at the DR and GR stages, which displayed strong similarities. Similarly, several plant defence-related pathways, including plant-pathogen interactions as hypersensitive plant responses were found to be enriched. The results of the analyses identified a potential plant stress response pathway (SGT1 activated hypersensitive response) that was found to be upregulated in the GR berry but downregulated in the NR berry. The study revealed a decrease in defence-related in V. vinifera genes during the NR stages, with a high degree of variability in functions, particularly in enriched pathways. This indicates that the plant is not actively defending itself against Botrytis cinerea, which is otherwise present on its surface with high biomass. This discrepancy underscores the notion that during the NR phase, the grapevine and the pathogenic fungi interact in a state of equilibrium. Conversely the initial stages of botrytis infection manifest as a virulent fungus-plant interaction, irrespective of whether the outcome is grey or noble rot.
Collapse
Affiliation(s)
- Kálmán Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Margot Otto
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Adrienn Gomba-Tóth
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Adrienn Geiger
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Golen
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Thomas Cels
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - Ádám István Hegyi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
33
|
Kim TL, Oh C, Denison MIJ, Natarajan S, Lee K, Lim H. Transcriptomic and physiological responses of Quercus acutissima and Quercus palustris to drought stress and rewatering. FRONTIERS IN PLANT SCIENCE 2024; 15:1430485. [PMID: 39166236 PMCID: PMC11333329 DOI: 10.3389/fpls.2024.1430485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Establishment of oak seedlings, which is an important factor in forest restoration, is affected by drought that hampers the survival, growth, and development of seedlings. Therefore, it is necessary to understand how seedlings respond to and recover from water-shortage stress. We subjected seedlings of two oak species, Quercus acutissima and Quercus palustris, to drought stress for one month and then rewatered them for six days to observe physiological and genetic expression changes. Phenotypically, the growth of Q. acutissima was reduced and severe wilting and recovery failure were observed in Q. palustris after an increase in plant temperature. The two species differed in several physiological parameters during drought stress and recovery. Although the photosynthesis-related indicators did not change in Q. acutissima, they were decreased in Q. palustris. Moreover, during drought, content of soluble sugars was significantly increased in both species, but it recovered to original levels only in Q. acutissima. Malondialdehyde content increased in both the species during drought, but it did not recover in Q. palustris after rewatering. Among the antioxidant enzymes, only superoxide dismutase activity increased in Q. acutissima during drought, whereas activities of ascorbate peroxidase, catalase, and glutathione reductase increased in Q. palustris. Abscisic acid levels were increased and then maintained in Q. acutissima, but recovered to previous levels after rewatering in Q. palustris. RNA samples from the control, drought, recovery day 1, and recovery day 6 treatment groups were compared using transcriptome analysis. Q. acutissima exhibited 832 and 1076 differentially expressed genes (DEGs) related to drought response and recovery, respectively, whereas Q. palustris exhibited 3947 and 1587 DEGs, respectively under these conditions. Gene ontology enrichment of DEGs revealed "response to water," "apoplast," and "Protein self-association" to be common to both the species. However, in the heatmap analysis of genes related to sucrose and starch synthesis, glycolysis, antioxidants, and hormones, the two species exhibited very different transcriptome responses. Nevertheless, the levels of most DEGs returned to their pre-drought levels after rewatering. These results provide a basic foundation for understanding the physiological and genetic expression responses of oak seedlings to drought stress and recovery.
