1
|
Ren Y, Fan P, Zhang X, Fang T, Chen Z, Yao Y, Chi X, Zhang G, Zhao X, Sun B, Li F, Liu Z, Song Z, Zhang B, Peng C, Li E, Yang Y, Li J, Chiu S, Yu C. Potent Cross-neutralizing Antibodies Reveal Vulnerabilities of Henipavirus Fusion Glycoprotein. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501996. [PMID: 40298900 DOI: 10.1002/advs.202501996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/02/2025] [Indexed: 04/30/2025]
Abstract
Hendra and Nipah viruses (HNVs), zoonotic paramyxoviruses with >50% case fatality rates, cause fatal encephalitis and respiratory disease, yet lack approved therapies. Here, nine rhesus-derived monoclonal antibodies (mAbs) targeting the fusion glycoprotein (F) prefusion conformation are developed. Four mAbs exhibit first-rate cross-neutralization against HNVs, with two showing synergistic potency when combined with attachment glycoprotein (G)-specific mAbs. Single-dose administration of mAbs confers robust protection against lethal Nipah virus challenge in hamsters. Structural insights reveal that 8 of the 9 potent mAbs adopt a human IGHV4-59-like framework with protruding CDRH3 loops, forming pushpin-shaped paratopes that stabilize the prefusion F-trimer by occupying vulnerable interprotomer cavities. Systematic mutational profiling identifies 14 prefusion-locking residues within the F ectodomain, classified as i) structural linchpins governing fusogenicity or ii) immunodominant hotspots targeted by cross-neutralizing mAbs. This work delivers promising therapeutic candidates against HNVs and provides blueprints for the rational design of antibodies and vaccines targeting viral fusion machinery.
Collapse
Affiliation(s)
- Yi Ren
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Pengfei Fan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yanfeng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Xiangyang Chi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Guanying Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaofan Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Bingjie Sun
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Fangxu Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Zixuan Liu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zhenwei Song
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Baoyue Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430207, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yilong Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Changming Yu
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| |
Collapse
|
2
|
May AJ, Lella M, Lindenberger J, Berkman A, Kumar U, Dutta M, Barr M, Parks R, Lu X, Berry M, Newman A, Huang X, Song K, Ilevbare V, Sammour S, Park CS, Adhikari RD, Devkota P, Janowska K, Liu Y, Scapellato G, Spence TN, Mansouri K, Wiehe K, Edwards RJ, Saunders KO, Haynes BF, Acharya P. Structural and antigenic characterization of novel and diverse Henipavirus glycoproteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.627382. [PMID: 39713338 PMCID: PMC11661166 DOI: 10.1101/2024.12.11.627382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Henipaviruses, a genus within the Paramyxoviridae family, include the highly virulent Nipah and Hendra viruses that cause reoccurring outbreaks of deadly disease. Recent discoveries of several new Paramyxoviridae species, including the zoonotic Langya virus, have revealed much higher antigenic diversity than currently characterized and prompted the reorganization of these viruses into the Henipavirus and Parahenipavirus genera. Here, to explore the limits of structural and antigenic variation in both genera, collectively referred to here as HNVs, we constructed an expanded, antigenically diverse panel of HNV fusion and attachment glycoproteins from 56 unique HNV strains that better reflects global HNV diversity. We expressed and purified the fusion protein ectodomains and the attachment protein head domains and characterized their biochemical, biophysical and structural properties. We performed immunization experiments in mice leading to the elicitation of antibodies reactive to multiple HNV fusion proteins. Cryo-electron microscopy structures of diverse fusion proteins elucidated molecular determinants of differential pre-fusion state metastability and higher order contacts. A crystal structure of the Gamak virus attachment head domain revealed an additional domain added to the conserved 6-bladed, β-propeller fold. Taken together, these studies expand the known structural and antigenic limits of the HNVs, reveal new cross-reactive epitopes within both genera and provide foundational data for the development of broadly reactive countermeasures.
Collapse
|
3
|
Haas G, Lee B. De novo rescue of new henipaviruses under BSL-4 conditions - From sequence to pathogen. Adv Virus Res 2025; 121:61-99. [PMID: 40379383 DOI: 10.1016/bs.aivir.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
Zoonotic paramyxoviruses, including the highly pathogenic henipaviruses (HNVs), pose significant risks to global health due to their high mortality rates, potential for human-to-human transmission, and lack of approved countermeasures. Recent metagenomic surveys have uncovered an extensive diversity of HNVs and related paramyxoviruses circulating in wildlife, the majority of which remain uncharacterized due to the dearth of viral isolates. In lieu of viral isolates, reverse genetics systems offer an approach to derive infectious clones de novo in the laboratory, facilitating research into the biology, zoonotic potential, and pathogenicity of novel HNVs. This chapter explores the methodologies and applications of reverse genetics systems for novel HNVs, including considerations for virus sequence validation, full-length virus recovery, and the development of platforms such as minigenomes, replicons, and virus replicon particles. Such biologically-contained life cycle modeling systems enable research to be conducted at lower biocontainment, and provide accessible tools through which to investigate HNV biology. This work demonstrates the versatility of reverse genetics systems in advancing our understanding of high-consequence pathogens, enabling the proactive development of vaccines, antivirals, and diagnostic tools. By integrating these methodologies within a framework of biosafety and biosecurity, researchers can better prepare for and respond to future zoonotic threats.
