1
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Baratzhanova G, El Sheikh Saad H, Fournier A, Huguet M, Joubert O, Paul A, Djansugurova L, Cakir-Kiefer C. Comparison of the impact of chlordecone and its metabolite chlordecol on genes involved in pesticide metabolism in HepG2 cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104701. [PMID: 40252817 DOI: 10.1016/j.etap.2025.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Chlordecone (CLD) is an organochlorine pesticide that is highly resistant in the environment. This compound and its metabolite chlordecol (CLD-OH) still can be found in the French West Indies, after being banned 30 years ago. The novelty of this work lies in evaluating the toxicity of CLD-OH compared to CLD and examining the effects of these compounds on nuclear receptor (PXR, PPARα, and CAR) and metabolism-related genes (CYP2B6, CYP3A4) in vitro using HepG2 cell line as a model. Our study demonstrates that both compounds displayed an almost similar pattern of decrease in cell viability. Moreover, it was shown that CLD-OH can increase the expression of PXR, CYP3A4, and PPARα genes in comparison to CLD. The AKR1C4 gene showed a slight decrease in expression after CLD treatment. Collectively, this study provided a new finding into the impact of CLD-OH and compares the mode of action of CLD and its metabolite.
Collapse
Affiliation(s)
- Gulminyam Baratzhanova
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France; al Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty 050040, Kazakhstan; Institute of General Genetics and Physiology, Almaty 050060, Kazakhstan.
| | | | - Agnès Fournier
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | - Marion Huguet
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | - Olivier Joubert
- Université de Lorraine, Institut Jean Lamour, UMR CNRS 7198, Nancy F-54000, France
| | - Arnaud Paul
- Université de Lorraine, INRAE, L2A, Nancy F-54000, France
| | - Leyla Djansugurova
- al Farabi Kazakh National University, Faculty of Biology and Biotechnology, Almaty 050040, Kazakhstan; Institute of General Genetics and Physiology, Almaty 050060, Kazakhstan
| | | |
Collapse
|
3
|
Attema B, Kummu O, Krutáková M, Pavek P, Hakkola J, Hooiveld GJEJ, Kersten S. The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity. Arch Toxicol 2025; 99:1203-1221. [PMID: 39718591 DOI: 10.1007/s00204-024-03942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
Collapse
Affiliation(s)
- Brecht Attema
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mária Krutáková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Itkonen A, Hakkola J, Rysä J. Adverse outcome pathway for pregnane X receptor-induced hypercholesterolemia. Arch Toxicol 2023; 97:2861-2877. [PMID: 37642746 PMCID: PMC10504106 DOI: 10.1007/s00204-023-03575-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Pharmaceuticals and environmental contaminants contribute to hypercholesterolemia. Several chemicals known to cause hypercholesterolemia, activate pregnane X receptor (PXR). PXR is a nuclear receptor, classically identified as a sensor of chemical environment and regulator of detoxification processes. Later, PXR activation has been shown to disrupt metabolic functions such as lipid metabolism and recent findings have shown PXR activation to promote hypercholesterolemia through multiple mechanisms. Hypercholesterolemia is a major causative risk factor for atherosclerosis and greatly promotes global health burden. Metabolic disruption by PXR activating chemicals leading to hypercholesterolemia represents a novel toxicity pathway of concern and requires further attention. Therefore, we constructed an adverse outcome pathway (AOP) by collecting the available knowledge considering the molecular mechanisms for PXR-mediated hypercholesterolemia. AOPs are tools of modern toxicology for systematizing mechanistic knowledge to assist health risk assessment of chemicals. AOPs are formalized and structured linear concepts describing a link between molecular initiating event (MIE) and adverse outcome (AO). MIE and AO are connected via key events (KE) through key event relationships (KER). We present a plausible route of how PXR activation (MIE) leads to hypercholesterolemia (AO) through direct regulation of cholesterol synthesis and via activation of sterol regulatory element binding protein 2-pathway.
Collapse
Affiliation(s)
- Anna Itkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
5
|
Leri M, Vasarri M, Barletta E, Schiavone N, Bergonzi MC, Bucciantini M, Degl’Innocenti D. The Protective Role of Oleuropein Aglycone against Pesticide-Induced Toxicity in a Human Keratinocytes Cell Model. Int J Mol Sci 2023; 24:14553. [PMID: 37834001 PMCID: PMC10572371 DOI: 10.3390/ijms241914553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of agricultural pesticides to improve crop quality and yield significantly increased the risk to the public of exposure to small but repeated doses of pesticides over time through various routes, including skin, by increasing the risk of disease outbreaks. Although much work was conducted to reduce the use of pesticides in agriculture, little attention was paid to prevention, which could reduce the toxicity of pesticide exposure by reducing its impact on human health. Extra virgin olive oil (EVOO), a major component of the Mediterranean diet, exerts numerous health-promoting properties, many of which are attributed to oleuropein aglycone (OleA), the deglycosylated form of oleuropein, which is the main polyphenolic component of EVOO. In this work, three pesticides with different physicochemical and biological properties, namely oxadiazon (OXA), imidacloprid (IMID), and glyphosate (GLYPHO), were compared in terms of metabolic activity, mitochondrial function and epigenetic modulation in an in vitro cellular model of human HaCaT keratinocytes to mimic the pathway of dermal exposure. The potential protective effect of OleA against pesticide-induced cellular toxicity was then evaluated in a cell pre-treatment condition. This study showed that sub-lethal doses of OXA and IMID reduced the metabolic activity and mitochondrial functionality of HaCaT cells by inducing oxidative stress and altering intracellular calcium flux and caused epigenetic modification by reducing histone acetylation H3 and H4. GLYPHO, on the other hand, showed no evidence of cellular toxicity at the doses tested. Pretreatment of cells with OleA was able to protect cells from the damaging effects of the pesticides OXA and IMID by maintaining metabolic activity and mitochondrial function at a controlled level and preventing acetylation reduction, particularly of histone H3. In conclusion, the bioactive properties of OleA reported here could be of great pharmaceutical and health interest, as they could be further studied to design new formulations for the prevention of toxicity from exposure to pesticide use.
Collapse
Affiliation(s)
- Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy;
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.L.); (M.V.); (E.B.); (N.S.); (M.B.)
| |
Collapse
|
6
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
7
|
Pehar V, Kolić D, Zandona A, Šinko G, Katalinić M, Stepanić V, Kovarik Z. Selected herbicides screened for toxicity and analysed as inhibitors of both cholinesterases. Chem Biol Interact 2023; 379:110506. [PMID: 37141932 DOI: 10.1016/j.cbi.2023.110506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Sets of 346 herbicides in use and 163 outdated no longer in use were collected from open access online sources and compared in silico with cholinesterases inhibitors (ChI) and drugs in terms of physicochemical profile and estimated toxic effects on human health. The screening revealed at least one potential adverse consequence for each herbicide class assigned according to their mode of action on weeds. The classes with most toxic warnings were K1, K3/N, F1 and E. The selection of 11 commercial herbicides for in vitro biological tests on human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), the enzymes involved in neurotoxicity and detoxification of various xenobiotics, respectively, was based mainly on the structural similarity with inhibitors of cholinesterases. Organophosphate anilofos and oxyacetanilide flufenacet were the most potent inhibitors of AChE (25 μM) and BChE (6.4 μM), respectively. Glyphosate, oxadiazon, tembotrione and terbuthylazine were poor inhibitors with an estimated IC50 above 100 μM, while for glyphosate the IC50 was above 1 mM. Generally, all of the selected herbicides inhibited with a slight preference towards BChE. Cytotoxicity assays showed that anilofos, bensulide, butamifos, piperophos and oxadiazon were cytotoxic for hepatocytes (HepG2) and neuroblastoma cell line (SH-SY5Y). Time-independent cytotoxicity accompanied with induction of reactive oxygen species indicated rapid cell death in few hours. Our results based on in silico and in vitro analyses give insight into the potential toxic outcome of herbicides in use and can be applied in the design of new molecules with a less hazardous impact on humans and the environment.
Collapse
Affiliation(s)
- Vesna Pehar
- Croatian Defense Academy "Dr. Franjo Tuđman", Ilica 256b, 10000, Zagreb, Croatia
| | - Dora Kolić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Antonio Zandona
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia
| | - Višnja Stepanić
- Ruđer Bošković Institute, Bijenička 54, HR-10002, Zagreb, Croatia.
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000, Zagreb, Croatia.
| |
Collapse
|
8
|
Kaboli Kafshgiri S, Farkhondeh T, Miri-Moghaddam E. Glyphosate effects on the female reproductive systems: a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:487-500. [PMID: 34265884 DOI: 10.1515/reveh-2021-0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-based herbicides (GBHs) are organophosphate pesticides, which interrupt the chemicals involved in the endocrine system and cause lifelong disorders in women's reproductive system. The current study was designed to systematically evaluate the association between GBH exposure and the female reproductive tract. According to PRISMA Guidelines, the systematic review was performed, searching online databases, including Google Scholar, Web of Science, PubMed, and Scopus, throughout April 2020. Studies with Rodent, lamb, and fish or exposed to GBH to affect the female reproductive system were selected. All studies were in the English language. Two investigators independently assessed the articles. The first author's name, publication date, animal model, age, sample size, gender, dose, duration, and route of exposure and outcomes were extracted from each publication. The present review summarizes 14 publications on uterus alterations and oocytes, histological changes ovary, and assessed mRNA expression, protein expression, serum levels progesterone, and estrogen and intracellular Reaction Oxygen Species (ROS) in rodents, fish, and lamb exposed to GHB exposure. Most of the studies reported histological changes in ovarian and uterus tissue, alterations in serum levels, and increased oxidative stress level following exposure to GBH. Additionally, due to alterations in the reproductive systems (e.g., histomorphological changes, reduction of the mature follicles, higher atretic follicles, and interstitial fibrosis), it seems the GBH-induced female these alterations are both dose- and time-dependent. The present findings support an association between GBH exposure and female reproductive system diseases. However, more studies are needed to identify the mechanisms disrupting the effects of GBH and their underlying mechanisms. Considering the current literature, it is recommended that further investigations be focused on the possible effects of various pesticides on the human reproductive system.