Collapse
Affiliation(s)
- Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | | | | | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| |
Collapse
|
34
|
Zheng Y, Zhao Z, Zou H, Wang W, Yang D, Gao Y, Meng R, Zhang S. Genomic analysis of PIN-FORMED genes reveals the roles of SmPIN3 in root architecture development in Salvia miltiorrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108827. [PMID: 38875779 DOI: 10.1016/j.plaphy.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/05/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Salvia miltiorrhiza is a widely utilized medicinal herb in China. Its roots serve as crucial raw materials for multiple drugs. The root morphology is essential for the quality of this herb, but little is known about the molecular mechanism underlying the root development in S. miltiorrhiza. Previous study reveals that the polar auxin transport is critical for lateral root development in S. miltiorrhiza. Whether the auxin efflux carriers PIN-FORMEDs (PINs) are involved in this process is worthy investigation. In this study, we identified nine SmPIN genes in S. miltiorrhiza, and their chromosome localization, physico-chemical properties, and phylogenetic relationship were analyzed. SmPINs were unevenly distributed across four chromosomes, and a variety of hormone responsive elements were detected in their promoter regions. The SmPIN proteins were divided into three branches according to the phylogenetic relationship. SmPINs with close evolutionary distance showed similar conserved motif features. The nine SmPINs showed distinct tissue-specific expression patterns and most of them were auxin-inducible genes. We generated SmPIN3 overexpression S. miltiorrhiza seedlings to investigate the function of SmPIN3 in the root development in this species. The results demonstrated that SmPIN3 regulated the root morphogenesis of S. miltiorrhiza by simultaneously affecting the lateral root development and the root anatomical structure. The root morphology, patterns of root xylem and phloem as well as the expressions of genes in the auxin signaling pathway all altered in the SmPIN3 overexpression lines. Our findings provide new insights for elucidating the regulatory roles of SmPINs in the auxin-mediated root development in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yuwei Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ziyang Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Haiyan Zou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yuanyuan Gao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Ru Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
35
|
Zeeshan M, Sun C, Wang X, Hu Y, Wu H, Li S, Salam A, Zhu S, Khan AH, Holford P, Ali MA, Elshikh MS, Zhang Z, Zhang P. Insights into the ameliorative effect of ZnONPs on arsenic toxicity in soybean mediated by hormonal regulation, transporter modulation, and stress responsive genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1427367. [PMID: 39139724 PMCID: PMC11319271 DOI: 10.3389/fpls.2024.1427367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Arsenic (As) contamination of agricultural soils poses a serious threat to crop productivity and food safety. Zinc oxide nanoparticles (ZnONPs) have emerged as a potential amendment for mitigating the adverse effects of As stress in plants. Soybean crop is mostly grown on marginalized land and is known for high accumulation of As in roots than others tissue. Therefore, this study aimed to elucidate the underlying mechanisms of ZnONPs in ameliorating arsenic toxicity in soybean. Our results demonstrated that ZnOB significantly improved the growth performance of soybean plants exposed to arsenic. This improvement was accompanied by a decrease (55%) in As accumulation and an increase in photosynthetic efficiency. ZnOB also modulated hormonal balance, with a significant increase in auxin (149%), abscisic acid (118%), gibberellin (160%) and jasmonic acid content (92%) under As(V) stress assuring that ZnONPs may enhance root growth and development by regulating hormonal signaling. We then conducted a transcriptomic analysis to understand further the molecular mechanisms underlying the NPs-induced As(V) tolerance. This analysis identified genes differentially expressed in response to ZnONPs supplementation, including those involved in auxin, abscisic acid, gibberellin, and jasmonic acid biosynthesis and signaling pathways. Weighted gene co-expression network analysis identified 37 potential hub genes encoding stress responders, transporters, and signal transducers across six modules potentially facilitated the efflux of arsenic from cells, reducing its toxicity. Our study provides valuable insights into the molecular mechanisms associated with metalloid tolerance in soybean and offers new avenues for improving As tolerance in contaminated soils.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Xin Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yuxin Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hao Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Shengnan Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Abdul Salam
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Shiqi Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Aamir Hamid Khan
- Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature conservation, University of Lodz, Lodz, Poland
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Peiwen Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
36
|
Shammi T, Lee Y, Trivedi J, Sierras D, Mansoor A, Maxwell JM, Williamson M, McMillan M, Chakravarty I, Uhde-Stone C. Transcriptomics Provide Insights into Early Responses to Sucrose Signaling in Lupinus albus, a Model Plant for Adaptations to Phosphorus and Iron Deficiency. Int J Mol Sci 2024; 25:7692. [PMID: 39062943 PMCID: PMC11277447 DOI: 10.3390/ijms25147692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphorus (P) and iron (Fe) deficiency are major limiting factors for plant productivity worldwide. White lupin (Lupinus albus L.) has become a model plant for understanding plant adaptations to P and Fe deficiency, because of its ability to form cluster roots, bottle-brush-like root structures play an important role in the uptake of P and Fe from soil. However, little is known about the signaling pathways involved in sensing and responding to P and Fe deficiency. Sucrose, sent in increased concentrations from the shoot to the root, has been identified as a long-distance signal of both P and Fe deficiency. To unravel the responses to sucrose as a signal, we performed Oxford Nanopore cDNA sequencing of white lupin roots treated with sucrose for 10, 15, or 20 min compared to untreated controls. We identified a set of 17 genes, including 2 bHLH transcription factors, that were up-regulated at all three time points of sucrose treatment. GO (gene ontology) analysis revealed enrichment of auxin and gibberellin responses as early as 10 min after sucrose addition, as well as the emerging of ethylene responses at 20 min of sucrose treatment, indicating a sequential involvement of these hormones in plant responses to sucrose.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Claudia Uhde-Stone
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA; (T.S.)