Collapse
Affiliation(s)
- Griffin Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
4
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2025; 38:e0012823. [PMID: 39714175 PMCID: PMC11905374 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Findlay-Wilson S, Thakur N, Crossley L, Easterbrook L, Salguero FJ, Ruedas-Torres I, Fotheringham S, Kennedy E, Bailey D, Dowall S. Cross-protectivity of henipavirus soluble glycoprotein in an in vivo model of Nipah virus disease. Front Immunol 2025; 16:1517244. [PMID: 40078997 PMCID: PMC11896980 DOI: 10.3389/fimmu.2025.1517244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Nipah virus (NiV) is one of a group of highly pathogenic viruses classified within the Henipavirus genus. Since 2012 at least 11 new henipa-like viruses have been identified, including from new locations and reservoir hosts; the pathogenicity of these new viruses has yet to be determined, but two of them have been associated with morbidity, including fatalities. Methods The efficacy and cross-reactivity of two vaccine candidates derived from the soluble glycoproteins of both NiV and Hendra virus (HeV) was evaluated in our recently established hamster model. Results Both vaccine preparations resulted in strong humoral responses against NiV antigenic targets, demonstrating cross-reactive immunity. Efficacy was determined through challenge of hamsters with NiV Malaysian (NiV-M) strain. 100% of the hamsters survived a lethal challenge dose after prime/boost immunisation with glycoproteins derived from both NiV and HeV in the presence of adjuvant, with clinical signs and pathology being significantly reduced in immunised animals. Discussion This is first time the NiV and HeV soluble glycoproteins have been compared in the NiV-M hamster challenge model in the presence of Alhydrogel and AddaVax, providing evidence that glycoproteins from closely related henipavirus species can provide cross-protectivity against infection from alternate henipaviruses, supporting the potential of an effective pan-henipavirus vaccine for use in a frontline outbreak response.
Collapse
Affiliation(s)
- Stephen Findlay-Wilson
- Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom
| | - Nazia Thakur
- Viral Glycoproteins, The Pirbright Institute, Woking, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford,
United Kingdom
| | - Lucy Crossley
- Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom
| | - Linda Easterbrook
- Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom
| | - Francisco J. Salguero
- Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom
| | - Ines Ruedas-Torres
- Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom
| | - Susan Fotheringham
- Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom
| | - Emma Kennedy
- Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom
| | - Dalan Bailey
- Viral Glycoproteins, The Pirbright Institute, Woking, United Kingdom
| | - Stuart Dowall
- Specialised Microbiology and Laboratories, United Kingdom Health Security Agency (UKHSA), Salisbury, Wiltshire, United Kingdom
| |
Collapse
|
6
|
Moonga LC, Chipinga J, Collins JP, Kapoor V, Saasa N, Nalubamba KS, Hang’ombe BM, Namangala B, Lundu T, Lu XJ, Yingst S, Wickiser JK, Briese T. Application of a Sensitive Capture Sequencing Approach to Reservoir Surveillance Detects Novel Viruses in Zambian Wild Rodents. Viruses 2024; 16:1754. [PMID: 39599868 PMCID: PMC11598836 DOI: 10.3390/v16111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
We utilized a pan-viral capture sequencing assay, VirCapSeq-VERT, to assess viral diversity in rodents from the Eastern Province of Zambia as a model for pre-pandemic viral reservoir surveillance. We report rodent adeno-, parvo-, paramyxo-, and picornaviruses that represent novel species or isolates, including murine adenovirus 4, two additional species in the genus Chaphamaparvovirus, two paramyxoviruses distantly related to unclassified viruses in the genus Jeilongvirus, and the first Aichivirus A sequence identified from rodents in Africa. Our results emphasize the importance of rodents as a reservoir for potential zoonotic viruses.
Collapse
Affiliation(s)
- Lavel C. Moonga
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (L.C.M.); (B.M.H.); (B.N.)
- Africa Centre of Excellence in Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | | | - John P. Collins
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
| | - Vishal Kapoor
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
- Department of Zoology, Rabindranath Tagore University, Bhopal 464993, India
| | - Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - King S. Nalubamba
- Department of Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Bernard M. Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (L.C.M.); (B.M.H.); (B.N.)
- Africa Centre of Excellence in Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (L.C.M.); (B.M.H.); (B.N.)
- Africa Centre of Excellence in Infectious Diseases of Humans and Animals (ACEIDHA), School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| | - Tapiwa Lundu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Xiang-Jun Lu
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
| | - Samuel Yingst
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
| | - J. Kenneth Wickiser
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Thomas Briese
- Global Alliance for Preventing Pandemics at the Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA; (J.P.C.); (V.K.); (X.-J.L.); (S.Y.); (J.K.W.)
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Gong HY, Chen RX, Tan SM, Wang X, Chen JM, Zhang YL, Liao M. Viruses Identified in Shrews ( Soricidae) and Their Biomedical Significance. Viruses 2024; 16:1441. [PMID: 39339918 PMCID: PMC11437491 DOI: 10.3390/v16091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Shrews (Soricidae) are common small wild mammals. Some species of shrews, such as Asian house shrews (Suncus murinus), have a significant overlap in their habitats with humans and domestic animals. Currently, over 190 species of viruses in 32 families, including Adenoviridae, Arenaviridae, Arteriviridae, Astroviridae, Anelloviridae, Bornaviridae, Caliciviridae, Chuviridae, Coronaviridae, Filoviridae, Flaviviridae, Hantaviridae, Hepadnaviridae, Hepeviridae, Nairoviridae, Nodaviridae, Orthoherpesviridae, Orthomyxoviridae, Paramyxoviridae, Parvoviridae, Phenuiviridae, Picobirnaviridae, Picornaviridae, Polyomaviridae, Poxviridae, Rhabdoviridae, Sedoreoviridae, Spinareoviridae, and three unclassified families, have been identified in shrews. Diverse shrew viruses, such as Borna disease virus 1, Langya virus, and severe fever with thrombocytopenia syndrome virus, cause diseases in humans and/or domestic animals, posing significant threats to public health and animal health. This review compiled fundamental information about shrews and provided a comprehensive summary of the viruses that have been detected in shrews, with the aim of facilitating a deep understanding of shrews and the diversity, epidemiology, and risks of their viruses.
