1
|
Mekata H, Yamamoto M, Kaneko Y, Yamada K, Okabayashi T, Saito A. Urine of Cats with Severe Fever with Thrombocytopenia Syndrome: A Potential Source of Infection Transmission. Pathogens 2025; 14:254. [PMID: 40137739 PMCID: PMC11944789 DOI: 10.3390/pathogens14030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), caused by infection with the SFTS virus, is an emerging fatal tick-borne zoonosis endemic to East Asia. Although SFTS is a tick-borne disease, the virus can be transmitted from animals with SFTS without a tick bite. Direct transmission of the SFTS virus from animals to humans has been reported; however, the transmission route is unclear in some cases. Therefore, this study focused on the possibility of SFTS virus transmission through urine and attempted to isolate the infectious virus from the urine of animals with SFTS. Since more efficient cell isolation is needed to determine whether the SFTS virus is present, we first expressed dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), the major receptor for the virus, in Vero cells (Vero-DC-SIGN cells) using a retroviral vector. When inoculated with equal amounts of the SFTS virus strain and SFTS-virus-infected animal serum, Vero-DC-SIGN cells had 42-136% and 20-85% more foci, respectively, than their parent Vero cells. After confirming that Vero-DC-SIGN cells were more suitable for the isolation of the SFTS virus, we investigated whether it could be isolated from the urine of eight cats and two dogs with SFTS. The virus was isolated from 25 μL of urine from two cats with SFTS. Considering that cats excrete 50-100 mL of urine per day, the transmission of the SFTS virus via the urine of cats with SFTS cannot be ruled out. Individuals examining or caring for cats suspected of having SFTS should be aware of the possibility of viral transmission via urine.
Collapse
Affiliation(s)
- Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan; (M.Y.); (K.Y.); (T.O.); (A.S.)
| | - Mari Yamamoto
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan; (M.Y.); (K.Y.); (T.O.); (A.S.)
| | - Yasuyuki Kaneko
- Veterinary Teaching Hospital, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan;
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Kentaro Yamada
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan; (M.Y.); (K.Y.); (T.O.); (A.S.)
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan
| | - Tamaki Okabayashi
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan; (M.Y.); (K.Y.); (T.O.); (A.S.)
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan
| | - Akatsuki Saito
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan; (M.Y.); (K.Y.); (T.O.); (A.S.)
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki 889-1692, Japan
| |
Collapse
|
2
|
Hicks P, Manzoni TB, Westover JB, Petch RJ, Roper B, Gowen BB, Bates P. Safety, Immunogenicity, and Efficacy of a Recombinant Vesicular Stomatitis Virus Vectored Vaccine Against Severe Fever with Thrombocytopenia Syndrome Virus and Heartland Bandavirus. Vaccines (Basel) 2024; 12:1403. [PMID: 39772063 PMCID: PMC11728676 DOI: 10.3390/vaccines12121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome virus (SFTSV) is a recently emerged tickborne virus in east Asia with over 18,000 confirmed cases. With a high case fatality ratio, SFTSV has been designated a high priority pathogen by the WHO and the NIAID. Despite this, there are currently no approved therapies or vaccines to treat or prevent SFTS. Vesicular stomatitis virus (VSV) represents an FDA-approved vaccine platform that has been considered for numerous viruses due to its low sero-prevalence in humans, ease in genetic manipulation, and promiscuity in incorporating foreign glycoproteins into its virions. METHODS In this study, we developed a recombinant VSV (rVSV) expressing the SFTSV glycoproteins Gn/Gc (rVSV-SFTSV) and assessed its safety, immunogenicity, and efficacy in C57BL/6, Ifnar-/-, and AG129 mice. RESULTS We demonstrate that rVSV-SFTSV is safe when given to immunocompromised animals and is not neuropathogenic when injected intracranially into young immunocompetent mice. Immunization of wild type (C57BL/6) and Ifnar-/- mice with rVSV-SFTSV resulted in high levels of neutralizing antibodies and protection in a lethal SFTSV challenge model. Additionally, passive transfer of sera from immunized Ifnar-/- mice into naïve animals was protective when given pre- or post-exposure. Finally, we demonstrate that immunization with rVSV-SFTSV cross protects AG129 mice against challenge with the closely related Heartland bandavirus despite negligible neutralizing titers to the virus. CONCLUSIONS Taken together, these data suggest that rVSV-SFTSV is a promising vaccine candidate for SFTSV and Heartland bandavirus with a favorable safety profile.
