1
|
Wang J, Qiu Y, Yang L, Wang J, He J, Tang C, Yang Z, Hong W, Yang B, He Q, Weng Q. Preserving mitochondrial homeostasis protects against drug-induced liver injury via inducing OPTN (optineurin)-dependent Mitophagy. Autophagy 2024; 20:2677-2696. [PMID: 39099169 PMCID: PMC11587843 DOI: 10.1080/15548627.2024.2384348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Disruption of mitochondrial function is observed in multiple drug-induced liver injuries (DILIs), a significant global health threat. However, how the mitochondrial dysfunction occurs and whether maintain mitochondrial homeostasis is beneficial for DILIs remains unclear. Here, we show that defective mitophagy by OPTN (optineurin) ablation causes disrupted mitochondrial homeostasis and aggravates hepatocytes necrosis in DILIs, while OPTN overexpression protects against DILI depending on its mitophagic function. Notably, mass spectrometry analysis identifies a new mitochondrial substrate, GCDH (glutaryl-CoA dehydrogenase), which can be selectively recruited by OPTN for mitophagic degradation, and a new cofactor, VCP (valosin containing protein) that interacts with OPTN to stabilize BECN1 during phagophore assembly, thus boosting OPTN-mediated mitophagy initiation to clear damaged mitochondria and preserve mitochondrial homeostasis in DILIs. Then, the accumulation of OPTN in different DILIs is further validated with a protective effect, and pyridoxine is screened and established to alleviate DILIs by inducing OPTN-mediated mitophagy. Collectively, our findings uncover a dual role of OPTN in mitophagy initiation and implicate the preservation of mitochondrial homeostasis via inducing OPTN-mediated mitophagy as a potential therapeutic approach for DILIs.Abbreviation: AILI: acetaminophen-induced liver injury; ALS: amyotrophic lateral sclerosis; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DILI: drug-induced liver injury; FL: full length; GCDH: glutaryl-CoA dehydrogenase; GOT1/AST: glutamic-oxaloacetic transaminase 1; GO: gene ontology; GSEA: gene set enrichment analysis; GPT/ALT: glutamic - pyruvic transaminase; INH: isoniazid; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MST: microscale thermophoresis; MT-CO2/COX-II: mitochondrially encoded cytochrome c oxidase II; OPTN: optineurin; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TSN: toosendanin; VCP: valosin containing protein, WIPI2: WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Jiajia Wang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
| | - Yueping Qiu
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lijun Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of infectious diseases, The First People’s Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, China
| | - Chengwu Tang
- Department of infectious diseases, The First People’s Hospital Affiliated to Huzhou Normal College, Huzhou, Zhejiang, China
| | - Zhaoxu Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wenxiang Hong
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou, China
- Taizhou Institute of Zhejiang University, Zhejiang University, Taizhou, China
| |
Collapse
|
2
|
Wakai E, Shiromizu T, Otaki S, Koiwa J, Tamaru S, Nishimura Y. Lansoprazole Ameliorates Isoniazid-Induced Liver Injury. Pharmaceuticals (Basel) 2024; 17:82. [PMID: 38256915 PMCID: PMC10821343 DOI: 10.3390/ph17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Isoniazid is a first-line drug in antitubercular therapy. Isoniazid is one of the most commonly used drugs that can cause liver injury or acute liver failure, leading to death or emergency liver transplantation. Therapeutic approaches for the prevention of isoniazid-induced liver injury are yet to be established. In this study, we identified the gene expression signature for isoniazid-induced liver injury using a public transcriptome dataset, focusing on the differences in susceptibility to isoniazid in various mouse strains. We predicted that lansoprazole is a potentially protective drug against isoniazid-induced liver injury using connectivity mapping and an adverse event reporting system. We confirmed the protective effects of lansoprazole against isoniazid-induced liver injury using zebrafish and patients' electronic health records. These results suggest that lansoprazole can ameliorate isoniazid-induced liver injury. The integrative approach used in this study may be applied to identify novel functions of clinical drugs, leading to drug repositioning.
Collapse
Affiliation(s)
- Eri Wakai
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
- Mie University Research Center for Cilia and Diseases, Tsu 514-8507, Mie, Japan
| | - Shota Otaki
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
| | - Junko Koiwa
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
| | - Satoshi Tamaru
- Clinical Research Support Center, Mie University Hospital, Tsu 514-8507, Mie, Japan;
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (E.W.); (T.S.); (S.O.); (J.K.)
- Mie University Research Center for Cilia and Diseases, Tsu 514-8507, Mie, Japan
| |
Collapse
|
3
|
Di Zeo-Sánchez DE, Segovia-Zafra A, Matilla-Cabello G, Pinazo-Bandera JM, Andrade RJ, Lucena MI, Villanueva-Paz M. Modeling drug-induced liver injury: current status and future prospects. Expert Opin Drug Metab Toxicol 2022; 18:555-573. [DOI: 10.1080/17425255.2022.2122810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Gonzalo Matilla-Cabello
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - José M. Pinazo-Bandera
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- Plataforma ISCIII de Ensayos Clínicos. UICEC-IBIMA, 29071, Malaga, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
4
|
Model systems and organisms for addressing inter- and intra-species variability in risk assessment. Regul Toxicol Pharmacol 2022; 132:105197. [DOI: 10.1016/j.yrtph.2022.105197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
|
5
|
Abstract
RNA-based gene therapy requires therapeutic RNA to function inside target cells without eliciting unwanted immune responses. RNA can be ferried into cells using non-viral drug delivery systems, which circumvent the limitations of viral delivery vectors. Here, we review the growing number of RNA therapeutic classes, their molecular mechanisms of action, and the design considerations for their respective delivery platforms. We describe polymer-based, lipid-based, and conjugate-based drug delivery systems, differentiating between those that passively and those that actively target specific cell types. Finally, we describe the path from preclinical drug delivery research to clinical approval, highlighting opportunities to improve the efficiency with which new drug delivery systems are discovered.
Collapse
Affiliation(s)
- Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
7
|
Association of Cesarean Delivery and Formula Supplementation with the Stool Metabolome of 6-Week-Old Infants. Metabolites 2021; 11:metabo11100702. [PMID: 34677417 PMCID: PMC8540440 DOI: 10.3390/metabo11100702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cesarean delivery and formula feeding have both been implicated as important factors associated with perturbations to the infant gut microbiome. To investigate the functional metabolic response of the infant gut microbial milieu to these factors, we profiled the stool metabolomes of 121 infants from a US pregnancy cohort study at approximately 6 weeks of life and evaluated associations with delivery mode and feeding method. Multivariate analysis of six-week stool metabolomic profiles indicated discrimination by both delivery mode and diet. For diet, exclusively breast-fed infants exhibited metabolomic profiles that were distinct from both exclusively formula-fed and combination-fed infants, which were relatively more similar to each other in metabolomic profile. We also identified individual metabolites that were important for differentiating delivery mode groups and feeding groups and metabolic pathways related to delivery mode and feeding type. We conclude based on previous work and this current study that the microbial communities colonizing the gastrointestinal tracts of infants are not only taxonomically, but also functionally distinct when compared according to delivery mode and feeding groups. Further, different sets of metabolites and metabolic pathways define delivery mode and diet metabotypes.
Collapse
|
8
|
Cheng X, Zhu JL, Li Y, Luo WW, Xiang HR, Zhang QZ, Peng WX. Serum biomarkers of isoniazid-induced liver injury: Aminotransferases are insufficient, and OPN, L-FABP and HMGB1 can be promising novel biomarkers. J Appl Toxicol 2021; 42:516-528. [PMID: 34494278 DOI: 10.1002/jat.4236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
Isoniazid (INH)-induced liver injury is a great challenge for tuberculosis treatment. Existing biomarkers cannot accurately determine the occurrence of this injury in the early stage. Therefore, developing early specific sensitive biomarkers of INH-induced liver injury is urgent. A rat model of liver injury was established with gastric infusion of INH or INH plus rifampicin (RFP). We examined seven potential novel serum biomarkers, namely, glutamate dehydrogenase (GLDH), liver-fatty acid-binding protein (L-FABP), high-mobility group box-1 (HMGB1), macrophage colony-stimulating factor receptor (MCSF1R), osteopontin (OPN), total cytokeratin 18 (K18), and caspase-cleaved cytokeratin-18 (ccK18), to evaluate their sensitivity and specificity on INH-induced liver injury. With the increase of drug dosage, combining with RFP and prolonging duration of administration, the liver injury was aggravated, showing as decreased weight of the rats, upgraded liver index and oxidative stress level, and histopathological changes of liver becoming marked. But the activity of serum aminotransferases decreased significantly. The area under the curve (AUC) of receiver-operating characteristic (ROC) curve of OPN, L-FABP, HMGB1, MCSF1R, and GLDH was 0.88, 0.87, 0.85, 0.71, and 0.70 (≥0.7), respectively, and 95% confidence interval of them did not include 0.5, with statistical significance, indicating their potential abilities to become biomarkers of INH-induced liver injury. In conclusion, we found traditional biomarkers ALT and AST were insufficient to discover the INH-induced liver injury accurately and OPN, L-FABP, and HMGB1 can be promising novel biomarkers.