Collapse
Affiliation(s)
- Huan-Yu Gong
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Rui-Xu Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Su-Mei Tan
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Xiu Wang
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Ji-Ming Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, China; (H.-Y.G.); (R.-X.C.); (S.-M.T.); (X.W.)
| | - Yuan-Long Zhang
- Guangdong Center for Animal Disease Prevention and Control, Guangzhou 510230, China
| | - Ming Liao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| |
Collapse
|
8
|
Haring VC, Litz B, Jacob J, Brecht M, Bauswein M, Sehl-Ewert J, Heroldova M, Wylezich C, Hoffmann D, Ulrich RG, Beer M, Pfaff F. Detection of novel orthoparamyxoviruses, orthonairoviruses and an orthohepevirus in European white-toothed shrews. Microb Genom 2024; 10:001275. [PMID: 39088249 PMCID: PMC11293873 DOI: 10.1099/mgen.0.001275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
While the viromes and immune systems of bats and rodents have been extensively studied, comprehensive data are lacking for insectivores (order Eulipotyphla) despite their wide geographic distribution. Anthropogenic land use and outdoor recreational activities, as well as changes in the range of shrews, may lead to an expansion of the human-shrew interface with the risk of spillover infections, as reported for Borna disease virus 1. We investigated the virome of 45 individuals of 4 white-toothed shrew species present in Europe, using metagenomic RNA sequencing of tissue and intestine pools. Moderate to high abundances of sequences related to the families Paramyxoviridae, Nairoviridae, Hepeviridae and Bornaviridae were detected. Whole genomes were determined for novel orthoparamyxoviruses (n=3), orthonairoviruses (n=2) and an orthohepevirus. The novel paramyxovirus, tentatively named Hasua virus, was phylogenetically related to the zoonotic Langya virus and Mòjiāng virus. The novel orthonairoviruses, along with the potentially zoonotic Erve virus, fall within the shrew-borne Thiafora virus genogroup. The highest viral RNA loads of orthoparamyxoviruses were detected in the kidneys, in well-perfused organs for orthonairoviruses and in the liver and intestine for orthohepevirus, indicating potential transmission routes. Notably, several shrews were found to be coinfected with viruses from different families. Our study highlights the virus diversity present in shrews, not only in biodiversity-rich regions but also in areas influenced by human activity. This study warrants further research to characterize and assess the clinical implications and risk of these viruses and the importance of shrews as reservoirs in European ecosystems.
Collapse
Affiliation(s)
- Viola C. Haring
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Benedikt Litz
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
| | - Jens Jacob
- Julius Kühn-Institute, Institute for Epidemiology and Pathogen Diagnostics, Rodent Research, Muenster, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Julia Sehl-Ewert
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald - Insel Riems, Germany
| | - Marta Heroldova
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Claudia Wylezich
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald - Insel Riems, Germany
| | - Donata Hoffmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
| | - Florian Pfaff
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald - Insel Riems, Germany
| |
Collapse
|
9
|
Lopez-Labrador FX, Huber M, Sidorov IA, Brown JR, Cuypers L, Laenen L, Vanmechelen B, Maes P, Fischer N, Pichler I, Storey N, Atkinson L, Schmutz S, Kufner V, van Boheemen S, Mulders CE, Grundhoff A, Blümke P, Robitaille A, Cinek O, Hubáčková K, Mourik K, Boers SA, Stauber L, Salmona M, Cappy P, Ramette A, Franze' A, LeGoff J, Claas ECJ, Rodriguez C, de Vries JJC. Multicenter benchmarking of short and long read wet lab protocols for clinical viral metagenomics. J Clin Virol 2024; 173:105695. [PMID: 38823290 DOI: 10.1016/j.jcv.2024.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
Metagenomics is gradually being implemented for diagnosing infectious diseases. However, in-depth protocol comparisons for viral detection have been limited to individual sets of experimental workflows and laboratories. In this study, we present a benchmark of metagenomics protocols used in clinical diagnostic laboratories initiated by the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS). A mock viral reference panel was designed to mimic low biomass clinical specimens. The panel was used to assess the performance of twelve metagenomic wet lab protocols currently in use in the diagnostic laboratories of participating ENNGS member institutions. Both Illumina and Nanopore, shotgun and targeted capture probe protocols were included. Performance metrics sensitivity, specificity, and quantitative potential were assessed using a central bioinformatics pipeline. Overall, viral pathogens with loads down to 104 copies/ml (corresponding to CT values of 31 in our PCR assays) were detected by all the evaluated metagenomic wet lab protocols. In contrast, lower abundant mixed viruses of CT values of 35 and higher were detected only by a minority of the protocols. Considering the reference panel as the gold standard, optimal thresholds to define a positive result were determined per protocol, based on the horizontal genome coverage. Implementing these thresholds, sensitivity and specificity of the protocols ranged from 67 to 100 % and 87 to 100 %, respectively. A variety of metagenomic protocols are currently in use in clinical diagnostic laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, implying the need for standardization of metagenomic analysis for use in clinical settings.
