1
|
Staliunaite L, Puhach O, Ostermann E, Rosenke K, Nichols J, Oestereich L, Sogoba N, Feldmann H, Davison AJ, Jarvis MA, Brune W. Molecular cloning and host range analysis of three cytomegaloviruses from Mastomys natalensis. J Virol 2025; 99:e0214724. [PMID: 40202317 PMCID: PMC12090778 DOI: 10.1128/jvi.02147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Herpesvirus-based vectors are attractive for use as conventional or transmissible vaccines against emerging zoonoses in inaccessible animal populations. In both cases, cytomegaloviruses (CMVs) as members of the subfamily Betaherpesvirinae are particularly suitable for vaccine development as they are highly specific for their natural host species, infect a large proportion of their host population, and cause mild infections in healthy individuals. The Natal multimammate mouse (Mastomys natalensis) is the natural reservoir of Lassa virus, which causes deadly hemorrhagic fever in humans. M. natalensis was recently reported to harbor at least three different cytomegaloviruses (MnatCMV1, MnatCMV2, and MnatCMV3). Herein, we report the molecular cloning of three complete MnatCMV genomes in a yeast and bacterial artificial chromosome (YAC-BAC) hybrid vector. Purified viral genomes were cloned in yeast by single-step transformation-associated recombination (STAR cloning) and subsequently transferred to Escherichia coli for further genetic manipulation. The integrity of the complete cloned viral genomes was verified by sequencing, and the replication fitness of viruses reconstituted from these clones was analyzed by replication kinetics in M. natalensis fibroblasts and kidney epithelial cells. We also found that neither parental nor cloned MnatCMVs replicated in mouse and rat fibroblasts, nor did they show sustained replication in baby hamster kidney cells, consistent with the expected narrow host range for these viruses. We further demonstrated that an exogenous sequence can be inserted by BAC-based mutagenesis between open reading frames M25 and m25.1 of MnatCMV2 without affecting replication fitness in vitro, identifying this site as potentially suitable for the insertion of vaccine target antigen genes.IMPORTANCECytomegaloviruses (CMVs) recently discovered in the Natal multimammate mouse (Mastomys natalensis) are widespread within the M. natalensis population. Since these rodents also serve as natural hosts of the human pathogen Lassa virus (LASV), we investigated the potential suitability of M. natalensis CMVs (MnatCMVs) as vaccine vectors. We describe the cloning of three different MnatCMV genomes as bacterial artificial chromosomes (BACs). The replicative capacity and species specificity of these BAC-derived MnatCMVs were analyzed in multiple cell types. We also identified a transgene insertion site within one of the MnatCMV genomes suitable for the incorporation of vaccine target antigens. Together, this study provides a foundation for the development of MnatCMVs as transmissible MnatCMV-based LASV vaccines to reduce LASV prevalence in hard-to-reach M. natalensis populations and, thereby, zoonotic transmission to humans.
Collapse
Affiliation(s)
| | - Olha Puhach
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Kyle Rosenke
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Nafomon Sogoba
- University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Andrew J. Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Michael A. Jarvis
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
- The Vaccine Group Ltd., Plymouth, United Kingdom
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Wolfram Brune
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
2
|
Easterbrook L, Dong X, Smith J, Fotheringham S, Kempster S, Hartley C, Prince T, Graham V, Kennedy E, Findlay-Wilson S, Crossley L, Hewson R, Almond N, Hiscox JA, Dowall S. Genomic changes of Lassa virus associated with mammalian host adaptation. BMC Genomics 2025; 26:489. [PMID: 40375146 DOI: 10.1186/s12864-025-11666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Lassa virus (LASV) causes a severe haemorrhagic fever in humans, with estimates of 100,000 to 300,000 infections annually in endemic regions and accounting for around 5000 deaths. The natural reservoir is the Mastomys rat, but through zoonotic transmissions humans are accidental hosts. Regular outbreaks continue to exert pressures on public health systems, with its ability to cause nosocomial infections posing risks to healthcare workers. It is a concern that larger outbreaks and introduction of LASV to new territories will intensify, including risk of adaptation to new mammalian host reservoirs. RESULTS To evaluate genetic changes in LASV during adaptation to a new host, a guinea pig model of infection was utilised. Initial infection with LASV stocks cultured from cell culture resulted in only mild or subclinical disease. To study the susceptibility in naïve animals, the virus was serially passaged which increased clinical signs during disease progression ultimately resulting in severe disease. An RNAseq and consensus mapping approach was undertaken to evaluate nucleotide changes in LASV genome from each animal at each passage. CONCLUSIONS During adaptation to guinea pigs, no significant new mutations occurred. Instead, a selection pressure on two genes of the L segment was observed resulting in their increased frequency in the genome population during passaging.
Collapse
Affiliation(s)
- Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Xiaofeng Dong
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Jack Smith
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Sarah Kempster
- Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Catherine Hartley
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Tessa Prince
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Victoria Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | | | - Lucy Crossley
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Roger Hewson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, SP4 0JG, Wiltshire, UK
| | - Neil Almond
- Medicines and Healthcare products Regulatory Agency (MHRA), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Julian A Hiscox
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury, SP4 0JG, Wiltshire, UK.
| |
Collapse
|
3
|
Pricemou S, Soropogui B, Bérété F, Beavogui MB, Samoura A, Picardeau M, Bourhy P, Tordo N, Grayo S. Diversity of Leptospira Species and Their Rodent Reservoirs in the Guinean Forest. Microorganisms 2025; 13:833. [PMID: 40284669 PMCID: PMC12029326 DOI: 10.3390/microorganisms13040833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/22/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
Leptospirosis is a bacterial zoonosis caused by pathogenic species from the genus Leptospira. Infection mostly occurs through indirect contact with environmental water contaminated with the urine of reservoir animals. Information on the circulation of leptospirosis in West Africa, as well as its potential reservoir hosts, is limited. Therefore, we carried out trapping surveys in the Guinean forest in November 2022, and samples were collected from 42 micromammals. The animals were both morphologically and genetically identified. The lungs and kidneys were screened for Leptospira using Lfb1-gene-targeting real-time PCR, and positive samples were genotyped based on the polymorphic Lfb1 gene. Leptospira species were detected in the kidneys of three micromammals: Mastomys natalensis, Lophuromys sikapusi, and Rattus rattus. Leptospira borgpetersenii was identified in Rattus rattus and Mastomys natalensis that were captured in two different villages. The phylogenetic analysis indicated that this subspecies had previously been detected in one patient in Mayotte, but the reservoir was not identified. A new subspecies of Leptospira kirschneri was isolated in Lophuromys sikapusi from the same village as the Mastomys natalensis positive for L. borgpetersenii. The high diversity of both the reservoirs and Leptospira species in the Guinean forest indicates that we should study other natural regions and reinforce communities' awareness of Leptospira infection risks in Guinea.
Collapse
Affiliation(s)
- Siba Pricemou
- Biodiversity and One Health Group, Institut Pasteur de Guinée, Conakry BP 4416, Guinea;
| | - Barré Soropogui
- Centre de Recherche en Virologie, Laboratoire des Fièvres Hémorragiques Virales de Guinée (CRV-LFHVG), Conakry BP 4416, Guinea; (B.S.); (F.B.)
| | - Fanta Bérété
- Centre de Recherche en Virologie, Laboratoire des Fièvres Hémorragiques Virales de Guinée (CRV-LFHVG), Conakry BP 4416, Guinea; (B.S.); (F.B.)
| | - Michel Bossou Beavogui
- Office Guinéen des Parcs Nationaux et Réserves de Faune, Ministère de l’Environnement et du Développement Durable (MEDD), Conakry BP 4416, Guinea; (M.B.B.); (A.S.)
| | - Aboubacar Samoura
- Office Guinéen des Parcs Nationaux et Réserves de Faune, Ministère de l’Environnement et du Développement Durable (MEDD), Conakry BP 4416, Guinea; (M.B.B.); (A.S.)
| | - Mathieu Picardeau
- Biology of Spirochetes Unit, National Reference Center for Leptospirosis, Institut Pasteur, 75015 Paris, France; (M.P.); (P.B.)
| | - Pascale Bourhy
- Biology of Spirochetes Unit, National Reference Center for Leptospirosis, Institut Pasteur, 75015 Paris, France; (M.P.); (P.B.)
| | - Noël Tordo
- Institut Pasteur de Guinée, Conakry BP 4416, Guinea;
| | - Solène Grayo
- Biodiversity and One Health Group, Institut Pasteur de Guinée, Conakry BP 4416, Guinea;
| |
Collapse
|
4
|
Lafoux B, Fourcaud G, Hortion J, Soyer L, Journeaux A, Germain C, Reynard S, Cousseau H, Larignon C, Pietrosemoli N, Croze S, Lachuer J, Perthame E, Baize S. Expansion of myeloid suppressor cells and suppression of Lassa virus-specific T cells during fatal Lassa fever. PLoS Pathog 2025; 21:e1013111. [PMID: 40245043 PMCID: PMC12040235 DOI: 10.1371/journal.ppat.1013111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/29/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Lassa fever is a highly lethal hemorrhagic fever endemic to West Africa. In the absence of efficient prophylactic or therapeutic countermeasures, it poses a substantial threat to public health in this region. The pathophysiological mechanisms underlying the severity of the disease are poorly known because Lassa virus (LASV), its causative agent, has to be handled in BSL-4 laboratories and access to clinical samples is difficult. The control of Lassa fever is associated with a rapid and well-balanced immune response and viral clearance. However, severe disease is characterized by uncontrolled innate immune activation and symptoms reminiscent of sepsis and a cytokine storm. In a model of cynomolgus monkeys infected with two different strains of the virus, one causing moderate disease and the other a lethal outcome, we show that the control of LASV infection is characterized by the induction of a LASV-specific T-cell response, whereas severity is associated with the expansion of suppressive myeloid cells, alterations of the stromal network of secondary lymphoid organs, and the anergy of specific T cells. These results suggest that T cells are crucial for the control of LASV and that immunomodulatory therapeutics, such as checkpoint inhibitors, could contribute to new therapeutic strategies to treat Lassa fever. They also highlight how immunosuppressive mechanisms described in sepsis and cancer patients may play a role in the pathogenicity of Lassa fever, as well as in other similar hemorrhagic fevers.
Collapse
Affiliation(s)
- Blaise Lafoux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Gustave Fourcaud
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Jimmy Hortion
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Laura Soyer
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Alexandra Journeaux
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Clara Germain
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Stéphanie Reynard
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Hadrien Cousseau
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Clémentine Larignon
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| | - Natalia Pietrosemoli
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Séverine Croze
- ProfileXpert, SFR Santé Lyon-Est, UCBL, CNRS, INSERM, Lyon, France
| | - Joël Lachuer
- ProfileXpert, SFR Santé Lyon-Est, UCBL, CNRS, INSERM, Lyon, France
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sylvain Baize
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Université Paris Cité, Lyon, France
- Centre International de Recherche en Infectiologie, Université Claude Bernard Lyon 1 (UCBL), Institut National de la Santé de la Recherche Médicale (INSERM), Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique (CNRS), Lyon, France
| |
Collapse
|
5
|
Davis NA, Kenyon MA, Ghersi BM, Sparks JLD, Gass JD. Assessing the Environmental Drivers of Lassa Fever in West Africa: A Systematic Review. Viruses 2025; 17:504. [PMID: 40284948 PMCID: PMC12031034 DOI: 10.3390/v17040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
The spread of Lassa virus in West Africa is reliant on the abundance and distribution of its rodent host reservoirs. While the impact of environmental change on viral spread has been studied for many zoonotic viruses, there is still a limited understanding of how seasonal impacts, land-use conversion, and biodiversity loss influence the expansion of Lassa virus among reservoirs. This systematic review synthesizes existing research on the association between environmental variables and Lassa virus circulation in West Africa to inform future research, public health interventions, and One Health policy. We searched international and African scientific databases using a set of pre-defined search terms to obtain publications reporting on Lassa virus in West Africa between 1969 and 2023. A total of 9465 articles were retrieved from this search and 70 studies met inclusion criteria for this review. Through systematic data extraction, we identified seasonal precipitation, land-use change, and host expansion as key environmental drivers of Lassa virus in reservoir hosts; however, we also highlight notable gaps in knowledge that limit our current understanding of these complex relationships. This review underscores the need for interdisciplinary research and strategies to mitigate the impacts of environmental change on Lassa virus transmission and protect vulnerable populations in West Africa.
Collapse
Affiliation(s)
- Natalie A. Davis
- Center for Conservation Medicine, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (N.A.D.); (J.L.D.S.)
| | - Madeline A. Kenyon
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA;
| | - Bruno M. Ghersi
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA;
| | - Jessica L. Decker Sparks
- Center for Conservation Medicine, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (N.A.D.); (J.L.D.S.)
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA;
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Jonathon D. Gass
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA;
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA;
| |
Collapse
|
6
|
Bourner J, Vaillant M, Abdel Salam AP, Jaspard M, Fritzell C, Jacob ST, Fletcher TE, Ramharter M, Ajayi N, Okogbenin S, Erameh C, Grant D, Samuels R, Ayodeji OO, Sprecher A, Gonçalves BP, Edwards T, Olliaro P. Adaptive Design for Phase II/III Platform Trial of Lassa Fever Therapeutics. Emerg Infect Dis 2025; 31:9-16. [PMID: 39983682 PMCID: PMC11845141 DOI: 10.3201/eid3102.240251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
The current recommendation for treating Lassa fever with ribavirin is supported only by weak evidence. Given the persistent effects in areas with endemic transmission and epidemic potential, there is an urgent need to reassess ribavirin and investigate other potential therapeutic candidates; however, a robust clinical trial method adapted to Lassa fever epidemiology has not yet been established. We propose an adaptive phase II/III multicenter randomized controlled platform trial that uses a superiority framework with an equal allocation ratio and accounts for challenges selecting the primary end point and estimating the target sample size by using an interim analysis.