Collapse
Affiliation(s)
- Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| | - Tomaz B. Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| | - Jonna B. Westover
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (J.B.W.); (B.B.G.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Raegan J. Petch
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| | - Brianne Roper
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| | - Brian B. Gowen
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (J.B.W.); (B.B.G.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.H.); (T.B.M.); (R.J.P.); (B.R.)
| |
Collapse
|
3
|
Yuan F, Zhu L, Tian D, Xia M, Zheng MH, Zhang Q, Zhang T, Zhang X, Zheng A. The first discovery of severe fever with thrombocytopenia virus in the center of metropolitan Beijing, China. Virol Sin 2024; 39:875-881. [PMID: 39522880 PMCID: PMC11738777 DOI: 10.1016/j.virs.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Severe fever with thrombocytopenia virus (SFTSV), an emerging tick-borne bandavirus, poses a significant public health threat in rural China. Since 2021, an increase of local cases has been noted in the rural-urban fringe of Beijing. This study aimed to assess the formation of natural foci in urban areas by conducting a field survey of ticks and hedgehogs from the second to fifth ring roads of Beijing. Our survey revealed a diverse tick population in city parks, including the major SFTSV vector, Haemaphysalis longicornis. Parthenogenetic H. longicornis, known for its role in the rapid spread of SFTSV, was identified in key locations such as Beihai Park and Taoranting Park, near the Forbidden City. Notably, high SFTSV seroprevalence and RNA prevalence were found in hedgehogs and parasitic ticks in the center of Beijing. Phylogenetic analyses of SFTSV RNA and mitochondrial sequences of parthenogenetic H. longicornis ticks revealed the existence of diverse lineages of SFTSV and H. longicornis ticks within Beijing, suggesting multiple invasion events happened. These findings reveal the circulation of SFTSV in central Beijing, highlighting the need for urgent attention and enhanced surveillance measures.
Collapse
Affiliation(s)
- Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lianglong Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100069, China
| | - Mengyu Xia
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Hao Zheng
- The High School Affiliated to Renmin University of China, Beijing 100872, China
| | - Qing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100069, China
| | - Tingyu Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100069, China
| | - Xing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Ji SR, Byun HR, Rieu MS, Han SW, Nam HY, Seo S, Park SY, Kang HY, Choi CY, Cho SY, Hwang BY, Chae JS. First detection of Bandavirus dabieense in ticks collected from migratory birds in the Republic of Korea. Acta Trop 2024; 257:107279. [PMID: 38871069 DOI: 10.1016/j.actatropica.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
The causative agent of severe fever with thrombocytopenia syndrome (SFTS) is Bandavirus dabieense, an emerging tick-borne zoonotic pathogen. Migratory birds have often been suggested as potential carriers of ticks that can transmit Bandavirus dabieense; however, their role remains unclear. The Republic of Korea (ROK) holds an important position as a stopover on the East Asian-Australasian Flyway. The present study aimed to investigate the potential involvement of migratory birds in the transmission of the SFTS virus (SFTSV) in the ROK. A total of 4,497 ticks were collected across various regions, including Heuksando and Daecheongdo, in the ROK, from bird migration seasons in 2022 and 2023. Genetic analysis of the SFTSV was performed for 96 ticks collected from 20 different species of migratory birds. Polymerase chain reaction (PCR) fragments of SFTSV were detected in one Haemaphysalis concinna nymph collected from a Black-faced Bunting (Emberiza spodocephala) and one Ixodes turdus nymph collected from an Olive-backed Pipit (Anthus hodgsoni) on Daecheongdo and Heuksando, respectively, during their northward migration in two spring seasons. This finding suggests that migratory birds can be considered as possible carriers and long-distance dispersers of ticks and associated tick-borne diseases. This study highlights the importance of clarifying the role and impact of migratory birds in the rapid expansion of tick-borne diseases, facilitating enhanced preparedness and the development of mitigation measures against emerging SFTS across and beyond East Asia.