Collapse
Affiliation(s)
- Xuan Cheng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jia-Lian Zhu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yun Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen-Wen Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huai-Rong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wen-Xing Peng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
9
|
Mosedale M, Cai Y, Eaddy JS, Kirby PJ, Wolenski FS, Dragan Y, Valdar W. Human-relevant mechanisms and risk factors for TAK-875-Induced liver injury identified via a gene pathway-based approach in Collaborative Cross mice. Toxicology 2021; 461:152902. [PMID: 34418498 PMCID: PMC8936092 DOI: 10.1016/j.tox.2021.152902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Development of TAK-875 was discontinued when a small number of serious drug-induced liver injury (DILI) cases were observed in Phase 3 clinical trials. Subsequent studies have identified hepatocellular oxidative stress, mitochondrial dysfunction, altered bile acid homeostasis, and immune response as mechanisms of TAK-875 DILI and the contribution of genetic risk factors in oxidative response and mitochondrial pathways to the toxicity susceptibility observed in patients. We tested the hypothesis that a novel preclinical approach based on gene pathway analysis in the livers of Collaborative Cross mice could be used to identify human-relevant mechanisms of toxicity and genetic risk factors at the level of the hepatocyte as reported in a human genome-wide association study. Eight (8) male mice (4 matched pairs) from each of 45 Collaborative Cross lines were treated with a single oral (gavage) dose of either vehicle or 600 mg/kg TAK-875. As expected, liver injury was not detected histologically and few changes in plasma biomarkers of hepatotoxicity were observed. However, gene expression profiling in the liver identified hundreds of transcripts responsive to TAK-875 treatment across all strains reflecting alterations in immune response and bile acid homeostasis and the interaction of treatment and strain reflecting oxidative stress and mitochondrial dysfunction. Fold-change expression values were then used to develop pathway-based phenotypes for genetic mapping which identified candidate risk factor genes for TAK-875 toxicity susceptibility at the level of the hepatocyte. Taken together, these findings support our hypothesis that a gene pathway-based approach using Collaborative Cross mice could inform sensitive strains, human-relevant mechanisms of toxicity, and genetic risk factors for TAK-875 DILI. This novel preclinical approach may be helpful in understanding, predicting, and ultimately preventing clinical DILI for other drugs.
Collapse
Affiliation(s)
- Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, United States.
| | - Yanwei Cai
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| | - J Scott Eaddy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, 27599, United States.
| | - Patrick J Kirby
- Takeda Pharmaceuticals International Co., Cambridge, MA, 02139, United States.
| | - Francis S Wolenski
- Takeda Pharmaceuticals International Co., Cambridge, MA, 02139, United States.
| | - Yvonne Dragan
- Takeda Pharmaceuticals International Co., Cambridge, MA, 02139, United States.
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
10
|
Lu X, Tu SW, Chang W, Wan C, Wang J, Zang Y, Ramdas B, Kapur R, Lu X, Cao S, Zhang C. SSMD: a semi-supervised approach for a robust cell type identification and deconvolution of mouse transcriptomics data. Brief Bioinform 2021; 22:bbaa307. [PMID: 33230549 PMCID: PMC8294548 DOI: 10.1093/bib/bbaa307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 10/11/2020] [Indexed: 01/04/2023] Open
Abstract
Deconvolution of mouse transcriptomic data is challenged by the fact that mouse models carry various genetic and physiological perturbations, making it questionable to assume fixed cell types and cell type marker genes for different data set scenarios. We developed a Semi-Supervised Mouse data Deconvolution (SSMD) method to study the mouse tissue microenvironment. SSMD is featured by (i) a novel nonparametric method to discover data set-specific cell type signature genes; (ii) a community detection approach for fixing cell types and their marker genes; (iii) a constrained matrix decomposition method to solve cell type relative proportions that is robust to diverse experimental platforms. In summary, SSMD addressed several key challenges in the deconvolution of mouse tissue data, including: (i) varied cell types and marker genes caused by highly divergent genotypic and phenotypic conditions of mouse experiment; (ii) diverse experimental platforms of mouse transcriptomics data; (iii) small sample size and limited training data source and (iv) capable to estimate the proportion of 35 cell types in blood, inflammatory, central nervous or hematopoietic systems. In silico and experimental validation of SSMD demonstrated its high sensitivity and accuracy in identifying (sub) cell types and predicting cell proportions comparing with state-of-the-arts methods. A user-friendly R package and a web server of SSMD are released via https://github.com/xiaoyulu95/SSMD.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Department of BioHealth Informatics, Indiana University−Purdue University Indianapolis
| | - Szu-Wei Tu
- Department of BioHealth Informatics, Indiana University−Purdue University Indianapolis
| | - Wennan Chang
- Department of Electrical and Computer Engineering, Purdue University
| | - Changlin Wan
- Department of Electrical and Computer Engineering, Purdue University
| | - Jiashi Wang
- Biomedical Data Research Data (BDRD) Lab at Indiana University School of Medicine
| | - Yong Zang
- Department of Biostatistics and a member of the Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
| | - Baskar Ramdas
- Department of Pediatrics, Indiana University School of Medicine
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Sha Cao
- Computational Biology and Bioinformatics, Indiana University School of Medicine
| | - Chi Zhang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine
| |
Collapse
|
11
|
Lei S, Gu R, Ma X. Clinical perspectives of isoniazid-induced liver injury. LIVER RESEARCH 2021; 5:45-52. [PMID: 39959342 PMCID: PMC11791842 DOI: 10.1016/j.livres.2021.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Isoniazid (INH) is a synthetic anti-mycobacterial agent used to treat active or latent tuberculosis (TB). INH has been in clinical use for nearly 70 years and remains broadly utilized at the front line of anti-TB treatment. However, the potential for liver damage and even fulminant liver failure during INH-based TB treatment presents a major challenge for TB control programs worldwide. In this review, we discuss the hepatotoxic effects of INH and provide an overview of the mechanisms and their applications in prediction and prevention of INH hepatotoxicity in clinical practice.
Collapse
Affiliation(s)
- Saifei Lei
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ruizhi Gu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Mosedale M, Cai Y, Eaddy JS, Corty RW, Nautiyal M, Watkins PB, Valdar W. Identification of Candidate Risk Factor Genes for Human Idelalisib Toxicity Using a Collaborative Cross Approach. Toxicol Sci 2020; 172:265-278. [PMID: 31501888 DOI: 10.1093/toxsci/kfz199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idelalisib is a phosphatidylinositol 3-kinase inhibitor highly selective for the delta isoform that has shown good efficacy in treating chronic lymphocytic leukemia and follicular lymphoma. In clinical trials, however, idelalisib was associated with rare, but potentially serious liver and lung toxicities. In this study, we used the Collaborative Cross (CC) mouse population to identify genetic factors associated with the drug response that may inform risk management strategies for idelalisib in humans. Eight male mice (4 matched pairs) from 50 CC lines were treated once daily for 14 days by oral gavage with either vehicle or idelalisib at a dose selected to achieve clinically relevant peak plasma concentrations (150 mg/kg/day). The drug was well tolerated across all CC lines, and there were no observations of overt liver injury. Differences across CC lines were seen in drug concentration in plasma samples collected at the approximate Tmax on study Days 1, 7, and 14. There were also small but statistically significant treatment-induced alterations in plasma total bile acids and microRNA-122, and these may indicate early hepatocellular stress required for immune-mediated hepatotoxicity in humans. Idelalisib treatment further induced significant elevations in the total cell count of terminal bronchoalveolar lavage fluid, which may be analogous to pneumonitis observed in the clinic. Genetic mapping identified loci associated with interim plasma idelalisib concentration and the other 3 treatment-related endpoints. Thirteen priority candidate quantitative trait genes identified in CC mice may now guide interrogation of risk factors for adverse drug responses associated with idelalisib in humans.