Collapse
|
7
|
Warner BM, Safronetz D, Stein DR. Current perspectives on vaccines and therapeutics for Lassa Fever. Virol J 2024; 21:320. [PMID: 39702419 PMCID: PMC11657583 DOI: 10.1186/s12985-024-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Lassa virus, the cause of deadly Lassa fever, is endemic in West Africa, where thousands of cases occur on an annual basis. Nigeria continues to report increasingly severe outbreaks of Lassa Fever each year and there are currently no approved vaccines or therapeutics for the prevention or treatment of Lassa Fever. Given the high burden of disease coupled with the potential for further escalation due to climate change the WHO has listed Lassa virus as a priority pathogen with the potential to cause widespread outbreaks. Several candidate vaccines have received support and have entered clinical trials with promising early results. This review focuses on the current state of vaccine and therapeutic development for LASV disease and the potential of these interventions to advance through clinical trials. The growing burden of LASV disease in Africa highlights the importance of advancing preclinical and clinical testing of vaccines and therapeutics to respond to the growing threat of LASV disease.
Collapse
Affiliation(s)
- Bryce M Warner
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Canada.
| | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Derek R Stein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Cadham Provincial Laboratory, Winnipeg, Canada
| |
Collapse
|
8
|
Bhatia B, Sonar S, Khan S, Bhattacharya J. Pandemic-Proofing: Intercepting Zoonotic Spillover Events. Pathogens 2024; 13:1067. [PMID: 39770327 PMCID: PMC11728701 DOI: 10.3390/pathogens13121067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 01/12/2025] Open
Abstract
Zoonotic spillover events pose a significant and growing threat to global health. By focusing on preventing these cross-species transmissions, we can significantly mitigate pandemic risks. This review aims to analyze the mechanisms of zoonotic spillover events, identify key risk factors, and propose evidence-based prevention strategies to reduce future pandemic threats. Through a comprehensive literature review and analysis of major databases including PubMed, Web of Science, and Scopus from 1960-2024, we examined documented spillover events, their outcomes, and intervention strategies. This article emphasizes that targeting the root cause-the spillover event itself-is key to averting future pandemics. By analyzing historical and contemporary outbreaks, we extract crucial insights into the dynamics of zoonotic transmission. Factors underlying these events include increased human-animal contact due to habitat encroachment, agricultural intensification, and wildlife trade. Climate change, global travel, and inadequate healthcare infrastructure exacerbate risks. The diversity of potential viral reservoirs and rapid viral evolution present major challenges for prediction and prevention. Solutions include enhancing surveillance of wildlife populations, improving biosecurity measures, investing in diagnostic capabilities, and promoting sustainable wildlife management. A "One Health" approach integrating human, animal, and environmental health is crucial. Predictive modelling, international cooperation, and public education are key strategies. Developing pre-exposure prophylactics and post-exposure treatments is essential for mitigating outbreaks. While obstacles remain, advances in genomics and ecological modelling offer hope. A proactive, comprehensive approach addressing the root causes of spillover events is vital for safeguarding global health against future pandemics.
Collapse
Affiliation(s)
- Bharti Bhatia
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Sudipta Sonar
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Seema Khan
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Jayanta Bhattacharya
- Molecular and Translational Virology, Centre for Virus Research, Vaccines and Therapeutics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
- Antibody Translational Research Program, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| |
Collapse
|
9
|
Doohan P, Jorgensen D, Naidoo TM, McCain K, Hicks JT, McCabe R, Bhatia S, Charniga K, Cuomo-Dannenburg G, Hamlet A, Nash RK, Nikitin D, Rawson T, Sheppard RJ, Unwin HJT, van Elsland S, Cori A, Morgenstern C, Imai-Eaton N. Lassa fever outbreaks, mathematical models, and disease parameters: a systematic review and meta-analysis. Lancet Glob Health 2024; 12:e1962-e1972. [PMID: 39577970 DOI: 10.1016/s2214-109x(24)00379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Understanding the epidemiological parameters and transmission dynamics of Lassa fever, a significant public health threat in west Africa caused by the rodent-borne Lassa virus, is crucial for informing evidence-based interventions and outbreak response strategies. Therefore, our study aimed to collate and enhance understanding of the key epidemiological parameters of Lassa fever. METHODS We conducted a systematic review, searching PubMed and Web of Science for peer-reviewed studies published from database inception up to June 13, 2024, to compile and analyse key epidemiological parameters, mathematical models, and outbreaks of Lassa fever. English-language, peer-reviewed, original research articles were included if they reported on Lassa fever outbreak sizes, transmission models, viral evolution, transmission, natural history, severity, seroprevalence, or risk factors. Non-peer-reviewed literature was excluded. Data were extracted by two independent individuals from published literature, focusing on seroprevalence, transmissibility, epidemiological delays, and disease severity. We performed a meta-analysis to calculate pooled estimates of case-fatality ratios (CFRs) and the delay from symptom onset to hospital admission. This study is registered with PROSPERO (identifier number CRD42023393345). FINDINGS The database search returned 5614 potentially relevant studies, and a further 16 studies were identified from backward citation chaining. After de-duplication and exclusion, 193 publications met our inclusion criteria and provided 440 relevant parameter estimates in total. Although Lassa virus is endemic in west Africa, the spatiotemporal coverage of general-population seroprevalence estimates (ranging from 2·6% [6/232] to 58·2% [103/177]) was poor, highlighting the spatial uncertainty in Lassa fever risk. Similarly, only four basic reproduction number estimates (ranging from 1·13 to 1·40) were available. We estimated a pooled total random effect CFR of 33·5% (95% CI 25·8-42·2, I2=95%) and found potential variation in severity by geographical regions typically associated with specific Lassa virus lineages. We estimated a pooled total random effect mean symptom-onset-to-hospital-admission delay of 8·19 days (95% CI 7·31-9·06, I2=93%), but other epidemiological delays were poorly characterised in the existing literature. INTERPRETATION Our findings highlight the absence of empirical Lassa fever parameter estimates despite its high burden in west Africa. Improved surveillance approaches to capture mild cases in humans and to further cover rodent populations are needed to better understand Lassa fever transmission dynamics. Addressing these gaps is essential for developing accurate mathematical models and informing evidence-based interventions to mitigate the effect of Lassa fever on public health in endemic regions. FUNDING UK Medical Research Council, National Institute for Health and Care Research, Academy of Medical Sciences, Wellcome, UK Department for Business, Energy, and Industrial Strategy, British Heart Foundation, Diabetes UK, Schmidt Foundation, Community Jameel, Royal Society, and Imperial College London. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Patrick Doohan
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - David Jorgensen
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Tristan M Naidoo
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Kelly McCain
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Joseph T Hicks
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Ruth McCabe
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Department of Statistics, University of Oxford, Oxford, UK; Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Sangeeta Bhatia
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Health Protection Research Unit in Modelling and Health Economics, London, UK; Modelling and Economics Unit, UK Health Security Agency, London, UK
| | - Kelly Charniga
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Gina Cuomo-Dannenburg
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Rebecca K Nash
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Dariya Nikitin
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Thomas Rawson
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Richard J Sheppard
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - H Juliette T Unwin
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; School of Mathematics, University of Bristol, Bristol, UK
| | - Sabine van Elsland
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Anne Cori
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Health Protection Research Unit in Modelling and Health Economics, London, UK
| | - Christian Morgenstern
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK.
| | - Natsuko Imai-Eaton
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
10
|
Smith DRM, Turner J, Fahr P, Attfield LA, Bessell PR, Donnelly CA, Gibb R, Jones KE, Redding DW, Asogun D, Ayodeji OO, Azuogu BN, Fischer WA, Jan K, Olayinka AT, Wohl DA, Torkelson AA, Dinkel KA, Nixon EJ, Pouwels KB, Hollingsworth TD. Health and economic impacts of Lassa vaccination campaigns in West Africa. Nat Med 2024; 30:3568-3577. [PMID: 39198710 PMCID: PMC11645265 DOI: 10.1038/s41591-024-03232-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Lassa fever is a zoonotic disease identified by the World Health Organization (WHO) as having pandemic potential. This study estimates the health-economic burden of Lassa fever throughout West Africa and projects impacts of a series of vaccination campaigns. We also model the emergence of 'Lassa-X'-a hypothetical pandemic Lassa virus variant-and project impacts of achieving 100 Days Mission vaccination targets. Our model predicted 2.7 million (95% uncertainty interval: 2.1-3.4 million) Lassa virus infections annually, resulting over 10 years in 2.0 million (793,800-3.9 million) disability-adjusted life years (DALYs). The most effective vaccination strategy was a population-wide preventive campaign primarily targeting WHO-classified 'endemic' districts. Under conservative vaccine efficacy assumptions, this campaign averted $20.1 million ($8.2-$39.0 million) in lost DALY value and $128.2 million ($67.2-$231.9 million) in societal costs (2021 international dollars ($)). Reactive vaccination in response to local outbreaks averted just one-tenth the health-economic burden of preventive campaigns. In the event of Lassa-X emerging, spreading throughout West Africa and causing approximately 1.2 million DALYs within 2 years, 100 Days Mission vaccination averted 22% of DALYs given a vaccine 70% effective against disease and 74% of DALYs given a vaccine 70% effective against both infection and disease. These findings suggest how vaccination could alleviate Lassa fever's burden and assist in pandemic preparedness.
Collapse
Affiliation(s)
- David R M Smith
- Nuffield Department of Population Health, Health Economics Research Centre, University of Oxford, Oxford, UK.
| | - Joanne Turner
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Patrick Fahr
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Lauren A Attfield
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | | | - Christl A Donnelly
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Rory Gibb
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Kate E Jones
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
| | | | - Danny Asogun
- Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Benedict N Azuogu
- Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Nigeria
| | - William A Fischer
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Kamji Jan
- Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | | | - David A Wohl
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | | | - Emily J Nixon
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - Koen B Pouwels
- Nuffield Department of Population Health, Health Economics Research Centre, University of Oxford, Oxford, UK
| | - T Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, NDM Centre for Global Health Research, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Moore KA, Ostrowsky JT, Mehr AJ, Johnson RA, Ulrich AK, Moua NM, Fay PC, Hart PJ, Golding JP, Benassi V, Preziosi MP, Adetifa IM, Akpede GO, Ampofo WK, Asogun DA, Barrett ADT, Bausch DG, de Coster I, Emperador DM, Feldmann H, Fichet-Calvet E, Formenty PBH, Garry RF, Grant DS, Günther S, Gupta SB, Jaspard M, Mazzola LT, Okogbenin SA, Roth C, Schmaljohn CS, Osterholm MT. Lassa fever research priorities: towards effective medical countermeasures by the end of the decade. THE LANCET. INFECTIOUS DISEASES 2024; 24:e696-e706. [PMID: 38964363 DOI: 10.1016/s1473-3099(24)00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 07/06/2024]
Abstract
In 2016, WHO designated Lassa fever a priority disease for epidemic preparedness as part of the WHO Blueprint for Action to Prevent Epidemics. One aspect of preparedness is to promote development of effective medical countermeasures (ie, diagnostics, therapeutics, and vaccines) against Lassa fever. Diagnostic testing for Lassa fever has important limitations and key advancements are needed to ensure rapid and accurate diagnosis. Additionally, the only treatment available for Lassa fever is ribavirin, but controversy exists regarding its effectiveness. Finally, no licensed vaccines are available for the prevention and control of Lassa fever. Ongoing epidemiological and behavioural studies are also crucial in providing actionable information for medical countermeasure development, use, and effectiveness in preventing and treating Lassa fever. This Personal View provides current research priorities for development of Lassa fever medical countermeasures based on literature published primarily in the last 5 years and consensus opinion of 20 subject matter experts with broad experience in public health or the development of diagnostics, therapeutics, and vaccines for Lassa fever. These priorities provide an important framework to ensure that Lassa fever medical countermeasures are developed and readily available for use in endemic and at-risk areas by the end of the decade.
Collapse
Affiliation(s)
- Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca A Johnson
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Petra C Fay
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Peter J Hart
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | | | | | | | | | - George O Akpede
- Ambrose Alli University, Ekpoma, Nigeria; Institute of Viral and Emergent Pathogens Control and Research (formerly, Institute of Lassa Fever Research and Control), Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | | | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel G Bausch
- FIND, Geneva, Switzerland; Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ilse de Coster
- Centre for the Evaluation of Vaccination, University of Antwerp, Antwerp, Belgium
| | | | - Heinz Feldmann
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | - Robert F Garry
- Tulane University, New Orleans, LA, USA; Zalgen Labs, Frederick, MD, USA; Global Viral Network, Baltimore, MD, USA
| | - Donald S Grant
- Kenema Government Hospital, Ministry of Health and Sanitation, Freetown, Sierra Leone; College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Stephan Günther
- Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Swati B Gupta
- lnternational AIDS Vaccine Initiative, New York, NY, USA
| | - Marie Jaspard
- The Alliance for International Medical Action, Dakar, Senegal; Saint-Antoine Hospital, Infectious Disease Department, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM Unit 1136 Institut Pierre Louis D'Epidémiologie et de Sante Publique, Paris, France
| | | | | | - Cathy Roth
- UK Foreign, Commonwealth and Development Office, London, UK
| | - Connie S Schmaljohn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, Frederick, Maryland, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Longbottom J, Esterhuizen J, Hope A, Lehane MJ, Mangwiro TNC, Mugenyi A, Dunkley S, Selby R, Tirados I, Torr SJ, Stanton MC. Impact of a national tsetse control programme to eliminate Gambian sleeping sickness in Uganda: a spatiotemporal modelling study. BMJ Glob Health 2024; 9:e015374. [PMID: 39477334 PMCID: PMC11529777 DOI: 10.1136/bmjgh-2024-015374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/23/2024] [Indexed: 11/03/2024] Open
Abstract
INTRODUCTION Tsetse flies (Glossina) transmit Trypanosoma brucei gambiense, which causes gambiense human African trypanosomiasis (gHAT). As part of national efforts to eliminate gHAT as a public health problem, Uganda implemented a large-scale programme of deploying Tiny Targets, which comprise panels of insecticide-treated material which attract and kill tsetse. At its peak, the programme was the largest tsetse control operation in Africa. Here, we quantify the impact of Tiny Targets and environmental changes on the spatial and temporal patterns of tsetse abundance across North-Western Uganda. METHODS We leverage a 100-month longitudinal dataset detailing Glossina fuscipes fuscipes catches from monitoring traps between October 2010 and December 2019 within seven districts in North-Western Uganda. We fitted a boosted regression tree (BRT) model assessing environmental suitability, which was used alongside Tiny Target data to fit a spatiotemporal geostatistical model predicting tsetse abundance across our study area (~16 000 km2). We used the spatiotemporal model to quantify the impact of Tiny Targets and environmental changes on the distribution of tsetse, alongside metrics of uncertainty. RESULTS Environmental suitability across the study area remained relatively constant over time, with suitability being driven largely by elevation and distance to rivers. By performing a counterfactual analysis using the fitted spatiotemporal geostatistical model, we show that deployment of Tiny Targets across an area of 4000 km2 reduced the overall abundance of tsetse to low levels (median daily catch=1.1 tsetse/trap, IQR=0.85-1.28). No spatial-temporal locations had high (>10 tsetse/trap/day) numbers of tsetse compared with 18% of locations for the counterfactual. CONCLUSIONS In Uganda, Tiny Targets reduced the abundance of G. f. fuscipes and maintained tsetse populations at low levels. Our model represents the first spatiotemporal geostatistical model investigating the effects of a national tsetse control programme. The outputs provide important data for informing next steps for vector control and surveillance.