Collapse
Affiliation(s)
- Seong-Ryeong Ji
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hye-Ryung Byun
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mi-Sun Rieu
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyun-Young Nam
- The Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seulgi Seo
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Young Park
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Yeon Kang
- Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Yong Choi
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Agriculture, Forestry, and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - So-Yeon Cho
- Bird Research Center, Korea National Park Research Institute, Shinan County, Jeonnam 58863, Republic of Korea
| | - Bo-Yeon Hwang
- Bird Research Center, Korea National Park Research Institute, Shinan County, Jeonnam 58863, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Oh B, Park SC, Yang MS, Yang D, Ham G, Tark D, You MJ, Oh SI, Kim B. Difference in Intraspecies Transmissibility of Severe Fever with Thrombocytopenia Syndrome Virus Depending on Abrogating Type 1 Interferon Signaling in Mice. Viruses 2024; 16:401. [PMID: 38543766 PMCID: PMC10974630 DOI: 10.3390/v16030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 05/23/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), a tick-borne zoonotic disease, is caused by infection with SFTS virus (SFTSV). A previous study reported that human-to-human direct transmission of SFTSV can occur. However, potential animal-to-animal transmission of SFTSV without ticks has not been fully clarified. Thus, the objective of this study was to investigate potential mice-to-mice transmission of SFTSV by co-housing three groups of mice [i.e., wild-type mice (WT), mice injected with an anti-type I interferon-α receptor-blocking antibody (IFNAR Ab), and mice with knockout of type I interferon-α receptor (IFNAR KO)] as spreaders or recipients with different immune competence. As a result, co-housed IFNAR Ab and IFNAR KO mice showed body weight loss with SFTS viral antigens detected in their sera, extracorporeal secretions, and various organs. Based on histopathology, white pulp atrophy in the spleen was observed in all co-housed mice except WT mice. These results obviously show that IFNAR Ab and IFNAR KO mice, as spreaders, exhibited higher transmissibility to co-housed mice than WT mice. Moreover, IFNAR KO mice, as recipients, were more susceptible to SFTSV infection than WT mice. These findings suggest that type I interferon signaling is a pivotal factor in mice intraspecies transmissibility of SFTSV in the absence of vectors such as ticks.
Collapse
Affiliation(s)
- Byungkwan Oh
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Seok-Chan Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Myeon-Sik Yang
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Daram Yang
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Gaeul Ham
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea;
| | - Myung Jo You
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Sang-Ik Oh
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| | - Bumseok Kim
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (B.O.); (S.-C.P.); (M.-S.Y.); (D.Y.); (G.H.); (M.J.Y.); (S.-I.O.)
| |
Collapse
|
6
|
Han SW, Cho YK, Rim JM, Kang JG, Choi KS, Chae JS. Molecular and Serological Survey of Severe Fever with Thrombocytopenia Syndrome Virus in Horses from the Republic of Korea. Vector Borne Zoonotic Dis 2023; 23:595-603. [PMID: 37682292 DOI: 10.1089/vbz.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging zoonotic tick-borne disease in East Asia caused by the SFTS virus (SFTSV). It is to investigate the presence of SFTSV RNA and antibodies in horses from a slaughterhouse and equestrian centers in the Republic of Korea (ROK). A prevalence study of SFTSV-specific RNA and antibodies was designed from 889 horses in the ROK. Materials and Methods: Serum samples were collected from horses at a slaughterhouse and equestrian centers from 2018 to 2020. To detect the presence of SFTSV, RNA was extracted from the serum samples, and a nested reverse transcription-polymerase chain reaction (RT-PCR) was conducted. Sequencing data were analyzed, and a phylogenetic tree was constructed using the maximum-likelihood method with Molecular Evolutionary Genetics Analysis Version 7.0 software. The horse sera were also tested for SFTSV-specific immunoglobulin G antibodies using enzyme-linked immunosorbent assay (ELISA). Results: Twelve of 889 (1.3%) horse sera were positive for SFTSV RNA, and 452 of 887 (51.0%) horse sera were seropositive by ELISA. Among the RT-PCR-positive samples, 12 of the SFTSV S-segment sequences were classified as sub-genotypes B-2 (n = 6) and B-3 (n = 6). ELISA analysis was evaluated by comparison with neutralization test. We investigated SFTSV infection in horses over a 3-year period, but sampling was not performed evenly by season; continuous surveillance of SFTSV in horses is needed. Conclusions: We report the detection of SFTSV RNA and provide serological data on SFTSV prevalence in horses in the ROK. The detection of SFTSV-specific RNA and antibodies in horses, which are in close proximity to humans, suggests that SFTS is an emerging and important health issue, indicating that more attention to its relevance for equestrian workers is needed.
