1
|
Jaeschke H, Ramachandran A. The multiple mechanisms and modes of cell death after acetaminophen overdose. EXPLORATION OF DIGESTIVE DISEASES 2025; 4:100569. [PMID: 40364831 PMCID: PMC12074662 DOI: 10.37349/edd.2025.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025]
Abstract
Acetaminophen (APAP)-induced liver injury and acute liver failure is a significant clinical problem worldwide; in addition, APAP overdoses in animals or in cell culture are used as popular models to study drug-induced liver injury mechanisms and test therapeutic interventions. Early assumptions that APAP toxicity is caused by a single mechanism resulting in a defined mode of cell death in hepatocytes had to be questioned when over the years many different mechanisms and modes of cell death were reported. Although many of the contradictory results and conclusions reported over the years can be attributed to lack of understanding of established mechanisms, methodological problems, and misinterpretation of data, it is increasingly recognized that some of the reported differences in signaling mechanisms and even a switch in the mode of cell death can be caused by variations in the experimental conditions. In this review, examples will be discussed how experimental conditions (dose, solvent, etc.), the experimental system (species, strain, and substrain in vivo, cell type, and in vitro conditions), and also adaptive responses and off-target effects of genetic manipulations and chemical interventions, can impact the mechanisms of cell death. Given that the conditions will determine the results, it is therefore of critical importance to keep in mind the translational aspect of the experiments, i.e., the conditions relevant to the human pathophysiology. Only the full appreciation of these issues will lead to reproducible and clinically relevant results that advance our understanding of all facets of the human pathophysiology and identify clinically relevant therapeutic targets.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Suzuki A, MinjunChen. Epidemiology and Risk Determinants of Drug-Induced Liver Injury: Current Knowledge and Future Research Needs. Liver Int 2025; 45:e16146. [PMID: 39494620 DOI: 10.1111/liv.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
AIMS Drug-induced liver injury (DILI) is a major global health concern resulting from adverse reactions to medications, supplements or herbal medicines. The relevance of DILI has grown with an aging population, the rising prevalence of chronic diseases and the increased use of biologics, including checkpoint inhibitors. This article aims to summarise current knowledge on DILI epidemiology and risk factors. METHODS This review critically appraises available evidence on DILI frequency, outcomes and risk determinants, focusing on drug properties and non-genetic host factors that may influence susceptibility. RESULTS DILI incidence varies across populations, with hospitalised patients experiencing notably higher rates than outpatients or the general population. Increased medication use, particularly among older adults and women, may partly explain age- and sex-based disparities in DILI incidence and reporting. Physiological changes associated with aging likely increase susceptibility to DILI in older adults, though further exposure-based studies are needed for definitive conclusions. Current evidence does not strongly support that women are inherently more susceptible to DILI than men; rather, susceptibility appears to depend on specific drugs. However, once DILI occurs, older age and female sex are associated with greater severity and poorer outcomes. Other less-studied host-related risk factors are also discussed based on available evidence. CONCLUSIONS This article summarises existing data on DILI frequency, outcomes, drug properties affecting hepatotoxicity and non-genetic host risk factors while identifying critical knowledge gaps. Addressing these gaps through future research could enhance understanding and support preventive measures.
Collapse
Affiliation(s)
- Ayako Suzuki
- Gastroenterology, Duke University, Durham, North Carolina, USA
- Gastroenterology, Durham VA Medical Center, Durham, North Carolina, USA
| | - MinjunChen
- Division of Bioinformatics and Biostatistics, FDA's National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
3
|
Zhang JW, Zhang N, Lyu Y, Zhang XF. Influence of Sex in the Development of Liver Diseases. Semin Liver Dis 2025; 45:15-32. [PMID: 39809453 DOI: 10.1055/a-2516-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The liver is a sexually dimorphic organ. Sex differences in prevalence, progression, prognosis, and treatment prevail in most liver diseases, and the mechanism of how liver diseases act differently among male versus female patients has not been fully elucidated. Biological sex differences in normal physiology and disease arise principally from sex hormones and/or sex chromosomes. Sex hormones contribute to the development and progression of most liver diseases, with estrogen- and androgen-mediated signaling pathways mechanistically involved. In addition, genetic factors in sex chromosomes have recently been found to contribute to the sex disparity of many liver diseases, which might explain, to some extent, the difference in gene expression pattern, immune response, and xenobiotic metabolism between men and women. Although increasing evidence suggests that sex is one of the most important modulators of disease prevalence and outcomes, at present, basic and clinical studies have long been sex unbalanced, with female subjects underestimated. As such, this review focuses on sex disparities of liver diseases and summarizes the current understanding of sex-specific mechanisms, including sex hormones, sex chromosomes, etc. We anticipate that understanding sex-specific pathogenesis will aid in promoting personalized therapies for liver disease among male versus female patients.
Collapse
Affiliation(s)
- Jie-Wen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Yi Lyu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Xu-Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- Institute of Advanced Surgical Technology and Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
- National-Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
4
|
Zheng Y, Zhang X, Wang Z, Zhang R, Wei H, Yan X, Jiang X, Yang L. MCC950 as a promising candidate for blocking NLRP3 inflammasome activation: A review of preclinical research and future directions. Arch Pharm (Weinheim) 2024; 357:e2400459. [PMID: 39180246 DOI: 10.1002/ardp.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
The NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome is a key component of the innate immune system that triggers inflammation and pyroptosis and contributes to the development of several diseases. Therefore, blocking the activation of the NLRP3 inflammasome has therapeutic potential for the treatment of these diseases. MCC950, a selective small molecule inhibitor, has emerged as a promising candidate for blocking NLRP3 inflammasome activation. Ongoing research is focused on elucidating the specific targets of MCC950 as well as assessfing its metabolism and safety profile. This review discusses the diseases that have been studied in relation to MCC950, with a focus on stroke, Alzheimer's disease, liver injury, atherosclerosis, diabetes mellitus, and sepsis, using bibliometric analysis. It then summarizes the potential pharmacological targets of MCC950 and discusses its toxicity. Furthermore, it traces the progression from preclinical to clinical research for the treatment of these diseases. Overall, this review provides a solid foundation for the clinical therapeutic potential of MCC950 and offers insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin, China
| | - Lin Yang
- School of Medicial Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, Jinghai, China
| |
Collapse
|
5
|
Tsai MS, Liou GG, Liao JW, Lai PY, Yang DJ, Wu SH, Wang SH. N-acetyl Cysteine Overdose Induced Acute Toxicity and Hepatic Microvesicular Steatosis by Disrupting GSH and Interfering Lipid Metabolisms in Normal Mice. Antioxidants (Basel) 2024; 13:832. [PMID: 39061900 PMCID: PMC11273582 DOI: 10.3390/antiox13070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
N-acetyl cysteine (NAC) is a versatile drug used in various conditions, but the limitations and toxicities are not clear. The acute toxicity and toxicological mechanisms of an intraperitoneal injection of NAC in normal mice were deciphered. The LD50 for male and female BALB/cByJNarl mice were 800 mg/kg and 933 mg/kg. The toxicological mechanisms of 800 mg/kg NAC (N800) were investigated. The serum biomarkers of hepatic and renal indices dramatically increased, followed by hepatic microvesicular steatosis, renal tubular injury and necrosis, and splenic red pulp atrophy and loss. Thus, N800 resulted in mouse mortality mainly due to acute liver, kidney, and spleen damages. The safe dose (275 mg/kg) of NAC (N275) increased hepatic antioxidant capacity by increasing glutathione levels and catalase activity. N275 elevated the hepatic gene expressions of lipid transporter, lipid synthesis, β-oxidation, and ketogenesis, suggesting a balance between lipid production and consumption, and finally, increased ATP production. In contrast, N800 increased hepatic oxidative stress by decreasing glutathione levels through suppressing Gclc, and reducing catalase activity. N800 decreased the hepatic gene expressions of lipid transporter, lipid synthesis, and interferred β-oxidation, leading to lipid accumulation and increasing Cyp2E1 expression, and finally, decreased ATP production. Therefore, NAC doses are limited for normal individuals, especially via intraperitoneal injection or similar means.
Collapse
Affiliation(s)
- Ming-Shiun Tsai
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua 515006, Taiwan;
| | - Gunn-Guang Liou
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei 106319, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Pin-Yen Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Di-Jie Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Szu-Hua Wu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402201, Taiwan; (P.-Y.L.); (D.-J.Y.); (S.-H.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402201, Taiwan
| |
Collapse
|
6
|
Hassan HM, Abdel-Halim NHM, El-Shenbaby I, Helmy MA, Hammad MO, Habotta OA, El Nashar EM, Alghamdi MA, Aldahhan RA, Al-Khater KM, Almohaywi B, Farrag EAE. Phytic acid attenuates acetaminophen-induced hepatotoxicity via modulating iron-mediated oxidative stress and SIRT-1 expression in mice. Front Pharmacol 2024; 15:1384834. [PMID: 38751780 PMCID: PMC11094543 DOI: 10.3389/fphar.2024.1384834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: Administration of high doses of acetaminophen (APAP) results in liver injury. Oxidative stress and iron overload play roles in the pathogenesis of APAP-induced hepatotoxicity. The present study assessed the potential hepatoprotective effects of phytic acid (PA), a natural antioxidant and iron chelator, on APAP-induced hepatotoxicity and the possible underlying mechanism through its effects on CYP2E1 gene expression, iron homeostasis, oxidative stress, and SIRT-1 expression levels. Methods: Twenty-four adult male albino mice were used in this study. Mice were divided into four groups (six mice in each group): control, APAP-treated, PA-treated and APAP + PA-treated groups. Liver function tests, serum and liver tissue iron load were evaluated in all the study groups. Hepatic tissue homogenates were used to detect oxidative stress markers, including malondialdehyde (MDA) and reduced glutathione (GSH). Histological hepatic evaluation and immunohistochemistry of SIRT-1 were performed. Quantitative real-time PCR was used for the assessment of CYP2E1 and SIRT-1 gene expressions. APAP-induced biochemical and structural hepatic changes were reported. Results: PA administration showed beneficial effects on APAP-induced hepatotoxicity through improvements in liver functions, decreased CYP2E1 gene expression, decreased serum and liver iron load, decreased MDA, increased GSH, increased SIRT-1 expression level and improvement in hepatic architecture. Conclusion: Conclusively, PA can be considered a potential compound that can attenuate acetaminophen-induced hepatotoxicity through its role as an iron chelator and antioxidant, as well as the up-regulation of SIRT-1 and down-regulation of CYP2E1.
Collapse
Affiliation(s)
- Hend M. Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Human Anatomy and Embryology Department, New Mansoura University, New Mansoura, Egypt
| | | | - Ibrahim El-Shenbaby
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manar A. Helmy
- Forensic Medicine and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maha O. Hammad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ola A. Habotta
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Eman M. El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha, Saudi Arabia
| | - Rashid A. Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khulood M. Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Eman A. E. Farrag
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Gong S, Zeng Y, Wang Z, Li Y, Wu R, Li L, Hu H, Qin P, Yu Z, Huang X, Guo P, Yang H, He Y, Zhao Z, Xiao W, Zhao X, Gao L, Cai S, Zeng Z. Intestinal deguelin drives resistance to acetaminophen-induced hepatotoxicity in female mice. Gut Microbes 2024; 16:2404138. [PMID: 39305468 PMCID: PMC11418218 DOI: 10.1080/19490976.2024.2404138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury (DILI), with gender-specific differences in susceptibility. However, the mechanism underlying this phenomenon remains unclear. Our study reveals that the gender-specific differences in susceptibility to APAP-induced hepatotoxicity are due to differences in the gut microbiota. Through microbial multi-omics and cultivation, we observed increased gut microbiota-derived deguelin content in both women and female mice. Administration of deguelin was capable of alleviating hepatotoxicity in APAP-treated male mice, and this protective effect was associated with the inhibition of hepatocyte oxidative stress. Mechanistically, deguelin reduced the expression of thyrotropin receptor (TSHR) in hepatocytes with APAP treatment through direct interaction. Pharmacologic suppression of TSHR expression using ML224 significantly increased hepatic glutathione (GSH) in APAP-treated male mice. These findings suggest that gut microbiota-derived deguelin plays a crucial role in reducing APAP-induced hepatotoxicity in female mice, offering new insights into therapeutic strategies for DILI.