| |
Collapse
|
37
|
Long Y, Zeng J, Liu X, Wang Z, Tong Q, Zhou R, Liu X. Transcriptomic and metabolomic profiling reveals molecular regulatory network involved in flower development and phenotypic changes in two Lonicera macranthoides varieties. 3 Biotech 2024; 14:174. [PMID: 38855147 PMCID: PMC11153451 DOI: 10.1007/s13205-024-04019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
Due to the medicinal importance of the flowers of Xianglei type (XL) Lonicera macranthoides, it is important to understand the molecular mechanisms that underlie their development. In this study, we elucidated the transcriptomic and metabolomic mechanisms that underlie the flower development mechanism of two L. macranthoides varieties. In this study, 3435 common differentially expressed unigenes (DEGs) and 1138 metabolites were identified. These common DEGs were mainly enriched in plant hormone signal transduction pathways. Metabolomic analysis showed that amino acids were the main metabolites of differential accumulation in wild-type (WT) L. macranthoides, whereas in XL, they were flavonoids and phenylalanine metabolites. Genes and transcription factors (TFs), such as MYB340, histone deacetylase 1 (HDT1), small auxin-up RNA 32 (SAUR32), auxin response factor 6 (ARF6), PIN-LIKES 7 (PILS7), and WRKY6, likely drive metabolite accumulation. Plant hormone signals, especially auxin signals, and various TFs induce downstream flower organ recognition genes, resulting in a differentiation of the two L. macranthoides varieties in terms of their developmental trajectories. In addition, photoperiodic, autonomous, and plant hormone pathways jointly regulated the L. macranthoides corolla opening. SAUR32, Arabidopsis response regulator 9 (ARR9), Gibberellin receptor (GID1B), and Constans-like 10 (COL10) were closely related to the unfolding of the L. macranthoides corolla. These findings offer valuable understanding of the flower growth process of L. macranthoides and the excellent XL phenotypes at the molecular level. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04019-1.
Collapse
Affiliation(s)
- YuQing Long
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - Juan Zeng
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - XiaoRong Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - ZhiHui Wang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
| | - QiaoZhen Tong
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208 Hunan Province China
| | - RiBao Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208 Hunan Province China
| | - XiangDan Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan Province China
- Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-Scale Genuine Medicinal Materials, Changsha, 410208 Hunan Province China
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208 Hunan Province China
| |
Collapse
|
38
|
Lai Y, Ma J, Zhang X, Xuan X, Zhu F, Ding S, Shang F, Chen Y, Zhao B, Lan C, Unver T, Huo G, Li X, Wang Y, Liu Y, Lu M, Pan X, Yang D, Li M, Zhang B, Zhang D. High-quality chromosome-level genome assembly and multi-omics analysis of rosemary (Salvia rosmarinus) reveals new insights into the environmental and genome adaptation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1833-1847. [PMID: 38363812 PMCID: PMC11182591 DOI: 10.1111/pbi.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
High-quality genome of rosemary (Salvia rosmarinus) represents a valuable resource and tool for understanding genome evolution and environmental adaptation as well as its genetic improvement. However, the existing rosemary genome did not provide insights into the relationship between antioxidant components and environmental adaptability. In this study, by employing Nanopore sequencing and Hi-C technologies, a total of 1.17 Gb (97.96%) genome sequences were mapped to 12 chromosomes with 46 121 protein-coding genes and 1265 non-coding RNA genes. Comparative genome analysis reveals that rosemary had a closely genetic relationship with Salvia splendens and Salvia miltiorrhiza, and it diverged from them approximately 33.7 million years ago (MYA), and one whole-genome duplication occurred around 28.3 MYA in rosemary genome. Among all identified rosemary genes, 1918 gene families were expanded, 35 of which are involved in the biosynthesis of antioxidant components. These expanded gene families enhance the ability of rosemary adaptation to adverse environments. Multi-omics (integrated transcriptome and metabolome) analysis showed the tissue-specific distribution of antioxidant components related to environmental adaptation. During the drought, heat and salt stress treatments, 36 genes in the biosynthesis pathways of carnosic acid, rosmarinic acid and flavonoids were up-regulated, illustrating the important role of these antioxidant components in responding to abiotic stresses by adjusting ROS homeostasis. Moreover, cooperating with the photosynthesis, substance and energy metabolism, protein and ion balance, the collaborative system maintained cell stability and improved the ability of rosemary against harsh environment. This study provides a genomic data platform for gene discovery and precision breeding in rosemary. Our results also provide new insights into the adaptive evolution of rosemary and the contribution of antioxidant components in resistance to harsh environments.