Collapse
Affiliation(s)
- Sakineh Kaboli Kafshgiri
- Molecular Medicine Department, Postdoc Position in Developmental Biology, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Ebrahim Miri-Moghaddam
- Cardiovascular Disease Research Center, Razi Hospital, Faculty of Medicine, Binorjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
9
|
Insights into the toxicity and biodegradation of fipronil in contaminated environment. Microbiol Res 2022; 266:127247. [DOI: 10.1016/j.micres.2022.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
10
|
Yang R, Liu S, Yin N, Zhang Y, Faiola F. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14668-14679. [PMID: 36178254 DOI: 10.1021/acs.est.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, U.K
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Mannaa AH, Zaky RR, Gomaa EA, El-Hady MNA. Bivalent transition metal complexes of pyridine-2,6-dicarbohydrazide: Structural characterization, cyclic voltammetry and biological studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Jacobs MN, Kubickova B, Boshoff E. Candidate Proficiency Test Chemicals to Address Industrial Chemical Applicability Domains for in vitro Human Cytochrome P450 Enzyme Induction. FRONTIERS IN TOXICOLOGY 2022; 4:880818. [PMID: 35795225 PMCID: PMC9252529 DOI: 10.3389/ftox.2022.880818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes play a key role in the metabolism of both xenobiotics and endogenous chemicals, and the activity of some CYP isoforms are susceptible to induction and/or inhibition by certain chemicals. As CYP induction/inhibition can bring about significant alterations in the level of in vivo exposure to CYP substrates and metabolites, CYP induction/inhibition data is needed for regulatory chemical toxicity hazard assessment. On the basis of available human in vivo pharmaceutical data, a draft Organisation for Economic Co-operation and Development Test Guideline (TG) for an in vitro CYP HepaRG test method that is capable of detecting the induction of four human CYPs (CYP1A1/1A2, 2B6, and 3A4), has been developed and validated for a set of pharmaceutical proficiency chemicals. However to support TG adoption, further validation data was requested to demonstrate the ability of the test method to also accurately detect CYP induction mediated by industrial and pesticidal chemicals, together with an indication on regulatory uses of the test method. As part of "GOLIATH", a European Union Horizon-2020 funded research project on metabolic disrupting chemical testing approaches, work is underway to generate supplemental validated data for an additional set of chemicals with sufficient diversity to allow for the approval of the guideline. Here we report on the process of proficiency chemical selection based on a targeted literature review, the selection criteria and considerations required for acceptance of proficiency chemical selection for OECD TG development (i.e. structural diversity, range of activity, relevant chemical sectors, global restrictions etc). The following 13 proposed proficiency chemicals were reviewed and selected as a suitable set for use in the additional validation experiments: tebuconazole, benfuracarb, atrazine, cypermethrin, chlorpyrifos, perfluorooctanoic acid, bisphenol A, N,N-diethyl-m-toluamide, benzo-[a]-pyrene, fludioxonil, malathion, triclosan, and caffeine. Illustrations of applications of the test method in relation to endocrine disruption and non-genotoxic carcinogenicity are provided.
Collapse
Affiliation(s)
- Miriam Naomi Jacobs
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Barbara Kubickova
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| | - Eugene Boshoff
- Centre for Radiation, Chemical and Environmental Hazards (CRCE), Department of Toxicology, Public Health England (PHE), Harwell Science and Innovation Campus, Chilton, United Kingdom
| |
Collapse
|
13
|
Hirte S, Burk O, Tahir A, Schwab M, Windshügel B, Kirchmair J. Development and Experimental Validation of Regularized Machine Learning Models Detecting New, Structurally Distinct Activators of PXR. Cells 2022; 11:cells11081253. [PMID: 35455933 PMCID: PMC9029776 DOI: 10.3390/cells11081253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
The pregnane X receptor (PXR) regulates the metabolism of many xenobiotic and endobiotic substances. In consequence, PXR decreases the efficacy of many small-molecule drugs and induces drug-drug interactions. The prediction of PXR activators with theoretical approaches such as machine learning (ML) proves challenging due to the ligand promiscuity of PXR, which is related to its large and flexible binding pocket. In this work we demonstrate, by the example of random forest models and support vector machines, that classifiers generated following classical training procedures often fail to predict PXR activity for compounds that are dissimilar from those in the training set. We present a novel regularization technique that penalizes the gap between a model’s training and validation performance. On a challenging test set, this technique led to improvements in Matthew correlation coefficients (MCCs) by up to 0.21. Using these regularized ML models, we selected 31 compounds that are structurally distinct from known PXR ligands for experimental validation. Twelve of them were confirmed as active in the cellular PXR ligand-binding domain assembly assay and more hits were identified during follow-up studies. Comprehensive analysis of key features of PXR biology conducted for three representative hits confirmed their ability to activate the PXR.
Collapse
Affiliation(s)
- Steffen Hirte
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, 70376 Stuttgart, Germany; (O.B.); (M.S.)
| | - Ammar Tahir
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, University of Tübingen, 70376 Stuttgart, Germany; (O.B.); (M.S.)
- Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, 72074 Tübingen, Germany
- Cluster of Excellence IFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72074 Tübingen, Germany
| | - Björn Windshügel
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research Screening Port, 22525 Hamburg, Germany;
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Johannes Kirchmair
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-4277-55104
| |
Collapse
|
14
|
Dutta M, Lim JJ, Cui JY. Pregnane X Receptor and the Gut-Liver Axis: A Recent Update. Drug Metab Dispos 2022; 50:478-491. [PMID: 34862253 PMCID: PMC11022899 DOI: 10.1124/dmd.121.000415] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 02/04/2023] Open
Abstract
It is well-known that the pregnane X receptor (PXR)/Nr1i2 is a critical xenobiotic-sensing nuclear receptor enriched in liver and intestine and is responsible for drug-drug interactions, due to its versatile ligand binding domain (LBD) and target genes involved in xenobiotic biotransformation. PXR can be modulated by various xenobiotics including pharmaceuticals, nutraceuticals, dietary factors, and environmental chemicals. Microbial metabolites such as certain secondary bile acids (BAs) and the tryptophan metabolite indole-3-propionic acid (IPA) are endogenous PXR activators. Gut microbiome is increasingly recognized as an important regulator for host xenobiotic biotransformation and intermediary metabolism. PXR regulates and is regulated by the gut-liver axis. This review summarizes recent research advancements leveraging pharmaco- and toxico-metagenomic approaches that have redefined the previous understanding of PXR. Key topics covered in this review include: (1) genome-wide investigations on novel PXR-target genes, novel PXR-DNA interaction patterns, and novel PXR-targeted intestinal bacteria; (2) key PXR-modulating activators and suppressors of exogenous and endogenous sources; (3) novel bidirectional interactions between PXR and gut microbiome under physiologic, pathophysiological, pharmacological, and toxicological conditions; and (4) modifying factors of PXR-signaling including species and sex differences and time (age, critical windows of exposure, and circadian rhythm). The review also discusses critical knowledge gaps and important future research topics centering around PXR. SIGNIFICANCE STATEMENT: This review summarizes recent research advancements leveraging O'mics approaches that have redefined the previous understanding of the xenobiotic-sensing nuclear receptor pregnane X receptor (PXR). Key topics include: (1) genome-wide investigations on novel PXR-targeted host genes and intestinal bacteria as well as novel PXR-DNA interaction patterns; (2) key PXR modulators including microbial metabolites under physiological, pathophysiological, pharmacological, and toxicological conditions; and (3) modifying factors including species, sex, and time.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Schneider M, Delfosse V, Gelin M, Grimaldi M, Granell M, Heriaud L, Pons JL, Cohen Gonsaud M, Balaguer P, Bourguet W, Labesse G. Structure-Based and Knowledge-Informed Design of B-Raf Inhibitors Devoid of Deleterious PXR Binding. J Med Chem 2021; 65:1552-1566. [PMID: 34958586 DOI: 10.1021/acs.jmedchem.1c01354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dabrafenib is an anticancer drug currently used in the clinics, alone or in combination. However, dabrafenib was recently shown to potently activate the human nuclear receptor pregnane X receptor (PXR). PXR activation increases the clearance of various chemicals and drugs, including dabrafenib itself. It may also enhance cell proliferation and tumor aggressiveness. Therefore, there is a need for rational design of a potent protein kinase B-Raf inhibitor devoid of binding to the secondary target PXR and resisting rapid metabolism. By determining the crystal structure of dabrafenib bound to PXR and analyzing its mode of binding to both PXR and its primary target, B-Raf-V600E, we were able to derive new compounds with nanomolar activity against B-Raf and no detectable affinity for PXR. The crystal structure of B-Raf in complex with our lead compound revealed a subdomain swapping of the activation loop with potentially important functional implications for a prolonged inhibition of B-Raf-V600E.