Collapse
Affiliation(s)
- Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunong Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ze Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanru Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Li
- Henan Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine and Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Qin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhichao Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xintao Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peiheng Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hong Yang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhibin Zhao
- Medical Research Institute, Guangdong Provincial People’s Hospital, Southern Medical University, Guangzhou, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Xie W, Jiang R, Xie J, Vince R, More SS. Geometric Isomer of Guanabenz Confers Hepatoprotection to a Murine Model of Acetaminophen Toxicity. Chem Res Toxicol 2023; 36:1071-1080. [PMID: 37348131 PMCID: PMC10355191 DOI: 10.1021/acs.chemrestox.3c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 06/24/2023]
Abstract
Overdose of acetaminophen, a widely used antipyretic and analgesic drug, is one of the leading causes of drug-induced acute liver injury in the United States and worldwide. Phase-I metabolism of acetaminophen generates the toxic N-acetyl-p-benzoquinone imine (NAPQI) intermediate. Reactions of NAPQI with a wide range of biomolecules cause increased oxidative stress, endoplasmic reticulum (ER) stress, inflammation, and mitochondrial dysfunction, some of the cellular events contributing toward liver toxicity. Previously, we evaluated the potential of an FDA-approved, ER stress-modulating antihypertensive drug, Wytensin (trans-guanabenz, E-GA), as an antidote for acetaminophen hepatotoxicity. E-GA prevented elevation of the liver enzyme alanine aminotransferase (ALT), even when administered up to 6 h after acetaminophen overdose, and exhibited synergistic analgesic interactions. However, the commercially available guanabenz exists solely as a trans-isomer and suffers from sedative side effects resulting from the inhibition of central α2A-adrenergic receptors in locus coeruleus. Here, we studied the utility of the relatively unexplored cis-isomer of guanabenz as a treatment option for acetaminophen-induced liver toxicity. cis(Z)-Guanabenz acetate (Z-GA) lacks interaction with α2A-adrenoreceptors and is thus devoid of sedative, blood-pressure-lowering side effects of E-GA. Treatment of mice with Z-GA (10 mg/kg) before acetaminophen overdose and up to 6 h post APAP administration prevented liver injury and suppressed the elevation of serum ALT levels. Mechanistically, hepatoprotective effects of both isomers are similar and partly attributed to attenuation of the ER stress and oxidative stress in the liver. The results of this study suggest that Z-GA may be a safer, effective antidote for the clinical management of acute liver injury resulting from acetaminophen overdose. It also raises a tantalizing possibility of a prophylactic combination of the geometric isomer of the approved drug guanabenz with acetaminophen in a clinical setting.
Collapse
Affiliation(s)
- Wei Xie
- Center for Drug Design, College
of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Jiashu Xie
- Center for Drug Design, College
of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center for Drug Design, College
of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S. More
- Center for Drug Design, College
of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Nguyen NT, Umbaugh DS, Smith S, Adelusi OB, Sanchez-Guerrero G, Ramachandran A, Jaeschke H. Dose-dependent pleiotropic role of neutrophils during acetaminophen-induced liver injury in male and female mice. Arch Toxicol 2023; 97:1397-1412. [PMID: 36928416 PMCID: PMC10680445 DOI: 10.1007/s00204-023-03478-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in western countries. APAP can cause extensive hepatocellular necrosis, which triggers an inflammatory response involving neutrophil and monocyte recruitment. Particularly the role of neutrophils in the injury mechanism of APAP hepatotoxicity has been highly controversial. Thus, the objective of the current study was to assess whether a potential contribution of neutrophils was dependent on the APAP dose and the sex of the animals. Male and female C57BL/6 J mice were treated with 300 or 600 mg/kg APAP and the injury and inflammatory cell recruitment was evaluated between 6 and 48 h. In both male and female mice, ALT plasma levels and the areas of necrosis peaked at 12-24 h after both doses with more severe injury at the higher dose. In addition, Ly6g-positive neutrophils started to accumulate in the liver at 6 h and peaked at 6-12 h after 300 mg/kg and 12-24 h after 600 mg/kg for both sexes; however, the absolute numbers of hepatic neutrophils in the liver were significantly higher after the 600 mg/kg dose. Neutrophil infiltration correlated with mRNA levels of the neutrophil chemoattractant Cxcl2 in the liver. Treating mice with an anti-Cxcl2 antibody at 2 h after APAP significantly reduced neutrophil accumulation at 24 h after both doses and in both sexes. However, the injury was significantly reduced only after the high overdose. Thus, neutrophils, recruited through Cxcl2, have no effect on APAP-induced liver injury after 300 mg/kg but aggravate the injury only after severe overdoses.
Collapse
Affiliation(s)
- Nga T Nguyen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - David S Umbaugh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Sawyer Smith
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Olamide B Adelusi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, Kansas, 66160, USA.
| |
Collapse
|
10
|
Dichamp J, Cellière G, Ghallab A, Hassan R, Boissier N, Hofmann U, Reinders J, Sezgin S, Zühlke S, Hengstler JG, Drasdo D. In vitro to in vivo acetaminophen hepatotoxicity extrapolation using classical schemes, pharmacodynamic models and a multiscale spatial-temporal liver twin. Front Bioeng Biotechnol 2023; 11:1049564. [PMID: 36815881 PMCID: PMC9932319 DOI: 10.3389/fbioe.2023.1049564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
In vitro to in vivo extrapolation represents a critical challenge in toxicology. In this paper we explore extrapolation strategies for acetaminophen (APAP) based on mechanistic models, comparing classical (CL) homogeneous compartment pharmacodynamic (PD) models and a spatial-temporal (ST), multiscale digital twin model resolving liver microarchitecture at cellular resolution. The models integrate consensus detoxification reactions in each individual hepatocyte. We study the consequences of the two model types on the extrapolation and show in which cases these models perform better than the classical extrapolation strategy that is based either on the maximal drug concentration (Cmax) or the area under the pharmacokinetic curve (AUC) of the drug blood concentration. We find that an CL-model based on a well-mixed blood compartment is sufficient to correctly predict the in vivo toxicity from in vitro data. However, the ST-model that integrates more experimental information requires a change of at least one parameter to obtain the same prediction, indicating that spatial compartmentalization may indeed be an important factor.
Collapse
Affiliation(s)
- Jules Dichamp
- Group SIMBIOTX, INRIA Saclay-Île-de-France, Palaiseau, France,Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany,Group MAMBA, INRIA Paris, Paris, France
| | | | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Noemie Boissier
- Group SIMBIOTX, INRIA Saclay-Île-de-France, Palaiseau, France
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Joerg Reinders
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Selahaddin Sezgin
- Faculty of Chemistry and Chemical Biology, TU Dortmund, Dortmund, Germany
| | - Sebastian Zühlke
- Center for Mass Spectrometry (CMS), Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Dirk Drasdo
- Group SIMBIOTX, INRIA Saclay-Île-de-France, Palaiseau, France,Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany,Group MAMBA, INRIA Paris, Paris, France,*Correspondence: Dirk Drasdo,
| |
Collapse
|
11
|
de Souza GR, De-Oliveira ACAX, Soares V, De-Souza TP, Barbi NS, Paumgartten FJR, da Silva AJR. Protective effects of a chemically characterized extract from solanum torvum leaves on acetaminophen-induced liver injury. Drug Chem Toxicol 2023; 46:122-135. [PMID: 35105269 DOI: 10.1080/01480545.2021.2012905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Distinct parts of Solanum torvum Swartz. (Solanaceae) are popularly used for a variety of therapeutic purposes. This study determined the phytochemical composition of a phenolic fraction of S. torvum leaf aqueous extract and investigated its antioxidant and liver-protective properties. A phenolic compound-enriched fraction, or phenolic fraction (STLAE-PF) of an infusion (STLAE) of S. torvum leaves, was tested in vitro (antagonism of H2O2 in cytotoxicity and DCF assays with HepG2/C3A cells), and in vivo for antioxidant activity and protective effects against acetaminophen (APAP)-induced liver injury in mice. Thirty-eight compounds (flavonoids, esters of hydroxycinnamic acid, and chlorogenic acid isomers) were tentatively identified (high-performance liquid chromatography coupled to high-resolution electrospray mass spectrometry) in the STLAE-PF fraction. In vitro assays in HepG2/C3A cells showed that STLAE-PF and some flavonoids contained in this phenolic fraction, at noncytotoxic levels, antagonized in a concentration-dependent manner the effects of a powerful oxidant agent (H2O2). In C57BL/6 mice, oral administration of STLAE (600 and 1,200 mg/kg bw) or STLAE-PF (300 mg/kg bw) prevented the rise in serum transaminases (ALT and AST), depletion of reduced glutathione (GSH) and elevation of thiobarbituric acid reactive species (TBARs) levels in the liver caused by APAP (600 mg/kg bw, i.p.). The hepatoprotective effects of STLAE-PF (300 mg/kg bw) against APAP-caused liver injury were comparable to those of N-acetyl-cysteine (NAC 300 or 600 mg/kg bw i.p.). These findings indicate that a phenolic fraction of S. torvum leaf extract (STLAE-PF) is a new phytotherapeutic agent potentially useful for preventing/treating liver injury caused by APAP overdosing.
Collapse
Affiliation(s)
- Gabriela R de Souza
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Ana Cecilia A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Vitor Soares
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thamyris Perez De-Souza
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Nancy S Barbi
- Department of Clinical and Toxicological Analyses, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J R Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Antonio J R da Silva
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Non-classical ferroptosis inhibition by a small molecule targeting PHB2. Nat Commun 2022; 13:7473. [PMID: 36463308 PMCID: PMC9719519 DOI: 10.1038/s41467-022-35294-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Ferroptosis is a new type of programmed cell death characterized by iron-dependent lipid peroxidation. Ferroptosis inhibition is thought as a promising therapeutic strategy for a variety of diseases. Currently, a majority of known ferroptosis inhibitors belong to either antioxidants or iron-chelators. Here we report a new ferroptosis inhibitor, termed YL-939, which is neither an antioxidant nor an iron-chelator. Chemical proteomics revealed the biological target of YL-939 to be prohibitin 2 (PHB2). Mechanistically, YL-939 binding to PHB2 promotes the expression of the iron storage protein ferritin, hence reduces the iron content, thereby decreasing the susceptibility to ferroptosis. We further showed that YL-939 could substantially ameliorate liver damage in a ferroptosis-related acute liver injury model by targeting the PHB2/ferritin/iron axis. Overall, we identified a non-classical ferroptosis inhibitor and revealed a new regulation mechanism of ferroptosis. These findings may present an attractive intervention strategy for ferroptosis-related diseases.
Collapse
|
13
|
Stavropoulos A, Divolis G, Manioudaki M, Gavriil A, Kloukina I, Perrea DN, Sountoulidis A, Ford E, Doulou A, Apostolidou A, Katsantoni E, Ritvos O, Germanidis G, Xilouri M, Sideras P. Coordinated activation of TGF-β and BMP pathways promotes autophagy and limits liver injury after acetaminophen intoxication. Sci Signal 2022; 15:eabn4395. [PMID: 35763560 DOI: 10.1126/scisignal.abn4395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ligands of the transforming growth factor-β (TGF-β) superfamily, including TGF-βs, activins, and bone morphogenetic proteins (BMPs), have been implicated in hepatic development, homeostasis, and pathophysiology. We explored the mechanisms by which hepatocytes decode and integrate injury-induced signaling from TGF-βs and activins (TGF-β/Activin) and BMPs. We mapped the spatiotemporal patterns of pathway activation during liver injury induced by acetaminophen (APAP) in dual reporter mice carrying a fluorescent reporter of TGF-β/Activin signaling and a fluorescent reporter of BMP signaling. APAP intoxication induced the expression of both reporters in a zone of cells near areas of tissue damage, which showed an increase in autophagy and demarcated the borders between healthy and injured tissues. Inhibition of TGF-β superfamily signaling by overexpressing the inhibitor Smad7 exacerbated acute liver histopathology but eventually accelerated tissue recovery. Transcriptomic analysis identified autophagy as a process stimulated by TGF-β1 and BMP4 in hepatocytes, with Trp53inp2, which encodes a rate-limiting factor for autophagy initiation, as the most highly induced autophagy-related gene. Collectively, these findings illustrate the functional interconnectivity of the TGF-β superfamily signaling system, implicate the coordinated activation of TGF-β/Activin and BMP pathways in balancing tissue reparatory and regenerative processes upon APAP-induced hepatotoxicity, and highlight opportunities and potential risks associated with targeting this signaling system for treating hepatic diseases.