Collapse
Affiliation(s)
- Merrie Mosedale
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - Yanwei Cai
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Department of Genetics
| | - John Scott Eaddy
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | | | - Manisha Nautiyal
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709
| | - Paul B Watkins
- Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, North Carolina 27709.,Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599
| | - William Valdar
- Department of Genetics.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
13
|
Mohi-Ud-Din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Curr Drug Metab 2020; 20:867-879. [PMID: 31702487 DOI: 10.2174/1389200220666191105121653] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liver injury induced by drugs has become a primary reason for acute liver disease and therefore posed a potential regulatory and clinical challenge over the past few decades and has gained much attention. It also remains the most common cause of failure of drugs during clinical trials. In 50% of all acute liver failure cases, drug-induced hepatoxicity is the primary factor and 5% of all hospital admissions. METHODS The various hepatotoxins used to induce hepatotoxicity in experimental animals include paracetamol, CCl4, isoniazid, thioacetamide, erythromycin, diclofenac, alcohol, etc. Among the various models used to induce hepatotoxicity in rats, every hepatotoxin causes toxicity by different mechanisms. RESULTS The drug-induced hepatotoxicity caused by paracetamol accounts for 39% of the cases and 13% hepatotoxicity is triggered by other hepatotoxic inducing agents. CONCLUSION Research carried out and the published papers revealed that hepatotoxins such as paracetamol and carbon- tetrachloride are widely used for experimental induction of hepatotoxicity in rats.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-Tawi, Jammu 180001, India
| | - Mohd Akbar Dar
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Zulfiqar Ali Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| |
Collapse
|
14
|
Fromenty B. Letter to the Editor Regarding the Article Rotenone Increases Isoniazid Toxicity but Does Not Cause Significant Liver Injury: Implications for the Hypothesis that Inhibition of the Mitochondrial Electron Transport Chain Is a Common Mechanism of Idiosyncratic Drug-Induced Liver Injury by Cho and Co-Workers, 2019. Chem Res Toxicol 2019; 33:2-4. [DOI: 10.1021/acs.chemrestox.9b00416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bernard Fromenty
- INSERM, Université de Rennes, INRAE, Nutrition, Metabolisms, and Cancer (NuMeCan) Institut, UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
15
|
Kilk K. Metabolomics for Animal Models of Rare Human Diseases: An Expert Review and Lessons Learned. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:300-307. [PMID: 31120384 DOI: 10.1089/omi.2019.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rare diseases occur with a frequency ≤1:1500-1:2500 depending on the location and applicable definitions across countries. Although individually rare, they collectively affect as much as 4-8% of population imposing a large burden on public health. Rarity in prevalence means prolonged path to accurate diagnosis, lack of treatment options, and also limited chances for preclinical studies of pathogenesis. I discuss in this expert review (1) what metabolomics, as a high throughput systems sciences technology, offers for rare disease studies, (2) why animal models are important for the study of rare human diseases and what should be kept in mind while using animal models, and finally, (3) provide examples of recent research to highlight how metabolomics on animal models of rare diseases perform, and how these results can lead to the knowhow, which raises genome, metabolome, and phenotype integration to a whole new level. In sum, metabolomics has been for years in clinical use for diagnosis of certain types of rare diseases. Determination of pathogenesis of more complex diseases and testing of treatment strategies is where animal models and systems biology analytical approaches are necessary. From gathered data, it is possible to go back to diagnostic and prognostic markers for rare diseases, which so far lack reliable and robust diagnosis and therapeutic options. In the future, a major challenge is to reveal the links between genotype, metabolism, and phenotype. Rare diseases could be the key in that process.
Collapse
Affiliation(s)
- Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
du Preez I, Luies L, Loots DT. The application of metabolomics toward pulmonary tuberculosis research. Tuberculosis (Edinb) 2019; 115:126-139. [PMID: 30948167 DOI: 10.1016/j.tube.2019.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
In the quest to identify novel biomarkers for pulmonary tuberculosis (TB), high-throughput systems biology approaches such as metabolomics has become increasingly widespread. Such biomarkers have not only successfully been used for better disease characterization, but have also provided new insights toward the future development of improved diagnostic and therapeutic approaches. In this review, we give a summary of the metabolomics studies done to date, with a specific focus on those investigating various aspects of pulmonary TB, and the infectious agent responsible, Mycobacterium tuberculosis. These studies, done on a variety of sample matrices, including bacteriological culture, sputum, blood, urine, tissue, and breath, are discussed in terms of their intended research outcomes or future clinical applications. Additionally, a summary of the research model, sample cohort, analytical apparatus and statistical methods used for biomarker identification in each of these studies, is provided.
Collapse
Affiliation(s)
- Ilse du Preez
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| | - Laneke Luies
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| | - Du Toit Loots
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| |
Collapse
|
17
|
Eftekhari A, Heidari R, Ahmadian E, Eghbal MA. Cytoprotective Properties of Carnosine against Isoniazid-Induced Toxicity in Primary Cultured Rat Hepatocytes. PHARMACEUTICAL SCIENCES 2018. [DOI: 10.15171/ps.2018.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Drug-induced liver injury is a critical clinical complication. Hence, finding new and safe protective agents with potential clinical application is of value. Isoniazid (INH) is an antituberculosis agent widely used against Mycobacterium tuberculosis infection in human. On the other hand, hepatotoxicity is a clinical complication associated with isoniazid therapy. Oxidative stress and its associated events are major mechanisms identified for INH-induced liver injury. Carnosine is an endogenously found peptide widely investigated for its hepatoprotective effects. On the other hand, robust antioxidant and cytoprotective effects have been attributed to this peptide. Methods: The current study designed to evaluate the potential cytoprotective properties of carnosine against INH-induced cytotoxicity in drug-exposed primary cultured rat hepatocytes. Primary cultured rat hepatocytes were incubated with INH (1.2 mM). Results: INH treatment caused significant increase in cell death and lactate dehydrogenase (LDH) release. On the other hand, it was found that markers of oxidative stress including reactive oxygen species were significantly increased in INH-treated cells. Cellular glutathione reservoirs were also depleted in INH-treated group. Carnosine treatment (50 and 100 µM) significantly diminished INH-induced oxidative stress and cytotoxicity. Conclusion: These data mention carnosine as a potential protective agent with therapeutic capability against INH hepatotoxicity.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ahmadian
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Eghbal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Cook JC, Wu H, Aleo MD, Adkins K. Principles of precision medicine and its application in toxicology. J Toxicol Sci 2018; 43:565-577. [PMID: 30298845 DOI: 10.2131/jts.43.565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Precision medicine is an approach to developing drugs that focuses on employing biomarkers to stratify patients in clinical trials with the goal of improving efficacy and/or safety outcomes, ultimately increasing the odds of clinical success and drug approval. Precision medicine is an important tool for toxicologists to utilize, because its principles can be used to decide whether to pursue a drug target, to understand interindividual differences in response to drugs in both nonclinical and clinical settings, to aid in selecting doses that optimize efficacy or reduce adverse events, and to facilitate understanding of a drug's mode-of-action. Nonclinical models such as the mouse and non-human primate can be used to understand genetic variation and its potential translation to humans, and are available for toxicologists to employ in advance of drugs moving into clinical development. Understanding interindividual differences in response to drugs and how these differences can influence the drug's risk-benefit profile and lead to the identification of biomarkers that enhance patient efficacy and safety is of critical importance for toxicologists today, and in the future, as the fields of pharmacogenomics and genetics continue to advance.
Collapse
Affiliation(s)
- Jon C Cook
- Pfizer Worldwide Research and Development, Groton, CT 06340
| | - Hong Wu
- Pfizer Worldwide Research and Development, Groton, CT 06340
| | - Michael D Aleo
- Pfizer Worldwide Research and Development, Groton, CT 06340
| | - Karissa Adkins
- Pfizer Worldwide Research and Development, Groton, CT 06340
| |
Collapse
|
19
|
Mosedale M. Mouse Population-Based Approaches to Investigate Adverse Drug Reactions. Drug Metab Dispos 2018; 46:1787-1795. [PMID: 30045843 DOI: 10.1124/dmd.118.082834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/06/2018] [Indexed: 02/13/2025] Open
Abstract
Genetic variation is now recognized as a key factor in the toxicity of pharmaceutical agents. However, genetic diversity is not present in standard nonclinical toxicology models, and small clinical studies (phase I/II) may not include enough subjects to identify toxicity liabilities associated with less common susceptibility factors. As a result, many drugs pass through preclinical and early clinical studies before safety concerns are realized. Furthermore, when adverse drug reactions are idiosyncratic in nature, suggesting a role for rare genetic variants in the toxicity susceptibility, even large clinical studies (phase III) are often underpowered (due to low population frequency and/or small effect size of the risk factor) to identify associations that may be used for precision medicine risk mitigation strategies. Genetically diverse mouse populations can be used to help overcome the limitations of standard nonclinical and clinical studies and to model toxicity responses that require genetic susceptibility factors. Furthermore, mouse population-based approaches can be used to: 1) identify sensitive strains that can serve as a screening tool for next-in-class compounds, 2) identify genetic susceptibility factors that can be used for risk mitigation strategies, and 3) study mechanisms underlying drug toxicity. This review describes genetically diverse mouse populations and provides examples of their utility in investigating adverse drug response. It also explores recent efforts to adapt mouse population-based approaches to in vitro platforms, thereby enabling the incorporation of genetic diversity and the identification of genetic risk factors and mechanisms associated with drug toxicity susceptibility at all stages of drug development.
Collapse
Affiliation(s)
- Merrie Mosedale
- Division of Pharmacotherapy and Experimental Therapeutics and Institute for Drug Safety Sciences, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Jiang TT, Shi LY, Chen J, Wei LL, Li M, Hu YT, Gan L, Liu CM, Tu HH, Li ZB, Yi WJ, Li JC. Screening and identification of potential protein biomarkers for evaluating the efficacy of intensive therapy in pulmonary tuberculosis. Biochem Biophys Res Commun 2018; 503:2263-2270. [PMID: 29959917 DOI: 10.1016/j.bbrc.2018.06.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
This research aimed to discover potential biomarkers for evaluating the therapeutic efficacy of intensive therapy in pulmonary tuberculosis (TB). Protein profiles in 2-months intensively treated TB patients, untreated TB patients, and healthy controls were investigated with iTRAQ-2DLC-MS/MS technique. 71 differential proteins were identified in 2-months intensively treated TB patients. Significant differences in complement component C7 (CO7), apolipoprotein A-IV (APOA4), apolipoprotein C-II (APOC2), and angiotensinogen (ANGT) were found by ELISA validation. CO7 and ANGT were also found significantly different in sputum negative patients, compared with sputum positive patients after intensive treatment. Clinical analysis showed that after 2-months intensive treatment several indicators were significantly changed, and the one-year cure rate of sputum negative patients were significantly higher than sputum positive patients. Diagnostic models consisting of APOC2, CO7 and APOA4 were established to distinguish intensively treated TB patients from untreated TB patients and healthy controls with the AUC value of 0.910 and 0.935. Meanwhile, ANGT and CO7 were combined to identify sputum negative and sputum positive TB patients after intensive treatment with 89.36% sensitivity, 71.43% specificity, and the AUC value of 0.853. The results showed that APOC2, CO7, APOA4, and ANGT may be potential biomarkers for evaluating the efficacy of intensive anti-TB therapy.