Collapse
Affiliation(s)
- F Xavier Lopez-Labrador
- Virology Laboratory, Genomics and Health Area, Center for Public Health Research (FISABIO-Public Health), Generalitat Valenciana, Valencia, Spain; Microbiology & Ecology Department, Medical School, University of Valencia, Spain; and CIBERESP, Instituto de Salud Carlos III, Spain
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Igor A Sidorov
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Julianne R Brown
- Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Lize Cuypers
- Department of Laboratory Medicine, University Hospitals Leuven, and Laboratory of Clinical Microbiology, KU, Leuven, Belgium
| | - Lies Laenen
- Department of Laboratory Medicine, University Hospitals Leuven, and Laboratory of Clinical Microbiology, KU, Leuven, Belgium
| | - Bert Vanmechelen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Piet Maes
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Belgium
| | - Nicole Fischer
- University Medical Center Hamburg-Eppendorf, UKE Institute for Medical Microbiology, Virology and Hygiene, Germany
| | - Ian Pichler
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Nathaniel Storey
- Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Laura Atkinson
- Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Stefan Schmutz
- Institute of Medical Virology, University of Zurich, Switzerland
| | - Verena Kufner
- Institute of Medical Virology, University of Zurich, Switzerland
| | | | | | | | | | | | - Ondrej Cinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, Prague, Czech Republic
| | - Klára Hubáčková
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, Prague, Czech Republic
| | - Kees Mourik
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Stefan A Boers
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lea Stauber
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Maud Salmona
- Virology Department, AP-HP, Hôpital Saint Louis, F-75010 Paris, France
| | | | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Switzerland
| | - Alessandra Franze'
- Virology Laboratory, Genomics and Health Area, Center for Public Health Research (FISABIO-Public Health), Generalitat Valenciana, Valencia, Spain
| | - Jerome LeGoff
- Virology Department, AP-HP, Hôpital Saint Louis, F-75010 Paris, France
| | - Eric C J Claas
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jutte J C de Vries
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
10
|
Sabir AJ, Rong L, Broder CC, Amaya M. Cedar virus biology and its applications as a surrogate for highly pathogenic henipaviruses. CELL INSIGHT 2024; 3:100181. [PMID: 39967899 PMCID: PMC11832809 DOI: 10.1016/j.cellin.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 02/20/2025]
Abstract
Nipah Virus (NiV) and Hendra Virus (HeV), are the prototype species of the genus Henipavirus and are highly pathogenic agents capable of causing fatal diseases in both animals and humans. Both NiV and HeV are classified as biosafety level-4 (BSL-4) restricted pathogens and remain the only henipaviruses within the genus known to cause systemic, severe respiratory and encephalitic henipaviral disease, and represent substantial transboundary threats. There are no approved prophylactic or therapeutic treatments for human henipavirus infections, and the World Health Organization acknowledges them as priority pathogens needing urgent research. The discovery of Cedar virus (CedV), the only recognized non-pathogenic henipavirus, has provided a number of unique opportunities to study henipavirus and host interactions and also facilitate countermeasure development research at lower BSL-2 containment. This review will highlight the unique aspects of CedV biology and how it has been exploited as a model for developing therapeutic strategies against more virulent henipavirus species.
Collapse
Affiliation(s)
- Ahmad Jawad Sabir
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, 20814, USA
| |
Collapse
|
11
|
Meier K, Olejnik J, Hume AJ, Mühlberger E. A Comparative Assessment of the Pathogenic Potential of Newly Discovered Henipaviruses. Pathogens 2024; 13:587. [PMID: 39057814 PMCID: PMC11280395 DOI: 10.3390/pathogens13070587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Recent advances in high-throughput sequencing technologies have led to the discovery of a plethora of previously unknown viruses in animal samples. Some of these newly detected viruses are closely related to human pathogens. A prime example are the henipaviruses. Both Nipah (NiV) and Hendra virus (HeV) cause severe disease in humans. Henipaviruses are of zoonotic origin, and animal hosts, including intermediate hosts, play a critical role in viral transmission to humans. The natural reservoir hosts of NiV and HeV seem to be restricted to a few fruit bat species of the Pteropus genus in distinct geographic areas. However, the recent discovery of novel henipa- and henipa-like viruses suggests that these viruses are far more widespread than was originally thought. To date, these new viruses have been found in a wide range of animal hosts, including bats, shrews, and rodents in Asia, Africa, Europe, and South America. Since these viruses are closely related to human pathogens, it is important to learn whether they pose a threat to human health. In this article, we summarize what is known about the newly discovered henipaviruses, highlight differences to NiV and HeV, and discuss their pathogenic potential.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Judith Olejnik
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Adam J. Hume
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Elke Mühlberger
- Department of Virology, Immunology and Microbiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; (K.M.); (J.O.); (A.J.H.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| |
Collapse
|
12
|
Gan M, Hu B, Ding Q, Zhang N, Wei J, Nie T, Cai K, Zheng Z. Discovery and characterization of novel jeilongviruses in wild rodents from Hubei, China. Virol J 2024; 21:146. [PMID: 38918816 PMCID: PMC11201313 DOI: 10.1186/s12985-024-02417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Jeilongvirus comprises non-segmented negative-stranded RNA viruses that are classified within the Paramyxoviridae family by phylogeny. Jeilongviruses are found in various reservoirs, including rodents and bats. Rodents are typical viral reservoirs with diverse spectra and zoonotic potential. Little is currently known about jeilongviruses in rodents from central China. The study utilized high-throughput and Sanger sequencing to obtain jeilongvirus genomes, including those of two novel strains (HBJZ120/CHN/2021 (17,468 nt) and HBJZ157/CHN/2021 (19,143 nt)) and three known viruses (HBXN18/CHN/2021 (19,212 nt), HBJZ10/CHN/2021 (19,700 nt), HBJM106/CHN/2021 (18,871 nt)), which were characterized by genome structure, identity matrix, and phylogenetic analysis. Jeilongviruses were classified into three subclades based on their topology, phylogeny, and hosts. Based on the amino acid sequence identities and phylogenetic analysis of the L protein, HBJZ120/CHN/2021 and HBJZ157/CHN/2021 were found to be strains rather than novel species. Additionally, according to specific polymerase chain reaction screening, the positive percentage of Beilong virus in Hubei was 6.38%, suggesting that Beilong virus, belonging to the Jeilongvirus genus, is likely to be widespread in wild rodents. The identification of novel strains further elucidated the genomic diversity of jeilongviruses. Additionally, the prevalence of jeilongviruses in Hubei, China, was profiled, establishing a foundation for the surveillance and early warning of emerging paramyxoviruses.