Collapse
Affiliation(s)
- Sun-Woo Han
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Kyoung Cho
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Min Rim
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Gu Kang
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyoung-Seong Choi
- College of Ecology and Environmental Science, Kyungpook National University, Sangju, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Kim EH, Park SJ. Emerging Tick-Borne Dabie bandavirus: Virology, Epidemiology, and Prevention. Microorganisms 2023; 11:2309. [PMID: 37764153 PMCID: PMC10536723 DOI: 10.3390/microorganisms11092309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by Dabie bandavirus (SFTSV), is an emerging infectious disease first identified in China. Since its discovery, infections have spread throughout East Asian countries primarily through tick bites but also via transmission between animals and humans. The expanding range of ticks, the primary vectors for SFTSV, combined with migration patterns of tick-carrying birds, sets the stage for the global spread of this virus. SFTSV rapidly evolves due to continuous mutation and reassortment; currently, no approved vaccines or antiviral drugs are available. Thus, the threat this virus poses to global health is unmistakable. This review consolidates the most recent research on SFTSV, including its molecular characteristics, transmission pathways through ticks and other animals, as well as the progress in antiviral drug and vaccine development, encompassing animal models and clinical trials.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Center for Study of Emerging and Re-Emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea;
| | - Su-Jin Park
- Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
8
|
Chen L, Ma M, Zou M, Zhao L, Ou M, Geng Y, Li C, Shen H, Chen Y. Rapid and portable bunyavirus SFTSV RNA testing utilizing catalytic hairpin assembly coupled with lateral flow immunoassay. Microbiol Spectr 2023; 11:e0214423. [PMID: 37681992 PMCID: PMC10581038 DOI: 10.1128/spectrum.02144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/06/2023] [Indexed: 09/09/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a prevalent, life-threatening, emergent infectious disease. Currently, reverse transcription-polymerase chain reaction is the gold standard for diagnosing SFTS virus (SFTSV) infection, which requires sophisticated equipment and professional personnel that are frequently unavailable in most SFTS endemic rural areas. Here, we reported a simple, rapid nucleic acid amplification system that combined the catalytic hairpin assembly (CHA) with a lateral flow immunoassay (LFIA) strip-based detection method for SFTSV detection. The detection of SFTSV RNA could be realized by generation of H1-H2 hybrid duplexes labeled with biotin and digoxin, which subsequently added to the LFIA test strips containing streptavidin conjugated with Alexa Fluor 647 as well as anti-digoxin antibodies. Our CHA-based LFIA assay offered high amplification efficiency and specificity with a detection limit of 1 aM. Crucially, this method enabled stable detection of 500 copies/mL of SFTSV within 30 min using clinical serum samples. Therefore, our CHA-based LFIA approach provided a potential useful tool to facilitate early and precise diagnosis of SFTS patients in poorly resourced SFTS endemic areas.IMPORTANCESevere fever with thrombocytopenia syndrome (SFTS) is an emerging and potentially fatal infectious disease prevalent in China. Here we report a simple, rapid nucleic acid amplification system, the catalytic hairpin assembly (CHA) in conjunction with a lateral flow immunoassay (LFIA) strip-based detection method for SFTS virus detection, which demonstrated high amplification efficiency and specificity with limit of detection of 1 aM. Most importantly, we also validate our CHA-based LFIA assay using the clinical serum samples, which was fully compatible with reverse transcription-PCR results. Therefore, our strategy provides a potential useful tool to facilitate early and precise diagnosis of SFTS patients especially in poorly resourced SFTS endemic areas.