Collapse
Affiliation(s)
- Ting-Ting Jiang
- South China University of Technology School of Medicine, Guangzhou, 510006, China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, 310013, China
| | - Jing Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Li-Liang Wei
- Department of Pneumology, Shaoxing Municipal Hospital, Shaoxing, 312000, China
| | - Meng Li
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, 310013, China
| | - Yu-Ting Hu
- South China University of Technology School of Medicine, Guangzhou, 510006, China
| | - Lin Gan
- South China University of Technology School of Medicine, Guangzhou, 510006, China
| | - Chang-Ming Liu
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Hui Tu
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Bin Li
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Jing Yi
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Ji-Cheng Li
- South China University of Technology School of Medicine, Guangzhou, 510006, China; Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Wang P, Shehu AI, Lu J, Joshi RH, Venkataramanan R, Sugamori KS, Grant DM, Zhong XB, Ma X. Deficiency of N-acetyltransferase increases the interactions of isoniazid with endobiotics in mouse liver. Biochem Pharmacol 2017; 145:218-225. [PMID: 28888949 DOI: 10.1016/j.bcp.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/05/2017] [Indexed: 12/29/2022]
Abstract
Acetylation is the major metabolic pathway of isoniazid (INH) mediated by N-acetyltransferases (NATs). Previous reports suggest that slow acetylators have higher risks of INH hepatotoxicity than rapid acetylators, but the detailed mechanisms remain elusive. The current study used Nat1/2(-/-) mice to mimic NAT slow metabolizers and to investigate INH metabolism in the liver. We found that INH acetylation is abolished in the liver of Nat1/2(-/-) mice, suggesting that INH acetylation is fully dependent on NAT1/2. In addition to the acetylation pathway, INH can be hydrolyzed to form hydrazine (Hz) and isonicotinic acid (INA). We found that INA level was not altered in the liver of Nat1/2(-/-) mice, indicating that deficiency of NAT1/2 has no effect on INH hydrolysis. Because INH acetylation was abolished and INH hydrolysis was not altered in Nat1/2(-/-) mice, we expected an extremely high level of INH in the liver. However, we only observed a modest accumulation of INH in the liver of Nat1/2(-/-) mice, suggesting that there are alternative pathways in INH metabolism in NAT1/2 deficient condition. Our further studies revealed that the conjugated metabolites of INH with endobiotics, including fatty acids and vitamin B6, were significantly increased in the liver of Nat1/2(-/-) mice. In summary, this study illustrated that deficiency of NAT1/2 decreases INH acetylation, but increases the interactions of INH with endobiotics in the liver. These findings can be used to guide future studies on the mechanisms of INH hepatotoxicity in NAT slow metabolizers.
Collapse
Affiliation(s)
- Pengcheng Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amina I Shehu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rujuta H Joshi
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raman Venkataramanan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kim S Sugamori
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
22
|
Luies L, du Preez I, Loots DT. The role of metabolomics in tuberculosis treatment research. Biomark Med 2017; 11:1017-1029. [PMID: 29039217 DOI: 10.2217/bmm-2017-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite the fact that tuberculosis (TB) is a curable disease, it still results in approximately 1.8 million deaths annually. Various inadequacies in the current TB treatment strategies are major contributors to this high disease prevalence, including the long duration of therapy, the severe side effects associated with TB drugs, treatment failure due to drug resistance, post-treatment disease relapse, and HIV co-infection. In this review, we describe how metabolomics has contributed toward better explaining/elucidating the mechanisms of drug action/metabolism, drug toxicity and microbial drug resistance, and how metabolite biomarkers may serve as prognostic indicators for predicting treatment outcome as well as for the development of new TB drugs. We also discuss possible future contributions that metabolomics can make toward more efficient, less toxic TB treatment strategies.
Collapse
Affiliation(s)
- Laneke Luies
- Human Metabolomics, School for Physical & Chemical Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Box 269, Potchefstroom 2531, South Africa
| | - Ilse du Preez
- Human Metabolomics, School for Physical & Chemical Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Box 269, Potchefstroom 2531, South Africa
| | - Du Toit Loots
- Human Metabolomics, School for Physical & Chemical Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Box 269, Potchefstroom 2531, South Africa
| |
Collapse
|
23
|
Harrill AH, McAllister KA. New Rodent Population Models May Inform Human Health Risk Assessment and Identification of Genetic Susceptibility to Environmental Exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:086002. [PMID: 28886592 PMCID: PMC5783628 DOI: 10.1289/ehp1274] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND This paper provides an introduction for environmental health scientists to emerging population-based rodent resources. Mouse reference populations provide an opportunity to model environmental exposures and gene-environment interactions in human disease and to inform human health risk assessment. OBJECTIVES This review will describe several mouse populations for toxicity assessment, including older models such as the Mouse Diversity Panel (MDP), and newer models that include the Collaborative Cross (CC) and Diversity Outbred (DO) models. METHODS This review will outline the features of the MDP, CC, and DO mouse models and will discuss published case studies investigating the use of these mouse population resources in each step of the risk assessment paradigm. DISCUSSION These unique resources have the potential to be powerful tools for generating hypotheses related to gene-environment interplay in human disease, performing controlled exposure studies to understand the differential responses in humans for susceptibility or resistance to environmental exposures, and identifying gene variants that influence sensitivity to toxicity and disease states. CONCLUSIONS These new resources offer substantial advances to classical toxicity testing paradigms by including genetically sensitive individuals that may inform toxicity risks for sensitive subpopulations. Both in vivo and complementary in vitro resources provide platforms with which to reduce uncertainty by providing population-level data around biological variability. https://doi.org/10.1289/EHP1274.
Collapse
Affiliation(s)
- Alison H Harrill
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| | - Kimberly A McAllister
- Genes, Environment, and Health Branch, Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services , Research Triangle Park, North Carolina, USA
| |
Collapse
|
24
|
Chou H, Pathmasiri W, Deese-Spruill J, Sumner S, Buchwalter DB. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. JOURNAL OF INSECT PHYSIOLOGY 2017; 101:107-112. [PMID: 28733240 PMCID: PMC5575740 DOI: 10.1016/j.jinsphys.2017.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Aquatic insects play critical roles in freshwater ecosystems and temperature is a fundamental driver of species performance and distributions. However, the physiological mechanisms that determine the thermal performance of species remain unclear. Here we used a metabolomics approach to gain insights into physiological changes associated with a short-term, sublethal thermal challenge in the mayfly Neocloeon triangulifer (Ephemeroptera: Baetidae). Larvae were subjected to a thermal ramp (from 22 to 30°C at a rate of 1°C/h) and metabolomics analysis (both Nuclear Magnetic Resonance (NMR) Spectroscopy and Gas Chromatography coupled Time-of-Flight Mass Spectrometry (GC-TOF-MS)) indicated that processes related to energetics (sugar metabolism) and membrane stabilization primarily differentiated heat treated larvae from controls. Limited evidence of anaerobic metabolism was observed in the heat treated larvae at 30°C, a temperature that is chronically lethal to larvae.
Collapse
Affiliation(s)
- Hsuan Chou
- Graduate Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States.
| | - Wimal Pathmasiri
- Systems and Translational Sciences, RTI International, Research Triangle Park, NC 27709, United States
| | - Jocelin Deese-Spruill
- Systems and Translational Sciences, RTI International, Research Triangle Park, NC 27709, United States
| | - Susan Sumner
- Systems and Translational Sciences, RTI International, Research Triangle Park, NC 27709, United States
| | - David B Buchwalter
- Graduate Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
25
|
Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC, Stapleton PL, Bammler TK, MacDonald JW, Altemeier WA, Hernandez M, Kleeberger SR, Chen LC, Gordon T, Kavanagh TJ. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice. FASEB J 2017; 31:4600-4611. [PMID: 28716969 DOI: 10.1096/fj.201700187r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/19/2017] [Indexed: 12/12/2022]
Abstract
Silver nanoparticles (AgNPs) are employed in a variety of consumer products; however, in vivo rodent studies indicate that AgNPs can cause lung inflammation and toxicity in a strain- and particle type-dependent manner, but mechanisms of susceptibility remain unclear. The aim of this study was to assess the variation in AgNP-induced lung inflammation and toxicity across multiple inbred mouse strains and to use genome-wide association (GWA) mapping to identify potential candidate susceptibility genes. Mice received doses of 0.25 mg/kg of either 20-nm citrate-coated AgNPs or citrate buffer using oropharyngeal aspiration. Neutrophils in bronchoalveolar lavage fluid (BALF) served as markers of inflammation. We found significant strain- and treatment-dependent variation in neutrophils in BALF. GWA mapping identified 10 significant single-nucleotide polymorphisms (false discovery rate, 15%) in 4 quantitative trait loci on mouse chromosomes 1, 4, 15, and 18, and Nedd4l (neural precursor cell expressed developmentally downregulated gene 4-like; chromosome 18), Ano6 (anocatmin 6; chromosome 15), and Rnf220 (Ring finger protein 220; chromosome 4) were considered candidate genes. Quantitative RT-PCR revealed significant inverse associations between mRNA levels of these genes and neutrophil influx. Nedd4l, Ano6, and Rnf220 are candidate susceptibility genes for AgNP-induced lung inflammation that warrant additional exploration in future studies.-Scoville, D. K., Botta, D., Galdanes, K., Schmuck, S. C., White, C. C., Stapleton, P. L., Bammler, T. K., MacDonald, J. W., Altemeier, W. A., Hernandez, M., Kleeberger, S. R., Chen, L.-C., Gordon, T., Kavanagh, T. J. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice.