Collapse
Affiliation(s)
- Melanie Schneider
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Vanessa Delfosse
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Meritxell Granell
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Laurène Heriaud
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Jean-Luc Pons
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Martin Cohen Gonsaud
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - William Bourguet
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090 Montpellier, France
| |
Collapse
|
16
|
Berthier A, Staels B, Lefebvre P. An optimized protocol with a stepwise approach to identify specific nuclear receptor ligands from cultured mammalian cells. STAR Protoc 2021; 2:100658. [PMID: 34286290 PMCID: PMC8273406 DOI: 10.1016/j.xpro.2021.100658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Here, we describe an optimized protocol to identify specific nuclear receptor ligands. First, to rule out any compound interference with luciferase activity per se, we describe an in vitro assay assessing potential inhibition or activation of luciferase enzymatic activity. Second, to comply with EMA and FDA guidelines to mitigate drug-drug interactions, we detail assays assessing constitutive androstane receptor (CAR) and pregnane X receptor (PXR) activation ability. Finally, to minimize off-target detection effects, we describe the use of mammalian one- (or two-) hybrid systems. For complete details on the use and execution of this protocol, please refer to Hering et al. (2018).
Collapse
Affiliation(s)
- Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000 Lille, France
| |
Collapse
|
17
|
Lichtenstein D, Lasch A, Alarcan J, Mentz A, Kalinowski J, Schmidt FF, Pötz O, Marx-Stoelting P, Braeuning A. An eight-compound mixture but not corresponding concentrations of individual chemicals induces triglyceride accumulation in human liver cells. Toxicology 2021; 459:152857. [PMID: 34273450 DOI: 10.1016/j.tox.2021.152857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022]
Abstract
In real life, organisms are exposed to complex mixtures of chemicals at low concentration levels, whereas research on toxicological effects is mostly focused on single compounds at comparably high doses. Mixture effects deviating from the assumption of additivity, especially synergistic effects, are of concern. In an adverse outcome pathway (AOP)-guided manner, we analyzed the accumulation of triglycerides in human HepaRG liver cells by a mixture of eight steatotic chemicals (amiodarone, benzoic acid, cyproconazole, flusilazole, imazalil, prochloraz, propiconazole and tebuconazole), each present below its individual effect concentration at 1-3 μM. Pronounced and significantly enhanced triglyceride accumulation was observed with the mixture, and similar effects were seen at the level of pregnane-X-receptor activation, a molecular initiating event leading to hepatic steatosis. Transcript pattern analysis indicated subtle pro-steatotic changes at low compound concentrations, which did not exert measurable effects on cellular triglycerides. Mathematical modeling of mixture effects indicated potentially more than additive behavior using a model for compounds with similar modes of action. The present data underline the usefulness of AOP-guided in vitro testing for the identification of mixture effects and highlight the need for further research on chemical mixtures and harmonization of data interpretation of mixture effects.
Collapse
Affiliation(s)
- Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Alexandra Lasch
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jimmy Alarcan
- German Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Almut Mentz
- University of Bielefeld, CeBiTec, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- University of Bielefeld, CeBiTec, Universitätsstr. 27, 33615, Bielefeld, Germany
| | - Felix F Schmidt
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, 72770, Reutlingen, Germany; Signatope GmbH, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, 72770, Reutlingen, Germany; Signatope GmbH, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
18
|
Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. WATER 2021. [DOI: 10.3390/w13101347] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting compounds (EDCs) as emerging contaminants have accumulated in the aquatic environment at concentration levels that have been determined to be significant to humans and animals. Several compounds belong to this family, from natural substances (hormones such as estrone, 17-estradiol, and estriol) to synthetic chemicals, especially pesticides, pharmaceuticals, and plastic-derived compounds (phthalates, bisphenol A). In this review, we discuss recent works regarding EDC occurrence in the aquatic compartment, strengths and limitations of current analytical methods used for their detection, treatment technologies for their removal from water, and the health issues that they can trigger in humans. Nowadays, many EDCs have been identified in significant amounts in different water matrices including drinking water, thus increasing the possibility of entering the food chain. Several studies correlate human exposure to high concentrations of EDCs with serious effects such as infertility, thyroid dysfunction, early puberty, endometriosis, diabetes, and obesity. Although our intention is not to explain all disorders related to EDCs exposure, this review aims to guide future research towards a deeper knowledge of EDCs’ contamination and accumulation in water, highlighting their toxicity and exposure risks to humans.
Collapse
|
19
|
Creusot N, Garoche C, Grimaldi M, Boulahtouf A, Chiavarina B, Bourguet W, Balaguer P. A Comparative Study of Human and Zebrafish Pregnane X Receptor Activities of Pesticides and Steroids Using In Vitro Reporter Gene Assays. Front Endocrinol (Lausanne) 2021; 12:665521. [PMID: 34084152 PMCID: PMC8167039 DOI: 10.3389/fendo.2021.665521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
The nuclear receptor pregnane X receptor (PXR) is a ligand-dependent transcription factor that regulates genes involved in xenobiotic metabolism in mammals. Many studies suggest that PXR may play a similar role in fish. The interaction of human PXR (hPXR) with a variety of structurally diverse endogenous and exogenous chemicals is well described. In contrast, little is known about the zebrafish PXR (zfPXR). In order to compare the effects of these chemicals on the PXR of these two species, we established reporter cell lines expressing either hPXR or zfPXR. Using these cellular models, we tested the hPXR and zfPXR activity of various steroids and pesticides. We provide evidence that steroids were generally stronger activators of zfPXR while pesticides were more potent on hPXR. In addition, some chemicals (econazole nitrate, mifepristone, cypermethrin) showed an antagonist effect on zfPXR, whereas no antagonist chemical has been identified for hPXR. These results confirm significant differences in the ability of chemicals to modulate zfPXR in comparison to hPXR and point out that zfPXR assays should be used instead of hPXR assays for evaluating the potential risks of chemicals on aquatic species.
Collapse
Affiliation(s)
- Nicolas Creusot
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, Montpellier, France
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, Montpellier, France
- *Correspondence: Clémentine Garoche, ; Patrick Balaguer,
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, Montpellier, France
| | - Barbara Chiavarina
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biologie Structurale (CBS), Inserm, CNRS, Université Montpellier, Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Institut Régional du Cancer de Montpellier (ICM), Université Montpellier, Montpellier, France
- *Correspondence: Clémentine Garoche, ; Patrick Balaguer,
| |
Collapse
|
20
|
Husain I, Manda V, Alhusban M, Dale OR, Bae JY, Avula B, Gurley BJ, Chittiboyina AG, Khan IA, Khan SI. Modulation of CYP3A4 and CYP2C9 activity by Bulbine natalensis and its constituents: An assessment of HDI risk of B. natalensis containing supplements. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153416. [PMID: 33321412 DOI: 10.1016/j.phymed.2020.153416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bulbine natalensis is an African-folk medicinal plant used as a dietary supplement for enhancing sexual function and muscle strength in males by presumably boosting testosterone levels, but no scientific information is available about the possible herb-drug interaction (HDI) risk when bulbine-containing supplements are concomitantly taken with prescription drugs. PURPOSE This study was aimed to investigate the HDI potential of B. natalensis in terms of the pregnane X receptor (PXR)-mediated induction of major drug-metabolizing cytochrome P450 enzyme isoforms (i.e., CYP3A4 and CYP2C9) as well as inhibition of their catalytic activity. RESULTS We found that a methanolic extract of B. natalensis activated PXR (EC50 6.2 ± 0.6 µg/ml) in HepG2 cells resulting in increased mRNA expression of CYP3A4 (2.40 ± 0.01 fold) and CYP2C9 (3.37 ± 0.3 fold) at 30 µg/ml which was reflected in increased activites of the two enzymes. Among the constituents of B. natalensis, knipholone was the most potent PXR activator (EC50 0.3 ± 0.1 µM) followed by bulbine-knipholone (EC50 2.0 ± 0.5 µM), and 6'-methylknipholone (EC50 4.0 ± 0.5 µM). Knipholone was also the most effective in increasing the expression of CYP3A4 (8.47 ± 2.5 fold) and CYP2C9 (2.64 ± 0.3 fold) at 10 µM. Docking studies further confirmed the unique structural features associated with knipholones for their superior inductive potentials in the activation of PXR compared to other anthraquinones. In a CYP inhibition assay, the methanolic extract as well as the anthraquinones strongly inhibited the catalytic activity of CYP2C9 while, inhibition of CYP3A4 was weak. CONCLUSIONS These results suggest that consumption of B. natalensis may pose a potential risk for HDI if taken with conventional medications that are substrates of CYP3A4 and CYP2C9 and may contribute to unanticipated adverse reactions or therapeutic failures. Further studies are warranted to validate these findings and establish their clinical relevancy.