Collapse
Affiliation(s)
- Athanasios Stavropoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgios Divolis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Manioudaki
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ariana Gavriil
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Athens University Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Sountoulidis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ethan Ford
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athanasia Doulou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasia Apostolidou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elena Katsantoni
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Olli Ritvos
- Department of Bacteriology and Immunology and Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece
| | - Maria Xilouri
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Paschalis Sideras
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
14
|
Bao Y, Phan M, Zhu J, Ma X, Manautou JE, Zhong XB. Alterations of Cytochrome P450-Mediated Drug Metabolism during Liver Repair and Regeneration after Acetaminophen-Induced Liver Injury in Mice. Drug Metab Dispos 2022; 50:694-703. [PMID: 34348940 PMCID: PMC9132219 DOI: 10.1124/dmd.121.000459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is the leading cause of acute liver failure in the United States, but its impact on metabolism, therapeutic efficacy, and adverse drug reactions (ADRs) of co- and/or subsequent administered drugs are not fully investigated. The current work explored this field with a focus on the AILI-mediated alterations of cytochrome P450-mediated drug metabolism. Various levels of liver injury were induced in mice by treatment with APAP at 0, 200, 400, and 600 mg/kg. Severity of liver damage was determined at 24, 48, 72, and 96 hours by plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), microRNA miR122, and tissue staining. The expression and activities of CYP3A11, 1A2, 2B10, 2C29, and 2E1 were measured. Sedation efficacy and ADRs of midazolam, a CYP3A substrate, were monitored after APAP treatment. ALT, AST, and miR122 increased at 24 hours after APAP treatment with all APAP doses, whereas only groups treated with 200 and 400 mg/kg recovered back to normal levels at 72 and 96 hours. The expression and activity of the cytochromes P450 significantly decreased at 24 hours with all APAP doses but only recovered back to normal at 72 and 96 hours with 200 and 400, but not 600, mg/kg of APAP. The alterations of cytochrome P450 activities resulted in altered sedation efficacy and ADRs of midazolam, which were corrected by dose justification of midazolam. Overall, this work illustrated a low cytochrome P450 expression window after AILI, which can decrease drug metabolism and negatively impact drug efficacy and ADRs. SIGNIFICANCE STATEMENT: The data generated in the mouse model demonstrated that expression and activities of cytochrome P450 enzymes and correlated drug efficacy and ADRs are altered during the time course of liver repair and regeneration after liver is injured by treatment with APAP. Dose justifications based on predicted changes of cytochrome P450 activities can achieve desired therapeutic efficacy and avoid ADRs. The generated data provide fundamental knowledge for translational research to drug treatment for patients during liver recovery and regeneration who have experienced AILI.
Collapse
Affiliation(s)
- Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Mi Phan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Junjie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| |
Collapse
|
15
|
Masubuchi Y, Ihara A. Protection of mice against carbon tetrachloride-induced acute liver injury by endogenous and exogenous estrogens. Drug Metab Pharmacokinet 2022; 46:100460. [DOI: 10.1016/j.dmpk.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
|
16
|
Bhatt S, Sharma A, Dogra A, Sharma P, Kumar A, Kotwal P, Bag S, Misra P, Singh G, Kumar A, Sangwan PL, Nandi U. Glabridin attenuates paracetamol-induced liver injury in mice via CYP2E1-mediated inhibition of oxidative stress. Drug Chem Toxicol 2021; 45:2352-2360. [PMID: 34233566 DOI: 10.1080/01480545.2021.1945004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CYP2E1 plays a crucial role in the bio-activation of toxic substances leading to liver damage. In this context, CYP2E1 converts paracetamol (PCM) to N-acetyl-p-benzoquinone imine (NAPQI), which is prone to cause hepatotoxicity. Hence, we aimed to explore the protective effect of glabridin on widely used PCM-induced liver injury model in the present study and, after that, correlated with the role of CYP2E1 toward its efficacy. Glabridin was isolated from Glycyrrhiza glabra and characterized before the investigation in an in-vivo mice model of PCM-induced liver injury. Glabridin after oral treatment at 5-20 mg/kg showed a considerable improvement in serum biochemical parameters (ALT and AST) and oxidative stress markers (MDA, GSH, SOD, and catalase) in comparison to only PCM-treatment. Histopathological examination of the liver depicted that glabridin exhibited substantial protection from PCM-induced liver injury compared to the disease control group. Significant down-regulation of CYP2E1 protein and its mRNA expression levels were observed in the glabridin-treated groups compared to PCM-induced respective elevation of CYP2E1. Moreover, activation of NF-κB was significantly inhibited by glabridin. Therefore, glabridin has the potential to protect PCM-induced liver injury through CYP2E1 inhibition-mediated normalization of oxidative stress. Further research is warranted to establish glabridin as a phytotherapeutics for liver protection for which no effective and safe oral drug is available to date.
Collapse
Affiliation(s)
- Shipra Bhatt
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ankita Sharma
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ashish Dogra
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Priyanka Sharma
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Amit Kumar
- Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Pankul Kotwal
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Swarnendu Bag
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Proteomics Unit, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Prashant Misra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Gurdarshan Singh
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ajay Kumar
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Payare Lal Sangwan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Utpal Nandi
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
17
|
Jiang WP, Deng JS, Huang SS, Wu SH, Chen CC, Liao JC, Chen HY, Lin HY, Huang GJ. Sanghuangporus sanghuang Mycelium Prevents Paracetamol-Induced Hepatotoxicity through Regulating the MAPK/NF-κB, Keap1/Nrf2/HO-1, TLR4/PI3K/Akt, and CaMKKβ/LKB1/AMPK Pathways and Suppressing Oxidative Stress and Inflammation. Antioxidants (Basel) 2021; 10:antiox10060897. [PMID: 34199606 PMCID: PMC8226512 DOI: 10.3390/antiox10060897] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Liver damage induced by paracetamol overdose is the main cause of acute liver failure worldwide. In order to study the hepatoprotective effect of Sanghuangporus sanghuang mycelium (SS) on paracetamol-induced liver injury, SS was administered orally every day for 6 days in mice before paracetamol treatment. SS decreased serum aminotransferase activities and the lipid profiles, protecting against paracetamol hepatotoxicity in mice. Furthermore, SS inhibited the lipid peroxidation marker malondialdehyde (MDA), hepatic cytochrome P450 2E1 (CYP2E1), and the histopathological changes in the liver and decreased inflammatory activity by inhibiting the production of proinflammatory cytokines in paracetamol-induced acute liver failure. Moreover, SS improved the levels of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase in the liver. Significantly, SS diminished mitogen-activated protein kinase (MAPK), Toll-like receptor 4 (TLR4), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the nuclear factor-kappa B (NF-κB) axis, as well as upregulated the Kelch-like ECH-associated protein 1 (Keap1)/erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, in paracetamol-induced mice. SS mainly inhibited the phosphorylation of the liver kinase B1 (LKB1), Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ), and AMP-activated protein kinase (AMPK) protein expression. Furthermore, the protective effects of SS on paracetamol-induced hepatotoxicity were abolished by compound C, an AMPK inhibitor. In summary, we provide novel molecular evidence that SS protects liver cells from paracetamol-induced hepatotoxicity by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wen-Ping Jiang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Department of Occupational Therapy, Asia University, Taichung 413, Taiwan
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-S.H.); (J.-C.L.); (H.-Y.C.); (H.-Y.L.)
| | - Sheng-Hua Wu
- Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan;
| | - Chin-Chu Chen
- Grape King Biotechnology Center, Chung-Li City 320, Taiwan;
| | - Jung-Chun Liao
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-S.H.); (J.-C.L.); (H.-Y.C.); (H.-Y.L.)
| | - Hung-Yi Chen
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-S.H.); (J.-C.L.); (H.-Y.C.); (H.-Y.L.)
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung 404, Taiwan; (S.-S.H.); (J.-C.L.); (H.-Y.C.); (H.-Y.L.)
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5508)
| |
Collapse
|
18
|
Naim S, Fernandez-Marrero Y, de Brot S, Bachmann D, Kaufmann T. Loss of BOK Has a Minor Impact on Acetaminophen Overdose-Induced Liver Damage in Mice. Int J Mol Sci 2021; 22:ijms22063281. [PMID: 33807047 PMCID: PMC8004760 DOI: 10.3390/ijms22063281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022] Open
Abstract
Acetaminophen (APAP) is one of the most commonly used analgesic and anti-pyretic drugs, and APAP intoxication is one of the main reasons for liver transplantation following liver failure in the Western world. While APAP poisoning ultimately leads to liver necrosis, various programmed cell death modalities have been implicated, including ER stress-triggered apoptosis. The BCL-2 family member BOK (BCL-2-related ovarian killer) has been described to modulate the unfolded protein response and to promote chemical-induced liver injury. We therefore investigated the impact of the loss of BOK following APAP overdosing in mice. Surprisingly, we observed sex-dependent differences in the activation of the unfolded protein response (UPR) in both wildtype (WT) and Bok-/- mice, with increased activation of JNK in females compared with males. Loss of BOK led to a decrease in JNK activation and a reduced percentage of centrilobular necrosis in both sexes after APAP treatment; however, this protection was more pronounced in Bok-/- females. Nevertheless, serum ALT and AST levels of Bok-/- and WT mice were comparable, indicating that there was no major difference in the overall outcome of liver injury. We conclude that after APAP overdosing, loss of BOK affects initiating signaling steps linked to ER stress, but has a more minor impact on the outcome of liver necrosis. Furthermore, we observed sex-dependent differences that might be worthwhile to investigate.
Collapse
Affiliation(s)
- Samara Naim
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
| | - Yuniel Fernandez-Marrero
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
- Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Ave, Toronto, ON M4N 3M5, Canada
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Laenggassstrasse 122, CH-3012 Bern, Switzerland;
| | - Daniel Bachmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010 Bern, Switzerland; (S.N.); (Y.F.-M.); (D.B.)
- Correspondence:
| |
Collapse
|
19
|
Sreevallabhan S, Mohanan R, Jose SP, Sukumaran S, Jagmag T, Tilwani J, Kulkarni A. Hepatoprotective effect of essential phospholipids enriched with virgin coconut oil (Phoscoliv) on paracetamol-induced liver toxicity. J Food Biochem 2021; 45:e13606. [PMID: 33458835 DOI: 10.1111/jfbc.13606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023]
Abstract
The prevalence of liver disease is increasing year by year and it is recognized as a main health burden across the world. Nowadays, dietary nutraceuticals are found to be very effective in the prevention and treatment of liver diseases. The virgin coconut oil and phosphatidylcholine are found to have a wide range of therapeutic efficacy and the most important among them is its hepatoprotective activity. In the present study, we had evaluated the hepatoprotective effect of the novel formulation with the combination of these two which is named as Phoscoliv. For the study, adult Wistar rats were grouped into Normal control, Paracetamol-treated, and Paracetamol along with Phoscoliv-treated group. In order to evaluate the hepatoprotective effect of the drug, various parameters were analyzed. Data obtained from the study showed that Phoscoliv supplementation were found to significantly boost up the antioxidant status by enhancing the SOD, CAT, GPx, and GSH level and thereby inhibit the generation of ROS and also blocked lipid peroxidation, which was confirmed by the reduced level of TBARS. The release of pro-inflammatory cytokines was also decreased, which was eventually helped to maintain the normal architecture of the liver. Thus, from the overall result of this study reveals that Phoscoliv can be effectively used as a potent and safe hepatoprotective medicine. PRACTICAL APPLICATIONS: The over or unwanted usage of synthetic medicine is a serious problem because it can cause so many adverse health effects. Liver-related disorders are the major side effects of these drugs. Food habits of ancient people dictate that there is no other better medicine than a good food. So, treating a disease with a food or compounds derived from a food item will be more effective. Virgin coconut oil is a type of natural and organic oil, which has the capability of maintaining the body in a healthy state. Likewise, phosphatidylcholines are very important phospholipid nutrients necessary to keep the cells healthy. Both these have the potential to protect and prevent the liver damages. Therefore, the combination of these two can exhibit profound hepatoprotective activity.