Collapse
Affiliation(s)
- David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Dianne Botta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Karen Galdanes
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Stefanie C Schmuck
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Patricia L Stapleton
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | | | - Michelle Hernandez
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Terry Gordon
- Department of Environmental Medicine, New York University, Tuxedo, New York, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
26
|
Audet GN, Dineen SM, Stewart DA, Plamper ML, Pathmasiri WW, McRitchie SL, Sumner SJ, Leon LR. Pretreatment with indomethacin results in increased heat stroke severity during recovery in a rodent model of heat stroke. J Appl Physiol (1985) 2017; 123:544-557. [PMID: 28596269 DOI: 10.1152/japplphysiol.00242.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 01/16/2023] Open
Abstract
It has been suggested that medications can increase heat stroke (HS) susceptibility/severity. We investigated whether the nonsteroidal anti-inflammatory drug (NSAID) indomethacin (INDO) increases HS severity in a rodent model. Core temperature (Tc) of male, C57BL/6J mice (n = 45) was monitored continuously, and mice were given a dose of INDO [low dose (LO) 1 mg/kg or high dose (HI) 5 mg/kg in flavored treat] or vehicle (flavored treat) before heating. HS animals were heated to 42.4°C and euthanized at three time points for histological, molecular, and metabolic analysis: onset of HS [maximal core temperature (Tc,Max)], 3 h of recovery [minimal core temperature or hypothermia depth (HYPO)], and 24 h of recovery (24 h). Nonheated (control) animals underwent identical treatment in the absence of heat. INDO (LO or HI) had no effect on physiological indicators of performance (e.g., time to Tc,Max, thermal area, or cooling time) during heating or recovery. HI INDO resulted in 45% mortality rate by 24 h (HI INDO + HS group). The gut showed dramatic increases in gross morphological hemorrhage in HI INDO + HS in both survivors and nonsurvivors. HI INDO + HS survivors had significantly lower red blood cell counts and hematocrit suggesting significant hemorrhage. In the liver, HS induced cell death at HYPO and increased inflammation at Tc,Max, HYPO, and 24 h; however, there was additional effect with INDO + HS group. Furthermore, the metabolic profile of the liver was disturbed by heat, but there was no additive effect of INDO + HS. This suggests that there is an increase in morbidity risk with INDO + HS, likely resulting from significant gut injury.NEW & NOTEWORTHY This paper suggests that in a translational mouse model, NSAIDs may be counterindicated in situations that put an individual at risk of heat injury. We show here that a small, single dose of the NSAID indomethacin before heat stroke has a dramatic and highly damaging effect on the gut, which ultimately leads to increased systemic morbidity.
Collapse
Affiliation(s)
- Gerald N Audet
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts;
| | - Shauna M Dineen
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Delisha A Stewart
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Triangle Park, North Carolina; and
| | - Mark L Plamper
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Wimal W Pathmasiri
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Triangle Park, North Carolina; and
| | - Susan L McRitchie
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, Research Triangle Park, North Carolina; and
| | - Susan J Sumner
- National Institutes of Health Eastern Regional Comprehensive Metabolomics Resource Core, University of North Carolina at Chapel Hill Nutrition Research Institute, Kannapolis, North Carolina
| | - Lisa R Leon
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
27
|
Lian Y, Zhao J, Wang YM, Zhao J, Peng SQ. Metallothionein protects against isoniazid-induced liver injury through the inhibition of CYP2E1-dependent oxidative and nitrosative impairment in mice. Food Chem Toxicol 2017; 102:32-38. [DOI: 10.1016/j.fct.2017.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/08/2023]
|
28
|
McClenathan BM, Stewart DA, Spooner CE, Pathmasiri WW, Burgess JP, McRitchie SL, Choi YS, Sumner SCJ. Metabolites as biomarkers of adverse reactions following vaccination: A pilot study using nuclear magnetic resonance metabolomics. Vaccine 2017; 35:1238-1245. [PMID: 28169076 DOI: 10.1016/j.vaccine.2017.01.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/24/2022]
Abstract
An Adverse Event Following Immunization (AEFI) is an adverse reaction to a vaccination that goes above and beyond the usual side effects associated with vaccinations. One serious AEFI related to the smallpox vaccine is myopericarditis. Metabolomics involves the study of the low molecular weight metabolite profile of cells, tissues, and biological fluids, and provides a functional readout of the phenotype. Metabolomics may help identify a particular metabolic signature in serum of subjects who are predisposed to developing AEFIs. The goal of this study was to identify metabolic markers that may predict the development of adverse events following smallpox vaccination. Serum samples were collected from military personnel prior to and following receipt of smallpox vaccine. The study population included five subjects who were clinically diagnosed with myopericarditis, 30 subjects with asymptomatic elevation of troponins, and 31 subjects with systemic symptoms following immunization, and 34 subjects with no AEFI, serving as controls. Two-hundred pre- and post-smallpox vaccination sera were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance (NMR) spectroscopy. Baseline (pre-) and post-vaccination samples from individuals who experienced clinically verified myocarditis or asymptomatic elevation of troponins were more metabolically distinguishable pre- and post-vaccination compared to individuals who only experienced systemic symptoms, or controls. Metabolomics profiles pre- and post-receipt of vaccine differed substantially when an AEFI resulted. This study is the first to describe pre- and post-vaccination metabolic profiles of subjects who developed an adverse event following immunization. The study demonstrates the promise of metabolites for determining mechanisms associated with subjects who develop AEFI and the potential to develop predictive biomarkers.
Collapse
Affiliation(s)
- Bruce M McClenathan
- Defense Health Agency-Immunization Healthcare Branch Regional Office, Building 1-2532 Armistead Street, Fort Bragg, NC 28310, USA; Womack Army Medical Center, 2817 Reilly Road, Fort Bragg, NC 28310, USA.
| | - Delisha A Stewart
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Christina E Spooner
- Defense Health Agency-Immunization Healthcare Branch, 7700 Arlington Boulevard, Falls Church, VA 22042, USA.
| | - Wimal W Pathmasiri
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Jason P Burgess
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Susan L McRitchie
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Y Sammy Choi
- Womack Army Medical Center, 2817 Reilly Road, Fort Bragg, NC 28310, USA.
| | - Susan C J Sumner
- NIH Common Fund Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
29
|
Laine JE, Bailey KA, Olshan AF, Smeester L, Drobná Z, Stýblo M, Douillet C, García-Vargas G, Rubio-Andrade M, Pathmasiri W, McRitchie S, Sumner SJ, Fry RC. Neonatal Metabolomic Profiles Related to Prenatal Arsenic Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:625-633. [PMID: 27997141 PMCID: PMC5460981 DOI: 10.1021/acs.est.6b04374] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Prenatal inorganic arsenic (iAs) exposure is associated with health effects evident at birth and later in life. An understanding of the relationship between prenatal iAs exposure and alterations in the neonatal metabolome could reveal critical molecular modifications, potentially underpinning disease etiologies. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis was used to identify metabolites in neonate cord serum associated with prenatal iAs exposure in participants from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, in Gómez Palacio, Mexico. Through multivariable linear regression, ten cord serum metabolites were identified as significantly associated with total urinary iAs and/or iAs metabolites, measured as %iAs, %monomethylated arsenicals (MMAs), and %dimethylated arsenicals (DMAs). A total of 17 metabolites were identified as significantly associated with total iAs and/or iAs metabolites in cord serum. These metabolites are indicative of changes in important biochemical pathways such as vitamin metabolism, the citric acid (TCA) cycle, and amino acid metabolism. These data highlight that maternal biotransformation of iAs and neonatal levels of iAs and its metabolites are associated with differences in neonate cord metabolomic profiles. The results demonstrate the potential utility of metabolites as biomarkers/indicators of in utero environmental exposure.