Collapse
Affiliation(s)
- Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Johan Esterhuizen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Andrew Hope
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Albert Mugenyi
- Coordinating Office for Control of Trypanosomiasis in Uganda, Kampala, Uganda
| | - Sophie Dunkley
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Richard Selby
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Inaki Tirados
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Steve J Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Michelle C Stanton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
13
|
Besson ME, Pépin M, Metral PA. Lassa Fever: Critical Review and Prospects for Control. Trop Med Infect Dis 2024; 9:178. [PMID: 39195616 PMCID: PMC11359316 DOI: 10.3390/tropicalmed9080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Lassa Fever is a deadly viral haemorrhagic disease, causing annually several hundreds of deaths in West Africa. This zoonotic disease is primarily transmitted to humans by rodents of the genus Mastomys, even though other rodents reportedly carry the Lassa virus, while secondary interhuman transmission accounts for approximately 20% of cases. Although this disease has been endemic in rural zones of Nigeria, Sierra Leone, Liberfia, and Guinea for hundreds of years, it is also characterised by epidemic outbreaks in the dry season, responsible for heavy death tolls. No licensed vaccine or satisfying treatment is currently available. Disease management is hindered by the incomplete knowledge of the epidemiology and distribution of the disease, resulting from an inadequate health and surveillance system. Additional scientific constraints such as the genetic diversity of the virus and the lack of understanding of the mechanisms of immune protection complexify the development of a vaccine. The intricate socio-economic context in the affected regions, and the lack of monetary incentive for drug development, allow the disease to persist in some of West Africa's poorest communities. The increase in the number of reported cases and in the fatality rate, the expansion of the endemic area, as well as the threat Lassa Fever represents internationally should urge the global community to work on the disease control and prevention. The disease control requires collaborative research for medical countermeasures and tailored public health policies. Lassa Fever, created by the interconnection between animals, humans, and ecosystems, and embedded in an intricate social context, should be addressed with a 'One Health' approach. This article provides an overview of Lassa Fever, focusing on Nigeria, and discusses the perspectives for the control of disease.
Collapse
Affiliation(s)
- Marianne E. Besson
- Department of Public Health, Royal Veterinary College, London NW1 0TU, UK
| | - Michel Pépin
- Department of Virology and Infectiology, VetAgro Sup Lyon University, 69280 Marcy L’Etoile, France;
| | | |
Collapse
|
14
|
Madueme PGU, Chirove F. A systematic review of mathematical models of Lassa fever. Math Biosci 2024; 374:109227. [PMID: 38844262 DOI: 10.1016/j.mbs.2024.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
This systematic review, conducted following the PRISMA guidelines, scrutinizes mathematical models employed in the study of Lassa fever. The analysis revealed the inherent heterogeneity in both models and data, posing significant challenges to parameter estimation. While health and behavioral interventions exhibit promise in mitigating the disease's spread, their efficacy is contingent upon contextual factors. Identified through this review are critical gaps, limitations, and avenues for future research, necessitating increased harmonization and standardization in modeling approaches. The considerations of seasonal and spatial variations emerge as crucial elements demanding targeted investigation. The perpetual threat of emerging diseases, coupled with the enduring public health impact of Lassa fever, underscores the imperative for sustained research endeavors and investments in mathematical modeling. The conclusion underscored that while mathematical modeling remains an invaluable tool in the combat against Lassa fever, its optimal utilization mandates multidisciplinary collaboration, refined data collection methodologies, and an enriched understanding of the intricate disease dynamics. This comprehensive approach is essential for effectively reducing the burden of Lassa fever and safeguarding the health of vulnerable populations.
Collapse
Affiliation(s)
- Praise-God Uchechukwu Madueme
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa
| | - Faraimunashe Chirove
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, 2006, Johannesburg, South Africa.
| |
Collapse
|
15
|
Smith DRM, Turner J, Fahr P, Attfield LA, Bessell PR, Donnelly CA, Gibb R, Jones KE, Redding DW, Asogun D, Ayodeji OO, Azuogu BN, Fischer WA, Jan K, Olayinka AT, Wohl DA, Torkelson AA, Dinkel KA, Nixon EJ, Pouwels KB, Hollingsworth TD. Health and economic impacts of Lassa vaccination campaigns in West Africa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303394. [PMID: 38978680 PMCID: PMC11230338 DOI: 10.1101/2024.02.26.24303394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Lassa fever is a zoonotic disease identified by the World Health Organization (WHO) as having pandemic potential. This study estimates the health-economic burden of Lassa fever throughout West Africa and projects impacts of a series of vaccination campaigns. We also model the emergence of "Lassa-X" - a hypothetical pandemic Lassa virus variant - and project impacts of achieving 100 Days Mission vaccination targets. Our model predicted 2.7M (95% uncertainty interval: 2.1M-3.4M) Lassa virus infections annually, resulting over ten years in 2.0M (793.8K-3.9M) disability-adjusted life years (DALYs). The most effective vaccination strategy was a population-wide preventive campaign primarily targeting WHO-classified "endemic" districts. Under conservative vaccine efficacy assumptions, this campaign averted $20.1M ($8.2M-$39.0M) in lost DALY value and $128.2M ($67.2M-$231.9M) in societal costs (International dollars 2021). Reactive vaccination in response to local outbreaks averted just one-tenth the health-economic burden of preventive campaigns. In the event of Lassa-X emerging, spreading throughout West Africa and causing approximately 1.2M DALYs within two years, 100 Days Mission vaccination averted 22% of DALYs given a vaccine 70% effective against disease, and 74% of DALYs given a vaccine 70% effective against both infection and disease. These findings suggest how vaccination could alleviate Lassa fever's burden and assist in pandemic preparedness.
Collapse
|
16
|
Taniguchi S, Saito T, Paroha R, Huang C, Paessler S, Maruyama J. Unraveling factors responsible for pathogenic differences in Lassa virus strains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595091. [PMID: 38826374 PMCID: PMC11142057 DOI: 10.1101/2024.05.21.595091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Lassa virus (LASV) is the etiological agent of Lassa fever (LF), a severe hemorrhagic disease with potential for lethal outcomes. Apart from acute symptoms, LF survivors often endure long-term complications, notably hearing loss, which significantly impacts their quality of life and socioeconomic status in endemic regions of West Africa. Classified as a Risk Group 4 agent, LASV poses a substantial public health threat in affected areas. Our laboratory previously developed a novel lethal guinea pig model of LF utilizing the clinical isolate LASV strain LF2384. However, the specific pathogenic factors underlying LF2384 infection in guinea pigs remained elusive. In this study, we aimed to elucidate the differences in the immunological response induced by LF2384 and LF2350, another LASV isolate from a non-lethal LF case within the same outbreak. Through comprehensive immunological gene profiling, we compared the expression kinetics of key genes in guinea pigs infected with LASV LF2384 and LF2350. Our analysis revealed differential expression patterns for several immunological genes, including CD94, CD19-2, CD23, IL-7, and CIITA, during LF2384 and LF2350 infection. Moreover, through the generation of recombinant LASVs, we sought to identify the specific viral genes responsible for the observed pathogenic differences between LF2384 and LF2350. Our investigations pinpointed the L protein as a crucial determinant of pathogenicity in guinea pigs infected with LASV LF2384.
Collapse
Affiliation(s)
- Satoshi Taniguchi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Saito
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Ruchi Paroha
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Cheng Huang
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Slobodan Paessler
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Junki Maruyama
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
17
|
Reyna RA, Littlefield KE, Shehu N, Makishima T, Maruyama J, Paessler S. The Importance of Lassa Fever and Its Disease Management in West Africa. Viruses 2024; 16:266. [PMID: 38400041 PMCID: PMC10892767 DOI: 10.3390/v16020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Lassa virus (LASV) is a zoonotic pathogen endemic throughout western Africa and is responsible for a human disease known as Lassa fever (LF). Historically, LASV has been emphasized as one of the greatest public health threats in West Africa, with up to 300,000 cases and 5000 associated deaths per year. This, and the fact that the disease has been reported in travelers, has driven a rapid production of various vaccine candidates. Several of these vaccines are currently in clinical development, despite limitations in understanding the immune response to infection. Alarmingly, the host immune response has been implicated in the induction of sensorineural hearing loss in LF survivors, legitimately raising safety questions about any future vaccines as well as efficacy in preventing potential hearing loss. The objective of this article is to revisit the importance and prevalence of LF in West Africa, with focus on Nigeria, and discuss current therapeutic approaches and ongoing vaccine development. In addition, we aim to emphasize the need for more scientific studies relating to LF-associated hearing loss, and to promote critical discussion about potential risks and benefits of vaccinating the population in endemic regions of West Africa.
Collapse
Affiliation(s)
- Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirsten E. Littlefield
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nathan Shehu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Infectious Disease Unit, Department of Medicine, Jos University Teaching Hospital, Jos P.M.B. 2076, Nigeria
| | - Tomoko Makishima
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
18
|
Olayemi A, Schmid DW, Fleischer R, Wilhelm K, Heni AC, Mueller-Klein N, Haikukutu L, Fichet-Calvet E, Günther S, Sommer S. MHC-I alleles mediate clearance and antibody response to the zoonotic Lassa virus in Mastomys rodent reservoirs. PLoS Negl Trop Dis 2024; 18:e0011984. [PMID: 38421939 PMCID: PMC10903922 DOI: 10.1371/journal.pntd.0011984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
West African Mastomys rodents are the primary reservoir of the zoonotic Lassa virus (LASV). The virus causes haemorrhagic Lassa fever and considerable mortality in humans. To date, the role of Mastomys immunogenetics in resistance to, and persistence of, LASV infections is largely unknown. Here, we investigated the role of Major Histocompatibility Complex class I (MHC-I) on LASV infection status (i.e., active vs. cleared infection, determined via PCR and an immunofluorescence assay on IgG antibodies, respectively) in Mastomys natalensis and M. erythroleucus sampled within southwestern Nigeria. We identified more than 190 and 90 MHC-I alleles by Illumina high throughput-sequencing in M. natalensis and M. erythroleucus, respectively, with different MHC allele compositions and frequencies between LASV endemic and non-endemic sites. In M. natalensis, the MHC allele ManaMHC-I*006 was negatively associated with active infections (PCR-positive) and positively associated with cleared infections (IgG-positive) simultaneously, suggesting efficient immune responses that facilitate LASV clearance in animals carrying this allele. Contrarily, alleles ManaMHC-I*008 and ManaMHC-I*021 in M. natalensis, and MaerMHC-I*008 in M. erythroleucus, were positively associated with active infection, implying susceptibility. Alleles associated with susceptibility shared a glutamic acid at the positively selected codon 57, while ManaMHC-I*006 featured an arginine. There was no link between number of MHC alleles per Mastomys individual and LASV prevalence. Thus, specific alleles, but not MHC diversity per se, seem to mediate antibody responses to viremia. We conclude that co-evolution with LASV likely shaped the MHC-I diversity of the main LASV reservoirs in southwestern Nigeria, and that information on reservoir immunogenetics may hold insights into transmission dynamics and zoonotic spillover risks.