Collapse
Affiliation(s)
| | - Ratheesh Mohanan
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, India
| | - Svenia P Jose
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, India
| | - Sandya Sukumaran
- Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
20
|
Koyuncuoğlu T, Yıldırım A, Dertsiz EK, Yüksel M, Ercan F, Yeğen BÇ. Estrogen receptor agonists protect against acetaminophen-induced hepatorenal toxicity in rats. Life Sci 2020; 263:118561. [PMID: 33045213 DOI: 10.1016/j.lfs.2020.118561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/16/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
AIMS Acetaminophen-induced hepatorenal toxicity varies among sexes with controversial results among species. The aim was to compare the impact of sex and ovarian hormones on hepatorenal toxicity and to elucidate protective effects of estrogen and estrogen receptor (ER) agonists. MAIN METHODS Under anesthesia, female rats underwent ovariectomy (OVX) or sham-OVX. Starting at postsurgical 40th day, OVX-rats received subcutaneously (each, 1 mg/kg/day) 17β-estradiol (E2), ERβ-agonist (DPN) or ERα-agonist (PPT) for 10 days, while male and sham-OVX rats received vehicle for 10 days. Then, rats received either acetaminophen (3 g/kg) or saline by orogastric gavage and were decapitated at 24th h. Blood samples were obtained to measure serum ALT, AST, BUN, creatinine levels. Liver and kidney samples were obtained for histopathologic examination and for analyzing levels of luminol- and lucigenin-chemiluminescence, glutathione and myeloperoxidase activity. KEY FINDINGS Compared to their control groups, levels of AST, ALT, BUN, creatinine, hepatic and renal myeloperoxidase activity and chemiluminescence levels were increased, and hepatic glutathione level was decreased in acetaminophen-administered male groups, while ALT and hepatic chemiluminescence levels were not elevated in sham-OVX-rats. Both ER-agonists and E2 reduced BUN, creatinine and reversed all oxidative parameters in renal tissues of OVX-rats. Additionally, ERα-agonist reversed all hepatic injury parameters, while ERβ-agonist elevated hepatic glutathione level. SIGNIFICANCE Acetaminophen toxicity in female rats presented with a more preserved hepatic function, while renal toxicity was not influenced by sex or by the lack of ovarian hormones. Pretreatment with estrogen or ER agonists, via their antioxidant actions, provided protective effects on acetaminophen-induced hepatorenal toxicity.
Collapse
Affiliation(s)
- Türkan Koyuncuoğlu
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Alper Yıldırım
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ekin K Dertsiz
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health-Related Professions, Marmara University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
21
|
Moon G, Kobayashi S, Aung Naing Y, Yamada KI, Yamakawa M, Fujii J. Iron loading exerts synergistic action via a different mechanistic pathway from that of acetaminophen-induced hepatic injury in mice. Free Radic Res 2020; 54:606-619. [PMID: 32896183 DOI: 10.1080/10715762.2020.1819996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) overdose is a major cause of drug-induced acute liver failure. In such cases, free iron is released from lysosomes and is transported to mitochondria where it plays a pivotal role in APAP-induced liver injury. We previously reported that ascorbic acid (Asc) markedly mitigates APAP-induced hepatic damage in aldehyde reductase (Akr1a)-knockout (KO) mice that produce about 10% Asc as wild-type (WT) mice. However, the issue of the protective mechanism of Asc in association with the status of iron remains ambiguous. To gain additional insights into this issue, we examined effects of APAP (500 mg/kg) on female KO mice under conditions of iron loading. While the KO mice without AsA supplementation were more sensitive to APAP toxicity than the WT mice, FeSO4 loading (25 mg/kg) to WT mice aggravated the hepatic injury, which was a similar extent to that of the KO mice. Supplementation of Asc (1.5 mg/ml in the drinking water) ameliorated KO mice irrespective of iron status but did not change the iron-mediated increase in the lethality in the WT mice. Hepatic cysteine and glutathione levels declined to similar extents in all mouse groups at 3 h irrespective of the iron status and largely recovered at 18 h after the APAP treatment when liver damage was evident. Asc prominently mitigated APAP toxicity in KO mice irrespective of the iron status but had no effect on the synergistic action of iron and APAP in the WT mice, suggesting that the mechanism for the deteriorating action of loaded iron is different from that of APAP toxicity.
Collapse
Affiliation(s)
- Gyul Moon
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Ye Aung Naing
- Department of Pathological Diagnostics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ken-Ichi Yamada
- Department of Bio-functional Science, Faculty of Pharmacological Science, Kyushu University, Fukuoka, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Mitsunori Yamakawa
- Department of Pathological Diagnostics, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
22
|
Bao Y, Wang P, Shao X, Zhu J, Xiao J, Shi J, Zhang L, Zhu HJ, Ma X, Manautou JE, Zhong XB. Acetaminophen-Induced Liver Injury Alters Expression and Activities of Cytochrome P450 Enzymes in an Age-Dependent Manner in Mouse Liver. Drug Metab Dispos 2020; 48:326-336. [PMID: 32094214 PMCID: PMC7153563 DOI: 10.1124/dmd.119.089557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
Drug-induced liver injury (DILI) is a global medical problem. The risk of DILI is often related to expression and activities of drug-metabolizing enzymes, especially cytochrome P450s (P450s). However, changes on expression and activities of P450s after DILI have not been determined. The aim of this study is to fill this knowledge gap. Acetaminophen (APAP) was used as a model drug to induce DILI in C57BL/6J mice at different ages of days 10 (infant), 22 (child), and 60 (adult). DILI was assessed by levels of alanine aminotransferase and aspartate aminotransferase in plasma with a confirmation by H&E staining on liver tissue sections. The expression of selected P450s at mRNA and protein levels was measured by real-time polymerase chain reaction and liquid chromatography-tandem mass spectrometry, respectively. The activities of these P450s were determined by the formation of metabolites from probe drugs for each P450 using ultraperformance liquid chromatography-quadrupole time of flight mass spectrometry. DILI was induced at mild to severe levels in a dose-dependent manner in 200, 300, and 400 mg/kg APAP-treated groups at child and adult ages, but not at the infant age. Significantly decreased expression at mRNA and protein levels as well as enzymatic activities of CYP2E1, 3A11, 1A2, and 2C29 were found at child and adult ages. Adult male mice were more susceptible to APAP-induced liver injury than female mice with more decreased expression of P450s. These results suggest that altered levels of P450s in livers severely injured by drugs may affect the therapeutic efficacy of drugs, which are metabolized by P450s, more particularly for males. SIGNIFICANCE STATEMENT: The current study in an animal model demonstrates that acetaminophen-induced liver injury results in decreased expression and enzyme activities of several examined drug-metabolizing cytochrome P450s (P450s). The extent of such decreases is correlated to the degree of liver injury severity. The generated data may be translated to human health for patients who have drug-induced liver injury with decreased capability to metabolize drugs by certain P450s.
Collapse
Affiliation(s)
- Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Pei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Xueyan Shao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Junjie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jingcheng Xiao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jian Shi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Lirong Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., P.W., X.S., J.E.M., X.Z.); Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China (P.W., L.Z.); Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.); and Departments of Pharmaceutical Sciences (J.X.) and Clinical Pharmacy (J.S., H.-J.Z.), College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Dunn KW, Martinez MM, Wang Z, Mang HE, Clendenon SG, Sluka JP, Glazier JA, Klaunig JE. Mitochondrial depolarization and repolarization in the early stages of acetaminophen hepatotoxicity in mice. Toxicology 2020; 439:152464. [PMID: 32315716 DOI: 10.1016/j.tox.2020.152464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial injury and depolarization are primary events in acetaminophen hepatotoxicity. Previous studies have shown that restoration of mitochondrial function in surviving hepatocytes, which is critical to recovery, is at least partially accomplished via biogenesis of new mitochondria. However, other studies indicate that mitochondria also have the potential to spontaneously repolarize. Although repolarization was previously observed only at a sub-hepatotoxic dose of acetaminophen, we postulated that mitochondrial repolarization in hepatocytes outside the centrilobular regions of necrosis might contribute to recovery of mitochondrial function following acetaminophen-induced injury. Our studies utilized longitudinal intravital microscopy of millimeter-scale regions of the mouse liver to characterize the spatio-temporal relationship between mitochondrial polarization and necrosis early in acetaminophen-induced liver injury. Treatment of male C57BL/6J mice with a single intraperitoneal 250 mg/kg dose of acetaminophen resulted in hepatotoxicity that was apparent histologically within 2 h of treatment, leading to 20 and 60-fold increases in serum aspartate aminotransferase and alanine aminotransferase, respectively, within 6 h. Intravital microscopy of the livers of mice injected with rhodamine123, TexasRed-dextran, propidium iodide and Hoechst 33342 detected centrilobular foci of necrosis within extended regions of mitochondrial depolarization within 2 h of acetaminophen treatment. Although regions of necrosis were more apparent 6 h after acetaminophen treatment, the vast majority of hepatocytes with depolarized mitochondria did not progress to necrosis, but rather recovered mitochondrial polarization within 6 h. Recovery of mitochondrial function following acetaminophen hepatotoxicity thus involves not only biogenesis of new mitochondria, but also repolarization of existing mitochondria. These studies also revealed a spatial distribution of necrosis and mitochondrial depolarization whose single-cell granularity is inconsistent with the hypothesis that communication between neighboring cells plays an important role in the propagation of necrosis during the early stages of APAP hepatotoxicity. Small islands of healthy, intact cells were frequently found surrounded by necrotic cells, and small islands of necrotic cells were frequently found surrounded by healthy, intact cells. Time-series studies demonstrated that these "islands", consisting in some cases of single cells, are persistent; over a period of hours, injury does not spread from individual necrotic cells to their neighbors.
Collapse
Affiliation(s)
- Kenneth W Dunn
- Department of Medicine, Indiana University, Indianapolis, IN, USA.
| | | | - Zemin Wang
- School of Public Health, Indiana University, Bloomington, IN, USA
| | - Henry E Mang
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Sherry G Clendenon
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - James P Sluka
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - James A Glazier
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - James E Klaunig
- School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
24
|
Wang L, Ahn YJ, Asmis R. Sexual dimorphism in glutathione metabolism and glutathione-dependent responses. Redox Biol 2019; 31:101410. [PMID: 31883838 PMCID: PMC7212491 DOI: 10.1016/j.redox.2019.101410] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/07/2023] Open
Abstract
Glutathione is the most abundant intracellular low molecular weight thiol in cells and tissues, and plays an essential role in numerous cellular processes, including antioxidant defenses, the regulation of protein function, protein localization and stability, DNA synthesis, gene expression, cell proliferation, and cell signaling. Sexual dimorphisms in glutathione biology, metabolism and glutathione-dependent signaling have been reported for a broad range of biological processes, spanning the human lifespan from early development to aging. Sex-depended differences with regard to glutathione and its biology have also been reported for a number of human pathologies and diseases such as neurodegeneration, cardiovascular diseases and metabolic disorders. Here we review the latest literature in this field and discuss the potential impact of these sexual dimorphisms in glutathione biology on human health and diseases.