Collapse
Affiliation(s)
- Jessica E. Laine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kathryn A. Bailey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zuzana Drobná
- Department of Biological Sciences, College of Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gonzalo García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango 35050, Mexico
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango 35050, Mexico
| | - Wimal Pathmasiri
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Susan McRitchie
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Susan J. Sumner
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Preterm neonatal urinary renal developmental and acute kidney injury metabolomic profiling: an exploratory study. Pediatr Nephrol 2017; 32:151-161. [PMID: 27435284 PMCID: PMC5123933 DOI: 10.1007/s00467-016-3439-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/27/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) staging has been developed in the adult and pediatric populations, but these do not yet exist for the neonatal population. Metabolomics was utilized to uncover biomarkers of normal and AKI-associated renal function in preterm infants. The study comprised 20 preterm infants with an AKI diagnosis who were matched by gestational age and gender to 20 infants without an AKI diagnosis. METHODS Urine samples from pre-term newborn infants collected on day 2 of life were analyzed using broad-spectrum nuclear magnetic resonance (NMR) metabolomics. Multivariate analysis methods were used to identify metabolite profiles that differentiated AKI and no AKI, and to identify a metabolomics profile correlating with gestational age in infants with and without AKI. RESULTS There was a clear distinction between the AKI and no-AKI profiles. Two previously identified biomarkers of AKI, hippurate and homovanillate, differentiated AKI from no-AKI profiles. Pathway analysis revealed similarities to cholinergic neurons, prenatal nicotine exposure on pancreatic β cells, and amitraz-induced inhibition of insulin secretion. Additionally, a pH difference was noted. Both pH and the metabolites were found to be associated with AKI; however, only the metabotype was a significant predictor of AKI. Pathways for the no-AKI group that correlated uniquely with gestational age included aminoacyl-t-RNA biosynthesis, whereas pathways in the AKI group yielded potential metabolite changes in pyruvate metabolism. CONCLUSIONS Metabolomics was able to differentiate the urinary profiles of neonates with and without an AKI diagnosis and metabolic developmental profiles correlated with gestational age. Further studies in larger cohorts are needed to validate these results.
Collapse
|
31
|
Li F, Wang P, Liu K, Tarrago MG, Lu J, Chini EN, Ma X. A High Dose of Isoniazid Disturbs Endobiotic Homeostasis in Mouse Liver. Drug Metab Dispos 2016; 44:1742-1751. [PMID: 27531952 PMCID: PMC5074471 DOI: 10.1124/dmd.116.070920] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/15/2016] [Indexed: 11/22/2022] Open
Abstract
Overdose of isoniazid (INH), an antituberculosis drug, can be life-threatening because of neurotoxicity. In clinical practice for management of INH overdose and acute toxicity, the potential of INH-induced hepatotoxicity is also considered. However, the biochemical basis of acute INH toxicity in the liver remains elusive. In the current study, we used an untargeted metabolomic approach to explore the acute effects of INH on endobiotic homeostasis in mouse liver. We found that overdose of INH resulted in accumulation of oleoyl-l-carnitine and linoleoyl-l-carnitine in the liver, indicating mitochondrial dysfunction. We also revealed the interactions between INH and fatty acyl-CoAs by identifying INH-fatty acid amides. In addition, we found that overdose of INH led to the accumulation of heme and oxidized NAD in the liver. We also identified an INH and NAD adduct in the liver. In this adduct, the nicotinamide moiety in NAD was replaced by INH. Furthermore, we illustrated that overdose of INH depleted vitamin B6 in the liver and blocked vitamin B6-dependent cystathionine degradation. These data suggest that INH interacts with multiple biochemical pathways in the liver during acute poisoning caused by INH overdose.
Collapse
Affiliation(s)
- Feng Li
- Department of Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas (F.L.); Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., K.L., J.L., X.M.), Laboratory of Signal Transduction, Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota (M.G.T., E.N.C.)
| | - Pengcheng Wang
- Department of Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas (F.L.); Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., K.L., J.L., X.M.), Laboratory of Signal Transduction, Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota (M.G.T., E.N.C.)
| | - Ke Liu
- Department of Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas (F.L.); Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., K.L., J.L., X.M.), Laboratory of Signal Transduction, Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota (M.G.T., E.N.C.)
| | - Mariana G Tarrago
- Department of Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas (F.L.); Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., K.L., J.L., X.M.), Laboratory of Signal Transduction, Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota (M.G.T., E.N.C.)
| | - Jie Lu
- Department of Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas (F.L.); Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., K.L., J.L., X.M.), Laboratory of Signal Transduction, Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota (M.G.T., E.N.C.)
| | - Eduardo N Chini
- Department of Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas (F.L.); Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., K.L., J.L., X.M.), Laboratory of Signal Transduction, Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota (M.G.T., E.N.C.)
| | - Xiaochao Ma
- Department of Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, Texas (F.L.); Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (P.W., K.L., J.L., X.M.), Laboratory of Signal Transduction, Department of Anesthesiology and Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, Minnesota (M.G.T., E.N.C.)
| |
Collapse
|
32
|
Fennell TR, Mortensen NP, Black SR, Snyder RW, Levine KE, Poitras E, Harrington JM, Wingard CJ, Holland NA, Pathmasiri W, Sumner SCJ. Disposition of intravenously or orally administered silver nanoparticles in pregnant rats and the effect on the biochemical profile in urine. J Appl Toxicol 2016; 37:530-544. [PMID: 27696470 DOI: 10.1002/jat.3387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 11/08/2022]
Abstract
Few investigations have been conducted on the disposition and fate of silver nanoparticles (AgNP) in pregnancy. The distribution of a single dose of polyvinylpyrrolidone (PVP)-stabilized AgNP was investigated in pregnant rats. Two sizes of AgNP, 20 and 110 nm, and silver acetate (AgAc) were used to investigate the role of AgNP diameter and particle dissolution in tissue distribution, internal dose and persistence. Dams were administered AgNP or AgAc intravenously (i.v.) (1 mg kg-1 ) or by gavage (p.o.) (10 mg kg-1 ), or vehicle alone, on gestation day 18 and euthanized at 24 or 48 h post-exposure. The silver concentration in tissues was measured using inductively-coupled plasma mass spectrometry. The distribution of silver in dams was influenced by route of administration and AgNP size. The highest concentration of silver (μg Ag g-1 tissue) at 48 h was found in the spleen for i.v. administered AgNP, and in the lungs for AgAc. At 48 h after p.o. administration of AgNP, the highest concentration was measured in the cecum and large intestine, and for AgAc in the placenta. Silver was detected in placenta and fetuses for all groups. Markers of cardiovascular injury, oxidative stress marker, cytokines and chemokines were not significantly elevated in exposed dams compared to vehicle-dosed control. NMR metabolomics analysis of urine indicated that AgNP and AgAc exposure impact the carbohydrate, and amino acid metabolism. This study demonstrates that silver crosses the placenta and is transferred to the fetus regardless of the form of silver. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy R Fennell
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Ninell P Mortensen
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Sherry R Black
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Rodney W Snyder
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Keith E Levine
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Eric Poitras
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - James M Harrington
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Wimal Pathmasiri
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| | - Susan C J Sumner
- Discovery - Science - Technology, RTI International, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
33
|
Isoniazid metabolism and hepatotoxicity. Acta Pharm Sin B 2016; 6:384-392. [PMID: 27709007 PMCID: PMC5045547 DOI: 10.1016/j.apsb.2016.07.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/09/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022] Open
Abstract
Isoniazid (INH) is highly effective for the management of tuberculosis. However, it can cause liver injury and even liver failure. INH metabolism has been thought to be associated with INH-induced liver injury. This review summarized the metabolic pathways of INH and discussed their associations with INH-induced liver injury.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AcHz, acetylhydrazine
- AcINH, acetylisoniazid
- Amidase
- Anti-tuberculosis
- DiAcHz, diacetylhydrazine
- GSH, glutathione
- GST, glutathione S-transferase
- Hepatotoxicity
- Hz, hydrazine
- INA, isonicotinic acid
- INH, isoniazid
- Isoniazid
- MPO, myeloperoxidase
- Metabolism
- N-Acetyltransferase 2
- NAD+, nicotinamide adenine dinucleotide
- NAT, N-acetyltransferase
- P450, cytochrome P450
- R.M., reactive metabolite
- TB, tuberculosis
Collapse
|
34
|
Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, Li H, Chung J, Sohn J, Kim S, Gao Z, Barber C, Kim J, Ng S, Rogers AB, Sumner S, Zhang XS, Cadwell K, Knights D, Alekseyenko A, Bäckhed F, Blaser MJ. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 2016; 1:16140. [PMID: 27782139 PMCID: PMC5808443 DOI: 10.1038/nmicrobiol.2016.140] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/12/2016] [Indexed: 12/15/2022]
Abstract
The early life microbiome plays important roles in host immunological and metabolic development. Because the incidence of type 1 diabetes (T1D) has been increasing substantially in recent decades, we hypothesized that early-life antibiotic use alters gut microbiota, which predisposes to disease. Using non-obese diabetic mice that are genetically susceptible to T1D, we examined the effects of exposure to either continuous low-dose antibiotics or pulsed therapeutic antibiotics (PAT) early in life, mimicking childhood exposures. We found that in mice receiving PAT, T1D incidence was significantly higher, and microbial community composition and structure differed compared with controls. In pre-diabetic male PAT mice, the intestinal lamina propria had lower Th17 and Treg proportions and intestinal SAA expression than in controls, suggesting key roles in transducing the altered microbiota signals. PAT affected microbial lipid metabolism and host cholesterol biosynthetic gene expression. These findings show that early-life antibiotic treatments alter the gut microbiota and its metabolic capacities, intestinal gene expression and T-cell populations, accelerating T1D onset in non-obese diabetic mice.