Collapse
Affiliation(s)
- Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Dominik Werner Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | | | - Nadine Mueller-Klein
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Lavinia Haikukutu
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Elisabeth Fichet-Calvet
- Department of Zoonoses Control, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephan Günther
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
19
|
Celone M, Beeman S, Han BA, Potter AM, Pecor DB, Okech B, Pollett S. Understanding transmission risk and predicting environmental suitability for Mayaro Virus in Central and South America. PLoS Negl Trop Dis 2024; 18:e0011859. [PMID: 38194417 PMCID: PMC10775973 DOI: 10.1371/journal.pntd.0011859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
Mayaro virus (MAYV) is a mosquito-borne Alphavirus that is widespread in South America. MAYV infection often presents with non-specific febrile symptoms but may progress to debilitating chronic arthritis or arthralgia. Despite the pandemic threat of MAYV, its true distribution remains unknown. The objective of this study was to clarify the geographic distribution of MAYV using an established risk mapping framework. This consisted of generating evidence consensus scores for MAYV presence, modeling the potential distribution of MAYV in select countries across Central and South America, and estimating the population residing in areas suitable for MAYV transmission. We compiled a georeferenced compendium of MAYV occurrence in humans, animals, and arthropods. Based on an established evidence consensus framework, we integrated multiple information sources to assess the total evidence supporting ongoing transmission of MAYV within each country in our study region. We then developed high resolution maps of the disease's estimated distribution using a boosted regression tree approach. Models were developed using nine climatic and environmental covariates that are related to the MAYV transmission cycle. Using the output of our boosted regression tree models, we estimated the total population living in regions suitable for MAYV transmission. The evidence consensus scores revealed high or very high evidence of MAYV transmission in several countries including Brazil (especially the states of Mato Grosso and Goiás), Venezuela, Peru, Trinidad and Tobago, and French Guiana. According to the boosted regression tree models, a substantial region of South America is suitable for MAYV transmission, including north and central Brazil, French Guiana, and Suriname. Some regions (e.g., Guyana) with only moderate evidence of known transmission were identified as highly suitable for MAYV. We estimate that approximately 58.9 million people (95% CI: 21.4-100.4) in Central and South America live in areas that may be suitable for MAYV transmission, including 46.2 million people (95% CI: 17.6-68.9) in Brazil. Our results may assist in prioritizing high-risk areas for vector control, human disease surveillance and ecological studies.
Collapse
Affiliation(s)
- Michael Celone
- Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, Maryland, United States of America
| | - Sean Beeman
- Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, Maryland, United States of America
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Millbrook, New York, United States of America
| | - Alexander M. Potter
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Walter Reed Biosystematics Unit, Smithsonian Museum Support Center, Suitland, Maryland, United States of America
- Department of Entomology, Smithsonian Institution—National Museum of Natural History (NMNH), Washington, DC, United States of America
| | - David B. Pecor
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Walter Reed Biosystematics Unit, Smithsonian Museum Support Center, Suitland, Maryland, United States of America
- Department of Entomology, Smithsonian Institution—National Museum of Natural History (NMNH), Washington, DC, United States of America
| | - Bernard Okech
- Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, Maryland, United States of America
| | - Simon Pollett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
| |
Collapse
|
20
|
Layman NC, Basinski AJ, Zhang B, Eskew EA, Bird BH, Ghersi BM, Bangura J, Fichet-Calvet E, Remien CH, Vandi M, Bah M, Nuismer SL. Predicting the fine-scale spatial distribution of zoonotic reservoirs using computer vision. Ecol Lett 2023; 26:1974-1986. [PMID: 37737493 PMCID: PMC11298155 DOI: 10.1111/ele.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Zoonotic diseases threaten human health worldwide and are often associated with anthropogenic disturbance. Predicting how disturbance influences spillover risk is critical for effective disease intervention but difficult to achieve at fine spatial scales. Here, we develop a method that learns the spatial distribution of a reservoir species from aerial imagery. Our approach uses neural networks to extract features of known or hypothesized importance from images. The spatial distribution of these features is then summarized and linked to spatially explicit reservoir presence/absence data using boosted regression trees. We demonstrate the utility of our method by applying it to the reservoir of Lassa virus, Mastomys natalensis, within the West African nations of Sierra Leone and Guinea. We show that, when trained using reservoir trapping data and publicly available aerial imagery, our framework learns relationships between environmental features and reservoir occurrence and accurately ranks areas according to the likelihood of reservoir presence.
Collapse
Affiliation(s)
- Nathan C. Layman
- EcoHealth Alliance, 520 Eighth Avenue, Ste. 1200, New York, NY 10018 and Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843
| | - Andrew J. Basinski
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843
| | - Boyu Zhang
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843
| | - Evan A. Eskew
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843
| | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA 95616
| | - Bruno M. Ghersi
- Tufts University, 419 Boston Avenue, Medford, MA 02155 and One Health Institute, School of Veterinary Medicine, University of California - Davis, One Shields Avenue, Davis, CA 95616
| | - James Bangura
- University of Makeni and University of California, Davis One Health Program, Makeni, Sierra Leone
| | - Elisabeth Fichet-Calvet
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strafie 74, 20359 Hamburg, Germany
| | - Christopher H. Remien
- Department of Mathematics and Statistical Science, University of Idaho, Moscow, ID 83843
| | - Mohamed Vandi
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Mohamed Bah
- Ministry of Agriculture and Forestry, Freetown, Sierra Leone
| | - Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843
| |
Collapse
|
21
|
McKendrick JQ, Tennant WSD, Tildesley MJ. Modelling seasonality of Lassa fever incidences and vector dynamics in Nigeria. PLoS Negl Trop Dis 2023; 17:e0011543. [PMID: 37956170 PMCID: PMC10681316 DOI: 10.1371/journal.pntd.0011543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Lassa fever (Lf) is a viral haemorrhagic disease endemic to West Africa and is caused by the Lassa mammarenavirus. The rodent Mastomys natalensis serves as the primary reservoir and its ecology and behaviour have been linked to the distinct spatial and temporal patterns in the incidence of Lf. Nigeria has experienced an unprecedented epidemic that lasted from January until April of 2018, which has been followed by subsequent epidemics of Lf in the same period every year since. While previous research has modelled the case seasonality within Nigeria, this did not capture the seasonal variation in the reproduction of the zoonotic reservoir and its effect on case numbers. To this end, we introduce an approximate Bayesian computation scheme to fit our model to the case data from 2018-2020 supplied by the NCDC. In this study we used a periodically forced seasonal nonautonomous system of ordinary differential equations as a vector model to demonstrate that the population dynamics of the rodent reservoir may be responsible for the spikes in the number of observed cases in humans. The results show that in December through to March, spillover from the zoonotic reservoir drastically increases and spreads the virus to the people of Nigeria. Therefore to effectively combat Lf, attention and efforts should be concentrated during this period.
Collapse
Affiliation(s)
- James Q. McKendrick
- MathSys, Mathematical Institute, Zeeman Building, University of Warwick, Coventry, United Kingdom
| | - Warren S. D. Tennant
- Zeeman Institute: SBIDER, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Michael J. Tildesley
- Zeeman Institute: SBIDER, School of Life Sciences and Mathematics Institute, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
22
|
Rishi E, Thomas J, Fashina T, Kim L, Yeh S. Emerging Pathogenic Viral Infections of the Eye. Annu Rev Vis Sci 2023; 9:71-89. [PMID: 37018917 DOI: 10.1146/annurev-vision-100820-010504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Global health security threats and the public health impact resulting from emerging infectious diseases including the ongoing COVID-19 pandemic and recent Ebola virus disease outbreaks continuously emphasize the need for a comprehensive approach to preparedness, management of disease outbreaks, and health sequelae associated with emergent pathogens. A spectrum of associated ophthalmic manifestations, along with the potential persistence of emerging viral pathogens in ocular tissues, highlight the importance of an ophthalmic approach to contributing to efforts in the response to public health emergencies from disease outbreaks. This article summarizes the ophthalmic and systemic findings, epidemiology, and therapeutics for emerging viral pathogens identified by the World Health Organization as high-priority pathogens with epidemic potential.
Collapse
Affiliation(s)
- Ekta Rishi
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; , ,
| | | | - Tolulope Fashina
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; , ,
| | - Lucas Kim
- Mercer University School of Medicine, Augusta, Georgia, USA;
| | - Steven Yeh
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; , ,
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
23
|
Bourner J, Salam AP, Jaspard M, Olayinka A, Fritzell C, Goncalves B, Vaillant M, Edwards T, Erameh C, Ajayi N, Ramharter M, Olliaro P, The WALC Work Package 2 Working Group. The West Africa Lassa fever Consortium pre-positioned protocol for a Phase II/III adaptive, randomised, controlled, platform trial to evaluate multiple Lassa fever therapeutics. Wellcome Open Res 2023; 8:122. [PMID: 39211525 PMCID: PMC11358687 DOI: 10.12688/wellcomeopenres.19041.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 09/04/2024] Open
Abstract
Background: This is a standardized, pre-positioned protocol for the coordinated evaluation of Lassa fever therapeutics. The protocol is the product of discussions that took place in 2021 and 2022 among international investigators from a wide range of scientific and medical disciplines working together within the West Africa Lassa fever Consortium (WALC). Methods: This is a clinical Phase II/III multicentre randomised controlled platform trial using a superiority framework with an equal allocation ratio and a composite primary endpoint of all-cause mortality OR new onset of i) acute kidney failure (AKF), OR ii) acute respiratory failure (ARF), OR iii) shock assessed from enrolment (D0) to D28. Discussion: This pre-positioned protocol was developed by the WALC and made available for adaptation and implementation by the wider Lassa fever research community in order to generate efficient, reliable, and comparable evidence for Lassa fever therapeutics.
Collapse
Affiliation(s)
| | | | - Marie Jaspard
- University of Bordeaux, Bordeaux, France
- The Alliance for International Medical Action, Dakar, Senegal
| | | | - Camille Fritzell
- University of Bordeaux, Bordeaux, France
- The Alliance for International Medical Action, Dakar, Senegal
| | | | - Michel Vaillant
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Tansy Edwards
- The London School of Hygiene and Tropical Medicine, London, UK
| | - Cyril Erameh
- Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Nnennaya Ajayi
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
| | - Michael Ramharter
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Dept of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piero Olliaro
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - The WALC Work Package 2 Working Group
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
- University of Bordeaux, Bordeaux, France
- The Alliance for International Medical Action, Dakar, Senegal
- Nigeria Centre for Disease Control, Abuja, Nigeria
- Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Luxembourg, Luxembourg
- The London School of Hygiene and Tropical Medicine, London, UK
- Irrua Specialist Teaching Hospital, Irrua, Nigeria
- Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Dept of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Kayem ND, Okogbenin S, Okoeguale J, Momoh M, Njoku A, Eifediyi R, Enodiana X, Ngwu H, Irhiogbe W, Ighodalo Y, Olokor T, Odigie G, Castle L, Duraffour S, Oestereich L, Dahal P, Ariana P, Gunther S, Horby P. Seroepidemiology of Lassa virus in pregnant women in Southern Nigeria: A prospective hospital-based cohort study. PLoS Negl Trop Dis 2023; 17:e0011354. [PMID: 37216412 PMCID: PMC10237645 DOI: 10.1371/journal.pntd.0011354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/02/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND There is limited epidemiological evidence on Lassa fever in pregnant women with acute gaps on prevalence, infection incidence, and risk factors. Such evidence would facilitate the design of therapeutic and vaccine trials and the design of control programs. Our study sought to address some of these gaps by estimating the seroprevalence and seroconversion risk of Lassa fever in pregnant women. METHODOLOGY/PRINCIPAL FINDINGS We conducted a prospective hospital-based cohort between February and December 2019 in Edo State, Southern Nigeria, enrolling pregnant women at antenatal clinic and following them up at delivery. Samples were evaluated for IgG antibodies against Lassa virus. The study demonstrates a seroprevalence of Lassa IgG antibodies of 49.6% and a seroconversion risk of 20.8%. Seropositivity was strongly correlated with rodent exposure around homes with an attributable risk proportion of 35%. Seroreversion was also seen with a seroreversion risk of 13.4%. CONCLUSIONS/SIGNIFICANCE Our study suggests that 50% of pregnant women were at risk of Lassa infection and that 35.0% of infections might be preventable by avoiding rodent exposure and conditions which facilitate infestation and the risk of human-rodent contact. While the evidence on rodent exposure is subjective and further studies are needed to provide a better understanding of the avenues of human-rodent interaction; public health measures to decrease the risk of rodent infestation and the risk of spill over events may be beneficial. With an estimated seroconversion risk of 20.8%, our study suggests an appreciable risk of contracting Lassa fever during pregnancy and while most of these seroconversions may not be new infections, given the high risk of adverse outcomes in pregnancy, it supports the need for preventative and therapeutic options against Lassa fever in pregnancy. The occurrence of seroreversion in our study suggests that the prevalence obtained in this, and other cohorts may be an underestimate of the actual proportion of women of childbearing age who present at pregnancy with prior LASV exposure. Additionally, the occurrence of both seroconversion and seroreversion in this cohort suggests that these parameters would need to be considered for the development of Lassa vaccine efficacy, effectiveness, and utility models.
Collapse
Affiliation(s)
| | - Sylvanus Okogbenin
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Joseph Okoeguale
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Mojeed Momoh
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Antonia Njoku
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Reuben Eifediyi
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Xavier Enodiana
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Hilary Ngwu
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Wilfred Irhiogbe
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Yemisi Ighodalo
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Thomas Olokor
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - George Odigie
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Lyndsey Castle
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sophie Duraffour
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Lisa Oestereich
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Prabin Dahal
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Proochista Ariana
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephan Gunther
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Peter Horby
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Garry RF. Lassa Virus Structural Biology and Replication. Curr Top Microbiol Immunol 2023. [PMID: 37100973 DOI: 10.1007/82_2023_262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic fever that is endemic in West Africa. LASV virions are enveloped and contain two single-stranded RNA genome segments. Both segments are ambisense and encode two proteins. The nucleoprotein associates with viral RNAs forming ribonucleoprotein complexes. The glycoprotein complex mediates viral attachment and entry. The Zinc protein serves as the matrix protein. Large is a polymerase that catalyzes viral RNA transcription and replication. LASV virion entry occurs via a clathrin-independent endocytic pathway usually involving alpha-dystroglycan and lysosomal associated membrane protein 1 as surface and intracellular receptors, respectively. Advances in understanding LASV structural biology and replication have facilitated development of promising vaccine and drug candidates.
Collapse
Affiliation(s)
- Robert F Garry
- School of Medicine, Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA.
- Zalgen Labs, Frederick, MD, 21703, USA.