Collapse
Affiliation(s)
- Min Gan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bing Hu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Qingwen Ding
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Nailou Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Jinbo Wei
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Tao Nie
- Xianning Municipal Center for Disease Control and Prevention, Xianning, 437199, Hubei, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China.
| | - Zhenhua Zheng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
13
|
Qiu X, Wang F, Sha A. Infection and transmission of henipavirus in animals. Comp Immunol Microbiol Infect Dis 2024; 109:102183. [PMID: 38640700 DOI: 10.1016/j.cimid.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Henipavirus (HNV) is well known for two zoonotic viruses in the genus, Hendra virus (HeV) and Nipah virus (NiV), which pose serious threat to human and animal health. In August 2022, a third zoonotic virus in the genus Henipavirus, Langya virus (LayV), was discovered in China. The emergence of HeV, NiV, and LayV highlights the persistent threat of HNV to human and animal health. In addition to the above three HNVs, new species within this genus are still being discovered. Although they have not yet caused a pandemic in humans or livestock, they still have the risk of spillover as a potential threat to the health of humans and animals. It's important to understand the infection and transmission of different HNV in animals for the prevention and control of current or future HNV epidemics. Therefore, this review mainly summarizes the animal origin, animal infection and transmission of HNV that have been found worldwide, and further analyzes and summarizes the rules of infection and transmission, so as to provide a reference for relevant scientific researchers. Furthermore, it can provide a direction for epidemic prevention and control, and animal surveillance to reduce the risk of the global pandemic of HNV.
Collapse
Affiliation(s)
- Xinyu Qiu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Feng Wang
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404120, China
| | - Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing 404120, China.
| |
Collapse
|
14
|
Xu JL, Chen JT, Hu B, Guo WW, Guo JJ, Xiong CR, Qin LX, Yu XN, Chen XM, Cai K, Li YR, Liu MQ, Chen LJ, Hou W. Discovery and genetic characterization of novel paramyxoviruses from small mammals in Hubei Province, Central China. Microb Genom 2024; 10:001229. [PMID: 38700925 PMCID: PMC11145887 DOI: 10.1099/mgen.0.001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Paramyxoviruses are a group of single-stranded, negative-sense RNA viruses, some of which are responsible for acute human disease, including parainfluenza virus, measles virus, Nipah virus and Hendra virus. In recent years, a large number of novel paramyxoviruses, particularly members of the genus Jeilongvirus, have been discovered in wild mammals, suggesting that the diversity of paramyxoviruses may be underestimated. Here we used hemi-nested reverse transcription PCR to obtain 190 paramyxovirus sequences from 969 small mammals in Hubei Province, Central China. These newly identified paramyxoviruses were classified into four clades: genera Jeilongvirus, Morbillivirus, Henipavirus and Narmovirus, with most of them belonging to the genus Jeilongvirus. Using Illumina sequencing and Sanger sequencing, we successfully recovered six near-full-length genomes with different genomic organizations, revealing the more complex genome content of paramyxoviruses. Co-divergence analysis of jeilongviruses and their known hosts indicates that host-switching occurred more frequently in the evolutionary histories of the genus Jeilongvirus. Together, our findings demonstrate the high prevalence of paramyxoviruses in small mammals, especially jeilongviruses, and highlight the diversity of paramyxoviruses and their genome content, as well as the evolution of jeilongviruses.
Collapse
Affiliation(s)
- Jia-le Xu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jin-tao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Wei-wei Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Jing-jing Guo
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Chao-rui Xiong
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Ling-xin Qin
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xin-nai Yu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Xiao-min Chen
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, 6 Zhuodaoquan Road, Wuhan, Hubei, 430079, PR China
| | - Yi-rong Li
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Man-qing Liu
- Division of Virology, Wuhan Center for Disease Control & Prevention, 288 Machang Road, Wuhan, Hubei, 430015, PR China
| | - Liang-jun Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
- School of Public Health, Wuhan University, 185 Donghu Road, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
15
|
Zeitlin L, Cross RW, Woolsey C, West BR, Borisevich V, Agans KN, Prasad AN, Deer DJ, Stuart L, McCavitt-Malvido M, Kim DH, Pettitt J, Crowe JE, Whaley KJ, Veesler D, Dimitrov A, Abelson DM, Geisbert TW, Broder CC. Therapeutic administration of a cross-reactive mAb targeting the fusion glycoprotein of Nipah virus protects nonhuman primates. Sci Transl Med 2024; 16:eadl2055. [PMID: 38569014 DOI: 10.1126/scitranslmed.adl2055] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
No licensed vaccines or therapies exist for patients infected with Nipah virus (NiV), although an experimental human monoclonal antibody (mAb) cross-reactive to the NiV and Hendra virus (HeV) G glycoprotein, m102.4, has been tested in a phase 1 trial and has been provided under compassionate use for both HeV and NiV exposures. NiV is a highly pathogenic zoonotic paramyxovirus causing regular outbreaks in humans and animals in South and Southeast Asia. The mortality rate of NiV infection in humans ranges from 40% to more than 90%, making it a substantial public health concern. The NiV G glycoprotein mediates host cell attachment, and the F glycoprotein facilitates membrane fusion and infection. We hypothesized that a mAb against the prefusion conformation of the F glycoprotein may confer better protection than m102.4. To test this, two potent neutralizing mAbs against NiV F protein, hu1F5 and hu12B2, were compared in a hamster model. Hu1F5 provided superior protection to hu12B2 and was selected for comparison with m102.4 for the ability to protect African green monkeys (AGMs) from a stringent NiV challenge. AGMs were exposed intranasally to the Bangladesh strain of NiV and treated 5 days after exposure with either mAb (25 milligrams per kilogram). Whereas only one of six AGMs treated with m102.4 survived until the study end point, all six AGMs treated with hu1F5 were protected. Furthermore, a reduced 10 milligrams per kilogram dose of hu1F5 also provided complete protection against NiV challenge, supporting the upcoming clinical advancement of this mAb for postexposure prophylaxis and therapy.