Collapse
Affiliation(s)
- Yong Lai
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Jinghua Ma
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Xiaobo Xuan
- Key Laboratory of Water Management and Water Security for Yellow River BasinMinistry of Water ResourcesZhengzhouHenanChina
| | - Fengyun Zhu
- School of Biological and Food Processing EngineeringHuanghuai UniversityZhumadianHenanChina
| | - Shen Ding
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Fude Shang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yuanyuan Chen
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi‐Omics Research, School of Life SciencesHenan UniversityKaifengHenanChina
| | | | - George Huo
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Ximei Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Yihan Wang
- College of Life ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Yufang Liu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mengfei Lu
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Xiaoping Pan
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Deshuang Yang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingwan Li
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| | - Baohong Zhang
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dangquan Zhang
- College of ForestryHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
39
|
Baiyin B, Xiang Y, Shao Y, Son JE, Yamada S, Tagawa K, Yang Q. Effect of Nutrient Solution Flow on Lettuce Root Morphology in Hydroponics: A Multi-Omics Analysis of Hormone Synthesis and Signal Transduction. PHYSIOLOGIA PLANTARUM 2024; 176:e14435. [PMID: 39036950 DOI: 10.1111/ppl.14435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
This study examined how the nutrient flow environment affects lettuce root morphology in hydroponics using multi-omics analysis. The results indicate that increasing the nutrient flow rate initially increased indicators such as fresh root weight, root length, surface area, volume, and average diameter before declining, which mirrors the trend observed for shoot fresh weight. Furthermore, a high-flow environment significantly increased root tissue density. Further analysis using Weighted Gene Co-expression Network Analysis (WGCNA) and Weighted Protein Co-expression Network Analysis (WPCNA) identified modules that were highly correlated with phenotypes and hormones. The analysis revealed a significant enrichment of hormone signal transduction pathways. Differences in the expression of genes and proteins related to hormone synthesis and transduction pathways were observed among the different flow conditions. These findings suggest that nutrient flow may regulate hormone levels and signal transmission by modulating the genes and proteins associated with hormone biosynthesis and signaling pathways, thereby influencing root morphology. These findings should support the development of effective methods for regulating the flow of nutrients in hydroponic contexts.
Collapse
Affiliation(s)
- Bateer Baiyin
- Research Center for Smart Horticulture Engineering, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Yue Xiang
- Research Center for Smart Horticulture Engineering, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu, China
| | - Yang Shao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Satoshi Yamada
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kotaro Tagawa
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Qichang Yang
- Research Center for Smart Horticulture Engineering, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu, China
| |
Collapse
|
40
|
Noureddine J, Mu B, Hamidzada H, Mok WL, Bonea D, Nambara E, Zhao R. Knockout of endoplasmic reticulum-localized molecular chaperone HSP90.7 impairs seedling development and cellular auxin homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:218-236. [PMID: 38565312 DOI: 10.1111/tpj.16754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The Arabidopsis endoplasmic reticulum-localized heat shock protein HSP90.7 modulates tissue differentiation and stress responses; however, complete knockout lines have not been previously reported. In this study, we identified and analyzed a mutant allele, hsp90.7-1, which was unable to accumulate the HSP90.7 full-length protein and showed seedling lethality. Microscopic analyses revealed its essential role in male and female fertility, trichomes and root hair development, proper chloroplast function, and apical meristem maintenance and differentiation. Comparative transcriptome and proteome analyses also revealed the role of the protein in a multitude of cellular processes. Particularly, the auxin-responsive pathway was specifically downregulated in the hsp90.7-1 mutant seedlings. We measured a much-reduced auxin content in both root and shoot tissues. Through comprehensive histological and molecular analyses, we confirmed PIN1 and PIN5 accumulations were dependent on the HSP90 function, and the TAA-YUCCA primary auxin biosynthesis pathway was also downregulated in the mutant seedlings. This study therefore not only fulfilled a gap in understanding the essential role of HSP90 paralogs in eukaryotes but also provided a mechanistic insight on the ER-localized chaperone in regulating plant growth and development via modulating cellular auxin homeostasis.