- Global Virus Network (GVN), Baltimore, MD, 21201, USA.
| |
Collapse
|
26
|
Kayem ND, Okogbenin S, Okoeguale J, Eigbefoh J, Ikheloa J, Eifediyi R, Enodiana X, Olorogbogo OE, Aikpokpo I, Ighodalo Y, Olokor T, Odigie G, Castle L, Duraffour S, Oestereich L, Dahal P, Ariana P, Gunther S, Horby P. Transplacental transfer of Lassa IgG antibodies in pregnant women in Southern Nigeria: A prospective hospital-based cohort study. PLoS Negl Trop Dis 2023; 17:e0011209. [PMID: 37053304 PMCID: PMC10129015 DOI: 10.1371/journal.pntd.0011209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/25/2023] [Accepted: 03/01/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Evidence from previous studies suggest that Lassa fever, a viral haemorrhagic fever endemic to West Africa has high case fatalities, particularly in pregnancy. While there have been remarkable innovations in vaccine development, with some Lassa vaccines undergoing early clinical trials. An understanding of Lassa antibody kinetics and immune responses will support vaccine design and development. However, there is currently no evidence on the antibody kinetics of Lassa (LASV) in pregnancy. Our study sought to estimate the efficiency of transplacental transfer of LASV IgG antibodies from the mother to the child. METHODOLOGY/PRINCIPAL FINDINGS The study made use of data from a prospective hospital-based cohort of pregnant women enrolled at the antenatal clinic and followed up at delivery between February and December 2019. Blood samples from mother-child pairs were evaluated for antibodies against Lassa virus. The study demonstrates a transplacental transfer of LASV IgG of 75.3% [60.0-94.0%], with a significant positive correlation between maternal and cord concentrations and a good level of agreement. The study also suggests that transfer may be more variable in women with 'de novo' antibodies compared to those with pre-existing antibodies. CONCLUSIONS/SIGNIFICANCE The study shows that maternal antibody levels play an important role in determining transfer efficiency of Lassa antibodies to the new-born; and while the evidence is preliminary, the study also suggests that transfer efficiency may be less stable in acute or recent infection, as such timing of vaccination before pregnancy, that is in women of childbearing age may be more appropriate for protection of both pregnant women and their neonates.
Collapse
Affiliation(s)
| | - Sylvanus Okogbenin
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Joseph Okoeguale
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Joseph Eigbefoh
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Joseph Ikheloa
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Reuben Eifediyi
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Xavier Enodiana
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | - Isoken Aikpokpo
- Department of Obstetrics and Gynaecology, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Yemisi Ighodalo
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Thomas Olokor
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - George Odigie
- Institute of Lassa fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | - Lyndsey Castle
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sophie Duraffour
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Lisa Oestereich
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Prabin Dahal
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Proochista Ariana
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephan Gunther
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Peter Horby
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Bourner J, Salam AP, Jaspard M, Olayinka A, Fritzell C, Goncalves B, Vaillant M, Edwards T, Erameh C, Ajayi N, Ramharter M, Olliaro P, The WALC Work Package 2 Working Group. The West Africa Lassa fever Consortium pre-positioned protocol for a Phase II/III adaptive, randomised, controlled, platform trial to evaluate multiple Lassa fever therapeutics. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.19041.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: This is a standardized, pre-positioned protocol for the coordinated evaluation of Lassa fever therapeutics. The protocol is the product of discussions that took place in 2021 and 2022 among international investigators from a wide range of scientific and medical disciplines working together within the West Africa Lassa fever Consortium (WALC). Methods: This is a clinical Phase II/III multicentre randomised controlled platform trial using a superiority framework with an equal allocation ratio and a composite primary endpoint of all-cause mortality OR new onset of i) acute kidney failure (AKF), OR ii) acute respiratory failure (ARF), OR iii) shock assessed from enrolment (D0) to D28. Discussion: This pre-positioned protocol was developed by the WALC and made available for adaptation and implementation by the wider Lassa fever research community in order to generate efficient, reliable, and comparable evidence for Lassa fever therapeutics.
Collapse
|
28
|
Li Y. Genetic basis underlying Lassa fever endemics in the Mano River region, West Africa. Virology 2023; 579:128-136. [PMID: 36669329 DOI: 10.1016/j.virol.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Lassa fever (LF), a haemorrhagic fever disease caused by Lassa virus (LASV), is a serious public health burden in West Africa. The Mano River region (Sierra Leone, Guinea, Liberia, and Côte d'Ivoire) has been an endemic focus of the disease over the past decades. Here, we deciphered the genetic basis underlying LF endemics in this region. Clade model and type I functional divergence analyses revealed that the major LASV group, Kenema sub-clade, which is currently circulating in the Eastern Province of Sierra Leone, has been affected by different selective pressure compared to isolates from the other areas with effects on the viral RNA-dependent RNA polymerase (L protein) and probably nucleoprotein (NP). Further, contingency analysis showed that, in the early endemic, the sub-clade has undergone adaptive diversification via acceleration of amino acid substitutions in L protein. These findings highlight the key viral factor and local adaptation regarding the endemicity of LF.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, People's Republic of China.
| |
Collapse
|
29
|
Grant DS, Engel EJ, Roberts Yerkes N, Kanneh L, Koninga J, Gbakie MA, Alhasan F, Kanneh FB, Kanneh IM, Kamara FK, Momoh M, Yillah MS, Foday M, Okoli A, Zeoli A, Weldon C, Bishop CM, Zheng C, Hartnett J, Chao K, Shore K, Melnik LI, Mucci M, Bond NG, Doyle P, Yenni R, Podgorski R, Ficenec SC, Moses L, Shaffer JG, Garry RF, Schieffelin JS. Seroprevalence of anti-Lassa Virus IgG antibodies in three districts of Sierra Leone: A cross-sectional, population-based study. PLoS Negl Trop Dis 2023; 17:e0010938. [PMID: 36758101 PMCID: PMC9946222 DOI: 10.1371/journal.pntd.0010938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/22/2023] [Accepted: 11/09/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Lassa virus (LASV), the cause of the acute viral hemorrhagic illness Lassa fever (LF), is endemic in West Africa. Infections in humans occur mainly after exposure to infected excrement or urine of the rodent-host, Mastomys natalensis. The prevalence of exposure to LASV in Sierra Leone is crudely estimated and largely unknown. This cross-sectional study aimed to establish a baseline point seroprevalence of IgG antibodies to LASV in three administrative districts of Sierra Leone and identify potential risk factors for seropositivity and LASV exposure. METHODOLOGY AND PRINCIPAL FINDINGS Between 2015 and 2018, over 10,642 participants from Kenema, Tonkolili, and Port Loko Districts were enrolled in this cross-sectional study. Previous LASV and LF epidemiological studies support classification of these districts as "endemic," "emerging," and "non-endemic", respectively. Dried blood spot samples were tested for LASV antibodies by ELISA to determine the seropositivity of participants, indicating previous exposure to LASV. Surveys were administered to each participant to assess demographic and environmental factors associated with a higher risk of exposure to LASV. Overall seroprevalence for antibodies to LASV was 16.0%. In Kenema, Port Loko, and Tonkolili Districts, seroprevalences were 20.1%, 14.1%, and 10.6%, respectively. In a multivariate analysis, individuals were more likely to be LASV seropositive if they were living in Kenema District, regardless of sex, age, or occupation. Environmental factors contributed to an increased risk of LASV exposure, including poor housing construction and proximity to bushland, forested areas, and refuse. CONCLUSIONS AND SIGNIFICANCE In this study we determine a baseline LASV seroprevalence in three districts which will inform future epidemiological, ecological, and clinical studies on LF and the LASV in Sierra Leone. The heterogeneity of the distribution of LASV and LF over both space, and time, can make the design of efficacy trials and intervention programs difficult. Having more studies on the prevalence of LASV and identifying potential hyper-endemic areas will greatly increase the awareness of LF and improve targeted control programs related to LASV.
Collapse
Affiliation(s)
- Donald S. Grant
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Emily J. Engel
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Nicole Roberts Yerkes
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lansana Kanneh
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - James Koninga
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Michael A. Gbakie
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Foday Alhasan
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Franklyn B. Kanneh
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Ibrahim Mustapha Kanneh
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Fatima K. Kamara
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Mambu Momoh
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
- Eastern Technical University of Sierra Leone, Kenema, Sierra Leone
| | - Mohamed S. Yillah
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Momoh Foday
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Adaora Okoli
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Ashley Zeoli
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Caroline Weldon
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Christopher M. Bishop
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Crystal Zheng
- Department of Internal Medicine, Section of Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jessica Hartnett
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Karissa Chao
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Kayla Shore
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Lilia I. Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Mallory Mucci
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Nell G. Bond
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Philip Doyle
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Rachael Yenni
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Rachel Podgorski
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Samuel C. Ficenec
- Department of Internal Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Lina Moses
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Jeffrey G. Shaffer
- Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Robert F. Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - John S. Schieffelin
- Department of Pediatrics, Sections of Pediatric Infectious Diseases, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
30
|
Pare BC, Camara AM, Camara A, Kourouma M, Enogo K, Camara MS, Akilimali L, Sani S, de Sainte Fare EB, Lame P, Mouly N, Castro-Rial ML, Sivahera B, Cherif MS, Beavogui AH, Muamba D, Tamba JB, Moumié B, Kojan R, Lang HJ. Ebola outbreak in Guinea, 2021: Clinical care of patients with Ebola virus disease. S Afr J Infect Dis 2023; 38:454. [PMID: 36756241 PMCID: PMC9900378 DOI: 10.4102/sajid.v38i1.454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023] Open
Abstract
Background Experience from the Zaire Ebolavirus epidemic in the eastern Democratic Republic of the Congo (2018-2020) demonstrates that early initiation of essential critical care and administration of Zaire Ebolavirus specific monoclonal antibodies may be associated with improved outcomes among patients with Ebola virus disease (EVD). Objectives This series describes 13 EVD patients and 276 patients with suspected EVD treated during a Zaire Ebolavirus outbreak in Guinea in 2021. Method Patients with confirmed or suspected EVD were treated in two Ebola treatment centres (ETC) in the region of N'zérékoré. Data were reviewed from all patients with suspected or confirmed EVD hospitalised in these two ETCs during the outbreak (14 February 2021 - 19 June 2021). Ebola-specific monoclonal antibodies, were available 2 weeks after onset of the outbreak. Results Nine of the 13 EVD patients (age range: 22-70 years) survived. The four EVD patients who died, including one pregnant woman, presented with multi-organ dysfunction and died within 48 h of admission. All eight patients who received Ebola-specific monoclonal antibodies survived. Four of the 13 EVD patients were health workers. Improvement of ETC design facilitated implementation of WHO-recommended 'optimized supportive care for EVD'. In this context, pragmatic clinical training was integrated in routine ETC activities. Initial clinical manifestations of 13 confirmed EVD patients were similar to those of 276 patients with suspected, but subsequently non confirmed EVD. These patients suffered from other acute infections (e.g. malaria in 183 of 276 patients; 66%). Five of the 276 patients with suspected EVD died. One of these five patients had Lassa virus disease and a coronavirus disease 2019 (COVID-19) co-infection. Conclusion Multidisciplinary outbreak response teams can rapidly optimise ETC design. Trained clinical teams can provide WHO-recommended optimised supportive care, including safe administration of Ebola-specific monoclonal antibodies. Pragmatic training in essential critical care can be integrated in routine ETC activities. Contribution This article describes clinical realities associated with implementation of WHO-recommended standards of 'optimized supportive care' and administration of Ebola virus specific treatments. In this context, the importance of essential design principles of ETCs is underlined, which allow continuous visual contact and verbal interaction of health workers and families with their patients. Elements that may contribute to further quality of care improvements for patients with confirmed or suspected EVD are discussed.