Collapse
Affiliation(s)
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Abhishek N Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | | | | | - Do H Kim
- Mapp Biopharmaceutical, San Diego, CA 92121, USA
| | | | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Antony Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | | | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX 77550, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
16
|
Oguntuyo KY, Haas GD, Azarm KD, Stevens CS, Brambilla L, Kowdle SS, Avanzato VA, Pryce R, Freiberg AN, Bowden TA, Lee B. Structure-guided mutagenesis of Henipavirus receptor-binding proteins reveals molecular determinants of receptor usage and antibody-binding epitopes. J Virol 2024; 98:e0183823. [PMID: 38426726 PMCID: PMC10949843 DOI: 10.1128/jvi.01838-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.
Collapse
Affiliation(s)
| | - Griffin D. Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristopher D. Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian S. Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Brambilla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shreyas S. Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria A. Avanzato
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
May AJ, Acharya P. Structural Studies of Henipavirus Glycoproteins. Viruses 2024; 16:195. [PMID: 38399971 PMCID: PMC10892422 DOI: 10.3390/v16020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Henipaviruses are a genus of emerging pathogens that includes the highly virulent Nipah and Hendra viruses that cause reoccurring outbreaks of disease. Henipaviruses rely on two surface glycoproteins, known as the attachment and fusion proteins, to facilitate entry into host cells. As new and divergent members of the genus have been discovered and structurally characterized, key differences and similarities have been noted. This review surveys the available structural information on Henipavirus glycoproteins, complementing this with information from related biophysical and structural studies of the broader Paramyxoviridae family of which Henipaviruses are members. The process of viral entry is a primary focus for vaccine and drug development, and this review aims to identify critical knowledge gaps in our understanding of the mechanisms that drive Henipavirus fusion.
Collapse
Affiliation(s)
- Aaron J. May
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
| |
Collapse
|
18
|
Zhou L, Kang H, Xu S, Chen J, Wang X, Long H, Li G, Xu P, He B. Tailam paramyxovirus C protein inhibits viral replication. J Virol 2024; 98:e0165423. [PMID: 38169290 PMCID: PMC10804977 DOI: 10.1128/jvi.01654-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 01/05/2024] Open
Abstract
Jeilongviruses are emerging single-stranded negative-sense RNA viruses in the Paramyxoviridae family. Tailam paramyxovirus (TlmPV) is a Jeilongvirus that was identified in 2011. Very little is known about the mechanisms that regulate viral replication in these newly emerging viruses. Among the non-structural viral proteins of TlmPV, the C protein is predicted to be translated from an open reading frame within the phosphoprotein gene through alternative translation initiation. Though the regulatory roles of C proteins in virus replication of other paramyxoviruses have been reported before, the function of the TlmPV C protein and the relevant molecular mechanisms have not been reported. Here, we show that the C protein is expressed in TlmPV-infected cells and negatively modulates viral RNA replication. The TlmPV C protein interacts with the P protein, negatively impacting the interaction between N and P, resulting in inhibition of viral RNA replication. Deletion mutagenesis studies indicate that the 50 amino-terminal amino acid residues of the C protein are dispensable for its inhibition of virus RNA replication and interaction with the P protein.IMPORTANCETailam paramyxovirus (TlmPV) is a newly identified paramyxovirus belonging to the Jeilongvirus genus, of which little is known. In this work, we confirmed the expression of the C protein in TlmPV-infected cells, assessed its function, and defined a potential mechanism of action. This is the first time that the existence of a Jeilongvirus C protein has been confirmed and its role in viral replication has been reported.
Collapse
Affiliation(s)
- Lu Zhou
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| | - Haixian Kang
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| | - Shuya Xu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| | - Jinbi Chen
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| | - Xianyang Wang
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haishang Long
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei Xu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Biao He
- Guangzhou CyanVaccine Biotechnology Company Ltd., Guangzhou, China
| |
Collapse
|
19
|
Caruso S, Edwards SJ. Recently Emerged Novel Henipa-like Viruses: Shining a Spotlight on the Shrew. Viruses 2023; 15:2407. [PMID: 38140648 PMCID: PMC10747904 DOI: 10.3390/v15122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Henipaviruses are zoonotic viruses, including some highly pathogenic and capable of serious disease and high fatality rates in both animals and humans. Hendra virus and Nipah virus are the most notable henipaviruses, resulting in significant outbreaks across South Asia, South-East Asia, and Australia. Pteropid fruit bats have been identified as key zoonotic reservoirs; however, the increased discovery of henipaviruses outside the geographic distribution of Pteropid fruit bats and the detection of novel henipa-like viruses in other species such as the shrew, rat, and opossum suggest that Pteropid bats are not the sole reservoir for henipaviruses. In this review, we provide an update on henipavirus spillover events and describe the recent detection of novel unclassified henipaviruses, with a strong focus on the shrew and its emerging role as a key host of henipaviruses.