Collapse
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Vamshi Manda
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Manal Alhusban
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States; Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Ji-Yeong Bae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States; College of Pharmacy, Jeju National University, Jeju 63243, Korea
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States; Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States; Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States.
| |
Collapse
|
21
|
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020; 10:E1702. [PMID: 33371482 PMCID: PMC7767499 DOI: 10.3390/biom10121702] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
22
|
Kühnl J, Tao TP, Brandmair K, Gerlach S, Rings T, Müller-Vieira U, Przibilla J, Genies C, Jaques-Jamin C, Schepky A, Marx U, Hewitt NJ, Maschmeyer I. Characterization of application scenario-dependent pharmacokinetics and pharmacodynamic properties of permethrin and hyperforin in a dynamic skin and liver multi-organ-chip model. Toxicology 2020; 448:152637. [PMID: 33220337 DOI: 10.1016/j.tox.2020.152637] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Microphysiological systems (MPS) aim to mimic the dynamic microenvironment and the interaction between tissues. While MPS exist for investigating pharmaceuticals, the applicability of MPS for cosmetics ingredients is yet to be evaluated. The HUMIMIC Chip2 ("Chip2″), is the first multi-organ chip technology to incorporate skin models, allowing for the topical route to be tested. Therefore, we have used this model to analyze the impact of different exposure scenarios on the pharmacokinetics and pharmacodynamics of two topically exposed chemicals, hyperforin and permethrin. The Chip2 incorporated reconstructed human epidermis models (EpiDerm™) and HepaRG-stellate spheroids. Initial experiments using static incubations of single organoids helped determine the optimal dose. In the Chip2 studies, parent and metabolites were analyzed in the circuit over 5 days after application of single and repeated topical or systemic doses. The gene expression of relevant xenobiotic metabolizing enzymes in liver spheroids was measured to reflect toxicodynamics effects of the compounds in liver. The results show that 1) metabolic capacities of EpiDerm™ and liver spheroids were maintained over five days; 2) EpiDerm™ model barrier function remained intact; 3) repeated application of compounds resulted in higher concentrations of parent chemicals and most metabolites compared to single application; 4) compound-specific gene induction e.g. induction of CYP3A4 by hyperforin depended on the application route and frequency; 5) different routes of application influenced the systemic concentrations of both parents and metabolites in the chip over the course of the experiment; 6) there was excellent intra- and inter-lab reproducibility. For permethrin, a process similar to the excretion in a human in vivo study could be simulated which was remarkably comparable to the in vivo situation. These results support the use of the Chip2 model to provide information on parent and metabolite disposition that may be relevant to risk assessment of topically applied cosmetics ingredients.
Collapse
Affiliation(s)
- Jochen Kühnl
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany.
| | - Thi Phuong Tao
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany
| | | | - Silke Gerlach
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany
| | - Thamée Rings
- Beiersdorf AG, Unnastraße 48, D-20253, Hamburg, Germany
| | | | - Julia Przibilla
- Pharmacelsus GmbH, Science Park 2, D-66123, Saarbrücken, Germany
| | | | | | | | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany
| | - Nicola J Hewitt
- Cosmetics Europe, Avenue Herrmann-Debroux 40, 1160, Auderghem, Belgium
| | | |
Collapse
|
23
|
Neale PA, Grimaldi M, Boulahtouf A, Leusch FDL, Balaguer P. Assessing species-specific differences for nuclear receptor activation for environmental water extracts. WATER RESEARCH 2020; 185:116247. [PMID: 32758789 DOI: 10.1016/j.watres.2020.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In vitro bioassays are increasingly applied to detect endocrine disrupting chemicals (EDCs) in environmental waters. Most studies use human nuclear receptor assays, but this raises questions about their relevance for evaluating ecosystem health. The current study aimed to assess species-specific differences in the activation or inhibition of a range of human and zebrafish nuclear receptors by different water extracts. Wastewater and surface water extracts were run in transactivation assays indicative of the estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR), pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ). The transactivation assays were complemented with competitive binding assays for human AR, GR, PR and MR. In most cases, both human and zebrafish nuclear receptor activity were detected in the water extracts. Only some species-specific differences in potency and activity were observed. Water extracts were more active in zebrafish PXR compared to human PXR whereas the opposite was observed for PPARγ. Further, all water extracts inhibited zebrafish PR, while only one extract showed weak anti-progestagenic activity for human PR. Due to these observed differences, zebrafish nuclear receptor assays may be preferable over human nuclear receptor assays to assess the potential risks of EDCs to aquatic organisms. However, recognizing issues with availability of zebrafish nuclear receptor assays and the relatively small differences in responsiveness for many of the human and zebrafish nuclear receptors, including the widely studied ER, the current study supports the continued use of human nuclear receptor assays for water quality monitoring.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| |
Collapse
|
24
|
Ma YN, Sun LH, Li SY, Ni YX, Cao ZY, Chen MX, Mou RX. Modulation of steroid metabolism and xenobiotic biotransformation responses in zebrafish (Danio rerio) exposed to triadimefon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114145. [PMID: 32142974 DOI: 10.1016/j.envpol.2020.114145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
The widely used fungicide triadimefon (TDF) has been detected in aquatic environments, and appears to disrupt steroid homeostasis; however, the toxic effects on fish reproduction triggered by TDF via the key receptor signaling pathways remain largely unknown. The present study showed that TDF (0.069, 0.138, 0.690 mg/L) exposure not only caused disordered germ cell maturation, but also decreased spawned egg production. In order to better understand this reproductive inhibition, we investigated the effects of TDF based on quantitative PCR, Western blot and mass spectrometry methodology in zebrafish. Due to the preferential accumulation of TDF in the liver, a general pattern of up-regulation of genes involved in biotransformation pathway was observed. A significant increase in abcb4 expression appeared to be responsible for TDF excretion. TDF-induced receptors (AhR2 and PXR) changed many genes involved in steroid metabolism, and subsequent disruptions in steroid homeostasis, which might be the key biological pathway in TDF reproductive toxicity. However, due to the different metabolic demands, the transcript profiles involved in steroid metabolism in zebrafish exhibited a sex-specific expression pattern. For example, the increase in gene expression of ahr2 was accompanied by a reduction in the rate of E2 biosynthesis resulting from the diminished cyp19a1a expression, and in turn led to down-regulation of esr1 and vtg1 in the liver, supporting the anti-estrogenic effect of TDF in male fish. In contrast, the increase in E2 production was accompanied by an increase in Esr1 protein expression caused by TDF and paralleled the increase in ahrr1 expression, suggesting that TDF may induce estrogenic activity through AhR-ER interactions in females. In addition, over-induction of cyp3a65 activity mediated through pxr, which helped to accelerate the transformation from TDF to triadimenol in the liver, appeared to elevate T metabolite rate in females. The down-regulation of fshβ transcript in males further suggested that TDF might adversely affect normal gametogenesis and induce reproductive toxicity.
Collapse
Affiliation(s)
- You-Ning Ma
- China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Li-Hua Sun
- Institute of Health Food, Zhejiang Academy of Medical Science, Hangzhou, 310013, PR China
| | - Shu-Ying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, PR China
| | - Yan-Xia Ni
- China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Zhao-Yun Cao
- China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Ming-Xue Chen
- China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Ren-Xiang Mou
- China National Rice Research Institute, Hangzhou, 310006, PR China.
| |
Collapse
|
25
|
Fang W, Peng Y, Yan L, Xia P, Zhang X. A Tiered Approach for Screening and Assessment of Environmental Mixtures by Omics and In Vitro Assays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7430-7439. [PMID: 32401503 DOI: 10.1021/acs.est.0c00662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
New methodology approaches with a broad coverage of the biological effects are urgently needed to evaluate the safety of the universe of environmentally relevant chemicals. Here, we propose a tiered approach incorporating transcriptomics and in vitro bioassays to assess environmental mixtures. The mixture samples and the perturbed biological pathways are prioritized by concentration-dependent transcriptome (CDT) and then used to guide the selection of in vitro bioassays for toxicant identification. To evaluate omics' screening capability, we first applied a CDT technique to test mixture samples by HepG2 and MCF7 cells. The effect recoveries of large-volume solid-phase extraction on the overall bioactivity of the mixture were 48.9% in HepG2 and 58.3% in MCF7. The overall bioactivity potencies obtained by transcriptomics were positively correlated with the panel of 8 bioassays among 14 mixture samples combined with the previous data. Transcriptomics could predict their activation status (AUC = 0.783) and the relative potency (p < 0.05) of bioassays for four of the eight receptors (AhR, ER, AR, and Nrf2). Furthermore, the CDT identified other biological pathways perturbated by mixture samples, such as the pathway related to TP53, CAR, FXR, HIF, THRA, etc. Overall, this study demonstrates the potential of concentration-dependent omics for effect-based water quality assessment.