Collapse
Affiliation(s)
- Boyo C. Pare
- Alliance for International Medical Action (ALIMA), Dakar, Senegal
| | - Alseny M. Camara
- Alliance for International Medical Action (ALIMA), Dakar, Senegal
| | - Aminata Camara
- Ministry of Health, Agence Nationale de Sécurité Sanitaire, N’zérékoré, Guinea,Ministry of Health, Hôpital Régionale de N’zérékoré, N’zérékoré, Guinea
| | - Moussa Kourouma
- Ministry of Health, Agence Nationale de Sécurité Sanitaire, N’zérékoré, Guinea,Ministry of Health, Hôpital Régionale de N’zérékoré, N’zérékoré, Guinea
| | - Koivogui Enogo
- Ministry of Health, Agence Nationale de Sécurité Sanitaire, N’zérékoré, Guinea
| | | | | | - Sayadi Sani
- Alliance for International Medical Action (ALIMA), Dakar, Senegal
| | | | - Papys Lame
- Alliance for International Medical Action (ALIMA), Dakar, Senegal
| | - Nicolas Mouly
- Alliance for International Medical Action (ALIMA), Dakar, Senegal
| | | | - Billy Sivahera
- Alliance for International Medical Action (ALIMA), Dakar, Senegal,World Health Organization (WHO), Geneva, Switzerland
| | - Mahamoud S. Cherif
- Centre National de Formation et de Recherche en Santé Rural de Maferinyah, Maferenya, Guinea
| | - Abdoul H. Beavogui
- Centre National de Formation et de Recherche en Santé Rural de Maferinyah, Maferenya, Guinea
| | - Dally Muamba
- Alliance for International Medical Action (ALIMA), Dakar, Senegal
| | - Joachim B. Tamba
- Alliance for International Medical Action (ALIMA), Dakar, Senegal
| | - Barry Moumié
- Ministry of Health, Agence Nationale de Sécurité Sanitaire, N’zérékoré, Guinea
| | - Richard Kojan
- Alliance for International Medical Action (ALIMA), Dakar, Senegal
| | - Hans-Joerg Lang
- Alliance for International Medical Action (ALIMA), Dakar, Senegal,Witten/Herdecke- University, Global Child Health, Witten, Germany
| |
Collapse
|
31
|
Aloke C, Obasi NA, Aja PM, Emelike CU, Egwu CO, Jeje O, Edeogu CO, Onisuru OO, Orji OU, Achilonu I. Combating Lassa Fever in West African Sub-Region: Progress, Challenges, and Future Perspectives. Viruses 2023; 15:146. [PMID: 36680186 PMCID: PMC9864412 DOI: 10.3390/v15010146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Lassa fever (LF) is a rodent-borne disease that threatens human health in the sub-region of West Africa where the zoonotic host of Lassa virus (LASV) is predominant. Currently, treatment options for LF are limited and since no preventive vaccine is approved for its infectivity, there is a high mortality rate in endemic areas. This narrative review explores the transmission, pathogenicity of LASV, advances, and challenges of different treatment options. Our findings indicate that genetic diversity among the different strains of LASV and their ability to circumvent the immune system poses a critical challenge to the development of LASV vaccines/therapeutics. Thus, understanding the biochemistry, physiology and genetic polymorphism of LASV, mechanism of evading host immunity are essential for development of effective LASV vaccines/therapeutics to combat this lethal viral disease. The LASV nucleoprotein (NP) is a novel target for therapeutics as it functions significantly in several aspects of the viral life cycle. Consequently, LASV NP inhibitors could be employed as effective therapeutics as they will potentially inhibit LASV replication. Effective preventive control measures, vaccine development, target validation, and repurposing of existing drugs, such as ribavirin, using activity or in silico-based and computational bioinformatics, would aid in the development of novel drugs for LF management.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Nwogo Ajuka Obasi
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
- Department of Biochemistry, Faculty of Medicine, Mbarara University of Science and Technology (MUST), Mbarara P.O. Box 1410, Uganda
- Department of Medical Biochemistry, Kampala International University, Bushenyi, Ishaka P.O. Box 71, Uganda
| | - Chinedum Uche Emelike
- Department of Physiology, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Chinedu Ogbonnia Egwu
- Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki PMB 1010, Ebonyi State, Nigeria
| | - Olamide Jeje
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Chuks Oswald Edeogu
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| | - Obasi Uche Orji
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki PMB 053, Ebonyi State, Nigeria
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2050, South Africa
| |
Collapse
|
32
|
Murphy H, Ly H. Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines. Vaccines (Basel) 2022; 10:1668. [PMID: 36298533 PMCID: PMC9612042 DOI: 10.3390/vaccines10101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic fever disease that is endemic in several countries in West Africa. It is caused by Lassa virus (LASV), which has been estimated to be responsible for approximately 300,000 infections and 5000 deaths annually. LASV is a highly pathogenic human pathogen without effective therapeutics or FDA-approved vaccines. Here, we aim to provide a literature review of the current understanding of the basic mechanism of immune responses to LASV infection in animal models and patients, as well as to several of its candidate vaccines.
Collapse
Affiliation(s)
| | - Hinh Ly
- Comparative & Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, St Paul, MN 55108, USA
| |
Collapse
|
33
|
Ozeki T, Abe H, Ushijima Y, Nze-Nkogue C, Akomo-Okoue EF, Ella GWE, Koumba LBM, Nso BCBB, Mintsa-Nguema R, Makouloutou-Nzassi P, Makanga BK, Nguelet FLM, Ondo GN, Mbadinga MJVM, Igasaki Y, Okada S, Hirano M, Yoshii K, Lell B, Bonney LC, Hewson R, Kurosaki Y, Yasuda J. Identification of novel orthonairoviruses from rodents and shrews in Gabon, Central Africa. J Gen Virol 2022; 103. [PMID: 36215163 DOI: 10.1099/jgv.0.001796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Africa, several emerging zoonotic viruses have been transmitted from small mammals such as rodents and shrews to humans. Although no clinical cases of small mammal-borne viral diseases have been reported in Central Africa, potential zoonotic viruses have been identified in rodents in the region. Therefore, we hypothesized that there may be unrecognized zoonotic viruses circulating in small mammals in Central Africa. Here, we investigated viruses that have been maintained among wild small mammals in Gabon to understand their potential risks to humans. We identified novel orthonairoviruses in 24.6 % of captured rodents and shrews from their kidney total RNA samples. Phylogenetic analysis revealed that the novel viruses, Lamusara virus (LMSV) and Lamgora virus, were closely related to Erve virus, which was previously identified in shrews of the genus Crocidura and has been suspected to cause neuropathogenic diseases in humans. Moreover, we show that the LMSV ovarian tumour domain protease, one of the virulence determination factors of orthonairoviruses, suppressed interferon signalling in human cells, suggesting the possible human pathogenicity of this virus. Taken together, our study demonstrates the presence of novel orthonairoviruses that may pose unrecognized risks of viral disease transmission in Gabon.
Collapse
Affiliation(s)
- Takehiro Ozeki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan
| | - Haruka Abe
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Chimène Nze-Nkogue
- Institut de Recherche en Ecologie Tropicale (IRET), Libreville BP13354, Gabon
| | | | - Ghislain W E Ella
- Institut de Recherche en Ecologie Tropicale (IRET), Libreville BP13354, Gabon
| | - Lilian B M Koumba
- Institut de Recherche en Ecologie Tropicale (IRET), Libreville BP13354, Gabon
| | - Branly C B B Nso
- Institut de Recherche en Ecologie Tropicale (IRET), Libreville BP13354, Gabon
| | | | | | - Boris K Makanga
- Institut de Recherche en Ecologie Tropicale (IRET), Libreville BP13354, Gabon
| | - Fred L M Nguelet
- Institut de Recherche en Ecologie Tropicale (IRET), Libreville BP13354, Gabon
| | - Georgelin N Ondo
- Centre de Recherche Médicales de Lambaréné (CERMEL), Lambaréné BP242, Gabon
| | | | - Yui Igasaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Sayaka Okada
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan
| | - Minato Hirano
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kentaro Yoshii
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan
| | - Bertrand Lell
- Centre de Recherche Médicales de Lambaréné (CERMEL), Lambaréné BP242, Gabon.,University of Tübingen, Tübingen 72072, Germany.,Medical University of Vienna, Vienna 1090, Austria
| | - Laura C Bonney
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JZ, UK
| | - Roger Hewson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JZ, UK
| | - Yohei Kurosaki
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
34
|
Klitting R, Kafetzopoulou LE, Thiery W, Dudas G, Gryseels S, Kotamarthi A, Vrancken B, Gangavarapu K, Momoh M, Sandi JD, Goba A, Alhasan F, Grant DS, Okogbenin S, Ogbaini-Emovo E, Garry RF, Smither AR, Zeller M, Pauthner MG, McGraw M, Hughes LD, Duraffour S, Günther S, Suchard MA, Lemey P, Andersen KG, Dellicour S. Predicting the evolution of the Lassa virus endemic area and population at risk over the next decades. Nat Commun 2022; 13:5596. [PMID: 36167835 PMCID: PMC9515147 DOI: 10.1038/s41467-022-33112-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/02/2022] [Indexed: 01/27/2023] Open
Abstract
Lassa fever is a severe viral hemorrhagic fever caused by a zoonotic virus that repeatedly spills over to humans from its rodent reservoirs. It is currently not known how climate and land use changes could affect the endemic area of this virus, currently limited to parts of West Africa. By exploring the environmental data associated with virus occurrence using ecological niche modelling, we show how temperature, precipitation and the presence of pastures determine ecological suitability for virus circulation. Based on projections of climate, land use, and population changes, we find that regions in Central and East Africa will likely become suitable for Lassa virus over the next decades and estimate that the total population living in ecological conditions that are suitable for Lassa virus circulation may drastically increase by 2070. By analysing geotagged viral genomes using spatially-explicit phylogeography and simulating virus dispersal, we find that in the event of Lassa virus being introduced into a new suitable region, its spread might remain spatially limited over the first decades.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Liana E. Kafetzopoulou
- grid.5596.f0000 0001 0668 7884Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium ,grid.424065.10000 0001 0701 3136Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Wim Thiery
- grid.8767.e0000 0001 2290 8069Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gytis Dudas
- grid.6441.70000 0001 2243 2806Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Sophie Gryseels
- grid.5284.b0000 0001 0790 3681Evolutionary Ecology group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium ,grid.20478.390000 0001 2171 9581Vertebrate group, Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Anjali Kotamarthi
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Bram Vrancken
- grid.5596.f0000 0001 0668 7884Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Karthik Gangavarapu
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Mambu Momoh
- grid.442296.f0000 0001 2290 9707Eastern Technical University of Sierra Leone, Kenema, Sierra Leone ,grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - John Demby Sandi
- grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Augustine Goba
- grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Foday Alhasan
- grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone
| | - Donald S. Grant
- grid.463455.50000 0004 1799 2069Viral Hemorrhagic Fever Program, Kenema Government Hospital, Ministry of Health and Sanitation, Kenema, Sierra Leone ,grid.442296.f0000 0001 2290 9707College of Medicine and Allied Health Sciences, University of Sierra Leone, Kenema, Sierra Leone
| | - Sylvanus Okogbenin
- grid.508091.5Irrua Specialist Teaching Hospital, Irrua, Nigeria ,grid.411357.50000 0000 9018 355XFaculty of Clinical Sciences, College of Medicine, Ambrose Alli University, Ekpoma, Nigeria
| | | | - Robert F. Garry
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University, School of Medicine, New Orleans, LA 70112 USA ,grid.505518.c0000 0004 5901 1919Zalgen Labs, LCC, Frederick, MD 21703 USA ,grid.475149.aGlobal Virus Network (GVN), Baltimore, MD 21201 USA
| | - Allison R. Smither
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University, School of Medicine, New Orleans, LA 70112 USA
| | - Mark Zeller
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Matthias G. Pauthner
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Michelle McGraw
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Laura D. Hughes
- grid.214007.00000000122199231Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sophie Duraffour
- grid.424065.10000 0001 0701 3136Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany ,grid.452463.2German Center for Infection Research (DZIF), Partner site Hamburg–Lübeck–Borstel–Riems, Hamburg, Germany
| | - Stephan Günther
- grid.424065.10000 0001 0701 3136Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany ,grid.452463.2German Center for Infection Research (DZIF), Partner site Hamburg–Lübeck–Borstel–Riems, Hamburg, Germany
| | - Marc A. Suchard
- grid.19006.3e0000 0000 9632 6718Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA USA
| | - Philippe Lemey
- grid.5596.f0000 0001 0668 7884Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kristian G. Andersen
- grid.214007.00000000122199231Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037 USA ,grid.214007.00000000122199231Scripps Research Translational Institute, La Jolla, CA 92037 USA
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, Leuven, Belgium. .,Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12 50, av. FD Roosevelt, 1050, Bruxelles, Belgium.
| |
Collapse
|
35
|
Assessing the Effectiveness of Correlative Ecological Niche Model Temporal Projection through Floristic Data. BIOLOGY 2022; 11:biology11081219. [PMID: 36009846 PMCID: PMC9405103 DOI: 10.3390/biology11081219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Climate change is the main threat for conservation in the 21st century. Reliable methodologies and tools for the evaluation of its impact are urgently needed. Correlative ecological niche models (ENMs) are effective tools for predicting the future distribution of species under climate change scenarios. Despite this, many alternative different methods have been proposed, and objective reasons for a proper selection are unclear. Therefore, a comparative study to evaluate the consistency of predictions of the main ENM algorithms was performed. To test the effectiveness of correlative ENM temporal projection, we compared predictions generated using historical data and projected to the modern climate with predictions generated using modern distribution and climate data. In total, 600 case studies were generated, by using 25 Italian endemic plant species, 12 algorithms and 2 alternative sets of environmental variables. As a result, we highlighted the similarity of eight algorithms and the poor performance of four. Abstract Correlative ecological niche modelling (ENM) is a method widely used to study the geographic distribution of species. In recent decades, it has become a leading approach for evaluating the most likely impacts of changing climate. When used to predict future distributions, ENM applications involve transferring models calibrated with modern environmental data to future conditions, usually derived from Global Climate Models (GCMs). The number of algorithms and software packages available to estimate distributions is quite high. To experimentally assess the effectiveness of correlative ENM temporal projection, we evaluated the transferability of models produced using 12 different algorithms on historical and modern data. In particular, we compared predictions generated using historical data and projected to the modern climate (simulating a “future” condition) with predictions generated using modern distribution and climate data. The models produced with the 12 ENM algorithms were evaluated in geographic (range size and coherence of predictions) and environmental space (Schoener’s D index). None of the algorithms shows an overall superior capability to correctly predict future distributions. On the contrary, a few algorithms revealed an inadequate predictive ability. Finally, we provide hints that can be used as guideline to plan further studies based on the adopted general workflow, useful for all studies involving future projections.
Collapse
|
36
|
Safronetz D, Rosenke K, Meade-White K, Sloan A, Maiga O, Bane S, Martellaro C, Scott DP, Sogoba N, Feldmann H. Temporal analysis of Lassa virus infection and transmission in experimentally infected Mastomys natalensis. PNAS NEXUS 2022; 1:pgac114. [PMID: 35967978 PMCID: PMC9364215 DOI: 10.1093/pnasnexus/pgac114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023]
Abstract
Little is known about the temporal patterns of infection and transmission of Lassa virus (LASV) within its natural reservoir (Mastomys natalensis). Here, we characterize infection dynamics and transmissibility of a LASV isolate (Soromba-R) in adult lab-reared M. natalensis originating from Mali. The lab-reared M. natalenesis proved to be highly susceptible to LASV isolates from geographically distinct regions of West Africa via multiple routes of exposure, with 50% infectious doses of < 1 TCID50. Postinoculation, LASV Soromba-R established a systemic infection with no signs of clinical disease. Viral RNA was detected in all nine tissues examined with peak concentrations detected between days 7 and 14 postinfection within most organs. There was an overall trend toward clearance of virus within 40 days of infection in most organs. The exception is lung specimens, which retained positivity throughout the course of the 85-day study. Direct (contact) and indirect (fomite) transmission experiments demonstrated 40% of experimentally infected M. natalensis were capable of transmitting LASV to naïve animals, with peak transmissibility occurring between 28 and 42 days post-inoculation. No differences in patterns of infection or transmission were noted between male and female experimentally infected rodents. Adult lab-reared M. natalensis are highly susceptible to genetically distinct LASV strains developing a temporary asymptomatic infection associated with virus shedding resulting in contact and fomite transmission within a cohort.