Collapse
Affiliation(s)
- Jenan Noureddine
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bona Mu
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Homaira Hamidzada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Wai Lam Mok
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Diana Bonea
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Eiji Nambara
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Li XM, Zhai HH, An XH, Zhang H, Zhang X, Wang P, Chen H, Tian Y. PpSAUR5 promotes plant growth by regulating lignin and hormone pathways. FRONTIERS IN PLANT SCIENCE 2024; 15:1291693. [PMID: 38984157 PMCID: PMC11231374 DOI: 10.3389/fpls.2024.1291693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/08/2024] [Indexed: 07/11/2024]
Abstract
Introduction Peach (Prunus persica) has a high nutritional and economic value. However, its overgrowth can lead to yield loss. Regulating the growth of peach trees is challenging. The small auxin-up RNA (SAUR) gene family is the largest family of auxin-responsive genes, which play important roles in plant growth and development. However, members of this gene family are rarely reported in peach. Methods In this study, we measured leaf area, chlorophyll and lignin content to detect the role of PpSAUR5 on growth through transgenic Arabidopsis. Results PpSAUR5 responds to auxin and gibberellin, promoting and inhibiting the synthesis of gibberellin and auxin, respectively. The heterologous transformation of PpSAUR5 in Arabidopsis led to enhanced growth of leaves and siliques, lightening of leaf color, decrease in chlorophyll content, increase in lignin content, abnormalities in the floral organs, and distortion of the inflorescence axis. Transcriptome data analysis of PpSAUR5 overexpression and wild-type lines revealed 854 differentially expressed genes (DEGs). GO and KEGG analyses showed that the DEGs were primarily involved in biological processes, such as cellular processes, metabolic processes, response to stimuli, and catalytic activity. These genes were mainly enriched in pathways, such as phenylalanine biosynthesis, phytohormone signaling, and MAPK signaling. Discussion In summary, these results suggested that PpSAUR5 might regulate tree vigor by modulating the synthesis of auxin and gibberellin. Future studies can use PpSAUR5 as a candidate gene to elucidate the potential regulatory mechanisms underlying peach tree vigor.
Collapse
Affiliation(s)
- Xin-Miao Li
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Han-Han Zhai
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiu-Hong An
- National Engineering Research Center for Agriculture in Northern Moutainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| | - He Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Xueying Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Pengfei Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Haijiang Chen
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yi Tian
- National Engineering Research Center for Agriculture in Northern Moutainous Areas, Agricultural Technology Innovation Center in Mountainous Areas of Hebei Province, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
42
|
Febres VJ, Fadli A, Meyering B, Yu F, Bowman KD, Chaparro JX, Albrecht U. Dissection of transcriptional events in graft incompatible reactions of "Bearss" lemon ( Citrus limon) and "Valencia" sweet orange ( C. sinensis) on a novel citrandarin ( C. reticulata × Poncirus trifoliata) rootstock. FRONTIERS IN PLANT SCIENCE 2024; 15:1421734. [PMID: 38966146 PMCID: PMC11222572 DOI: 10.3389/fpls.2024.1421734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Citrus is commercially propagated via grafting, which ensures trees have consistent fruit traits combined with favorable traits from the rootstock such as soil adaptability, vigor, and resistance to soil pathogens. Graft incompatibility can occur when the scion and rootstock are not able to form a permanent, healthy union. Understanding and preventing graft incompatibility is of great importance in the breeding of new fruit cultivars and in the choice of scion and rootstock by growers. The rootstock US-1283, a citrandarin generated from a cross of "Ninkat" mandarin (Citrus reticulata) and "Gotha Road" #6 trifoliate orange (Poncirus trifoliata), was released after years of field evaluation because of its superior productivity and good fruit quality on "Hamlin" sweet orange (C. sinensis) under Florida's growing conditions. Subsequently, it was observed that trees of "Bearss" lemon (C. limon) and "Valencia" sweet orange (C. sinensis) grafted onto US-1283 exhibited unhealthy growth near the graft union. The incompatibility manifested as stem grooving and necrosis underneath the bark on the rootstock side of the graft. Another citrandarin rootstock, US-812 (C. reticulata "Sunki" × P. trifoliata "Benecke"), is fully graft compatible with the same scions. Transcriptome analysis was performed on the vascular tissues above and below the graft union of US-812 and US-1283 graft combinations with "Bearss" and "Valencia" to identify expression networks associated with incompatibility and help understand the processes and potential causes of incompatibility. Transcriptional reprogramming was stronger in the incompatible rootstock than in the grafted scions. Differentially expressed genes (DEGs) in US-1283, but not the scions, were associated with oxidative stress and plant defense, among others, similar to a pathogen-induced immune response localized to the rootstock; however, no pathogen infection was detected. Therefore, it is hypothesized that this response could have been triggered by signaling miscommunications between rootstock and scion either through (1) unknown molecules from the scion that were perceived as danger signals by the rootstock, (2) missing signals from the scion or missing receptors in the rootstock necessary for the formation of a healthy graft union, (3) the overall perception of the scion by the rootstock as non-self, or (4) a combination of the above.