Collapse
Affiliation(s)
- Lin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengyin Ma
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyuan Zou
- Department of Thoracic Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liwei Zhao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mingrong Ou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Geng
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Hu Q, Zhang Y, Jiang J, Zheng A. Two Point Mutations in the Glycoprotein of SFTSV Enhance the Propagation Recombinant Vesicular Stomatitis Virus Vectors at Assembly Step. Viruses 2023; 15:800. [PMID: 36992507 PMCID: PMC10052781 DOI: 10.3390/v15030800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne pathogen for which approved therapeutic drugs or vaccines are not available. We previously developed a recombinant vesicular stomatitis virus-based vaccine candidate (rVSV-SFTSV) by replacing the original glycoprotein with Gn/Gc from SFTSV, which conferred complete protection in a mouse model. Here, we found that two spontaneous mutations, M749T/C617R, emerged in the Gc glycoprotein during passaging that could significantly increase the titer of rVSV-SFTSV. M749T/C617R enhanced the genetic stability of rVSV-SFTSV, and no further mutations appeared after 10 passages. Using immunofluorescence analysis, we found that M749T/C617R could increase glycoprotein traffic to the plasma membrane, thus facilitating virus assembly. Remarkably, the broad-spectrum immunogenicity of rVSV-SFTSV was not affected by the M749T/C617R mutations. Overall, M749T/C617R could enhance the further development of rVSV-SFTSV into an effective vaccine in the future.
Collapse
Affiliation(s)
- Qiang Hu
- College of Life Science, Hebei University, Baoding 071002, China
| | - Yuhang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jiafu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Wei X, Li S, Lu Y, Qiu L, Xu N, Guo X, Chen M, Liang H, Cheng D, Zhao L, Hao S, Kou Z, Wen H. Severe fever with thrombocytopenia syndrome virus aerosol infection in C57/BL6 mice. Virology 2023; 581:58-62. [PMID: 36913913 DOI: 10.1016/j.virol.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Although secondary cases have become infected with the SFTSV after being in the same space without direct contact with the index case, it has not been experimentally determined if the SFTSV can be transmitted through aerosols. Here, this study aimed to verify if the SFTSV could be transmitted by aerosols. Firstly, we demonstrated that the SFTSV can infect BEAS-2B cells, and SFTSV genomes can be isolate from mild patient's sputum, which provided a foundation for the existence of SFTSV aerosol transmission. Then, we evaluated total antibody production in serum and viral load in tissue of mice infected with SFTSV by aerosols. The results showed that the presence of antibodies is related to the dose of virus infection and the SFTSV preferentially replicates in the lungs of mice following an aerosol exposure. Our study will help update the prevention and treatment guidelines for SFTSV and prevent the spread of the SFTSV in hospitals.
Collapse
Affiliation(s)
- Xuemin Wei
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Shuhan Li
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Yan Lu
- Cheeloo Hospital, Shandong University, Jinan, Shandong Province, China
| | - Ling Qiu
- Department of Infection, Shandong Provincial Public Health Clinical Center, Jinan, Shandong Province, China
| | - Nannan Xu
- Cheeloo Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xianhu Guo
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, China
| | - Mengting Chen
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Hao Liang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Dong Cheng
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Prevention and Control, Jinan, Shandong Province, China
| | - Li Zhao
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China
| | - Shubin Hao
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, Shandong Provincial Key Laboratory of Infectious Disease Prevention and Control, Jinan, Shandong Province, China
| | - Hongling Wen
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, key laboratory for the prevention and control of infectious diseases (key laboratory of China's "13th Five-Year", Shandong University), Jinan, 250000, Shandong, China.
| |
Collapse
|
11
|
Mekata H, Umeki K, Yamada K, Umekita K, Okabayashi T. Nosocomial Severe Fever with Thrombocytopenia Syndrome in Companion Animals, Japan, 2022. Emerg Infect Dis 2023; 29:614-617. [PMID: 36823498 PMCID: PMC9973679 DOI: 10.3201/eid2903.220720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
In Japan, 2 cats that underwent surgery in a room where a sick dog had been euthanized became ill within 9 days of surgery. Severe fever with thrombocytopenia syndrome virus was detected in all 3 animals; nucleotide sequence identity was 100%. Suspected cause was an uncleaned pulse oximeter probe used for all patients.