Collapse
Affiliation(s)
- Alexandra E. Livanos
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Thomas U. Greiner
- Department of Molecular and Clinical Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pajau Vangay
- Biomedical Informatics and Computational Biology Program, University of Minnesota, Minneapolis, Minneapolis 55455, USA
| | - Wimal Pathmasiri
- Systems and Translational Sciences, RTI International, Research Triangle Park, North Carolina 27709, USA
| | - Delisha Stewart
- Systems and Translational Sciences, RTI International, Research Triangle Park, North Carolina 27709, USA
| | - Susan McRitchie
- Systems and Translational Sciences, RTI International, Research Triangle Park, North Carolina 27709, USA
| | - Huilin Li
- Departments of Population Health, New York University Langone Medical Center, New York, New York 10016, USA
| | - Jennifer Chung
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Jiho Sohn
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Sara Kim
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Zhan Gao
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Cecily Barber
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Joanne Kim
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Sandy Ng
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Arlin B. Rogers
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, USA
| | - Susan Sumner
- Systems and Translational Sciences, RTI International, Research Triangle Park, North Carolina 27709, USA
| | - Xue-Song Zhang
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
| | - Ken Cadwell
- Department of Microbiology, New York University Langone Medical Center, New York, New York 10016, USA
- Skirball Institute, New York University Langone Medical Center, New York, New York 10016, USA
| | - Dan Knights
- Computer Science and Engineering, University of Minnesota, Minneapolis, Minneapolis 55455, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minneapolis 55108, USA
| | - Alexander Alekseyenko
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
- CHIBI, New York University Langone Medical Center, New York, New York 10016, USA
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Martin J. Blaser
- Departments of Medicine and Microbiology, Human Microbiome Program, New York University Langone Medical Center, Medical Service, New York, New York 10016, USA
- New York Harbor Veterans Affairs Medical Center, New York, New York 10010, USA
| |
Collapse
|
35
|
Stewart DA, Winnike JH, McRitchie SL, Clark RF, Pathmasiri WW, Sumner SJ. Metabolomics Analysis of Hormone-Responsive and Triple-Negative Breast Cancer Cell Responses to Paclitaxel Identify Key Metabolic Differences. J Proteome Res 2016; 15:3225-40. [PMID: 27447733 DOI: 10.1021/acs.jproteome.6b00430] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.
Collapse
Affiliation(s)
- Delisha A Stewart
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Jason H Winnike
- David H. Murdock Research Institute , Kannapolis, North Carolina 28081, United States
| | - Susan L McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Robert F Clark
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Wimal W Pathmasiri
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Susan J Sumner
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
36
|
Sandlers Y, Mercier K, Pathmasiri W, Carlson J, McRitchie S, Sumner S, Vernon HJ. Metabolomics Reveals New Mechanisms for Pathogenesis in Barth Syndrome and Introduces Novel Roles for Cardiolipin in Cellular Function. PLoS One 2016; 11:e0151802. [PMID: 27015085 PMCID: PMC4807847 DOI: 10.1371/journal.pone.0151802] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/04/2016] [Indexed: 02/07/2023] Open
Abstract
Barth Syndrome is the only known Mendelian disorder of cardiolipin remodeling, with characteristic clinical features of cardiomyopathy, skeletal myopathy, and neutropenia. While the primary biochemical defects of reduced mature cardiolipin and increased monolysocardiolipin are well-described, much of the downstream biochemical dysregulation has not been uncovered, and biomarkers are limited. In order to further expand upon the knowledge of the biochemical abnormalities in Barth Syndrome, we analyzed metabolite profiles in plasma from a cohort of individuals with Barth Syndrome compared to age-matched controls via 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. A clear distinction between metabolite profiles of individuals with Barth Syndrome and controls was observed, and was defined by an array of metabolite classes including amino acids and lipids. Pathway analysis of these discriminating metabolites revealed involvement of mitochondrial and extra-mitochondrial biochemical pathways including: insulin regulation of fatty acid metabolism, lipid metabolism, biogenic amine metabolism, amino acid metabolism, endothelial nitric oxide synthase signaling, and tRNA biosynthesis. Taken together, this data indicates broad metabolic dysregulation in Barth Syndrome with wide cellular effects.
Collapse
Affiliation(s)
- Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH, United States of America
| | - Kelly Mercier
- Research Triangle International, Durham, NC, United States of America
| | - Wimal Pathmasiri
- Research Triangle International, Durham, NC, United States of America
| | - Jim Carlson
- Research Triangle International, Durham, NC, United States of America
| | - Susan McRitchie
- Research Triangle International, Durham, NC, United States of America
| | - Susan Sumner
- Research Triangle International, Durham, NC, United States of America
| | - Hilary J. Vernon
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
37
|
Metushi I, Uetrecht J, Phillips E. Mechanism of isoniazid-induced hepatotoxicity: then and now. Br J Clin Pharmacol 2016; 81:1030-6. [PMID: 26773235 DOI: 10.1111/bcp.12885] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/03/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Isoniazid (INH) remains a mainstay for the treatment of tuberculosis despite the fact that it can cause liver failure. Previous mechanistic hypotheses have classified this type of drug-induced liver injury (DILI) as 'metabolic idiosyncrasy' which was thought not to involve an immune response and was mainly due to the bioactivation of the acetylhydrazine metabolite. However, more recent studies support an alternative hypothesis, specifically, that INH itself is directly bioactivated to a reactive metabolite, which in some patients leads to an immune response and liver injury. Furthermore, there appear to be two phenotypes of INH-induced liver injury. Most cases involve mild liver injury, which resolves with immune tolerance, while other cases appear to have a more severe phenotype that is associated with the production of anti-drug/anti-CYP P450 antibodies and can progress to liver failure.
Collapse
Affiliation(s)
- Imir Metushi
- Center for Advanced Laboratory Medicine, Department of Pathology, University of California San Diego, San Diego, CA, 92116, USA
| | - Jack Uetrecht
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Elizabeth Phillips
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN, 37232, USA
| |
Collapse
|
38
|
Snyder RW, Fennell TR, Wingard CJ, Mortensen NP, Holland NA, Shannahan JH, Pathmasiri W, Lewin AH, Sumner SCJ. Distribution and biomarker of carbon-14 labeled fullerene C60 ([(14) C(U)]C60 ) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol 2015. [PMID: 26081520 DOI: 10.1002/jat.3177.distribution] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
A comprehensive distribution study was conducted in pregnant and lactating rats exposed to a suspension of uniformly carbon-14 labeled C60 ([(14) C(U)]C60 ). Rats were administered [(14) C(U)]C60 (~0.2 mg [(14) C(U)]C60 kg(-1) body weight) or 5% polyvinylpyrrolidone (PVP)-saline vehicle via a single tail vein injection. Pregnant rats were injected on gestation day (GD) 11 (terminated with fetuses after either 24 h or 8 days), GD15 (terminated after 24 h or 4 days), or GD18 (terminated after 24 h). Lactating rats were injected on postnatal day 8 and terminated after 24 h, 3 or 11 days. The distribution of radioactivity in pregnant dams was influenced by both the state of pregnancy and time of termination after exposure. The percentage of recovered radioactivity in pregnant and lactating rats was highest in the liver and lungs. Radioactivity was quantitated in over 20 tissues. Radioactivity was found in the placenta and in fetuses of pregnant dams, and in the milk of lactating rats and in pups. Elimination of radioactivity was < 2% in urine and feces at each time point. Radioactivity remained in blood circulation up to 11 days after [(14) C(U)]C60 exposure. Biomarkers of inflammation, cardiovascular injury and oxidative stress were measured to study the biological impacts of [(14) C(U)]C60 exposure. Oxidative stress was elevated in female pups of exposed dams. Metabolomics analysis of urine showed that [(14) C(U)]C60 exposure to pregnant rats impacted the pathways of vitamin B, regulation of lipid and sugar metabolism and aminoacyl-tRNA biosynthesis. This study demonstrated that [(14) C(U)]C60 crosses the placenta at all stages of pregnancy examined, and is transferred to pups via milk.
Collapse
Affiliation(s)
- Rodney W Snyder
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jonathan H Shannahan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Wimal Pathmasiri
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Anita H Lewin
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Susan C J Sumner
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
39
|
Sumner SCJ, Snyder RW, Wingard C, Mortensen NP, Holland NA, Shannahan JH, Dhungana S, Pathmasiri W, Han L, Lewin AH, Fennell TR. Distribution and biomarkers of carbon-14-labeled fullerene C60 ([(14) C(U)]C60 ) in female rats and mice for up to 30 days after intravenous exposure. J Appl Toxicol 2015. [PMID: 25727383 DOI: 10.1002/jat.3110.distribution] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
A comprehensive distribution study was conducted in female rats and mice exposed to a suspension of uniformly carbon-14-labeled C60 ([(14) C(U)]C60 ). Rodents were administered [(14) C(U)]C60 (~0.9 mg kg(-1) body weight) or 5% polyvinylpyrrolidone-saline vehicle alone via a single tail vein injection. Tissues were collected at 1 h and 1, 7, 14 and 30 days after administration. A separate group of rodents received five daily injections of suspensions of either [(14) C(U)]C60 or vehicle with tissue collection 14 days post exposure. Radioactivity was detected in over 20 tissues at all time points. The highest concentration of radioactivity in rodents at each time point was in liver, lungs and spleen. Elimination of [(14) C(U)]C60 was < 2% in urine and feces at any 24 h time points. [(14) C(U)]C60 and [(14) C(U)]C60 -retinol were detected in liver of rats and together accounted for ~99% and ~56% of the total recovered at 1 and 30 days postexposure, respectively. The blood radioactivity at 1 h after [(14) C(U)]C60 exposure was fourfold higher in rats than in mice; blood radioactivity was still in circulation at 30 days post [(14) C(U)]C60 exposure in both species (<1%). Levels of oxidative stress markers increased by 5 days after exposure and remained elevated, while levels of inflammation markers initially increased and then returned to control values. The level of cardiovascular marker von Willebrand factor, increased in rats, but remained at control levels in mice. This study demonstrates that [(14) C(U)]C60 is retained in female rodents with little elimination by 30 days after i.v. exposure, and leads to systemic oxidative stress.