Collapse
Affiliation(s)
- Vicente J. Febres
- Horticultural Sciences Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL, United States
| | - Anas Fadli
- Southwest Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Immokalee, FL, United States
| | - Bo Meyering
- Southwest Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Immokalee, FL, United States
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, United States
| | - Kim D. Bowman
- Horticultural Research Laboratory, United States Department of Agriculture (USDA), Fort Pierce, FL, United States
| | - Jose Xavier Chaparro
- Horticultural Sciences Department, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Gainesville, FL, United States
| | - Ute Albrecht
- Southwest Florida Research and Education Center, University of Florida/Institute of Food and Agricultural Sciences (IFAS), Immokalee, FL, United States
| |
Collapse
|
43
|
Dai Y, Chen H, Li Y, Hui R, Zhang Z. Promising New Methods Based on the SOD Enzyme and SAUR36 Gene to Screen for Canola Materials with Heavy Metal Resistance. BIOLOGY 2024; 13:441. [PMID: 38927321 PMCID: PMC11200428 DOI: 10.3390/biology13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Canola is the largest self-produced vegetable oil source in China, although excessive levels of cadmium, lead, and arsenic seriously affect its yield. Therefore, developing methods to identify canola materials with good heavy metal tolerance is a hot topic for canola breeding. In this study, canola near-isogenic lines with different oil contents (F338 (40.62%) and F335 (46.68%) as the control) and heavy metal tolerances were used as raw materials. In an experiment with 100 times the safe standard values, the superoxide dismutase (SOD) and peroxidase (POD) activities of F335 were 32.02 mmol/mg and 71.84 mmol/mg, while the activities of F338 were 24.85 mmol/mg and 63.86 mmol/mg, exhibiting significant differences. The DEGs and DAPs in the MAPK signaling pathway of the plant hormone signal transduction pathway and other related pathways were analyzed and verified using RT-qPCR. SAUR36 and SAUR32 were identified as the key differential genes. The expression of the SAUR36 gene in canola materials planted in the experimental field was significantly higher than in the control, and FY958 exhibited the largest difference (27.82 times). In this study, SOD and SAUR36 were found to be closely related to heavy metal stress tolerance. Therefore, they may be used to screen for new canola materials with good heavy metal stress tolerance for canola breeding.
Collapse
Affiliation(s)
- Yue Dai
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Hao Chen
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Yufang Li
- Hunan Cotton Science Institute, No. 3036 Shanjuan Road, Changde 415101, China;
| | - Rongkui Hui
- Hunan Province Institute of Agricultural Science, South of Hongyuan East Road, Changsha 410125, China
| | - Zhenqian Zhang
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| |
Collapse
|
44
|
Wang W, Zheng Y, Qiu L, Yang D, Zhao Z, Gao Y, Meng R, Zhao H, Zhang S. Genome-wide identification of the SAUR gene family and screening for SmSAURs involved in root development in Salvia miltiorrhiza. PLANT CELL REPORTS 2024; 43:165. [PMID: 38861173 DOI: 10.1007/s00299-024-03260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
KEY MESSAGE SmSAUR4, SmSAUR18, SmSAUR28, SmSAUR37, and SmSAUR38 were probably involved in the auxin-mediated root development in Salvia miltiorrhiza. Salvia miltiorrhiza is a widely utilized medicinal plant in China. Its roots and rhizomes are the main medicinal portions and are closely related to the quality of this herb. Previous studies have revealed that auxin plays pivotal roles in S. miltiorrhiza root development. Whether small auxin-up RNA genes (SAURs), which are crucial early auxin response genes, are involved in auxin-mediated root development in S. miltiorrhiza is worthy of investigation. In this study, 55 SmSAUR genes in S. miltiorrhiza were identified, and their physical and chemical properties, gene structure, cis-acting elements, and evolutionary relationships were analyzed. The expression levels of SmSAUR genes in different organs of S. miltiorrhiza were detected using RNA-seq combined with qRT‒PCR. The root development of S. miltiorrhiza seedlings was altered by the application of indole-3-acetic acid (IAA), and Pearson correlation coefficient analysis was conducted to screen SmSAURs that potentially participate in this physiological process. The diameter of primary lateral roots was positively correlated with SmSAUR4. The secondary lateral root number was positively correlated with SmSAUR18 and negatively correlated with SmSAUR4. The root length showed a positive correlation with SmSAUR28 and SmSAUR37 and a negative correlation with SmSAUR38. The fresh root biomass exhibited a positive correlation with SmSAUR38 and a negative correlation with SmSAUR28. The aforementioned SmSAURs were likely involved in auxin-mediated root development in S. miltiorrhiza. Our study provides a comprehensive overview of SmSAURs and provides the groundwork for elucidating the molecular mechanism underlying root morphogenesis in this species.