Collapse
Affiliation(s)
- Wendi Fang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Ying Peng
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, P. R. China, 210023
| |
Collapse
|
26
|
The Connection of Azole Fungicides with Xeno-Sensing Nuclear Receptors, Drug Metabolism and Hepatotoxicity. Cells 2020; 9:cells9051192. [PMID: 32403288 PMCID: PMC7290820 DOI: 10.3390/cells9051192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Azole fungicides, especially triazole compounds, are widely used in agriculture and as pharmaceuticals. For a considerable number of agricultural azole fungicides, the liver has been identified as the main target organ of toxicity. A number of previous studies points towards an important role of nuclear receptors such as the constitutive androstane receptor (CAR), the pregnane-X-receptor (PXR), or the aryl hydrocarbon receptor (AHR), within the molecular pathways leading to hepatotoxicity of these compounds. Nuclear receptor-mediated hepatic effects may comprise rather adaptive changes such as the induction of drug-metabolizing enzymes, to hepatocellular hypertrophy, histopathologically detectable fatty acid changes, proliferation of hepatocytes, and the promotion of liver tumors. Here, we present a comprehensive review of the current knowledge of the interaction of major agricultural azole-class fungicides with the three nuclear receptors CAR, PXR, and AHR in vivo and in vitro. Nuclear receptor activation profiles of the azoles are presented and related to histopathological findings from classic toxicity studies. Important issues such as species differences and multi-receptor agonism and the consequences for data interpretation and risk assessment are discussed.
Collapse
|
27
|
Abd El-Hady M, Gomaa E, Zaky R, Gomaa A. Synthesis, characterization, computational simulation, cyclic voltammetry and biological studies on Cu(II), Hg(II) and Mn(II) complexes of 3-(3,5-dimethylpyrazol-1-yl)-3-oxopropionitrile. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Lichtenstein D, Luckert C, Alarcan J, de Sousa G, Gioutlakis M, Katsanou ES, Konstantinidou P, Machera K, Milani ES, Peijnenburg A, Rahmani R, Rijkers D, Spyropoulou A, Stamou M, Stoopen G, Sturla SJ, Wollscheid B, Zucchini-Pascal N, Braeuning A, Lampen A. An adverse outcome pathway-based approach to assess steatotic mixture effects of hepatotoxic pesticides in vitro. Food Chem Toxicol 2020; 139:111283. [DOI: 10.1016/j.fct.2020.111283] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
|
29
|
Hernández AF, Bennekou SH, Hart A, Mohimont L, Wolterink G. Mechanisms underlying disruptive effects of pesticides on the thyroid function. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2019.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Crivellente F, Hart A, Hernandez-Jerez AF, Hougaard Bennekou S, Pedersen R, Terron A, Wolterink G, Mohimont L. Establishment of cumulative assessment groups of pesticides for their effects on the thyroid. EFSA J 2019; 17:e05801. [PMID: 32626429 PMCID: PMC7009157 DOI: 10.2903/j.efsa.2019.5801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cumulative assessment groups of pesticides have been established for two specific effects on the thyroid: firstly hypothyroidism, and secondly parafollicular cell (C-cell) hypertrophy, hyperplasia and neoplasia. Sources of uncertainties resulting from the methodological approach and from the limitations in available data and scientific knowledge have been identified and considered. This report supports the publication of a scientific report on cumulative risk assessment to pesticides affecting the thyroid, in which all uncertainties identified for either the exposure assessment or the establishment of the cumulative assessment groups are incorporated into a consolidated risk characterisation.
Collapse
|
31
|
Dutra LS, Ferreira AP. Tendência de malformações congênitas e utilização de agrotóxicos em commodities: um estudo ecológico. SAÚDE EM DEBATE 2019. [DOI: 10.1590/0103-1104201912108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
RESUMO O objetivo deste artigo foi analisar a tendência de malformações congênitas e a associação entre o uso de agrotóxicos em microrregiões de estados brasileiros que possuem maior produção de commodities agrícolas. Estudo ecológico de análise temporal conduzido com informações dos nascidos vivos (Sinasc/Ministério da Saúde), elaborando-se taxas de anomalias ocorridas entre 2000 e 2016. Foram encontradas taxas mais elevadas de anomalias congênitas nas microrregiões dos estados que apresentavam maiores produções de grãos. Essas anomalias podem ser advindas da exposição da população a agrotóxicos, sendo uma sinalização expressiva nos problemas de saúde pública.
Collapse
|
32
|
Lu SY, Lin P, Tsai WR, Weng CY. The Pragmatic Strategy to Detect Endocrine-Disrupting Activity of Xenobiotics in Food. Med Chem 2019. [DOI: 10.5772/intechopen.81030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Alameh G, Emptoz-Bonneton A, Rolland de Ravel M, Matera EL, Mappus E, Balaguer P, Rocheblave L, Lomberget T, Dumontet C, Le Borgne M, Pugeat M, Grenot C, Cuilleron CY. In vitro modulation of multidrug resistance by pregnane steroids and in vivo inhibition of tumour development by 7α-OBz-11α(R)-OTHP-5β-pregnanedione in K562/R7 and H295R cell xenografts. J Enzyme Inhib Med Chem 2019; 34:684-691. [PMID: 30777494 PMCID: PMC6383615 DOI: 10.1080/14756366.2019.1575825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Synthetic progesterone and 5α/β-pregnane-3,20-dione derivatives were evaluated as in vitro and in vivo modulators of multidrug-resistance (MDR) using two P-gp-expressing human cell lines, the non-steroidogenic K562/R7 erythroleukaemia cells and the steroidogenic NCI-H295R adrenocortical carcinoma cells, both resistant to doxorubicin. The maximal effect in both cell lines was observed for 7α-O-benzoyloxy,11α(R)-O-tetrahydropyranyloxy-5β-pregnane-3,20-dione 4. This modulator co-injected with doxorubicin significantly decreased the tumour size and increased the survival time of immunodeficient mice xenografted with NCI-H295R or K562/R7 cells.
Collapse
Affiliation(s)
- Ghina Alameh
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| | - Agnès Emptoz-Bonneton
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,b Fédération d'Endocrinologie du pôle Est, Hospices Civils de Lyon , Lyon , France
| | - Marc Rolland de Ravel
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,c Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM, Centre Léon Bérard , Lyon , France
| | - Eva L Matera
- c Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM, Centre Léon Bérard , Lyon , France
| | - Elisabeth Mappus
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| | - Patrick Balaguer
- d Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier , Montpellier , France
| | - Luc Rocheblave
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,e Faculté de Pharmacie-ISPB, Department of Bioactive Molecules and Medicinal Chemistry , Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Thierry Lomberget
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,e Faculté de Pharmacie-ISPB, Department of Bioactive Molecules and Medicinal Chemistry , Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Charles Dumontet
- c Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM, Centre Léon Bérard , Lyon , France
| | - Marc Le Borgne
- e Faculté de Pharmacie-ISPB, Department of Bioactive Molecules and Medicinal Chemistry , Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Michel Pugeat
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,b Fédération d'Endocrinologie du pôle Est, Hospices Civils de Lyon , Lyon , France
| | - Catherine Grenot
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| | - Claude Y Cuilleron
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| |
Collapse
|
34
|
Dempsey JL, Wang D, Siginir G, Fei Q, Raftery D, Gu H, Yue Cui J. Pharmacological Activation of PXR and CAR Downregulates Distinct Bile Acid-Metabolizing Intestinal Bacteria and Alters Bile Acid Homeostasis. Toxicol Sci 2019; 168:40-60. [PMID: 30407581 PMCID: PMC6821357 DOI: 10.1093/toxsci/kfy271] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiome regulates important host metabolic pathways including xenobiotic metabolism and intermediary metabolism, such as the conversion of primary bile acids (BAs) into secondary BAs. The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known regulators for xenobiotic biotransformation in liver. However, little is known regarding the potential effects of PXR and CAR on the composition and function of the gut microbiome. To test our hypothesis that activation of PXR and CAR regulates gut microbiota and secondary BA synthesis, 9-week-old male conventional and germ-free mice were orally gavaged with corn oil, PXR agonist PCN (75 mg/kg), or CAR agonist TCPOBOP (3 mg/kg) once daily for 4 days. PCN and TCPOBOP decreased two taxa in the Bifidobacterium genus, which corresponded with decreased gene abundance of the BA-deconjugating enzyme bile salt hydrolase. In liver and small intestinal content of germ-free mice, there was a TCPOBOP-mediated increase in total, primary, and conjugated BAs corresponding with increased Cyp7a1 mRNA. Bifidobacterium, Dorea, Peptociccaceae, Anaeroplasma, and Ruminococcus positively correlated with T-UDCA in LIC, but negatively correlated with T-CDCA in serum. In conclusion, PXR and CAR activation downregulates BA-metabolizing bacteria in the intestine and modulates BA homeostasis in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Dongfang Wang
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
- Chongqing Blood Center, Chongqing 400015, P.R. China
| | - Gunseli Siginir
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Qiang Fei
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
- Department of Chemistry, Jilin University, Changchun, Jilin Province 130061, P.R. China
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington 98109
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona 85004
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
35
|