Collapse
Affiliation(s)
- Susan C J Sumner
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Rodney W Snyder
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Christopher Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Ninell P Mortensen
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jonathan H Shannahan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Suraj Dhungana
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Wimal Pathmasiri
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Li Han
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Anita H Lewin
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Timothy R Fennell
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| |
Collapse
|
40
|
Collaborative Cross and Diversity Outbred data resources in the Mouse Phenome Database. Mamm Genome 2015; 26:511-20. [PMID: 26286858 PMCID: PMC4602074 DOI: 10.1007/s00335-015-9595-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/10/2015] [Indexed: 10/27/2022]
Abstract
The Mouse Phenome Database was originally conceived as a platform for the integration of phenotype data collected on a defined collection of 40 inbred mouse strains--the "phenome panel." This model provided an impetus for community data sharing, and integration was readily achieved through the reproducible genotypes of the phenome panel strains. Advances in the development of mouse populations lead to an expanded role of the Mouse Phenome Database to encompass new strain panels and inbred strain crosses. The recent introduction of the Collaborative Cross and Diversity Outbred mice, which share an extensive pool of genetic variation from eight founder inbred strains, presents new opportunities and challenges for community data resources. A wide variety of molecular and clinical phenotypes are being collected across genotypes, tissues, ages, environmental exposures, interventions, and treatments. The Mouse Phenome Database provides a framework for retrieval, integration, analysis, and display of these data, enabling them to be evaluated in the context of existing data from standard inbred strains. Primary data in the Mouse Phenome Database are supported by extensive metadata on protocols and procedures. These are centrally curated to ensure accuracy and reproducibility and to provide data in consistent formats. The Mouse Phenome Database represents an established and growing community data resource for mouse phenotype data and encourages submissions from new mouse resources, enabling investigators to integrate existing data into their studies of the phenotypic consequences of genetic variation.
Collapse
|
41
|
Snyder RW, Fennell TR, Wingard CJ, Mortensen NP, Holland NA, Shannahan JH, Pathmasiri W, Lewin AH, Sumner SCJ. Distribution and biomarker of carbon-14 labeled fullerene C60 ([(14) C(U)]C60 ) in pregnant and lactating rats and their offspring after maternal intravenous exposure. J Appl Toxicol 2015; 35:1438-51. [PMID: 26081520 DOI: 10.1002/jat.3177] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/11/2015] [Accepted: 04/21/2015] [Indexed: 11/09/2022]
Abstract
A comprehensive distribution study was conducted in pregnant and lactating rats exposed to a suspension of uniformly carbon-14 labeled C60 ([(14) C(U)]C60 ). Rats were administered [(14) C(U)]C60 (~0.2 mg [(14) C(U)]C60 kg(-1) body weight) or 5% polyvinylpyrrolidone (PVP)-saline vehicle via a single tail vein injection. Pregnant rats were injected on gestation day (GD) 11 (terminated with fetuses after either 24 h or 8 days), GD15 (terminated after 24 h or 4 days), or GD18 (terminated after 24 h). Lactating rats were injected on postnatal day 8 and terminated after 24 h, 3 or 11 days. The distribution of radioactivity in pregnant dams was influenced by both the state of pregnancy and time of termination after exposure. The percentage of recovered radioactivity in pregnant and lactating rats was highest in the liver and lungs. Radioactivity was quantitated in over 20 tissues. Radioactivity was found in the placenta and in fetuses of pregnant dams, and in the milk of lactating rats and in pups. Elimination of radioactivity was < 2% in urine and feces at each time point. Radioactivity remained in blood circulation up to 11 days after [(14) C(U)]C60 exposure. Biomarkers of inflammation, cardiovascular injury and oxidative stress were measured to study the biological impacts of [(14) C(U)]C60 exposure. Oxidative stress was elevated in female pups of exposed dams. Metabolomics analysis of urine showed that [(14) C(U)]C60 exposure to pregnant rats impacted the pathways of vitamin B, regulation of lipid and sugar metabolism and aminoacyl-tRNA biosynthesis. This study demonstrated that [(14) C(U)]C60 crosses the placenta at all stages of pregnancy examined, and is transferred to pups via milk.
Collapse
Affiliation(s)
- Rodney W Snyder
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Jonathan H Shannahan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Wimal Pathmasiri
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Anita H Lewin
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| | - Susan C J Sumner
- Discovery Sciences, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
42
|
Sumner SCJ, Snyder RW, Wingard C, Mortensen NP, Holland NA, Shannahan JH, Dhungana S, Pathmasiri W, Han L, Lewin AH, Fennell TR. Distribution and biomarkers of carbon-14-labeled fullerene C60 ([(14) C(U)]C60 ) in female rats and mice for up to 30 days after intravenous exposure. J Appl Toxicol 2015; 35:1452-64. [PMID: 25727383 DOI: 10.1002/jat.3110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023]
Abstract
A comprehensive distribution study was conducted in female rats and mice exposed to a suspension of uniformly carbon-14-labeled C60 ([(14) C(U)]C60 ). Rodents were administered [(14) C(U)]C60 (~0.9 mg kg(-1) body weight) or 5% polyvinylpyrrolidone-saline vehicle alone via a single tail vein injection. Tissues were collected at 1 h and 1, 7, 14 and 30 days after administration. A separate group of rodents received five daily injections of suspensions of either [(14) C(U)]C60 or vehicle with tissue collection 14 days post exposure. Radioactivity was detected in over 20 tissues at all time points. The highest concentration of radioactivity in rodents at each time point was in liver, lungs and spleen. Elimination of [(14) C(U)]C60 was < 2% in urine and feces at any 24 h time points. [(14) C(U)]C60 and [(14) C(U)]C60 -retinol were detected in liver of rats and together accounted for ~99% and ~56% of the total recovered at 1 and 30 days postexposure, respectively. The blood radioactivity at 1 h after [(14) C(U)]C60 exposure was fourfold higher in rats than in mice; blood radioactivity was still in circulation at 30 days post [(14) C(U)]C60 exposure in both species (<1%). Levels of oxidative stress markers increased by 5 days after exposure and remained elevated, while levels of inflammation markers initially increased and then returned to control values. The level of cardiovascular marker von Willebrand factor, increased in rats, but remained at control levels in mice. This study demonstrates that [(14) C(U)]C60 is retained in female rodents with little elimination by 30 days after i.v. exposure, and leads to systemic oxidative stress.
Collapse
Affiliation(s)
- Susan C J Sumner
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Rodney W Snyder
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Christopher Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Ninell P Mortensen
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jonathan H Shannahan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Suraj Dhungana
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Wimal Pathmasiri
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Li Han
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Anita H Lewin
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| | - Timothy R Fennell
- Discovery - Science - Technology, RTI International, 3040 Cornwallis Drive, Research Triangle Park, NC, USA
| |
Collapse
|
43
|
Attia MF, Anton N, Chiper M, Akasov R, Anton H, Messaddeq N, Fournel S, Klymchenko AS, Mély Y, Vandamme TF. Biodistribution of X-ray iodinated contrast agent in nano-emulsions is controlled by the chemical nature of the oily core. ACS NANO 2014; 8:10537-10550. [PMID: 25284066 DOI: 10.1021/nn503973z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, we investigated the role of the chemical nature of the oil droplet core of nano-emulsions used as contrast agents for X-ray imaging on their pharmacokinetics and biodistribution. To this end, we formulated PEGylated nano-emulsions with two iodinated oils (i.e., iodinated monoglyceride and iodinated castor oil) and compared them with another iodinated nano-emulsion based on iodinated vitamin E. By using dynamic light scattering and transmission electron microscopy, the three iodinated nano-emulsions were found to exhibit comparable morphologies, size, and surface composition. Furthermore, they were shown to be endowed with very high iodine concentration, which leads to stronger X-ray attenuation properties as compared to the commercial iodinated nano-emulsion Fenestra VC. The three nano-emulsions were i.v. administered in mice and monitored by microcomputed tomography (micro-CT). They showed high contrast enhancement in blood with similar half-life around 6 h but very different accumulation sites. While iodinated monoglycerides exhibited low accumulation in liver and spleen, high accumulation in spleen was observed for iodinated castor oil and in liver for vitamin E. These data clearly highlighted the important role of the oil composition of the nano-emulsion core to obtain strong X-ray contrast enhancement in specific targets such as liver, spleen, or only blood. These differences in biodistribution were partly attributed to differences in the uptake of the nanodroplets by the macrophages in vitro. Another key feature of these nano-emulsions is their long half-elimination time (several weeks), which offers sufficient retention for micro-CT imaging. This work paves the way for the design of nanoparticulate contrast agents for X-ray imaging of selected organs.
Collapse
Affiliation(s)
- Mohamed F Attia
- University of Strasbourg, Faculty of Pharmacy , 74 route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|