Collapse
Affiliation(s)
- Luxi Wang
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Yong Joo Ahn
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, USA.
| |
Collapse
|
25
|
Win S, Min RW, Chen CQ, Zhang J, Chen Y, Li M, Suzuki A, Abdelmalek MF, Wang Y, Aghajan M, Aung FW, Diehl AM, Davis RJ, Than TA, Kaplowitz N. Expression of mitochondrial membrane-linked SAB determines severity of sex-dependent acute liver injury. J Clin Invest 2019; 129:5278-5293. [PMID: 31487267 PMCID: PMC6877311 DOI: 10.1172/jci128289] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/29/2019] [Indexed: 12/15/2022] Open
Abstract
SH3 domain-binding protein that preferentially associates with Btk (SAB) is an outer-membrane docking protein for JNK-mediated impairment of mitochondrial function. Deletion of Sab in hepatocytes inhibits sustained JNK activation and cell death. The current study demonstrates that an increase in SAB expression enhanced the severity of acetaminophen-induced (APAP-induced) liver injury. Female mice were resistant to liver injury and exhibited markedly decreased hepatic SAB protein expression compared with male mice. The mechanism of SAB repression involved a pathway from ERα to p53 expression that induced miR34a-5p. miR34a-5p targeted the Sab mRNA coding region, thereby repressing SAB expression. Fulvestrant or p53 knockdown decreased miR34a-5p and increased SAB expression in female mice, leading to increased injury from APAP and TNF/galactosamine. In contrast, an ERα agonist increased p53 and miR34a-5p, which decreased SAB expression and hepatotoxicity in male mice. Hepatocyte-specific deletion of miR34a also increased the severity of liver injury in female mice, which was prevented by GalNAc-ASO knockdown of Sab. Similar to mice, premenopausal women expressed elevated levels of hepatic p53 and low levels of SAB, whereas age-matched men expressed low levels of p53 and high levels of SAB, but there was no difference in SAB expression between the sexes in the postmenopausal stage. In conclusion, SAB expression levels determined the severity of JNK-dependent liver injury. Female mice expressed low levels of hepatic SAB protein because of the ERα/p53/miR34a pathway, which repressed SAB expression and accounted for the resistance to liver injury seen in these females.
Collapse
Affiliation(s)
- Sanda Win
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Robert W.M. Min
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Christopher Q. Chen
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Jun Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yibu Chen
- USC Libraries Bioinformatics Service, Norris Medical Library, USC, Los Angeles, California, USA
| | - Meng Li
- USC Libraries Bioinformatics Service, Norris Medical Library, USC, Los Angeles, California, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Manal F. Abdelmalek
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Ying Wang
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Filbert W.M. Aung
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Roger J. Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tin A. Than
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Neil Kaplowitz
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California (USC), Los Angeles, California, USA
| |
Collapse
|
26
|
Cabrera-Pérez LC, Padilla-Martínez II, Cruz A, Mendieta-Wejebe JE, Tamay-Cach F, Rosales-Hernández MC. Evaluation of a new benzothiazole derivative with antioxidant activity in the initial phase of acetaminophen toxicity. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Muhammad-Azam F, Nur-Fazila SH, Ain-Fatin R, Mustapha Noordin M, Yimer N. Histopathological changes of acetaminophen-induced liver injury and subsequent liver regeneration in BALB/C and ICR mice. Vet World 2019; 12:1682-1688. [PMID: 32009746 PMCID: PMC6925052 DOI: 10.14202/vetworld.2019.1682-1688] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Aim: Laboratory mice are widely used as a research model to provide insights into toxicological studies of various xenobiotic. Acetaminophen (APAP) is an antipyretic and analgesic drug that is commonly known as paracetamol, an ideal hepatotoxicant to exhibit centrilobular necrosis in laboratory mice to resemble humans. However, assessment of histopathological changes between mouse strains is important to decide the optimal mouse model used in APAP toxicity study. Therefore, we aim to assess the histomorphological features of APAP-induced liver injury (AILI) in BALB/C and Institute of Cancer Research (ICR) mice. Materials and Methods: Twenty-five ICR mice and 20 BALB/C mice were used where five animals as control and the rest were randomly divided into four time points at 5, 10, 24 and 48 hours post-dosing (hpd). They were induced with 500 mg/kg APAP intraperitoneally. Liver sections were processed for hematoxylin-eosin staining and histopathological changes were scored based on grading methods. Results: Intense centrilobular damage was observed as early as 5 hpd in BALB/C as compared to ICR mice, which was observed at 10 hpd. The difference of liver injury between ICR and BALB/C mice is due to dissimilarity in the genetic line-up that related to different elimination pathways of APAP toxicity. However, at 24 hpd, the damage was markedly subsided and liver regeneration had taken place for both ICR and BALB/C groups with evidence of mitotic figures. This study showed that normal liver architecture was restored after the clearance of toxic insult. Conclusion: AILI was exhibited earlier in BALB/C than ICR mice but both underwent liver recovery at later time points.
Collapse
Affiliation(s)
- Fazil Muhammad-Azam
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Saulol Hamid Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raslan Ain-Fatin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohamed Mustapha Noordin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurhusien Yimer
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Andrade RJ, Chalasani N, Björnsson ES, Suzuki A, Kullak-Ublick GA, Watkins PB, Devarbhavi H, Merz M, Lucena MI, Kaplowitz N, Aithal GP. Drug-induced liver injury. Nat Rev Dis Primers 2019; 5:58. [PMID: 31439850 DOI: 10.1038/s41572-019-0105-0] [Citation(s) in RCA: 446] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is an adverse reaction to drugs or other xenobiotics that occurs either as a predictable event when an individual is exposed to toxic doses of some compounds or as an unpredictable event with many drugs in common use. Drugs can be harmful to the liver in susceptible individuals owing to genetic and environmental risk factors. These risk factors modify hepatic metabolism and excretion of the DILI-causative agent leading to cellular stress, cell death, activation of an adaptive immune response and a failure to adapt, with progression to overt liver injury. Idiosyncratic DILI is a relative rare hepatic disorder but can be severe and, in some cases, fatal, presenting with a variety of phenotypes, which mimic other hepatic diseases. The diagnosis of DILI relies on the exclusion of other aetiologies of liver disease as specific biomarkers are still lacking. Clinical scales such as CIOMS/RUCAM can support the diagnostic process but need refinement. A number of clinical variables, validated in prospective cohorts, can be used to predict a more severe DILI outcome. Although no pharmacological therapy has been adequately tested in randomized clinical trials, corticosteroids can be useful, particularly in the emergent form of DILI related to immune-checkpoint inhibitors in patients with cancer.
Collapse
Affiliation(s)
- Raul J Andrade
- Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - Naga Chalasani
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Einar S Björnsson
- Department of Gastroenterology, Landspitali University Hospital Reykjavik, University of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ayako Suzuki
- Gastroenterology, Duke University, Durham, NC, USA.,Gastroenterology, Durham VA Medical Centre, Durham, NC, USA
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Paul B Watkins
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.,University of North Carolina Institute for Drug Safety Sciences, Research Triangle Park, Chapel Hill, NC, USA
| | - Harshad Devarbhavi
- Department of Gastroenterology and Hepatology, St. John's Medical College Hospital, Bangalore, India
| | - Michael Merz
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Patient Safety, AstraZeneca, Gaithersburg, MD, USA
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain. .,Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain.
| | - Neil Kaplowitz
- Division of Gastroenterology and Liver Diseases, Department of Medicine, Keck School of Medicine, Los Angeles, CA, USA
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Digestive Diseases Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
An Y, Wang P, Xu P, Tung HC, Xie Y, Kirisci L, Xu M, Ren S, Tian X, Ma X, Xie W. An Unexpected Role of Cholesterol Sulfotransferase and its Regulation in Sensitizing Mice to Acetaminophen-Induced Liver Injury. Mol Pharmacol 2019; 95:597-605. [PMID: 30944208 PMCID: PMC6491915 DOI: 10.1124/mol.118.114819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/17/2019] [Indexed: 12/13/2022] Open
Abstract
Overdose of acetaminophen (APAP) is the leading cause of acute liver failure (ALF) in the United States. The sulfotransferase-mediated sulfation of APAP is widely believed to be a protective mechanism to attenuate the hepatotoxicity of APAP. The cholesterol sulfotransferase SULT2B1b is best known for its activity in catalyzing the sulfoconjugation of cholesterol to synthesize cholesterol sulfate. SULT2B1b can be transcriptionally and positively regulated by the hepatic nuclear factor 4α (HNF4α). In this study, we uncovered an unexpected role for SULT2B1b in APAP toxicity. Hepatic overexpression of SULT2B1b sensitized mice to APAP-induced liver injury, whereas ablation of the Sult2B1b gene in mice conferred resistance to the APAP hepatotoxicity. Consistent with the notion that Sult2B1b is a transcriptional target of HNF4α, overexpression of HNF4α sensitized mice or primary hepatocytes to APAP-induced hepatotoxicity in a Sult2B1b-dependent manner. We conclude that the HNF4α-SULT2B1b axis has a unique role in APAP-induced acute liver injury, and SULT2B1b induction might be a risk factor for APAP hepatotoxicity.
Collapse
Affiliation(s)
- Yunqi An
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Pengcheng Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Yang Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Levent Kirisci
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Xin Tian
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, (Y.A., P.W., P.X., H-C.T., Y.X., L.K., M.X., S.R., X.T., X.M., W.X.) and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (X.T.)
| |
Collapse
|
30
|
Salvianolic Acid C against Acetaminophen-Induced Acute Liver Injury by Attenuating Inflammation, Oxidative Stress, and Apoptosis through Inhibition of the Keap1/Nrf2/HO-1 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9056845. [PMID: 31214283 PMCID: PMC6535820 DOI: 10.1155/2019/9056845] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/29/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
Abstract
Acetaminophen (APAP) overdose is one of the most common causes of drug-induced acute liver failure in humans. To investigate the hepatoprotective effect of salvianolic acid C (SAC) on APAP-induced hepatic damage, SAC was administered by daily intraperitoneal (i.p.) injection for 6 days before the APAP administration in mice. SAC prevented the elevation of serum biochemical parameters and lipid profile including aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-Bil), total cholesterol (TC), and triacylglycerol (TG) against acute liver failure. Additionally, SAC reduced the content of malondialdehyde (MDA), the cytochrome P450 2E1 (CYP2E1), and the histopathological alterations and inhibited the production of proinflammatory cytokines in APAP-induced hepatotoxicity. Importantly, SAC effectively diminished APAP-induced liver injury by inhibiting nuclear factor-kappa B (NF-κB), toll-like receptor 4 (TLR4), and mitogen-activated protein kinases (MAPKs) activation signaling pathway. Moreover, SAC enhanced the levels of hepatic activities of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and Kelch-like ECH-associated protein 1 (Keap1)/erythroid 2–related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in APAP-induced mice. SAC mainly inhibited the activation of apoptotic pathways by reduction of cytochrome c, Bax, and caspase-3 protein expression. Taken together, we provide the molecular evidence that SAC protected the hepatocytes from APAP-induced damage by mitigating mitochondrial oxidative stress, inflammatory response, and caspase-mediated antiapoptotic effect through inhibition of the Keap1/Nrf2/HO-1 signaling axis.