Collapse
Affiliation(s)
| | | | - Kimberley Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, national Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Angela Sloan
- Special Pathogens, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Ousmane Maiga
- University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidy Bane
- University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, national Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Nafomon Sogoba
- University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, national Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
37
|
Lerch A, Ten Bosch QA, L'Azou Jackson M, Bettis AA, Bernuzzi M, Murphy GAV, Tran QM, Huber JH, Siraj AS, Bron GM, Elliott M, Hartlage CS, Koh S, Strimbu K, Walters M, Perkins TA, Moore SM. Projecting vaccine demand and impact for emerging zoonotic pathogens. BMC Med 2022; 20:202. [PMID: 35705986 PMCID: PMC9200440 DOI: 10.1186/s12916-022-02405-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, several pose a concern due to their epidemiological characteristics and evolutionary potential. To enable effective responses to these pathogens in the event that they undergo future emergence, the Coalition for Epidemic Preparedness Innovations is advancing the development of vaccines for several pathogens prioritized by the World Health Organization. A major challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak response. METHODS We developed a modeling framework for outbreak response for emerging zoonoses under three reactive vaccination strategies to assess sustainable vaccine manufacturing needs, vaccine stockpile requirements, and the potential impact of the outbreak response. This framework incorporates geographically variable zoonotic spillover rates, human-to-human transmission, and the implementation of reactive vaccination campaigns in response to disease outbreaks. As proof of concept, we applied the framework to four priority pathogens: Lassa virus, Nipah virus, MERS coronavirus, and Rift Valley virus. RESULTS Annual vaccine regimen requirements for a population-wide strategy ranged from > 670,000 (95% prediction interval 0-3,630,000) regimens for Lassa virus to 1,190,000 (95% PrI 0-8,480,000) regimens for Rift Valley fever virus, while the regimens required for ring vaccination or targeting healthcare workers (HCWs) were several orders of magnitude lower (between 1/25 and 1/700) than those required by a population-wide strategy. For each pathogen and vaccination strategy, reactive vaccination typically prevented fewer than 10% of cases, because of their presently low R0 values. Targeting HCWs had a higher per-regimen impact than population-wide vaccination. CONCLUSIONS Our framework provides a flexible methodology for estimating vaccine stockpile needs and the geographic distribution of demand under a range of outbreak response scenarios. Uncertainties in our model estimates highlight several knowledge gaps that need to be addressed to target vulnerable populations more accurately. These include surveillance gaps that mask the true geographic distribution of each pathogen, details of key routes of spillover from animal reservoirs to humans, and the role of human-to-human transmission outside of healthcare settings. In addition, our estimates are based on the current epidemiology of each pathogen, but pathogen evolution could alter vaccine stockpile requirements.
Collapse
Affiliation(s)
- Anita Lerch
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Quirine A Ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Alison A Bettis
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Mauro Bernuzzi
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | | | - Quan M Tran
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - John H Huber
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Amir S Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Gebbiena M Bron
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Margaret Elliott
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Carson S Hartlage
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sojung Koh
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Kathyrn Strimbu
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Magdalene Walters
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| | - Sean M Moore
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
38
|
Comparison of Methods for Reconstructing MODIS Land Surface Temperature under Cloudy Conditions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Land surface temperature (LST) is a vital parameter associated with the land–atmosphere interface. The Moderate Resolution Imaging Spectroradiometer (MODIS) LST product can provide precise LST with high time resolution, and is widely applied in various remote sensing temperature research. However, due to its inability to penetrate the cloud and fog, its quality is not able to meet the requirements of actual research. Hence, obtaining continuous and cloudless MODIS LST datasets remains challenging for researchers. The critical point is to reconstruct missing pixels. To compare the performance of different methods, first, three kinds of methods were used to reconstruct the missing pixels, namely, temporal, spatial, and spatiotemporal methods. The predicted values using these methods were validated by the automatic weather system data (AWS) in the Heihe river basin of China. The results demonstrated that, compared with other methods, linear temporal interpolation using Aqua data had the best performance in MODIS LST reconstruction in the Heihe river basin, with an RMSE of 7.13 K and an R2 of 0.82, and the NSE and PBias were 0.78 and −0.76%, respectively. Furthermore, the interpolation method was improved using adaptive windows and robust regression. First, the international Geosphere–Biosphere Program (IGBP) classification was employed to distinguish the different land surface types. Then, the invalid LST values were reconstructed using adjacent days’ effective LST values combined with a robust regression. Finally, a mean filter was applied to eliminate outliers. The overall results combined with ERA5 data were validated by AWS, with an RMSE of 6.96 K and an R2 of 0.79 and the NSE and PBias were 0.77 and −0.20%, respectively. The validation demonstrated that the scheme proposed in this paper is able to accurately reconstruct the missing values and improve the accuracy of the interpolation method to a certain extent when reconstructing MODIS LST.
Collapse
|
39
|
Maruyama J, Reyna RA, Kishimoto-Urata M, Urata S, Manning JT, Harsell N, Cook R, Huang C, Nikolich-Zugich J, Makishima T, Paessler S. CD4 T-cell depletion prevents Lassa fever associated hearing loss in the mouse model. PLoS Pathog 2022; 18:e1010557. [PMID: 35605008 PMCID: PMC9166448 DOI: 10.1371/journal.ppat.1010557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever (LF), which presents as a lethal hemorrhagic disease in severe cases. LASV-induced hearing loss in survivors is a huge socioeconomic burden, however, the mechanism(s) leading to hearing loss is unknown. In this study, we evaluate in a mouse LF model the auditory function using auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to determine the mechanisms underlying LASV-induced hearing loss. In the process, we pioneered measures of ABR and DPOAE tests in rodents in biosafety level 4 (BSL-4) facilities. Our T cell depletion studies demonstrated that CD4 T-cells play an important role in LASV-induced hearing loss, while CD8 T-cells are critical for the pathogenicity in the acute phase of LASV infection. Results presented in this study may help to develop future countermeasures against acute disease and LASV-induced hearing loss.
Collapse
Affiliation(s)
- Junki Maruyama
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rachel A. Reyna
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Megumi Kishimoto-Urata
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shinji Urata
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John T. Manning
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nantian Harsell
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rebecca Cook
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Janko Nikolich-Zugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Tomoko Makishima
- Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Slobodan Paessler
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
40
|
Njuguna C, Vandi M, Liyosi E, Githuku J, Wurie A, Njeru I, Raftery P, Amuzu C, Maruta A, Musoke R, Fahnbulleh M, Bunting J, Gbandeh S, Talisuna A, Yoti Z. A challenging response to a Lassa fever outbreak in a non endemic area of Sierra Leone in 2019 with export of cases to The Netherlands. Int J Infect Dis 2022; 117:295-301. [PMID: 35167968 PMCID: PMC8948091 DOI: 10.1016/j.ijid.2022.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction On November 20, 2019, the Sierra Leone International Health Regulations (IHR) National Focal Point was notified of an exported case of Lassa fever in The Netherlands, by a Dutch doctor who previously practiced in a rural hospital in Sierra Leone. This report describes the extent of the outbreak, possible sources of infection, and the outbreak response measures taken. Methods Response measures implemented to control the outbreak included coordination across multiple countries and cities, outbreak investigation, active case finding, contact tracing and monitoring, laboratory investigation, and isolation and treatment of cases. Results We report a hospital-associated outbreak that resulted in 3 confirmed cases (health workers) and 2 probable cases (patients). The case fatality rate was 60%, whereas the secondary attack rate was 14%. Two cases involved exportations to The Netherlands. Failure to detect the index case and poor adherence to infection prevention and control (IPC) protocols contributed to disease spread. Pregnancy status and nonspecific signs and symptoms of the index case contributed to failure in early case detection. Conclusions Rapid activation of national and subnational incident management systems resulted in rapid outbreak control. We recommend regular training for clinicians on surveillance and IPC protocols and strengthening in-country Lassa virus diagnostic capacity.
Collapse
Affiliation(s)
| | | | - Evans Liyosi
- World Health Organization Country office, Sierra Leone
| | - Jane Githuku
- World Health Organization Country office, Sierra Leone
| | - Alie Wurie
- Sierra Leone Ministry of Health and Sanitation
| | - Ian Njeru
- World Health Organization Country office, Sierra Leone
| | | | | | - Anna Maruta
- World Health Organization Country office, Sierra Leone
| | - Robert Musoke
- World Health Organization Country office, Sierra Leone
| | | | | | | | - Ambrose Talisuna
- World Health Organization Regional Office for Africa, Brazzaville
| | - Zabulon Yoti
- World Health Organization Regional Office for Africa, Brazzaville
| |
Collapse
|
41
|
Murphy HL, Ly H. Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments. Virulence 2021; 12:2989-3014. [PMID: 34747339 PMCID: PMC8923068 DOI: 10.1080/21505594.2021.2000290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic disease that is endemic to West Africa. The causative agent of LF is Lassa virus (LASV), which causes approximately 300,000 infections and 5,000 deaths annually. There are currently no approved therapeutics or FDA-approved vaccines against LASV. The high genetic variability between LASV strains and immune evasion mediated by the virus complicate the development of effective therapeutics and vaccines. Here, we aim to provide a comprehensive review of the basic biology of LASV and its mechanisms of disease pathogenesis and virulence in various animal models, as well as an update on prospective vaccines, therapeutics, and diagnostics for LF. Until effective vaccines and/or therapeutics are available for use to prevent or treat LF, a better level of understanding of the basic biology of LASV, its natural genetic variations and immune evasion mechanisms as potential pathogenicity factors, and of the rodent reservoir-vector populations and their geographical distributions, is necessary for the development of accurate diagnostics and effective therapeutics and vaccines against this deadly human viral pathogen.
Collapse
Affiliation(s)
- Hannah L Murphy
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| |
Collapse
|
42
|
Pintor AF, Ray N, Longbottom J, Bravo-Vega CA, Yousefi M, Murray KA, Ediriweera DS, Diggle PJ. Addressing the global snakebite crisis with geo-spatial analyses - Recent advances and future direction. Toxicon X 2021; 11:100076. [PMID: 34401744 PMCID: PMC8350508 DOI: 10.1016/j.toxcx.2021.100076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
Venomous snakebite is a neglected tropical disease that annually leads to hundreds of thousands of deaths or long-term physical and mental ailments across the developing world. Insufficient data on spatial variation in snakebite risk, incidence, human vulnerability, and accessibility of medical treatment contribute substantially to ineffective on-ground management. There is an urgent need to collect data, fill knowledge gaps and address on-ground management problems. The use of novel, and transdisciplinary approaches that take advantage of recent advances in spatio-temporal models, 'big data', high performance computing, and fine-scale spatial information can add value to snakebite management by strategically improving our understanding and mitigation capacity of snakebite. We review the background and recent advances on the topic of snakebite related geospatial analyses and suggest avenues for priority research that will have practical on-ground applications for snakebite management and mitigation. These include streamlined, targeted data collection on snake distributions, snakebites, envenomings, venom composition, health infrastructure, and antivenom accessibility along with fine-scale models of spatio-temporal variation in snakebite risk and incidence, intraspecific venom variation, and environmental change modifying human exposure. These measures could improve and 'future-proof' antivenom production methods, antivenom distribution and stockpiling systems, and human-wildlife conflict management practices, while simultaneously feeding into research on venom evolution, snake taxonomy, ecology, biogeography, and conservation.
Collapse
Affiliation(s)
- Anna F.V. Pintor
- Division of Data, Analytics and Delivery for Impact (DDI), World Health Organization, Geneva, Switzerland
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Carlos A. Bravo-Vega
- Research Group in Mathematical and Computational Biology (BIOMAC), Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
| | - Masoud Yousefi
- School of Biology, College of Science, University of Tehran, Iran
| | - Kris A. Murray
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, UK
- MRC Unit the Gambia at London School of Hygiene and Tropical Medicine, Atlantic Blvd, Fajara, Gambia
| | - Dileepa S. Ediriweera
- Health Data Science Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Peter J. Diggle
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
43
|
Jonkmans N, D'Acremont V, Flahault A. Scoping future outbreaks: a scoping review on the outbreak prediction of the WHO Blueprint list of priority diseases. BMJ Glob Health 2021; 6:e006623. [PMID: 34531189 PMCID: PMC8449939 DOI: 10.1136/bmjgh-2021-006623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The WHO's Research and Development Blueprint priority list designates emerging diseases with the potential to generate public health emergencies for which insufficient preventive solutions exist. The list aims to reduce the time to the availability of resources that can avert public health crises. The current SARS-CoV-2 pandemic illustrates that an effective method of mitigating such crises is the pre-emptive prediction of outbreaks. This scoping review thus aimed to map and identify the evidence available to predict future outbreaks of the Blueprint diseases. METHODS We conducted a scoping review of PubMed, Embase and Web of Science related to the evidence predicting future outbreaks of Ebola and Marburg virus, Zika virus, Lassa fever, Nipah and Henipaviral disease, Rift Valley fever, Crimean-Congo haemorrhagic fever, Severe acute respiratory syndrome, Middle East respiratory syndrome and Disease X. Prediction methods, outbreak features predicted and implementation of predictions were evaluated. We conducted a narrative and quantitative evidence synthesis to highlight prediction methods that could be further investigated for the prevention of Blueprint diseases and COVID-19 outbreaks. RESULTS Out of 3959 articles identified, we included 58 articles based on inclusion criteria. 5 major prediction methods emerged; the most frequent being spatio-temporal risk maps predicting outbreak risk periods and locations through vector and climate data. Stochastic models were predominant. Rift Valley fever was the most predicted disease. Diseases with complex sociocultural factors such as Ebola were often predicted through multifactorial risk-based estimations. 10% of models were implemented by health authorities. No article predicted Disease X outbreaks. CONCLUSIONS Spatiotemporal models for diseases with strong climatic and vectorial components, as in River Valley fever prediction, may currently best reduce the time to the availability of resources. A wide literature gap exists in the prediction of zoonoses with complex sociocultural and ecological dynamics such as Ebola, COVID-19 and especially Disease X.