Collapse
|
12
|
Sun J, Min YQ, Li Y, Sun X, Deng F, Wang H, Ning YJ. Animal Model of Severe Fever With Thrombocytopenia Syndrome Virus Infection. Front Microbiol 2022; 12:797189. [PMID: 35087498 PMCID: PMC8787146 DOI: 10.3389/fmicb.2021.797189] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), an emerging life-threatening infectious disease caused by SFTS bunyavirus (SFTSV; genus Bandavirus, family Phenuiviridae, order Bunyavirales), has been a significant medical problem. Currently, there are no licensed vaccines or specific therapeutic agents available and the viral pathogenesis remains largely unclear. Developing appropriate animal models capable of recapitulating SFTSV infection in humans is crucial for both the study of the viral pathogenic processes and the development of treatment and prevention strategies. Here, we review the current progress in animal models for SFTSV infection by summarizing susceptibility of various potential animal models to SFTSV challenge and the clinical manifestations and histopathological changes in these models. Together with exemplification of studies on SFTSV molecular mechanisms, vaccine candidates, and antiviral drugs, in which animal infection models are utilized, the strengths and limitations of the existing SFTSV animal models and some important directions for future research are also discussed. Further exploration and optimization of SFTSV animal models and the corresponding experimental methods will be undoubtedly valuable for elucidating the viral infection and pathogenesis and evaluating vaccines and antiviral therapies.
Collapse
Affiliation(s)
- Jiawen Sun
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qin Min
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yunjie Li
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiulian Sun
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Park SC, Park JY, Choi JY, Oh B, Yang MS, Lee SY, Kim JW, Eo SK, Chae JS, Lim CW, Oem JK, Tark DS, Kim B. Experimental infection of dogs with severe fever with thrombocytopenia syndrome virus: Pathogenicity and potential for intraspecies transmission. Transbound Emerg Dis 2021; 69:3090-3096. [PMID: 34716981 DOI: 10.1111/tbed.14372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is caused by infection with Dabie bandavirus [formerly SFTS virus (SFTSV)] and is an emerging zoonotic disease. Dogs can be infected with SFTSV, but its pathogenicity and transmissibility have not been fully elucidated. In experiment 1, immunocompetent dogs were intramuscularly inoculated with SFTSV. In experiment 2, immunosuppressed dogs (immunosuppressed group; oral azathioprine 5 mg/kg/day for 30 days) were intramuscularly inoculated with SFTSV. Both immunosuppressed and immunocompetent contact dogs were co-housed with the SFTSV-inoculated dogs that had been immunosuppressed. Immunocompetent SFTSV-infected dogs did not show any clinical symptom. However, immunosuppressed SFTSV-infected dogs showed high fever and weight loss without lethality. In all SFTSV-infected dogs, viral RNA could be measured in the serum only after 3 days post infection (DPI) and neutralizing antibodies were detected in the serum beginning 9 DPI. SFTSV shedding in the urine and faeces of some infected dogs occurred between 4 and 6 DPI. The immunocompromised SFTSV-infected dogs showed thrombocytopenia beginning 3 DPI to the end of the experiment (24 DPI). We confirmed SFTSV transmission to one of three immunocompetent co-housed dogs. This dog showed a high fever, weight loss, and shed viral RNA by urine. Viral RNA and neutralizing antibodies were also detected in the serum. These results demonstrated that intramuscular inoculation with SFTSV induced minor clinical symptoms in dogs, and intraspecies SFTSV transmission in dogs can occur by contact.