Collapse
|
31
|
Addo KA, Bulka C, Dhingra R, Santos HP, Smeester L, O’Shea TM, Fry RC. Acetaminophen use during pregnancy and DNA methylation in the placenta of the extremely low gestational age newborn (ELGAN) cohort. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz010. [PMID: 31404209 PMCID: PMC6682751 DOI: 10.1093/eep/dvz010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 05/09/2023]
Abstract
Acetaminophen is considered the safest antipyretic and analgesic medication for pregnant women. However, studies have reported that acetaminophen has endocrine disrupting properties and prenatal exposure has been associated with early life epigenetic changes and later life health outcomes. As the placenta is the central mediator of maternal and fetal interactions, exposure to acetaminophen during pregnancy could manifest as perturbations in the placenta epigenome. Here, we evaluated epigenome-wide cytosine-guanine dinucleotide (CpG) methylation in placental tissue in relation to maternal acetaminophen use during pregnancy in a cohort of 286 newborns born prior to 28 weeks gestation. According to maternal self-report, more than half (166 of 286) of the newborns were exposed to acetaminophen in utero. After adjustment for potential confounders, a total of 42 CpGs were identified to be differentially methylated at a false discovery rate < 0.05, with most displaying increased methylation as it relates to acetaminophen exposure. A notable gene that was significantly associated with acetaminophen is the prostaglandin receptor (PTGDR) which plays an essential role in mediating placental blood flow and fetal growth. Moreover, for 6 of the 42 CpGs, associations of acetaminophen use with methylation were significantly different between male and female placentas; 3 CpG sites were associated with acetaminophen use in the male placenta and 3 different sites were associated with acetaminophen use in the female placenta (P interaction < 0.2). These findings highlight a relationship between maternal acetaminophen use during pregnancy and the placental epigenome and suggest that the responses for some CpG sites are sex dependent.
Collapse
Affiliation(s)
- Kezia A Addo
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Catherine Bulka
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- School of Nursing, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - T Michael O’Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Correspondence address. Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Rosenau Hall, Rm 166, Campus Box 7431, 135 Dauer Drive, Chapel Hill, NC 27599, USA. Tel: +1-919-966-1171; Fax: +1-919-966-7911; E-mail:
| |
Collapse
|
32
|
de Souza GR, De-Oliveira ACAX, Soares V, Chagas LF, Barbi NS, Paumgartten FJR, da Silva AJR. Chemical profile, liver protective effects and analgesic properties of a Solanum paniculatum leaf extract. Biomed Pharmacother 2018; 110:129-138. [PMID: 30466002 DOI: 10.1016/j.biopha.2018.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/31/2018] [Accepted: 11/10/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/AIM Solanum paniculatum L. (Solanaceae) is a plant native to South America where it is used in traditional medicine for different therapeutic indications. This study evaluated the chemical composition and the hepatoprotective and analgesic activities of S. paniculatum leaf extracts. MATERIAL AND METHODS The chemical profile of an ethyl acetate partition (SPOE) of a S. paniculatum leaf infusion (SPAE) was analysed by high performance liquid chromatography coupled to high-resolution electrospray mass spectrometry (HPLC-ESIMS). Liver protective effects of SPAE (600 and 1200 mg/kg bw, po), or SPOE (300 mg/kg bw, po) were evaluated in a C57BL/6 mouse model of acetaminophen (AP, 600 mg/kg bw, ip) hepatotoxicity by measuring alanine (ALT) and aspartate (AST) aminotransferase activity in the serum, and reduced glutathione (GSH), and thiobarbituric acid reactive species (TBARs) levels in the hepatic tissue. RESULTS HPLC-ESIMS analysis of the SPOE fraction tentatively identified 35 flavonoids, esters of hydroxycinnamic acid and isomers of chlorogenic acid. SPAE (600 and 1200 mg/kg bw) and SPOE (300 mg/kg bw) antagonized the rise in ALT and AST, and the depletion of GSH, and elevation of TBARs levels in the liver caused by AP. The liver protective effects of SPOE (300 mg/kg bw) against AP-induced liver toxicity mimicked those of N-acetyl-cysteine (NAC 300 or 600 mg/kg bw ip). The mouse writhing assay showed that SPOE (300 mg/kg bw po) has anti-nociceptive effects comparable to those of AP (180 mg/kg bw po). CONCLUSION This study suggests that an extract of S. paniculatum leaves (SPOE), rich in phenolic compounds, is a promising herbal drug to prevent and treat AP poisoning and presents analgesic properties as well.
Collapse
Affiliation(s)
- Gabriela R de Souza
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| | - Ana Cecilia A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21041210, Brazil
| | - Vitor Soares
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lucas F Chagas
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21041210, Brazil
| | - Nancy S Barbi
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| | - Francisco José Roma Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21041210, Brazil.
| | - Antonio Jorge R da Silva
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, RJ, 21941-902, Brazil
| |
Collapse
|
33
|
Cao P, Sun J, Sullivan MA, Huang X, Wang H, Zhang Y, Wang N, Wang K. Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro. Int J Biol Macromol 2018; 111:1133-1139. [DOI: 10.1016/j.ijbiomac.2018.01.139] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
|
34
|
Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 2018; 57:2677-2691. [PMID: 29696400 DOI: 10.1007/s00394-018-1695-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.
Collapse
|
35
|
Kouam AF, Yuan F, Njayou FN, He H, Tsayem RF, Oladejo BO, Song F, Moundipa PF, Gao GF. Induction of Mkp-1 and Nuclear Translocation of Nrf2 by Limonoids from Khaya grandifoliola C.DC Protect L-02 Hepatocytes against Acetaminophen-Induced Hepatotoxicity. Front Pharmacol 2017; 8:653. [PMID: 28974930 PMCID: PMC5610691 DOI: 10.3389/fphar.2017.00653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem where natural compounds hold promise for its abrogation. Khaya grandifoliola (Meliaceae) is used in Cameroonian traditional medicine for the treatment of liver related diseases and has been studied for its hepatoprotective properties. Till date, reports showing the hepatoprotective molecular mechanism of the plant are lacking. The aim of this study was therefore to identify compounds from the plant bearing hepatoprotective activity and the related molecular mechanism by assessing their effects against acetaminophen (APAP)-induced hepatotoxicity in normal human liver L-02 cells line. The cells were exposed to APAP (10 mM) or co-treated with phytochemical compounds (40 μM) over a period of 36 h and, biochemical and molecular parameters assessed. Three known limonoids namely 17-epi-methyl-6-hydroxylangolensate, 7-deacetoxy-7-oxogedunin and deacetoxy-7R-hydroxygedunin were identified. The results of cells viability and membrane integrity, reactive oxygen species generation and lipid membrane peroxidation assays, cellular glutathione content determination as well as expression of cytochrome P450 2E1 demonstrated the protective action of the limonoids. Immunoblotting analysis revealed that limonoids inhibited APAP-induced c-Jun N-terminal Kinase phosphorylation (p-JNK), mitochondrial translocation of p-JNK and Bcl2-associated X Protein, and the release of Apoptosis-inducing Factor into the cytosol. Interestingly, limonoids increased the expression of Mitogen-activated Protein Kinase Phosphatase (Mkp)-1, an endogenous inhibitor of JNK phosphorylation and, induced the nuclear translocation of Nuclear Factor Erythroid 2-related Factor-2 (Nrf2) and decreased the expression of Kelch-like ECH-associated Protein-1. The limonoids also reversed the APAP-induced decreased mRNA levels of Catalase, Superoxide Dismutase-1, Glutathione-S-Transferase and Methionine Adenosyltransferase-1A. The obtained results suggest that the isolated limonoids protect L-02 hepatocytes against APAP-induced hepatotoxicity mainly through increase expression of Mkp-1 and nuclear translocation of Nrf2. Thus, these compounds are in part responsible of the hepatoprotective activity of K. grandifoliola and further analysis including in vivo and toxicological studies are needed to select the most potent compound that may be useful as therapeutic agents against DILI.
Collapse
Affiliation(s)
- Arnaud F Kouam
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1Yaoundé, Cameroon.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Fei Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Frédéric N Njayou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1Yaoundé, Cameroon
| | - Hongtao He
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Roméo F Tsayem
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1Yaoundé, Cameroon
| | - Babayemi O Oladejo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Fuhang Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Paul F Moundipa
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, Faculty of Science, University of Yaoundé 1Yaoundé, Cameroon
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
36
|
Kanno SI, Tomizawa A, Yomogida S, Hara A. Glutathione peroxidase 3 is a protective factor against acetaminophen‑induced hepatotoxicity in vivo and in vitro. Int J Mol Med 2017; 40:748-754. [PMID: 28677736 PMCID: PMC5547967 DOI: 10.3892/ijmm.2017.3049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
Acetaminophen (APAP) is a widely available antipyretic and analgesic; however, overdose of the drug inflicts severe damage to the liver. It is well established that the hepatotoxicity of APAP is initiated by formation of a reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI), which can be detoxified by conjugation with reduced glutathione (GSH), a typical antioxidant. We recently found that the blood mRNA expression level of glutathione peroxidase 3 (Gpx3), which catalyzes the oxidation of GSH, is associated with the extent of APAP-induced hepatotoxicity in mice. The present study was carried out to determine the in vivo and in vitro role of GPx3 in APAP-induced hepatotoxicity. In in vivo experiments, oral administration of APAP to mice induced liver injury. Such liver injury was greater in males than in females, although no gender difference in the plasma concentration of APAP was found. Female mice had a 2-fold higher expression of Gpx3 mRNA and higher plasma GPx activity than male mice. 17β-estradiol, a major female hormone, decreased APAP-induced hepatotoxicity and increased both the expression of blood Gpx3 mRNA and plasma GPx activity, suggesting that the cytoprotective action of this hormone is mediated by the increase in GPx3. To further clarify the role of GPx3 in APAP-induced hepatotoxicity, we evaluated the effect of a change in cellular GPx3 expression resulting from transfection of either siRNA-GPx3 or a GPx3 expression vector on NAPQI-induced cellular injury (as assessed by a tetrazolium assay) in in vitro experiments using heterogeneous cultured human cell lines (Huh-7 or K562). NAPQI-induced cell death was reduced by increased GPx3 and was enhanced by decreased GPx3. These results suggest that GPx3 is an important factor for inhibition of APAP-induced hepatotoxicity both in vivo and in vitro. To our knowledge, this is the first report to show a hepatoprotective role of cellular GPx3 against APAP-induced liver damage.
Collapse
Affiliation(s)
- Syu-Ichi Kanno
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aoba‑ku, Sendai 981‑8558, Japan
| | - Ayako Tomizawa
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aoba‑ku, Sendai 981‑8558, Japan
| | - Shin Yomogida
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aoba‑ku, Sendai 981‑8558, Japan
| | - Akiyoshi Hara
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aoba‑ku, Sendai 981‑8558, Japan
| |
Collapse
|
37
|
Tamai S, Iguchi T, Niino N, Mikamoto K, Sakurai K, Sayama A, Shimoda H, Takasaki W, Mori K. A monkey model of acetaminophen-induced hepatotoxicity; phenotypic similarity to human. J Toxicol Sci 2017; 42:73-84. [PMID: 28070111 DOI: 10.2131/jts.42.73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Species-specific differences in the hepatotoxicity of acetaminophen (APAP) have been shown. To establish a monkey model of APAP-induced hepatotoxicity, which has not been previously reported, APAP at doses up to 2,000 mg/kg was administered orally to fasting male and female cynomolgus monkeys (n = 3-5/group) pretreated intravenously with or without 300 mg/kg of the glutathione biosynthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO). In all the animals, APAP at 2,000 mg/kg with BSO but not without BSO induced hepatotoxicity, which was characterized histopathologically by centrilobular necrosis and vacuolation of hepatocytes. Plasma levels of APAP and its reactive metabolite N-acethyl-p-benzoquinone imine (NAPQI) increased 4 to 7 hr after the APAP treatment. The mean Cmax level of APAP at 2,000 mg/kg with BSO was approximately 200 µg/mL, which was comparable to high-risk cutoff value of the Rumack-Matthew nomogram. Interestingly, plasma alanine aminotransferase (ALT) did not change until 7 hr and increased 24 hr or later after the APAP treatment, indicating that this phenotypic outcome was similar to that in humans. In addition, circulating liver-specific miR-122 and miR-192 levels also increased 24 hr or later compared with ALT, suggesting that circulating miR-122 and miR-192 may serve as potential biomarkers to detect hepatotoxicity in cynomolgus monkeys. These results suggest that the hepatotoxicity induced by APAP in the monkey model shown here was translatable to humans in terms of toxicokinetics and its toxic nature, and this model would be useful to investigate mechanisms of drug-induced liver injury and also potential translational biomarkers in humans.