Collapse
Affiliation(s)
- Nils Jonkmans
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Valérie D'Acremont
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, Université de Genève, Geneva, Switzerland
| |
Collapse
|
44
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
45
|
Hoffmann C, Wurr S, Pallasch E, Bockholt S, Rieger T, Günther S, Oestereich L. Experimental Morogoro Virus Infection in Its Natural Host, Mastomys natalensis. Viruses 2021; 13:851. [PMID: 34067011 PMCID: PMC8151005 DOI: 10.3390/v13050851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/26/2023] Open
Abstract
Natural hosts of most arenaviruses are rodents. The human-pathogenic Lassa virus and several non-pathogenic arenaviruses such as Morogoro virus (MORV) share the same host species, namely Mastomys natalensis (M. natalensis). In this study, we investigated the history of infection and virus transmission within the natural host population. To this end, we infected M. natalensis at different ages with MORV and measured the health status of the animals, virus load in blood and organs, the development of virus-specific antibodies, and the ability of the infected individuals to transmit the virus. To explore the impact of the lack of evolutionary virus-host adaptation, experiments were also conducted with Mobala virus (MOBV), which does not share M. natalensis as a natural host. Animals infected with MORV up to two weeks after birth developed persistent infection, seroconverted and were able to transmit the virus horizontally. Animals older than two weeks at the time of infection rapidly cleared the virus. In contrast, MOBV-infected neonates neither developed persistent infection nor were able to transmit the virus. In conclusion, we demonstrate that MORV is able to develop persistent infection in its natural host, but only after inoculation shortly after birth. A related arenavirus that is not evolutionarily adapted to M. natalensis is not able to establish persistent infection. Persistently infected animals appear to be important to maintain virus transmission within the host population.
Collapse
Affiliation(s)
- Chris Hoffmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
| | - Elisa Pallasch
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Toni Rieger
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| |
Collapse
|
46
|
Arruda LB, Haider N, Olayemi A, Simons D, Ehichioya D, Yinka-Ogunleye A, Ansumana R, Thomason MJ, Asogun D, Ihekweazu C, Fichet-Calvet E, Kock RA. The niche of One Health approaches in Lassa fever surveillance and control. Ann Clin Microbiol Antimicrob 2021; 20:29. [PMID: 33894784 PMCID: PMC8067790 DOI: 10.1186/s12941-021-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Lassa fever (LF), a zoonotic illness, represents a public health burden in West African countries where the Lassa virus (LASV) circulates among rodents. Human exposure hinges significantly on LASV ecology, which is in turn shaped by various parameters such as weather seasonality and even virus and rodent-host genetics. Furthermore, human behaviour, despite playing a key role in the zoonotic nature of the disease, critically affects either the spread or control of human-to-human transmission. Previous estimations on LF burden date from the 80s and it is unclear how the population expansion and the improvement on diagnostics and surveillance methods have affected such predictions. Although recent data have contributed to the awareness of epidemics, the real impact of LF in West African communities will only be possible with the intensification of interdisciplinary efforts in research and public health approaches. This review discusses the causes and consequences of LF from a One Health perspective, and how the application of this concept can improve the surveillance and control of this disease in West Africa.
Collapse
Affiliation(s)
- Liã Bárbara Arruda
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hatfield, UK
| | - Ayodeji Olayemi
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Nigeria
| | - David Simons
- The Royal Veterinary College, University of London, Hatfield, UK
| | - Deborah Ehichioya
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria.,Department of Microbiology, Ambrose Alli University, Ekpoma, Nigeria
| | | | - Rashid Ansumana
- School of Community Health Sciences, Njala University, Bo, Sierra Leone
| | - Margaret J Thomason
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Danny Asogun
- Institute of Lassa Fever Research and Control, Irrua Specialist Teaching Hospital, Irrua, Nigeria
| | | | | | - Richard A Kock
- The Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
47
|
Wang J, Zhao S, Chen X, Huang Z, Chong MKC, Guo Z, Javanbakht M, Ran J. The reproductive number of Lassa fever: a systematic review. J Travel Med 2021; 28:6159334. [PMID: 33690795 DOI: 10.1093/jtm/taab029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022]
Affiliation(s)
- Jingxuan Wang
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Shi Zhao
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiao Chen
- School of Public Health, Zhejiang University, Zhejiang, China
| | - Ziyue Huang
- Mianyang Maternal and Child Health Care Hospital, Mianyang, Sichuan, China
| | - Marc Ka Chun Chong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zihao Guo
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Yadouleton A, Picard C, Rieger T, Loko F, Cadar D, Kouthon EC, Job EO, Bankolé H, Oestereich L, Gbaguidi F, Pahlman M, Becker-Ziaja B, Journeaux A, Pannetier D, Mély S, Mundweiler S, Thomas D, Kohossi L, Saizonou R, Kakaï CG, Da Silva M, Kossoubedie S, Kakonku AL, M'Pelé P, Gunther S, Baize S, Fichet-Calvet E. Lassa fever in Benin: description of the 2014 and 2016 epidemics and genetic characterization of a new Lassa virus. Emerg Microbes Infect 2021; 9:1761-1770. [PMID: 32723007 PMCID: PMC7473144 DOI: 10.1080/22221751.2020.1796528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report two outbreaks of Lassa fever that occurred in Benin in 2014 and 2016 with 20 confirmed cases and 50% (10/20) mortality. Benin was not previously considered to be an endemic country for Lassa fever, resulting in a delay to diagnose the disease and its human transmission. Molecular investigations showed the viral genomes to be similar to that of the Togo strain, which is genetically very different from other known strains and confirms the existence of a new lineage. Endemic circulation of Lassa virus in a new territory and the genetic diversity thus confirm that this virus represents a growing threat for West African people. Given the divergence of the Benin strain from the prototypic Josiah Sierra Leone strain frequently used to generate vaccine candidates, the efficacy of vaccine candidates should also be demonstrated with this strain.
Collapse
Affiliation(s)
| | - Caroline Picard
- Virology Department, Institut Pasteur CNR des fièvres hémorragiques virales (CNR FHV), Lyon, France
| | - Toni Rieger
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Daniel Cadar
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | - Lisa Oestereich
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Meike Pahlman
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Beate Becker-Ziaja
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | - Stéphane Mély
- INSERM - Jean Mérieux BSL4Laboratory, CNR FHV, Lyon, France
| | | | - Damien Thomas
- INSERM - Jean Mérieux BSL4Laboratory, CNR FHV, Lyon, France
| | | | | | | | | | | | | | | | - Stephan Gunther
- Virology Department, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sylvain Baize
- Laboratoire des Fièvres Hémorragiques Virales, Cotonou, Benin
| | | |
Collapse
|
49
|
Lassa fever outcomes and prognostic factors in Nigeria (LASCOPE): a prospective cohort study. LANCET GLOBAL HEALTH 2021; 9:e469-e478. [PMID: 33740408 PMCID: PMC7970450 DOI: 10.1016/s2214-109x(20)30518-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022]
Abstract
Background Lassa fever is a viral haemorrhagic fever endemic in parts of west Africa. New treatments are needed to decrease mortality, but pretrial reference data on the disease characteristics are scarce. We aimed to document baseline characteristics and outcomes for patients hospitalised with Lassa fever in Nigeria. Methods We did a prospective cohort study (LASCOPE) at the Federal Medical Centre in Owo, Nigeria. All patients admitted with confirmed Lassa fever were invited to participate and asked to give informed consent. Patients of all ages, including newborn infants, were eligible for inclusion, as were pregnant women. All participants received standard supportive care and intravenous ribavirin according to Nigeria Centre for Disease Control guidelines and underwent systematic biological monitoring for 30 days. Patients' characteristics, care received, mortality, and associated factors were recorded using standard WHO forms. We used univariable and multivariable logistic regression models to investigate an association between baseline characteristics and mortality at day 30. Findings Between April 5, 2018, and March 15, 2020, 534 patients with confirmed Lassa fever were admitted to hospital, of whom 510 (96%) gave consent and were included in the analysis. The cohort included 258 (51%) male patients, 252 (49%) female patients, 426 (84%) adults, and 84 (16%) children (younger than 18 years). The median time between first symptoms and hospital admission was 8 days (IQR 7–13). At baseline, 176 (38%) of 466 patients had a Lassa fever RT-PCR cycle threshold (Ct) lower than 30. From admission to end of follow-up, 120 (25%) of 484 reached a National Early Warning Score (second version; NEWS2) of 7 or higher, 67 (14%) of 495 reached a Kidney Disease–Improving Global Outcome (KDIGO) stage of 2 or higher, and 41 (8%) of 510 underwent dialysis. All patients received ribavirin for a median of 10 days (IQR 9–13). 62 (12%) patients died (57 [13%] adults and five [6%] children). The median time to death was 3 days (1–6). The baseline factors independently associated with mortality were the following: age 45 years or older (adjusted odds ratio 16·30, 95% CI 5·31–50·30), NEWS2 of 7 or higher (4·79, 1·75–13·10), KDIGO grade 2 or higher (7·52, 2·66–21·20), plasma alanine aminotransferase 3 or more times the upper limit of normal (4·96, 1·69–14·60), and Lassa fever RT-PCR Ct value lower than 30 (4·65, 1·50–14·50). Interpretation Our findings comprehensively document clinical and biological characteristics of patients with Lassa fever and their relationship with mortality, providing prospective estimates that could be useful for designing future therapeutic trials. Such trials comparing new Lassa fever treatments to a standard of care should take no more than 15% as the reference mortality rate and consider adopting a combination of mortality and need for dialysis as the primary endpoint. Funding Institut National de la Santé et de la Recherche Médicale, University of Oxford, EU, UK Department for International Development, Wellcome Trust, French Ministry of Foreign Affairs, Agence Nationale de Recherches sur le SIDA et les hépatites virales, French National Research Institute for Sustainable Development.
Collapse
|
50
|
Basinski AJ, Fichet-Calvet E, Sjodin AR, Varrelman TJ, Remien CH, Layman NC, Bird BH, Wolking DJ, Monagin C, Ghersi BM, Barry PA, Jarvis MA, Gessler PE, Nuismer SL. Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa. PLoS Comput Biol 2021; 17:e1008811. [PMID: 33657095 PMCID: PMC7959400 DOI: 10.1371/journal.pcbi.1008811] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/15/2021] [Accepted: 02/17/2021] [Indexed: 01/07/2023] Open
Abstract
Forecasting the risk of pathogen spillover from reservoir populations of wild or domestic animals is essential for the effective deployment of interventions such as wildlife vaccination or culling. Due to the sporadic nature of spillover events and limited availability of data, developing and validating robust, spatially explicit, predictions is challenging. Recent efforts have begun to make progress in this direction by capitalizing on machine learning methodologies. An important weakness of existing approaches, however, is that they generally rely on combining human and reservoir infection data during the training process and thus conflate risk attributable to the prevalence of the pathogen in the reservoir population with the risk attributed to the realized rate of spillover into the human population. Because effective planning of interventions requires that these components of risk be disentangled, we developed a multi-layer machine learning framework that separates these processes. Our approach begins by training models to predict the geographic range of the primary reservoir and the subset of this range in which the pathogen occurs. The spillover risk predicted by the product of these reservoir specific models is then fit to data on realized patterns of historical spillover into the human population. The result is a geographically specific spillover risk forecast that can be easily decomposed and used to guide effective intervention. Applying our method to Lassa virus, a zoonotic pathogen that regularly spills over into the human population across West Africa, results in a model that explains a modest but statistically significant portion of geographic variation in historical patterns of spillover. When combined with a mechanistic mathematical model of infection dynamics, our spillover risk model predicts that 897,700 humans are infected by Lassa virus each year across West Africa, with Nigeria accounting for more than half of these human infections. The 2019 emergence of SARS-CoV-2 is a grim reminder of the threat animal-borne pathogens pose to human health. Even prior to SARS-CoV-2, the spillover of pathogens from animal reservoirs was a persistent problem, with pathogens such as Ebola, Nipah, and Lassa regularly but unpredictably causing outbreaks. Machine-learning models that anticipate when and where pathogen transmission from animals to humans is likely to occur would help guide surveillance efforts and preemptive countermeasures like information campaigns or vaccination programs. We develop a novel machine learning framework that uses datasets describing the distribution of a virus within its host and the range of its animal host, along with data on spatial patterns of human immunity, to infer rates of animal-to-human transmission across a region. By training the model on data from the animal host alone, our framework allows rigorous validation of spillover predictions using human data. We apply our framework to Lassa fever, a viral disease of West Africa that is spread to humans by rodents, and use the predictions to update estimates of Lassa virus infections in humans. Our results suggest that Nigeria is most at risk for the emergence of Lassa virus, and should be prioritized for outbreak-surveillance.
Collapse
Affiliation(s)
- Andrew J. Basinski
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| | | | - Anna R. Sjodin
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Tanner J. Varrelman
- Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Christopher H. Remien
- Department of Mathematics, University of Idaho, Moscow, Idaho, United States of America
| | - Nathan C. Layman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - David J. Wolking
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Corina Monagin
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Bruno M. Ghersi
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine, California National Primate Research Center, Department of Pathology and Laboratory Medicine, University of California, Davis, California, United States of America
| | - Michael A. Jarvis
- School of Biomedical and Healthcare Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Paul E. Gessler
- College of Natural Resources, University of Idaho, Moscow, Idaho, United States of America
| | - Scott L. Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|