Collapse
Affiliation(s)
- Wei Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuwei Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lin Qiu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Ziyang Zhao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yuanyuan Gao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Ru Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongguang Zhao
- Shaanxi Tasly Plants Pharmaceutical Co., Ltd., Shangluo, 726000, Shaanxi, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
45
|
Jiang G, Koppolu R, Rutten T, Hensel G, Lundqvist U, Tandron Moya YA, Huang Y, Rajaraman J, Poursarebani N, von Wirén N, Kumlehn J, Mascher M, Schnurbusch T. Non-cell-autonomous signaling associated with barley ALOG1 specifies spikelet meristem determinacy. Curr Biol 2024; 34:2344-2358.e5. [PMID: 38781954 DOI: 10.1016/j.cub.2024.04.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Inflorescence architecture and crop productivity are often tightly coupled in our major cereal crops. However, the underlying genetic mechanisms controlling cereal inflorescence development remain poorly understood. Here, we identified recessive alleles of barley (Hordeum vulgare L.) HvALOG1 (Arabidopsis thaliana LSH1 and Oryza G1) that produce non-canonical extra spikelets and fused glumes abaxially to the central spikelet from the upper-mid portion until the tip of the inflorescence. Notably, we found that HvALOG1 exhibits a boundary-specific expression pattern that specifically excludes reproductive meristems, implying the involvement of previously proposed localized signaling centers for branch regulation. Importantly, during early spikelet formation, non-cell-autonomous signals associated with HvALOG1 expression may specify spikelet meristem determinacy, while boundary formation of floret organs appears to be coordinated in a cell-autonomous manner. Moreover, barley ALOG family members synergistically modulate inflorescence morphology, with HvALOG1 predominantly governing meristem maintenance and floral organ development. We further propose that spatiotemporal redundancies of expressed HvALOG members specifically in the basal inflorescence may be accountable for proper patterning of spikelet formation in mutant plants. Our research offers new perspectives on regulatory signaling roles of ALOG transcription factors during the development of reproductive meristems in cereal inflorescences.
Collapse
Affiliation(s)
- Guojing Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | | | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
46
|
Chu NTB, Le MT, La HV, Le QTN, Le TD, Tran HTT, Tran LTM, Le CT, Nguyen DV, Cao PB, Chu HD. Genome-wide identification, characterization, and expression analysis of the small auxin-up RNA gene family during zygotic and somatic embryo maturation of the cacao tree (Theobroma cacao). Genomics Inform 2024; 22:2. [PMID: 38907330 PMCID: PMC11184954 DOI: 10.1186/s44342-024-00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 06/23/2024] Open
Abstract
Small auxin-up RNA (SAUR) proteins were known as a large family that supposedly participated in various biological processes in higher plant species. However, the SAUR family has been still not explored in cacao (Theobroma cacao L.), one of the most important industrial trees. The present work, as an in silico study, revealed comprehensive aspects of the structure, phylogeny, and expression of TcSAUR gene family in cacao. A total of 90 members of the TcSAUR gene family have been identified and annotated in the cacao genome. According to the physic-chemical features analysis, all TcSAUR proteins exhibited slightly similar characteristics. Phylogenetic analysis showed that these TcSAUR proteins could be categorized into seven distinct groups, with 10 sub-groups. Our results suggested that tandemly duplication events, segmental duplication events, and whole genome duplication events might be important in the growth of the TcSAUR gene family in cacao. By re-analyzing the available transcriptome databases, we found that a number of TcSAUR genes were exclusively expressed during the zygotic embryogenesis and somatic embryogenesis. Taken together, our study will be valuable to further functional characterizations of candidate TcSAUR genes for the genetic engineering of cacao.
Collapse
Affiliation(s)
- Ngoc Thi Bich Chu
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Man Thi Le
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Hong Viet La
- Institute of Research and Application, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Quynh Thi Ngoc Le
- Department of Biotechnology, Thuyloi University, Hanoi City, 116830, Vietnam
| | - Thao Duc Le
- Agricultural Genetics Institute, Vietnam Academy of Agricultural Sciences, Hanoi City, 143330, Vietnam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, Hanoi National University of Education, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam
| | - Lan Thi Mai Tran
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
| | - Chi Toan Le
- Faculty of Biology and Agricultural Engineering, Hanoi Pedagogical University 2, Phuc Yen City, Vinh Phuc Province, 280000, Vietnam
| | - Dung Viet Nguyen
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam
- Thanh Thuy Junior High School, Thanh Thuy District, Phu Tho Province, 35850, Vietnam
| | - Phi Bang Cao
- Faculty of Natural Sciences, Hung Vuong University, Viet Tri City, Phu Tho Province, 35000, Vietnam.
| | - Ha Duc Chu
- Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University Hanoi, Xuan Thuy Road, Cau Giay District, Hanoi City, 122300, Vietnam.