Collapse
Affiliation(s)
- Satoshi Tamai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jiang WP, Huang SS, Matsuda Y, Saito H, Uramaru N, Ho HY, Wu JB, Huang GJ. Protective Effects of Tormentic Acid, a Major Component of Suspension Cultures of Eriobotrya japonica Cells, on Acetaminophen-Induced Hepatotoxicity in Mice. Molecules 2017; 22:molecules22050830. [PMID: 28524081 PMCID: PMC6154347 DOI: 10.3390/molecules22050830] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
An acetaminophen (APAP) overdose can cause hepatotoxicity and lead to fatal liver damage. The hepatoprotective effects of tormentic acid (TA) on acetaminophen (APAP)-induced liver damage were investigated in mice. TA was intraperitoneally (i.p.) administered for six days prior to APAP administration. Pretreatment with TA prevented the elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-Bil), total cholesterol (TC), triacylglycerol (TG), and liver lipid peroxide levels in APAP-treated mice and markedly reduced APAP-induced histological alterations in liver tissues. Additionally, TA attenuated the APAP-induced production of nitric oxide (NO), reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and IL-6. Furthermore, the Western blot analysis showed that TA blocked the protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as the inhibition of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) activation in APAP-injured liver tissues. TA also retained the superoxidase dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) in the liver. These results suggest that the hepatoprotective effects of TA may be related to its anti-inflammatory effect by decreasing thiobarbituric acid reactive substances (TBARS), iNOS, COX-2, TNF-α, IL-1β, and IL-6, and inhibiting NF-κB and MAPK activation. Antioxidative properties were also observed, as shown by heme oxygenase-1 (HO-1) induction in the liver, and decreases in lipid peroxides and ROS. Therefore, TA may be a potential therapeutic candidate for the prevention of APAP-induced liver injury by inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Wen-Ping Jiang
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Yoshikazu Matsuda
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan.
| | - Hiroshi Saito
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan.
| | - Naoto Uramaru
- Nihon Pharmaceutical University, 10281, Komuro, Ina-machi, Kitaadachi-gun, Saitama 3620806, Japan.
| | - Hui-Ya Ho
- Jen Li Biotech Company Ltd., Taiping District, Taichung 41143, Taiwan.
| | - Jin-Bin Wu
- School of Pharmacy, China Medical University, No. 91, Hsueh-Shih R., Taichung 40402, Taiwan.
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
39
|
Hanna D, Riedmaier AE, Sugamori KS, Grant DM. Influence of sex and developmental stage on acute hepatotoxic and inflammatory responses to liver procarcinogens in the mouse. Toxicology 2016; 373:30-40. [PMID: 27746196 DOI: 10.1016/j.tox.2016.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
The incidence of liver cancer is higher in men than in women. This sex difference is also observed in murine tumor induction models that result in the appearance of liver tumors in adult mice following their exposure on postnatal days 8 and/or 15 to carcinogens such as 4-aminobiphenyl (ABP) or diethylnitrosamine (DEN). Previous studies performed in adult mice showed that acute hepatotoxic and inflammatory responses to high-dose DEN exposure were greater in males than in females, leading to the suggestion that these responses could account for the sex difference in tumor development. We also recently observed that female but not male mice exposed postnatally to ABP had slightly increased expression of the antioxidant defense genes Nqo1 and Ggt1, which are regulated by the oxidative stress response protein nuclear factor erythroid 2-related factor 2 (NRF2), while expression of Hmox1 was increased in both sexes. The goal of the present study was therefore to compare selected acute hepatotoxic, inflammatory and oxidative stress defense responses to ABP, DEN, or the prototype hepatotoxicant carbon tetrachloride (CCl4), in male and female mice exposed to these chemicals either postnatally or as adults. Exposure of adult mice to ABP, DEN or CCl4 produced a 2-fold greater acute elevation in serum levels of the hepatotoxicity biomarker alanine aminotransferase (ALT) in males than in females, while levels of the inflammatory biomarker interleukin-6 (IL-6) showed no sex difference. However, treatment of immature mice with either ABP or DEN using standard tumor-inducing postnatal exposure protocols produced no increase in serum ALT or IL-6 levels in either males or females, while CCl4 produced a 40-fold ALT elevation but with no sex difference. Basal expression of the NRF2-responsive gene Nqo1 was higher in adult females than in males, but there was no sex difference in basal expression of Ggt1 or Hmox1. Sexually immature animals showed no sex difference in basal expression of any of the three genes. Postnatal DEN exposure modestly increased the expression of Ggt1 only in male mice and Nqo1 in both sexes, while CCl4 slightly increased expression of Ggt1 in both males and females and Nqo1 only in females. Taken together, our results make it unlikely that acute hepatotoxic, inflammatory or NRF2-activated gene responses account for the male predominance in liver tumor growth following postnatal carcinogen exposure in mice. Our findings also suggest that acute toxicity studies performed in adult mice should be interpreted with caution when extrapolating potential mechanisms to liver carcinogenesis models that commonly use postnatally exposed mice.
Collapse
Affiliation(s)
- Daniel Hanna
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto,1 King's College Circle, Toronto M5S 1A8, Canada
| | - Ariane Emami Riedmaier
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto,1 King's College Circle, Toronto M5S 1A8, Canada
| | - Kim S Sugamori
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto,1 King's College Circle, Toronto M5S 1A8, Canada
| | - Denis M Grant
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto,1 King's College Circle, Toronto M5S 1A8, Canada.
| |
Collapse
|
40
|
Bhattacharyya S, Pence L, Yan K, Gill P, Luo C, Letzig LG, Simpson PM, Kearns GL, Beger RD, James LP. Targeted metabolomic profiling indicates structure-based perturbations in serum phospholipids in children with acetaminophen overdose. Toxicol Rep 2016; 3:747-755. [PMID: 28959601 PMCID: PMC5616013 DOI: 10.1016/j.toxrep.2016.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Phospholipids are an important class of lipids that act as building blocks of biological cell membranes and participate in a variety of vital cellular functions including cell signaling. Previous studies have reported alterations in phosphatidylcholine (PC) and lysophosphatidylcholine (lysoPC) metabolism in acetaminophen (APAP)-treated animals or cell cultures. However, little is known about phospholipid perturbations in humans with APAP toxicity. In the current study, targeted metabolomic analysis of 180 different metabolites including 14 lysoPCs and 73 PCs was performed in serum samples from children and adolescents hospitalized for APAP overdose. Metabolite profiles in the overdose group were compared to those of healthy controls and hospitalized children receiving low dose APAP for treatment of pain or fever (therapeutic group). PCs and lysoPCs with very long chain fatty acids (VLCFAs) were significantly decreased in the overdose group, while those with comparatively shorter chain lengths were increased in the overdose group compared to the therapeutic and control groups. All ether linked PCs were decreased in the overdose group compared to the controls. LysoPC-C26:1 was highly reduced in the overdose group and could discriminate between the overdose and control groups with 100% sensitivity and specificity. The PCs and lysoPCs with VLCFAs showed significant associations with changes in clinical indicators of drug metabolism (APAP protein adducts) and liver injury (alanine aminotransferase, or ALT). Thus, a structure-dependent reduction in PCs and lysoPCs was observed in the APAP-overdose group, which may suggest a structure-activity relationship in inhibition of enzymes involved in phospholipid metabolism in APAP toxicity.
Collapse
Affiliation(s)
- Sudeepa Bhattacharyya
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.,Arkansas Children's Research Institute, Little Rock, AR 72202, USA
| | - Lisa Pence
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Ke Yan
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pritmohinder Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Chunqiao Luo
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Lynda G Letzig
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | | | - Gregory L Kearns
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Laura P James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
41
|
Xie W, Wang M, Chen C, Zhang X, Melzig MF. Hepatoprotective effect of isoquercitrin against acetaminophen-induced liver injury. Life Sci 2016; 152:180-9. [DOI: 10.1016/j.lfs.2016.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 01/27/2023]
|
42
|
Xie W, Jiang Z, Wang J, Zhang X, Melzig MF. Protective effect of hyperoside against acetaminophen (APAP) induced liver injury through enhancement of APAP clearance. Chem Biol Interact 2016; 246:11-9. [DOI: 10.1016/j.cbi.2016.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 01/01/2023]
|
43
|
DeBruyne JP, Weaver DR, Dallmann R. The hepatic circadian clock modulates xenobiotic metabolism in mice. J Biol Rhythms 2015; 29:277-87. [PMID: 25238856 DOI: 10.1177/0748730414544740] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The circadian clock generates daily cycles of gene expression that regulate physiological processes. The liver plays an important role in xenobiotic metabolism and also has been shown to possess its own cell-based clock. The liver clock is synchronized by the master clock in the brain, and a portion of rhythmic gene expression can be driven by behavior of the organism as a whole even when the hepatic clock is suppressed. So far, however, there is relatively little evidence indicating whether the liver clock is functionally important in modulating xenobiotic metabolism. Thus, mice lacking circadian clock function in the whole body or specifically in liver were challenged with pentobarbital and acetaminophen, and pentobarbital sleep time (PBST) and acetaminophen toxicity, respectively, was assessed at different times of day in mutant and control mice. The results suggest that the liver clock is essential for rhythmic changes in xenobiotic detoxification. Surprisingly, it seems that the way in which the clock is disrupted determines the rate of xenobiotic metabolism in the liver. CLOCK-deficient mice are remarkably resistant to acetaminophen and exhibit a longer PBST, while PERIOD-deficient mice have a short PBST. These results indicate an essential role of the tissue-intrinsic peripheral circadian oscillator in the liver in regulating xenobiotic metabolism.
Collapse
Affiliation(s)
- Jason P DeBruyne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David R Weaver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Robert Dallmann
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA Institute of Pharmacology and Toxicology University of Zürich, Zürich, Switzerland
| |
Collapse
|
44
|
Taguchi K, Tokuno M, Yamasaki K, Kadowaki D, Seo H, Otagiri M. Establishment of a model of acetaminophen-induced hepatotoxicity in different weekly-aged ICR mice. Lab Anim 2015; 49:294-301. [DOI: 10.1177/0023677215573041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acetaminophen (APAP), a widely used analgesic and antipyretic drug, has the potential to cause lethal hepatotoxicity. Mice are widely used for developing murine models of APAP-induced hepatotoxicity, and many researchers have used these models for APAP-related studies including the fields of biology, pharmacology and toxicology. Although drug-induced hepatotoxicity is dependent on a number of factors (species, gender and age), very few studies have investigated the effect of aging on APAP hepatotoxicity. In this study, we evaluated the effect of age on APAP-induced hepatotoxicity in different weekly-aged mice to establish a model of APAP-induced hepatotoxicity that is an accurate reflection of general experimental conditions. Male ICR mice 4, 6, 8, 10 and 12 weeks old were given APAP intraperitoneally, and mortality, hepatic damage and the plasma concentration of APAP metabolites were evaluated. It was found that younger male ICR mice were relatively resistant to hepatotoxicity induced by intraperitoneal APAP administration. In addition, the APAP-glucuronide concentration in plasma remained essentially the same among the differently-aged mice, while APAP-sulfate levels were dramatically decreased in an age-dependent manner. Thus, it is recommended that mice of the same ages be used in studies related to APAP-induced hepatotoxixity. These results provide evidence in support of not only the age-related changes in susceptibility to APAP-derived hepatotoxicity in mice but also in developing mouse models for APAP-related studies.