Collapse
Affiliation(s)
- Seok-Chan Park
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Jun Young Park
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Jin Young Choi
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Byungkwan Oh
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Myeon-Sik Yang
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Sook-Young Lee
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Jong-Won Kim
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Seong Kug Eo
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Joon-Seok Chae
- Laboratory of Veterinary Internal Medicine, BK21 FOUR Future Veterinary Medicine Leading Education and Research Centre, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chae Woong Lim
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Jae-Ku Oem
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Dong-Seob Tark
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Bumseok Kim
- Bio-Safety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
14
|
Cho S, Kim WK, No JS, Lee SH, Jung J, Yi Y, Park HC, Lee GY, Park K, Kim JA, Kim J, Lee J, Lee D, Song DH, Gu SH, Jeong ST, Song JW. Urinary genome detection and tracking of Hantaan virus from hemorrhagic fever with renal syndrome patients using multiplex PCR-based next-generation sequencing. PLoS Negl Trop Dis 2021; 15:e0009707. [PMID: 34582439 PMCID: PMC8478167 DOI: 10.1371/journal.pntd.0009707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background Hantavirus infection occurs through the inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. The presence of Hantaan virus (HTNV) RNA or infectious particles in urine specimens of patient with hemorrhagic fever with renal syndrome (HFRS) remains to be investigated. Methodology/Principal findings We collected four urine and serum specimens of Republic of Korea Army (ROKA) patients with HFRS. We performed multiplex PCR-based next-generation sequencing (NGS) to obtain the genome sequences of clinical HTNV in urine specimens containing ultra-low amounts of viral genomes. The epidemiological and phylogenetic analyses of HTNV demonstrated geographically homogenous clustering with those in Apodemus agrarius captured in highly endemic areas, indicating that phylogeographic tracing of HTNV genomes reveals the potential infection sites of patients with HFRS. Genetic exchange analyses showed a genetic configuration compatible with HTNV L segment exchange in nature. Conclusion/Significance Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This report raises awareness among physicians for the presence of HTNV in the urine of patients with HFRS. Hantavirus transmission to humans occurs via inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. Currently, no report for the etiological evidence associated with urinary Hantaan virus (HTNV) from patients with hemorrhagic fever with renal syndrome (HFRS) is available. Here, we conducted multiplex PCR-based next-generation sequencing (NGS) using urine and serum specimens from four Republic of Korea Army (ROKA) patients with HFRS. The epidemiological and phylogenetic analyses using whole or partial genome sequences of HTNV from urine and serum demonstrated homogenous genetic clustering with HTNV from clinical specimens, circulating at highly endemic sites of patient infection. Among the sequences from ROKA patients, the genomic configuration of ROKA16-10 demonstrated occurrences of the genetic reassortment. Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This result provides new insights into presence of HTNV in the urine of patients with HFRS among physicians.
Collapse
Affiliation(s)
- Seungchan Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jin Sun No
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seung-Ho Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jaehun Jung
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Yongjin Yi
- Division of Nephrology, Department of Internal Medicine, Dankook University Hospital, Cheonan, Republic of Korea
| | - Hayne Cho Park
- Department of Internal Medicine, Kangnam Sacred Heart Hospital, Seoul, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Ah Kim
- Division of High-risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jingyeong Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daesang Lee
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong Hyun Song
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Seong Tae Jeong
- 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Clinical Update of Severe Fever with Thrombocytopenia Syndrome. Viruses 2021; 13:v13071213. [PMID: 34201811 PMCID: PMC8310018 DOI: 10.3390/v13071213] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness characterized by fever, leukopenia, thrombocytopenia, and gastrointestinal symptoms such as diarrhea, nausea, and vomiting resulting from infection with the SFTS virus (SFTSV). The SFTSV is transmitted to humans by tick bites, primarily from Haemaphysalis longicornis, Amblyomma testudinarium, Ixodes nipponensis, and Rhipicephalus microplus. Human-to-human transmission has also been reported. Since the first report of an SFTS patient in China, the number of patients has also been increasing. The mortality rate of patients with SFTS remains high because the disease can quickly lead to death through multiple organ failure. In particular, an average fatality rate of approximately 20% has been reported for SFTS patients, and no treatment strategy has been established. Therefore, effective antiviral agents and vaccines are required. Here, we aim to review the epidemiology, clinical manifestations, laboratory diagnosis, and various specific treatments (i.e., antiviral agents, steroids, intravenous immunoglobulin, and plasma exchange) that have been tested to help to cope with the disease.