Degl'Innocenti D, Ramazzotti M, Sarchielli E, Monti D, Chevanne M, Vannelli GB, Barletta E. Oxadiazon affects the expression and activity of aldehyde dehydrogenase and acylphosphatase in human striatal precursor cells: A possible role in neurotoxicity. Toxicology 2018; 411:110-121. [PMID: 30391265 DOI: 10.1016/j.tox.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Exposure to herbicides can induce long-term chronic adverse effects such as respiratory diseases, malignancies and neurodegenerative diseases. Oxadiazon, a pre-emergence or early post-emergence herbicide, despite its low acute toxicity, may induce liver cancer and may exert adverse effects on reproductive and on endocrine functions. Unlike other herbicides, there are no indications on neurotoxicity associated with long-term exposure to oxadiazon. Therefore, we have analyzed in primary neuronal precursor cells isolated from human striatal primordium the effects of non-cytotoxic doses of oxadiazon on neuronal cell differentiation and migration, and on the expression and activity of the mitochondrial aldehyde dehydrogenase 2 (ALDH2) and of the acylphosphatase (ACYP). ALDH2 activity protects neurons against neurotoxicity induced by toxic aldehydes during oxidative stress and plays a role in neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease. ACYP is involved in ion transport, cell differentiation, programmed cell death and cancer, and increased levels of ACYP have been revealed in fibroblasts from patients affected by Alzheimer's disease. In this study we demonstrated that non-cytotoxic doses of oxadiazon were able to inhibit neuronal striatal cell migration and FGF2- and BDNF-dependent differentiation towards neuronal phenotype, and to inhibit the expression and activity of ALDH2 and to increase the expression and activity of ACYP2. In addition, we have provided evidence that in human primary neuronal precursor striatal cells the inhibitory effects of oxadiazon on cell migration and differentiation towards neuronal phenotype were achieved through modulation of ACYP2. Taken together, our findings reveal for the first time that oxadiazon could exert neurotoxic effects by impairing differentiative capabilities of primary neuronal cells and indicate that ALDH2 and ACYP2 are relevant molecular targets for the neurotoxic effects of oxadiazon, suggesting a potential role of this herbicide in the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Donatella Degl'Innocenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Marta Chevanne
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
36
|
Lozano-Paniagua D, Parrón T, Alarcón R, Requena M, Gil F, López-Guarnido O, Lacasaña M, Hernández AF. Biomarkers of oxidative stress in blood of workers exposed to non-cholinesterase inhibiting pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:121-128. [PMID: 29990723 DOI: 10.1016/j.ecoenv.2018.06.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 05/07/2023]
Abstract
In occupational settings workers are often exposed to pesticides at relatively high doses compared to environmental exposures. Long-term exposure to pesticides has been associated with numerous adverse health effects in epidemiological studies, and oxidative stress is often claimed as one of the underlying mechanisms. In fact, different pesticides have been reported to induce oxidative stress due to the generation of free radicals and/or alteration in antioxidant defense enzymes. The present study examined greenhouse workers regularly exposed to diverse pesticides under integrated production system, and a group of controls of the same geographic area without any chemical exposure. Two different periods of the same crop season were assessed, one of high exposure (with greater use of pesticides) and other of low exposure (in which a less use of these compounds was made). Non-specific biomarkers of oxidative stress, e.g. thiobarbituric acid reactive substances (TBARS), ferric reducing ability of serum (FRAS), total thiol groups (SHT), gamma-glutamyl transpeptidase (GGT) and paraoxonase-1 (PON1) were measured in serum samples from all study subjects, alongside erythrocyte acetylcholinesterase (AChE). Results are suggestive of a mild increase in oxidative stress associated with pesticide exposure, which was compensated by an adaptive response to raise the antioxidant defenses and thus counter the detrimental effects of sustained oxidative stress. This response led to significantly increased levels of FRAS, SHT and PON1 in greenhouse workers relative to controls. Furthermore, AChE was decreased likely as a result of oxidative stress as workers did not use organophosphate insecticides.
Collapse
Affiliation(s)
- David Lozano-Paniagua
- Dept. Legal Medicine and Toxicology, University of Granada School of Medicine, Spain
| | | | | | - Mar Requena
- University of Almería School of Health Sciences, Spain
| | - Fernando Gil
- Dept. Legal Medicine and Toxicology, University of Granada School of Medicine, Spain
| | - Olga López-Guarnido
- Dept. Legal Medicine and Toxicology, University of Granada School of Medicine, Spain
| | - Marina Lacasaña
- Escuela Andaluza de Salud Pública, Spain; CIBERESP, Spain; ibs.GRANADA, Spain
| | - Antonio F Hernández
- Dept. Legal Medicine and Toxicology, University of Granada School of Medicine, Spain.
| |
Collapse
|
37
|
Heitel P, Gellrich L, Heering J, Goebel T, Kahnt A, Proschak E, Schubert-Zsilavecz M, Merk D. Urate transporter inhibitor lesinurad is a selective peroxisome proliferator-activated receptor gamma modulator (sPPARγM) in vitro. Sci Rep 2018; 8:13554. [PMID: 30202096 PMCID: PMC6131501 DOI: 10.1038/s41598-018-31833-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/29/2018] [Indexed: 12/13/2022] Open
Abstract
Gout is the most common arthritic disease in human but was long neglected and therapeutic options are not satisfying. However, with the recent approval of the urate transporter inhibitor lesinurad, gout treatment has experienced a major innovation. Here we show that lesinurad possesses considerable modulatory potency on peroxisome proliferator-activated receptor γ (PPARγ). Since gout has a strong association with metabolic diseases such as type 2 diabetes, this side-activity appears as very valuable contributing factor to the clinical efficacy profile of lesinurad. Importantly, despite robustly activating PPARγ in vitro, lesinurad lacked adipogenic activity, which seems due to differential coactivator recruitment and is characterized as selective PPARγ modulator (sPPARγM).
Collapse
Affiliation(s)
- Pascal Heitel
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Leonie Gellrich
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Jan Heering
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, D-60596, Frankfurt, Germany
| | - Tamara Goebel
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Astrid Kahnt
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Ewgenij Proschak
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Str. 9, D-60438, Frankfurt, Germany.
| |
Collapse
|
38
|
Balaguer P, Delfosse V, Grimaldi M, Bourguet W. Structural and functional evidences for the interactions between nuclear hormone receptors and endocrine disruptors at low doses. C R Biol 2018; 340:414-420. [PMID: 29126514 DOI: 10.1016/j.crvi.2017.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system mainly by interacting with nuclear hormone receptors (NRs). Humans are generally exposed to low doses of pollutants, and current researches aim at deciphering the mechanisms accounting for the health impact of EDCs at environmental concentrations. Our correlative analysis of structural, interaction and cell-based data has revealed a variety of, sometimes unexpected, binding modes, reflecting a wide range of EDC affinities and specificities. Here, we present a few representative examples to illustrate various means by which EDCs achieve high-affinity binding to NRs. These examples include the binding of the mycoestrogen α-zearalanol to estrogen receptors, the covalent interaction of organotins with the retinoid X- and peroxisome proliferator-activated receptors, and the cooperative binding of two chemicals to the pregnane X receptor. We also discuss some hypotheses that could further explain low-concentration effects of EDCs with weaker affinity towards NRs.
Collapse
Affiliation(s)
- Patrick Balaguer
- Institut de recherche en cancérologie de Montpellier (IRCM), 34298 Montpellier, France; Inserm, U1194, 34298 Montpellier, France; Institut régional du cancer de Montpellier (ICM), 34298 Montpellier, France; Université de Montpellier, 34090 Montpellier, France.
| | - Vanessa Delfosse
- Université de Montpellier, 34090 Montpellier, France; Inserm U1054, 34090 Montpellier, France; CNRS UMR5048, Centre de biochimie structurale, 34090 Montpellier, France
| | - Marina Grimaldi
- Institut de recherche en cancérologie de Montpellier (IRCM), 34298 Montpellier, France; Inserm, U1194, 34298 Montpellier, France; Institut régional du cancer de Montpellier (ICM), 34298 Montpellier, France; Université de Montpellier, 34090 Montpellier, France
| | - William Bourguet
- Université de Montpellier, 34090 Montpellier, France; Inserm U1054, 34090 Montpellier, France; CNRS UMR5048, Centre de biochimie structurale, 34090 Montpellier, France
| |
Collapse
|
39
|
Escher BI, Aїt-Aїssa S, Behnisch PA, Brack W, Brion F, Brouwer A, Buchinger S, Crawford SE, Du Pasquier D, Hamers T, Hettwer K, Hilscherová K, Hollert H, Kase R, Kienle C, Tindall AJ, Tuerk J, van der Oost R, Vermeirssen E, Neale PA. Effect-based trigger values for in vitro and in vivo bioassays performed on surface water extracts supporting the environmental quality standards (EQS) of the European Water Framework Directive. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:748-765. [PMID: 29454215 DOI: 10.1016/j.scitotenv.2018.01.340] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
Effect-based methods including cell-based bioassays, reporter gene assays and whole-organism assays have been applied for decades in water quality monitoring and testing of enriched solid-phase extracts. There is no common EU-wide agreement on what level of bioassay response in water extracts is acceptable. At present, bioassay results are only benchmarked against each other but not against a consented measure of chemical water quality. The EU environmental quality standards (EQS) differentiate between acceptable and unacceptable surface water concentrations for individual chemicals but cannot capture the thousands of chemicals in water and their biological action as mixtures. We developed a method that reads across from existing EQS and includes additional mixture considerations with the goal that the derived effect-based trigger values (EBT) indicate acceptable risk for complex mixtures as they occur in surface water. Advantages and limitations of various approaches to read across from EQS are discussed and distilled to an algorithm that translates EQS into their corresponding bioanalytical equivalent concentrations (BEQ). The proposed EBT derivation method was applied to 48 in vitro bioassays with 32 of them having sufficient information to yield preliminary EBTs. To assess the practicability and robustness of the proposed approach, we compared the tentative EBTs with observed environmental effects. The proposed method only gives guidance on how to derive EBTs but does not propose final EBTs for implementation. The EBTs for some bioassays such as those for estrogenicity are already mature and could be implemented into regulation in the near future, while for others it will still take a few iterations until we can be confident of the power of the proposed EBTs to differentiate good from poor water quality with respect to chemical contamination.