Collapse
Affiliation(s)
| | - Sarah J. Edwards
- Australian Centre for Disease Preparedness, Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, East Geelong, VIC 3219, Australia;
| |
Collapse
|
20
|
Abstract
Paramyxoviruses are a family of single-stranded negative-sense RNA viruses, many of which are responsible for a range of respiratory and neurological diseases in humans and animals. Among the most notable are the henipaviruses, which include the deadly Nipah (NiV) and Hendra (HeV) viruses, the causative agents of outbreaks of severe disease and high case fatality rates in humans and animals. NiV and HeV are maintained in fruit bat reservoirs primarily in the family Pteropus and spillover into humans directly or by an intermediate amplifying host such as swine or horses. Recently, non-chiropteran associated Langya (LayV), Gamak (GAKV), and Mojiang (MojV) viruses have been discovered with confirmed or suspected ability to cause disease in humans or animals. These viruses are less genetically related to HeV and NiV yet share many features with their better-known counterparts. Recent advances in surveillance of wild animal reservoir viruses have revealed a high number of henipaviral genome sequences distributed across most continents, and mammalian orders previously unknown to harbour henipaviruses. In this review, we summarize the current knowledge on the range of pathogenesis observed for the henipaviruses as well as their replication cycle, epidemiology, genomics, and host responses. We focus on the most pathogenic viruses, including NiV, HeV, LayV, and GAKV, as well as the experimentally non-pathogenic CedV. We also highlight the emerging threats posed by these and potentially other closely related viruses.
Collapse
Affiliation(s)
- Benjamin Kaza
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Hector C. Aguilar
- Department of Microbiology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University
| |
Collapse
|
21
|
Oguntuyo KY, Haas GD, Azarm KD, Stevens CS, Brambilla L, Kowdle S, Avanzato VA, Pryce R, Freiberg AN, Bowden TA, Lee B. Structure guided mutagenesis of Henipavirus Receptor Binding Proteins reveals molecular determinants of receptor usage and antibody binding epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568281. [PMID: 38045373 PMCID: PMC10690272 DOI: 10.1101/2023.11.22.568281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Nipah virus (NiV) is a highly lethal, zoonotic henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, use EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, identify the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveals regions critical for GhV binding of EFNB2, and describes putative HNV antibody binding epitopes.
Collapse
Affiliation(s)
- K Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - G D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - K D Azarm
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Brambilla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - V A Avanzato
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - R Pryce
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - A N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - T A Bowden
- Division of Structural Biology, Wellcome Center for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - B Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Wrobel ER, Jackson J, Abraham M, He B. Regulation of host gene expression by J paramyxovirus. PLoS One 2023; 18:e0294173. [PMID: 37963152 PMCID: PMC10645344 DOI: 10.1371/journal.pone.0294173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Paramyxoviruses are negative-sense, single-stranded RNA viruses that are associated with numerous diseases in humans and animals. J paramyxovirus (JPV) was first isolated from moribund mice (Mus musculus) with hemorrhagic lung lesions in Australia in 1972. In 2016, JPV was classified into the newly established genus Jeilongvirus. Novel jeilongviruses are being discovered worldwide in wildlife populations. However, the effects of jeilongvirus infection on host gene expression remains uncharacterized. To address this, cellular RNA from JPV-infected mouse fibroblasts was collected at 2, 4, 8, 12, 16, 24, and 48 hours post-infection (hpi) and were sequenced using single-end 75 base pairs (SE75) sequencing chemistry on an Illumina NextSeq platform. Differentially expressed genes (DEGs) between the virus-infected replicates and mock replicates at each timepoint were identified using the Tophat2-Cufflinks-Cuffdiff protocol. At 2 hpi, 11 DEGs were identified in JPV-infected cells, while 1,837 DEGs were detected at 48 hpi. A GO analysis determined that the genes at the earlier timepoints were involved in interferon responses, while there was a shift towards genes that are involved in antigen processing and presentation processes at the later timepoints. At 48 hpi, a KEGG analysis revealed that many of the DEGs detected were involved in pathways that are important for immune responses. qRT-PCR verified that Rtp4, Ifit3, Mx2, and Stat2 were all upregulated during JPV infection, while G0s2 was downregulated. After JPV infection, the expression of inflammatory and antiviral factors in mouse fibroblasts changes significantly. This study provides crucial insight into the different arms of host immunity that mediate Jeilongvirus infection. Understanding the pathogenic mechanisms of Jeilongvirus will lead to better strategies for the prevention and control of potential diseases that may arise from this group of viruses.
Collapse
Affiliation(s)
- Elizabeth R. Wrobel
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Jared Jackson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Mathew Abraham
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Biao He
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
23
|
Horemans M, Van Bets J, Joly Maes T, Maes P, Vanmechelen B. Discovery and genome characterization of six new orthoparamyxoviruses in small Belgian mammals. Virus Evol 2023; 9:vead065. [PMID: 38034864 PMCID: PMC10684267 DOI: 10.1093/ve/vead065] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
In the future, zoonotic spillover events are expected to occur more frequently. Consequences of such events have clearly been demonstrated by recent outbreaks of monkeypox, Ebola virus, and the well-known severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Virus discovery has proven to be an important tool in the preparation against viral outbreaks, generating data concerning the diversity, quantity, and ecology of the vertebrate virome. Orthoparamyxoviruses, a subfamily within the Paramyxoviridae, are important biosurveillance targets, since they include several known animal, human, and zoonotic pathogens such as Nipah virus, measles virus, and Hendra virus. During this study, 127 bat samples, thirty-four rodent samples, and seventeen shrew samples originating from Belgium were screened for orthoparamyxovirus presence using nested reverse transcription-polymerase chain reaction assays and nanopore sequencing. We present here the complete genomes of six putative new viral species, belonging to the genera Jeilongvirus and Henipavirus. Characterization of these genomes revealed significant differences in gene composition and organization, both within viruses of the same genus and between viruses of different genera. Remarkably, a previously undetected gene coding for a protein of unknown function was identified in the genome of a putative new Henipavirus. Additionally, phylogenetic analysis of jeilongviruses and henipaviruses reveals a division of both genera into two clades, one consisting of bat-borne viruses and the other consisting of rodent- and shrew-borne viruses, elucidating the need for proper reclassification.