Collapse
|
16
|
Li J, Li S, Yang L, Cao P, Lu J. Severe fever with thrombocytopenia syndrome virus: a highly lethal bunyavirus. Crit Rev Microbiol 2020; 47:112-125. [PMID: 33245676 DOI: 10.1080/1040841x.2020.1847037] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel bunyavirus. Since 2007, SFTS disease has been reported in China with high fatality rate up to 30%, which drew high attention from Centre for Disease Control and Prevention and government. SFTSV is endemic in the centra l and eastern China, Korea and Japan. There also have been similar cases reported in Vietnam. The number of SFTSV infection cases has a steady growth in these years. As SFTSV could transmitted from person to person, it will expose the public to infectious risk. In 2018 annual review of the Blueprint list of priority diseases, World Health Organisation has listed SFTSV infection as prioritised diseases for research and development in emergency contexts. However, the pathogenesis of SFTSV remains largely unclear. Currently, there are no specific therapeutics or vaccines to combat infections of SFTSV. This review discusses recent findings of epidemiology, transmission pathway, pathogenesis and treatments of SFTS disease.
Collapse
Affiliation(s)
- Jing Li
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shen Li
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Pengfei Cao
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- NHC Key Laboratory of Carcinogenesis, Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
17
|
Yun SM, Park SJ, Kim YI, Park SW, Yu MA, Kwon HI, Kim EH, Yu KM, Jeong HW, Ryou J, Lee WJ, Jee Y, Lee JY, Choi YK. Genetic and pathogenic diversity of severe fever with thrombocytopenia syndrome virus (SFTSV) in South Korea. JCI Insight 2020; 5:129531. [PMID: 31877113 DOI: 10.1172/jci.insight.129531] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/10/2019] [Indexed: 11/17/2022] Open
Abstract
To investigate nationwide severe fever with thrombocytopenia syndrome virus (SFTSV) infection status, we isolated SFTSVs from patients with suspected severe fever with thrombocytopenia syndrome (SFTS) in 207 hospitals throughout South Korea between 2013 and April 2017. A total of 116 SFTSVs were isolated from 3137 SFTS-suspected patients, with an overall 21.6% case fatality rate. Genetic characterization revealed that at least 6 genotypes of SFTSVs were co-circulating in South Korea, with multiple reassortments among them. Of these, the genotype B-2 strains were the most prevalent, followed by the A and F genotypes. Clinical and epidemiologic investigations revealed that genotype B strains were associated with the highest case fatality rate, while genotype A caused only one fatality among 10 patients. Further, ferret infection studies demonstrated varying clinical manifestations and case mortality rates with different strains of SFTSV, which suggests this virus could exhibit genotype-dependent pathogenicity.
Collapse
Affiliation(s)
- Seok-Min Yun
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea.,Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Chungcheongbuk-do, South Korea
| | - Su-Jin Park
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea
| | - Young-Il Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea
| | - Sun-Whan Park
- Jeju National Quarantine Station, Centers for Disease Control and Prevention of Korea, Jeju, Jeju-do, South Korea
| | - Min-Ah Yu
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea
| | - Hyeok-Il Kwon
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea
| | - Eun-Ha Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea
| | - Kwang-Min Yu
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea
| | - Hye Won Jeong
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea.,Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungcheongbuk-do, South Korea
| | - Jungsang Ryou
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Chungcheongbuk-do, South Korea
| | - Won-Ja Lee
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Chungcheongbuk-do, South Korea
| | - Youngmee Jee
- Center for Infectious Diseases Research, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Chungcheongbuk-do, South Korea
| | - Joo-Yeon Lee
- Division of Emerging Infectious Disease and Vector Research, Center for Infectious Diseases Research, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Chungcheongbuk-do, South Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, South Korea
| |
Collapse
|