| |
Collapse
|
47
|
Yamazaki K, Ohmori Y, Takahashi H, Toyoda A, Sato Y, Nakazono M, Fujiwara T. Transcriptome Analysis of Rice Root Tips Reveals Auxin, Gibberellin and Ethylene Signaling Underlying Nutritropism. PLANT & CELL PHYSIOLOGY 2024; 65:671-679. [PMID: 38226464 PMCID: PMC11094756 DOI: 10.1093/pcp/pcae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Nutritropism is a positive tropism toward nutrients in plant roots. An NH4+ gradient is a nutritropic stimulus in rice (Oryza sativa L.). When rice roots are exposed to an NH4+ gradient generated around nutrient sources, root tips bend toward and coil around the sources. The molecular mechanisms are largely unknown. Here, we analyzed the transcriptomes of the inside and outside of bending root tips exhibiting nutritropism to reveal nutritropic signal transduction. Tissues facing the nutrient sources (inside) and away (outside) were separately collected by laser microdissection. Principal component analysis revealed distinct transcriptome patterns between the two tissues. Annotations of 153 differentially expressed genes implied that auxin, gibberellin and ethylene signaling were activated differentially between the sides of the root tips under nutritropism. Exogenous application of transport and/or biosynthesis inhibitors of these phytohormones largely inhibited the nutritropism. Thus, signaling and de novo biosynthesis of the three phytohormones are necessary for nutritropism. Expression patterns of IAA genes implied that auxins accumulated more in the inside tissues, meaning that ammonium stimulus is transduced to auxin signaling in nutritropism similar to gravity stimulus in gravitropism. SAUR and expansin genes, which are known to control cell wall modification and to promote cell elongation in shoot gravitropism, were highly expressed in the inside tissues rather than the outside tissues, and our transcriptome data are unexplainable for differential elongation in root nutritropism.
Collapse
Affiliation(s)
- Kiyoshi Yamazaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Yoshihiro Ohmori
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
| | - Yutaka Sato
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, 411-8540 Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601 Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
48
|
Zhu Q, Zheng H, Hu X, Liu Y, Zheng X, Li L, Tang M. Genome-Wide Analysis of the SAUR Gene Family and Its Expression Profiles in Response to Salt Stress in Santalum album. PLANTS (BASEL, SWITZERLAND) 2024; 13:1286. [PMID: 38794357 PMCID: PMC11125248 DOI: 10.3390/plants13101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
The SAUR (small auxin-up RNA) family constitutes a category of genes that promptly respond to the hormone auxin and play a pivotal role in diverse biological processes encompassing plant growth and the response to abiotic stress. Santalum album L., a semi-parasitic evergreen tree, is renowned for its economically valuable essential oils, positioning it among the most prized tree species. In this study, a meticulous identification and comprehensive analysis of 43 SAUR genes was conducted within S. album. Based on phylogenetic relationships, the SaSAUR genes were systematically categorized into five groups. A collinearity analysis revealed intriguing insights, disclosing 14 segmental duplications and 9 tandem duplications within the SaSAUR genes, emphasizing the pivotal role of duplication in the expansion of this gene family. Noteworthy variations in the expression levels of SaSAUR genes were observed by delving into the SaSAUR transcriptome data from various tissues, including leaves, roots, and heartwood, as well as under salt-stress conditions. Notably, SaSAUR08 and SaSAUR13 were significantly upregulated in heartwood compared with roots and leaves, while SaSAUR18 was markedly more expressed in roots compared with heartwood and leaves. Furthermore, SaSAUR27 and SaSAUR28 were found to respond closely to salt stress, hinting at their potential involvement in the salt-stress response mechanism. This research offers a comprehensive investigation of SAUR genes in S. album and establishes a foundation for future exploration of the SAUR gene family, particularly its relation to growth and salt-stress responses.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center of Ecological Civilization, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Haoyue Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center of Ecological Civilization, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xu Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center of Ecological Civilization, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yi Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center of Ecological Civilization, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xinyi Zheng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center of Ecological Civilization, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Libei Li
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, Collaborative Innovation Center of Ecological Civilization, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
49
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
50
|
Monterisi S, Garcia-Perez P, Buffagni V, Zuluaga MYA, Ciriello M, Formisano L, El-Nakhel C, Cardarelli M, Colla G, Rouphael Y, Cristofano F, Cesco S, Lucini L, Pii Y. Unravelling the biostimulant activity of a protein hydrolysate in lettuce plants under optimal and low N availability: a multi-omics approach. PHYSIOLOGIA PLANTARUM 2024; 176:e14357. [PMID: 38775128 DOI: 10.1111/ppl.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 08/24/2024]
Abstract
The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.
Collapse
Affiliation(s)
- Sonia Monterisi
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Valentina Buffagni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Michele Ciriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Formisano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesco Cristofano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefano Cesco
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen/Bolzano, Bolzano, Italy
| |
Collapse
|