Collapse
Affiliation(s)
- Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geosciences, 72074 Tübingen, Germany; Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, QLD 4108, Australia.
| | - Selim Aїt-Aїssa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | | | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | | | | | - Sarah E Crawford
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Timo Hamers
- Vrije Universiteit Amsterdam, Dept. Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | | | - Klára Hilscherová
- Masaryk University, Faculty of Science, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Robert Kase
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Cornelia Kienle
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Andrew J Tindall
- Laboratoire Watchfrog, 1 Rue Pierre Fontaine, 91 000 Evry, France
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, D-47229 Duisburg, Germany
| | - Ron van der Oost
- Waternet Institute for the Urban Water Cycle, Department of Technology, Research and Engineering, Amsterdam, The Netherlands
| | - Etienne Vermeirssen
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Brisbane, QLD 4108, Australia
| |
Collapse
|
40
|
Tebbens JD, Azar M, Friedmann E, Lanzendörfer M, Pávek P. Mathematical Models in the Description of Pregnane X Receptor (PXR)-Regulated Cytochrome P450 Enzyme Induction. Int J Mol Sci 2018; 19:ijms19061785. [PMID: 29914136 PMCID: PMC6032247 DOI: 10.3390/ijms19061785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug–drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.
Collapse
Affiliation(s)
- Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Malek Azar
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Elfriede Friedmann
- Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Mathematikon, University Heidelberg, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany.
| | - Martin Lanzendörfer
- Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic.
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
41
|
Altenburger R, Scholze M, Busch W, Escher BI, Jakobs G, Krauss M, Krüger J, Neale PA, Ait-Aissa S, Almeida AC, Seiler TB, Brion F, Hilscherová K, Hollert H, Novák J, Schlichting R, Serra H, Shao Y, Tindall A, Tollefsen KE, Umbuzeiro G, Williams TD, Kortenkamp A. Mixture effects in samples of multiple contaminants - An inter-laboratory study with manifold bioassays. ENVIRONMENT INTERNATIONAL 2018; 114:95-106. [PMID: 29499452 DOI: 10.1016/j.envint.2018.02.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 05/18/2023]
Abstract
Chemicals in the environment occur in mixtures rather than as individual entities. Environmental quality monitoring thus faces the challenge to comprehensively assess a multitude of contaminants and potential adverse effects. Effect-based methods have been suggested as complements to chemical analytical characterisation of complex pollution patterns. The regularly observed discrepancy between chemical and biological assessments of adverse effects due to contaminants in the field may be either due to unidentified contaminants or result from interactions of compounds in mixtures. Here, we present an interlaboratory study where individual compounds and their mixtures were investigated by extensive concentration-effect analysis using 19 different bioassays. The assay panel consisted of 5 whole organism assays measuring apical effects and 14 cell- and organism-based bioassays with more specific effect observations. Twelve organic water pollutants of diverse structure and unique known modes of action were studied individually and as mixtures mirroring exposure scenarios in freshwaters. We compared the observed mixture effects against component-based mixture effect predictions derived from additivity expectations (assumption of non-interaction). Most of the assays detected the mixture response of the active components as predicted even against a background of other inactive contaminants. When none of the mixture components showed any activity by themselves then the mixture also was without effects. The mixture effects observed using apical endpoints fell in the middle of a prediction window defined by the additivity predictions for concentration addition and independent action, reflecting well the diversity of the anticipated modes of action. In one case, an unexpectedly reduced solubility of one of the mixture components led to mixture responses that fell short of the predictions of both additivity mixture models. The majority of the specific cell- and organism-based endpoints produced mixture responses in agreement with the additivity expectation of concentration addition. Exceptionally, expected (additive) mixture response did not occur due to masking effects such as general toxicity from other compounds. Generally, deviations from an additivity expectation could be explained due to experimental factors, specific limitations of the effect endpoint or masking side effects such as cytotoxicity in in vitro assays. The majority of bioassays were able to quantitatively detect the predicted non-interactive, additive combined effect of the specifically bioactive compounds against a background of complex mixture of other chemicals in the sample. This supports the use of a combination of chemical and bioanalytical monitoring tools for the identification of chemicals that drive a specific mixture effect. Furthermore, we demonstrated that a panel of bioassays can provide a diverse profile of effect responses to a complex contaminated sample. This could be extended towards representing mixture adverse outcome pathways. Our findings support the ongoing development of bioanalytical tools for (i) compiling comprehensive effect-based batteries for water quality assessment, (ii) designing tailored surveillance methods to safeguard specific water uses, and (iii) devising strategies for effect-based diagnosis of complex contamination.
Collapse
Affiliation(s)
- Rolf Altenburger
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany.
| | - Martin Scholze
- Institute for the Environment, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
| | - Wibke Busch
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Beate I Escher
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geoscience, 72074 Tübingen, Germany
| | - Gianina Jakobs
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Janet Krüger
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD 4222, Australia
| | - Selim Ait-Aissa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | - Ana Catarina Almeida
- Norwegian Institute for Water Research NIVA, Gaustadalléen 21, N-0349 Oslo, Norway
| | | | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | - Klára Hilscherová
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Jiří Novák
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Rita Schlichting
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Hélène Serra
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550 Verneuil-en-Halatte, France
| | - Ying Shao
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrew Tindall
- WatchFrog, Bâtiment Genavenir 3, 1 rue Pierre Fontaine, 91000 Evry, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research NIVA, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Gisela Umbuzeiro
- Faculdade de Tecnologia, FT-UNICAMP, Universidade Estadual de Campinas, Limeira, SP 13484-332, Brazil
| | - Tim D Williams
- School of Biosciences, The University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Andreas Kortenkamp
- Institute for the Environment, Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
| |
Collapse
|
42
|
Neale PA, Brack W, Aït-Aïssa S, Busch W, Hollender J, Krauss M, Maillot-Maréchal E, Munz NA, Schlichting R, Schulze T, Vogler B, Escher BI. Solid-phase extraction as sample preparation of water samples for cell-based and other in vitro bioassays. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:493-504. [PMID: 29493668 DOI: 10.1039/c7em00555e] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In vitro bioassays are increasingly used for water quality monitoring. Surface water samples often need to be enriched to observe an effect and solid-phase extraction (SPE) is commonly applied for this purpose. The applied methods are typically optimised for the recovery of target chemicals and not for effect recovery for bioassays. A review of the few studies that have evaluated SPE recovery for bioassays showed a lack of experimentally determined recoveries. Therefore, we systematically measured effect recovery of a mixture of 579 organic chemicals covering a wide range of physicochemical properties that were spiked into a pristine water sample and extracted using large volume solid-phase extraction (LVSPE). Assays indicative of activation of xenobiotic metabolism, hormone receptor-mediated effects and adaptive stress responses were applied, with non-specific effects determined through cytotoxicity measurements. Overall, effect recovery was found to be similar to chemical recovery for the majority of bioassays and LVSPE blanks had no effect. Multi-layer SPE exhibited greater recovery of spiked chemicals compared to LVSPE, but the blanks triggered cytotoxicity at high enrichment. Chemical recovery data together with single chemical effect data were used to retrospectively estimate with reverse recovery modelling that there was typically less than 30% effect loss expected due to reduced SPE recovery in published surface water monitoring studies. The combination of targeted experiments and mixture modelling clearly shows the utility of SPE as a sample preparation method for surface water samples, but also emphasizes the need for adequate controls when extraction methods are adapted from chemical analysis workflows.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| | - Werner Brack
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany. and RWTH Aachen University, Institute for Environmental Research, 52074 Aachen, Germany
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques INERIS, 60550 Verneuil-en-Halatte, France
| | - Wibke Busch
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Martin Krauss
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | | | - Nicole A Munz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Rita Schlichting
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | - Tobias Schulze
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany.
| | - Bernadette Vogler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia and UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany. and Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| |
Collapse
|
43
|
Knebel C, Neeb J, Zahn E, Schmidt F, Carazo A, Holas O, Pavek P, Püschel GP, Zanger UM, Süssmuth R, Lampen A, Marx-Stoelting P, Braeuning A. Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells. Toxicol Sci 2018; 163:170-181. [DOI: 10.1093/toxsci/kfy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | - Elisabeth Zahn
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Flavia Schmidt
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | | | - Ondej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology
| | - Gerhard P Püschel
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, and Eberhard-Karls-University, Tuebingen, Germany
| | - Roderich Süssmuth
- Institute of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | | | - Philip Marx-Stoelting
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | | |
Collapse
|
44
|
Hassani-Nezhad-Gashti F, Rysä J, Kummu O, Näpänkangas J, Buler M, Karpale M, Hukkanen J, Hakkola J. Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochem Pharmacol 2018; 148:253-264. [PMID: 29309761 DOI: 10.1016/j.bcp.2018.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Pregnane X receptor (PXR) is a nuclear receptor that senses chemical environment and is activated by numerous clinically used drugs and environmental contaminants. Previous studies have indicated that several drugs known to activate PXR appear to induce glucose intolerance. We now aimed to reveal the role of PXR in drug-induced glucose intolerance and characterize the mechanisms involved. We used PXR knockout mice model to investigate the significance of this nuclear receptor in the regulation of glucose tolerance. PXR ligand pregnenolone-16ɑ-carbonitrile (PCN) impaired glucose tolerance in the wildtype mice but not in the PXR knockout mice. Furthermore, DNA microarray and bioinformatics analysis of differentially expressed genes and glucose metabolism relevant pathways in PCN treated primary hepatocytes indicated that PXR regulates genes involved in glucose uptake. PCN decreased the expression of glucose transporter 2 (GLUT2) in mouse liver and in the wildtype mouse hepatocytes but not in the PXR knockout cells. Data mining of published chromatin immunoprecipitation-sequencing results indicate that Glut2 gene is a direct PXR target. Furthermore, PCN induced internalization of GLUT2 protein from the plasma membrane to the cytosol in the liver in vivo and repressed glucose uptake in the primary hepatocytes. Our results indicate that the activation of PXR impairs glucose tolerance and thus PXR represents a novel diabetogenic pathway. PXR activation dysregulates GLUT2 function by two different mechanisms. These findings may partly explain the diabetogenic effects of medications and environmental contaminants.