Collapse
Affiliation(s)
- K Taguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - M Tokuno
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - K Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
- DDS Research Institute, Sojo University, Kumamoto, Japan
| | - D Kadowaki
- Department of Biopharmaceutics, Kumamoto University, Kumamoto, Japan
| | - H Seo
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
- DDS Research Institute, Sojo University, Kumamoto, Japan
| | - M Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
- DDS Research Institute, Sojo University, Kumamoto, Japan
- Department of Biopharmaceutics, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
45
|
Dadkhah A, Fatemi F, Alipour M, Ghaderi Z, Zolfaghari F, Razdan F. Protective effects of Iranian Achillea wilhelmsii essential oil on acetaminophen-induced oxidative stress in rat liver. PHARMACEUTICAL BIOLOGY 2015; 53:220-227. [PMID: 25243867 DOI: 10.3109/13880209.2014.913298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Achillea wilhelmsii C. Koch (Asteraceae) is widely used in Iranian traditional medicine. OBJECTIVE This in vivo study evaluates the hepatoprotective role of Iranian A. wilhelmsii oils against acetaminophen-induced oxidative damages in rats. MATERIALS AND METHODS The animals were divided into five groups: in negative control and control groups, the DMSO and 500 mg/kg acetaminophen were i.p. injected, respectively. In treatment groups, 100 and 200 mg/kg oils and 10 mg/kg BHT were given i.p. immediately after acetaminophen administration. Then, the hepatic oxidative/antioxidant parameters such as lipid peroxidation (LP), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and ferric reducing ability of plasma (FRAP) were measured in time intervals (2, 4, 8, 16, and 24 h) after administrations confirmed by histophatological consideration at 24 h. RESULTS The results indicated that acetaminophen caused a significant elevation in SOD activity (8-24 h) and LP and FRAP levels (4 h) paralleled with significant decline in GSH level (4 and 8 h). The apparent oxidative injury was associated with evident hepatic necrosis confirmed in histological examination. The presences of A. wilhelmsii oils (100 and 200 mg/kg) with acetaminophen mitigated significantly the rise in SOD, LP, and FRAP levels and restored the GSH compared with the group treated with acetaminophen. These were confirmed by histological examination indicating the hepatic necrosis reversal by the oils. DISCUSSION AND CONCLUSION It can be concluded that concomitant administration of A. wilhelmsii oils with acetaminophen may be useful in reversing the drug hepatotoxicity.
Collapse
Affiliation(s)
- A Dadkhah
- Faculty of Medicine, Qom Branch, Islamic Azad University , Qom , Iran
| | | | | | | | | | | |
Collapse
|
46
|
Hepatocyte circadian clock controls acetaminophen bioactivation through NADPH-cytochrome P450 oxidoreductase. Proc Natl Acad Sci U S A 2014; 111:18757-62. [PMID: 25512522 DOI: 10.1073/pnas.1421708111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The diurnal variation in acetaminophen (APAP) hepatotoxicity (chronotoxicity) reportedly is driven by oscillations in metabolism that are influenced by the circadian phases of feeding and fasting. To determine the relative contributions of the central clock and the hepatocyte circadian clock in modulating the chronotoxicity of APAP, we used a conditional null allele of brain and muscle Arnt-like 1 (Bmal1, aka Mop3 or Arntl) allowing deletion of the clock from hepatocytes while keeping the central and other peripheral clocks (e.g., the clocks controlling food intake) intact. We show that deletion of the hepatocyte clock dramatically reduces APAP bioactivation and toxicity in vivo and in vitro because of a reduction in NADPH-cytochrome P450 oxidoreductase gene expression, protein, and activity.
Collapse
|
47
|
Pádua BDC, Rossoni Júnior JV, de Brito Magalhães CL, Chaves MM, Silva ME, Pedrosa ML, de Souza GHB, Brandão GC, Rodrigues IV, Lima WG, Costa DC. Protective effect of Baccharis trimera extract on acute hepatic injury in a model of inflammation induced by acetaminophen. Mediators Inflamm 2014; 2014:196598. [PMID: 25435714 PMCID: PMC4244687 DOI: 10.1155/2014/196598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/13/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Acetaminophen (APAP) is a commonly used analgesic and antipyretic. When administered in high doses, APAP is a clinical problem in the US and Europe, often resulting in severe liver injury and potentially acute liver failure. Studies have demonstrated that antioxidants and anti-inflammatory agents effectively protect against the acute hepatotoxicity induced by APAP overdose. METHODS The present study attempted to investigate the protective effect of B. trimera against APAP-induced hepatic damage in rats. The liver-function markers ALT and AST, biomarkers of oxidative stress, antioxidant parameters, and histopathological changes were examined. RESULTS The pretreatment with B. trimera attenuated serum activities of ALT and AST that were enhanced by administration of APAP. Furthermore, pretreatment with the extract decreases the activity of the enzyme SOD and increases the activity of catalase and the concentration of total glutathione. Histopathological analysis confirmed the alleviation of liver damage and reduced lesions caused by APAP. CONCLUSIONS The hepatoprotective action of B. trimera extract may rely on its effect on reducing the oxidative stress caused by APAP-induced hepatic damage in a rat model. General Significance. These results make the extract of B. trimera a potential candidate drug capable of protecting the liver against damage caused by APAP overdose.
Collapse
Affiliation(s)
- Bruno da Cruz Pádua
- Programa de Pós-graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), 35.790-970 Curvelo, MG, Brazil
| | - Joamyr Victor Rossoni Júnior
- Programa de Pós-graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
| | - Cíntia Lopes de Brito Magalhães
- Programa de Pós-graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
| | - Míriam Martins Chaves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Cx. Postal 486, 30.161-970 Belo Horizonte, MG, Brazil
| | - Marcelo Eustáquio Silva
- Programa de Pós-graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
- Departamento de Alimentos, Escola de Nutrição, Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
| | - Maria Lucia Pedrosa
- Programa de Pós-graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
| | - Gustavo Henrique Bianco de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Escola de Farmácia, Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
| | - Geraldo Célio Brandão
- Programa de Pós-graduação em Ciências Farmacêuticas (CIPHARMA), Escola de Farmácia, Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
| | - Ivanildes Vasconcelos Rodrigues
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirao Preto, Universidade de São Paulo (USP), 14040-903 São Paulo, SP, Brazil
| | - Wanderson Geraldo Lima
- Programa de Pós-graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
| | - Daniela Caldeira Costa
- Programa de Pós-graduação em Ciências Biológicas do Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto (UFOP), 35.400-000 Ouro Preto, MG, Brazil
| |
Collapse
|
48
|
Krauskopf J, Caiment F, Claessen SM, Johnson KJ, Warner RL, Schomaker SJ, Burt DA, Aubrecht J, Kleinjans JC. Application of high-throughput sequencing to circulating microRNAs reveals novel biomarkers for drug-induced liver injury. Toxicol Sci 2014; 143:268-76. [PMID: 25359176 DOI: 10.1093/toxsci/kfu232] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of acute liver failure and the major reason for withdrawal of drugs from the market. Preclinical evaluation of drug candidates has failed to detect about 40% of potentially hepatotoxic compounds in humans. At the onset of liver injury in humans, currently used biomarkers have difficulty differentiating severe DILI from mild, and/or predict the outcome of injury for individual subjects. Therefore, new biomarker approaches for predicting and diagnosing DILI in humans are urgently needed. Recently, circulating microRNAs (miRNAs) such as miR-122 and miR-192 have emerged as promising biomarkers of liver injury in preclinical species and in DILI patients. In this study, we focused on examining global circulating miRNA profiles in serum samples from subjects with liver injury caused by accidental acetaminophen (APAP) overdose. Upon applying next generation high-throughput sequencing of small RNA libraries, we identified 36 miRNAs, including 3 novel miRNA-like small nuclear RNAs, which were enriched in the serum of APAP overdosed subjects. The set comprised miRNAs that are functionally associated with liver-specific biological processes and relevant to APAP toxic mechanisms. Although more patients need to be investigated, our study suggests that profiles of circulating miRNAs in human serum might provide additional biomarker candidates and possibly mechanistic information relevant to liver injury.
Collapse
Affiliation(s)
- Julian Krauskopf
- *Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340
| | - Florian Caiment
- *Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340
| | - Sandra M Claessen
- *Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340
| | - Kent J Johnson
- *Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340
| | - Roscoe L Warner
- *Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340
| | - Shelli J Schomaker
- *Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340
| | - Deborah A Burt
- *Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340
| | - Jiri Aubrecht
- *Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340
| | - Jos C Kleinjans
- *Department of Toxicogenomics, Maastricht University, Maastricht 6200 MD, The Netherlands, Pathology Department, University of Michigan, Ann Arbor, Michigan 48109 and Drug Safety Research and Development, Pfizer, Inc., Groton, Connecticut 06340
| |
Collapse
|
49
|
Rohrer PR, Rudraiah S, Goedken MJ, Manautou JE. Is nuclear factor erythroid 2-related factor 2 responsible for sex differences in susceptibility to acetaminophen-induced hepatotoxicity in mice? Drug Metab Dispos 2014; 42:1663-1674. [PMID: 25092713 PMCID: PMC4164975 DOI: 10.1124/dmd.114.059006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/04/2014] [Indexed: 12/30/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that positively regulates the expression and activity of cytoprotective genes during periods of oxidative stress. It has previously been shown that some Nrf2 genes are more highly expressed in livers of female than male mice. This could explain previously reported sex-related differences in susceptibility to acetaminophen (APAP) hepatotoxicity in mice, where females show greater resistance to APAP hepatotoxicity. Here, we examined, for the first time, differences in mRNA and protein expression for Nrf2 and a battery of Nrf2-dependent genes in naïve wild-type (WT) and overnight-fasted WT and Nrf2-null male and female mice following APAP treatment. Alanine aminotransferase (ALT) activity was measured as an indicator of hepatotoxicity. Hepatic mRNA and protein levels were measured by quantitative polymerase chain reaction and western blotting, respectively. Contrary to expectations, basal Nrf2 mRNA and protein expression were significantly lower in livers of naïve female than male mice. Although mRNA and/or protein expression of quinone oxidoreductase 1 and multidrug resistance-associated protein 4 was more pronounced in livers of female than male mice under some of the conditions examined, no higher global expression of Nrf2-dependent genes was detected in female mice. Furthermore, ALT activity was significantly elevated in overnight-fasted WT and Nrf2-null male mice following APAP treatment, but no increases in ALT were observed in either genotype of female mice. These results indicate that factors other than Nrf2 are responsible for the lower susceptibility of female mice to APAP hepatotoxicity.
Collapse
Affiliation(s)
- Philip R Rohrer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (P.R.R., S.R., J.E.M.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (P.R.R., S.R., J.E.M.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Michael J Goedken
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (P.R.R., S.R., J.E.M.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (P.R.R., S.R., J.E.M.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
| |
Collapse
|
50
|
Du K, Williams CD, McGill MR, Jaeschke H. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase. Toxicol Appl Pharmacol 2014; 281:58-66. [PMID: 25218290 DOI: 10.1016/j.taap.2014.09.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 12/23/2022]
Abstract
UNLABELLED Acetaminophen (APAP) overdose causes severe hepatotoxicity in animals and humans. However, the mechanisms underlying the gender differences in susceptibility to APAP overdose in mice have not been clarified. In our study, APAP (300mg/kg) caused severe liver injury in male mice but 69-77% lower injury in females. No gender difference in metabolic activation of APAP was found. Hepatic glutathione (GSH) was rapidly depleted in both genders, while GSH recovery in female mice was 2.6 fold higher in the mitochondria at 4h, and 2.5 and 3.3 fold higher in the total liver at 4h and 6h, respectively. This faster recovery of GSH, which correlated with greater induction of glutamate-cysteine ligase, attenuated mitochondrial oxidative stress in female mice, as suggested by a lower GSSG/GSH ratio at 6h (3.8% in males vs. 1.4% in females) and minimal centrilobular nitrotyrosine staining. While c-jun N-terminal kinase (JNK) activation was similar at 2 and 4h post-APAP, it was 3.1 fold lower at 6h in female mice. However, female mice were still protected by the JNK inhibitor SP600125. 17β-Estradiol pretreatment moderately decreased liver injury and oxidative stress in male mice without affecting GSH recovery. CONCLUSION The lower susceptibility of female mice is achieved by the improved detoxification of reactive oxygen due to accelerated recovery of mitochondrial GSH levels, which attenuates late JNK activation and liver injury. However, even the reduced injury in female mice was still dependent on JNK. While 17β-estradiol partially protects male mice, it does not affect hepatic GSH recovery.
Collapse
Affiliation(s)
- Kuo Du
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - C David Williams
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|