Collapse
Affiliation(s)
- Fatemeh Hassani-Nezhad-Gashti
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha Näpänkangas
- Department of Pathology, Cancer Research and Translational Medicine Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Marcin Buler
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikko Karpale
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Internal Medicine, Research Unit of Internal Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
45
|
Yoshimaru S, Shizu R, Tsuruta S, Amaike Y, Kano M, Hosaka T, Sasaki T, Yoshinari K. Acceleration of murine hepatocyte proliferation by imazalil through the activation of nuclear receptor PXR. J Toxicol Sci 2018; 43:443-450. [DOI: 10.2131/jts.43.443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Shohei Yoshimaru
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Satoshi Tsuruta
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yuto Amaike
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Makoto Kano
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
46
|
Attignon EA, Distel E, Le-Grand B, Leblanc AF, Barouki R, de Oliveira E, Aggerbeck M, Blanc EB. Down-regulation of the expression of alcohol dehydrogenase 4 and CYP2E1 by the combination of α-endosulfan and dioxin in HepaRG human cells. Toxicol In Vitro 2017; 45:309-317. [DOI: 10.1016/j.tiv.2017.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/12/2017] [Accepted: 06/29/2017] [Indexed: 01/27/2023]
|
47
|
Abdel-Moneim A, Deegan D, Gao J, De Perre C, Doucette JS, Jenkinson B, Lee L, Sepúlveda MS. Gonadal intersex in smallmouth bass Micropterus dolomieu from northern Indiana with correlations to molecular biomarkers and anthropogenic chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:1099-1107. [PMID: 28783897 DOI: 10.1016/j.envpol.2017.07.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/29/2017] [Accepted: 07/16/2017] [Indexed: 05/27/2023]
Abstract
Over the past decade, studies have shown that exposure to endocrine disrupting chemicals (EDCs) can cause gonadal intersex in fish. Smallmouth bass (Micropterus dolomieu) males appear to be highly susceptible to developing testicular oocytes (TO), the most prevalent form of gonadal intersex, as observed in various areas across the U.S. In this study, prevalence and severity of TO was quantified for smallmouth bass sampled from the St. Joseph River in northern Indiana, intersex biomarkers were developed, and association between TO prevalence and organic contaminants were explored. At some sites, TO prevalence reached maximum levels before decreasing significantly after the spawning season. We examined the relationship between TO presence and expression of gonadal and liver genes involved in sex differentiation and reproductive functions (esr1, esr2, foxl2, fshr, star, lhr and vtg). We found that vitellogenin (vtg) transcript levels were significantly higher in the liver of males with TO, but only when sampled during the spawning season. Further, we identified a positive correlation between plasma VTG levels and vtg transcript levels, suggesting its use as a non-destructive biomarker of TO in this species. Finally, we evaluated 43 contaminants in surface water at representative sites using passive sampling to look for contaminants with possible links to the observed TO prevalence. No quantifiable levels of estrogens or other commonly agreed upon EDCs such as the bisphenols were observed in our contaminant assessment; however, we did find high levels of herbicides as well as consistent quantifiable levels of PFOS, PFOA, and triclosan in the watershed where high TO prevalence was exhibited. Our findings suggest that the observed TO prevalence may be the result of exposures to mixtures of nonsteroidal EDCs.
Collapse
Affiliation(s)
- Ahmed Abdel-Moneim
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Veterinary Forensic Medicine & Toxicology, Assiut University, Assiut 71526, Egypt
| | - Daragh Deegan
- City of Elkhart, Public Works and Utilities Department, Elkhart, Indiana 46516, USA
| | - Jiejun Gao
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chloe De Perre
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Jarrod S Doucette
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Linda Lee
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Maria S Sepúlveda
- Department of Forestry & Natural Resources and Bindley Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
48
|
Manda VK, Avula B, Dale OR, Ali Z, Khan IA, Walker LA, Khan SI. PXR mediated induction of CYP3A4, CYP1A2, and P-gp byMitragyna speciosaand its alkaloids. Phytother Res 2017; 31:1935-1945. [DOI: 10.1002/ptr.5942] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Vamshi K. Manda
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Olivia R. Dale
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
- Department of Biomolecular Sciences, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Larry A. Walker
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
- Department of Biomolecular Sciences, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| | - Shabana I. Khan
- National Center for Natural Products Research, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
- Department of Biomolecular Sciences, School of Pharmacy; University of Mississippi; University Oxford MS 38677 USA
| |
Collapse
|
49
|
Neale PA, Altenburger R, Aït-Aïssa S, Brion F, Busch W, de Aragão Umbuzeiro G, Denison MS, Du Pasquier D, Hilscherová K, Hollert H, Morales DA, Novák J, Schlichting R, Seiler TB, Serra H, Shao Y, Tindall AJ, Tollefsen KE, Williams TD, Escher BI. Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water. WATER RESEARCH 2017; 123:734-750. [PMID: 28728110 DOI: 10.1016/j.watres.2017.07.016] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/04/2017] [Accepted: 07/07/2017] [Indexed: 05/18/2023]
Abstract
Surface waters can contain a diverse range of organic pollutants, including pesticides, pharmaceuticals and industrial compounds. While bioassays have been used for water quality monitoring, there is limited knowledge regarding the effects of individual micropollutants and their relationship to the overall mixture effect in water samples. In this study, a battery of in vitro bioassays based on human and fish cell lines and whole organism assays using bacteria, algae, daphnids and fish embryos was assembled for use in water quality monitoring. The selection of bioassays was guided by the principles of adverse outcome pathways in order to cover relevant steps in toxicity pathways known to be triggered by environmental water samples. The effects of 34 water pollutants, which were selected based on hazard quotients, available environmental quality standards and mode of action information, were fingerprinted in the bioassay test battery. There was a relatively good agreement between the experimental results and available literature effect data. The majority of the chemicals were active in the assays indicative of apical effects, while fewer chemicals had a response in the specific reporter gene assays, but these effects were typically triggered at lower concentrations. The single chemical effect data were used to improve published mixture toxicity modeling of water samples from the Danube River. While there was a slight increase in the fraction of the bioanalytical equivalents explained for the Danube River samples, for some endpoints less than 1% of the observed effect could be explained by the studied chemicals. The new mixture models essentially confirmed previous findings from many studies monitoring water quality using both chemical analysis and bioanalytical tools. In short, our results indicate that many more chemicals contribute to the biological effect than those that are typically quantified by chemical monitoring programs or those regulated by environmental quality standards. This study not only demonstrates the utility of fingerprinting single chemicals for an improved understanding of the biological effect of pollutants, but also highlights the need to apply bioassays for water quality monitoring in order to prevent underestimation of the overall biological effect.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD, 4222, Australia; The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD, 4108, Australia
| | - Rolf Altenburger
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Selim Aït-Aïssa
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - Wibke Busch
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | | | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, United States
| | - David Du Pasquier
- WatchFrog, Bâtiment Genavenir 3, 1 rue Pierre Fontaine, 91000 Evry, France
| | - Klára Hilscherová
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Daniel A Morales
- School of Technology, University of Campinas, Limeira, SP, 13484-332, Brazil
| | - Jiří Novák
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Kamenice 753/5, 62500 Brno, Czech Republic
| | - Rita Schlichting
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Helene Serra
- Institut National de l'Environnement Industriel et des Risques INERIS, Unité d'Ecotoxicologie, 60550, Verneuil-en-Halatte, France
| | - Ying Shao
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Andrew J Tindall
- WatchFrog, Bâtiment Genavenir 3, 1 rue Pierre Fontaine, 91000 Evry, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research NIVA, Gaustadalléen 21, 0349 Oslo, Norway
| | - Timothy D Williams
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Beate I Escher
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, QLD, 4108, Australia; UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany.
| |
Collapse
|
50
|
Helsley RN, Zhou C. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx017. [PMID: 29119010 PMCID: PMC5672952 DOI: 10.1093/eep/dvx017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 09/02/2017] [Indexed: 05/25/2023]
Abstract
Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.
Collapse
Affiliation(s)
- Robert N Helsley
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, Center for Metabolic Disease Research, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|