Collapse
Affiliation(s)
| | - Jessica Van Bets
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, Leuven BE3000, Belgium
| | - Tibe Joly Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, Leuven BE3000, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, Leuven BE3000, Belgium
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49/Box 1040, Leuven BE3000, Belgium
| |
Collapse
|
24
|
Diederich S, Babiuk S, Boshra H. A Survey of Henipavirus Tropism-Our Current Understanding from a Species/Organ and Cellular Level. Viruses 2023; 15:2048. [PMID: 37896825 PMCID: PMC10611353 DOI: 10.3390/v15102048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Henipaviruses are single-stranded RNA viruses that have been shown to be virulent in several species, including humans, pigs, horses, and rodents. Isolated nearly 30 years ago, these viruses have been shown to be of particular concern to public health, as at least two members (Nipah and Hendra viruses) are highly virulent, as well as zoonotic, and are thus classified as BSL4 pathogens. Although only 5 members of this genus have been isolated and characterized, metagenomics analysis using animal fluids and tissues has demonstrated the existence of other novel henipaviruses, suggesting a far greater degree of phylogenetic diversity than is currently known. Using a variety of molecular biology techniques, it has been shown that these viruses exhibit varying degrees of tropism on a species, organ/tissue, and cellular level. This review will attempt to provide a general overview of our current understanding of henipaviruses, with a particular emphasis on viral tropism.
Collapse
Affiliation(s)
- Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald, Germany;
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E EM4, Canada;
| | - Hani Boshra
- Global Urgent and Advanced Research and Development (GUARD), 911 rue Principale, Batiscan, QC G0X 1A0, Canada
| |
Collapse
|
25
|
Li H, Kim JYV, Pickering BS. Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence. Front Microbiol 2023; 14:1167085. [PMID: 37529329 PMCID: PMC10387552 DOI: 10.3389/fmicb.2023.1167085] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are biosafety level 4 zoonotic pathogens causing severe and often fatal neurological and respiratory disease. These agents have been recognized by the World Health Organization as top priority pathogens expected to result in severe future outbreaks. HeV has caused sporadic infections in horses and a small number of human cases in Australia since 1994. The NiV Malaysia genotype (NiV-M) was responsible for the 1998-1999 epizootic outbreak in pigs with spillover to humans in Malaysia and Singapore. Since 2001, the NiV Bangladesh genotype (NiV-B) has been the predominant strain leading to outbreaks almost every year in Bangladesh and India, with hundreds of infections in humans. The natural reservoir hosts of HeV and NiV are fruit bats, which carry the viruses without clinical manifestation. The transmission pathways of henipaviruses from bats to humans remain poorly understood. Transmissions are often bridged by an intermediate animal host, which amplifies and spreads the viruses to humans. Horses and pigs are known intermediate hosts for the HeV outbreaks in Australia and NiV-M epidemic in Malaysia and Singapore, respectively. During the NiV-B outbreaks in Bangladesh, following initial spillover thought to be through the consumption of date palm sap, the spread of infection was largely human-to-human transmission. Spillover of NiV-B in recent outbreaks in India is less understood, with the primary route of transmission from bat reservoir to the initial human infection case(s) unknown and no intermediate host established. This review aims to provide a concise update on the epidemiology of henipaviruses covering their previous and current outbreaks with emphasis on the known and potential role of livestock as intermediate hosts in disease transmission. Also included is an up-to-date summary of newly emerging henipa-like viruses and animal hosts. In these contexts we discuss knowledge gaps and new challenges in the field and propose potential future directions.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Ji-Young V. Kim
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Bradley S. Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
26
|
Ikegame S, Carmichael JC, Wells H, Furler O'Brien RL, Acklin JA, Chiu HP, Oguntuyo KY, Cox RM, Patel AR, Kowdle S, Stevens CS, Eckley M, Zhan S, Lim JK, Veit EC, Evans MJ, Hashiguchi T, Durigon E, Schountz T, Epstein JH, Plemper RK, Daszak P, Anthony SJ, Lee B. Metagenomics-enabled reverse-genetics assembly and characterization of myotis bat morbillivirus. Nat Microbiol 2023; 8:1108-1122. [PMID: 37142773 PMCID: PMC11089651 DOI: 10.1038/s41564-023-01380-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
Morbilliviruses are among the most contagious viral pathogens of mammals. Although previous metagenomic surveys have identified morbillivirus sequences in bats, full-length morbilliviruses from bats are limited. Here we characterize the myotis bat morbillivirus (MBaMV) from a bat surveillance programme in Brazil, whose full genome was recently published. We demonstrate that the fusion and receptor binding protein of MBaMV utilize bat CD150 and not human CD150, as an entry receptor in a mammalian cell line. Using reverse genetics, we produced a clone of MBaMV that infected Vero cells expressing bat CD150. Electron microscopy of MBaMV-infected cells revealed budding of pleomorphic virions, a characteristic morbillivirus feature. MBaMV replication reached 103-105 plaque-forming units ml-1 in human epithelial cell lines and was dependent on nectin-4. Infection of human macrophages also occurred, albeit 2-10-fold less efficiently than measles virus. Importantly, MBaMV is restricted by cross-neutralizing human sera elicited by measles, mumps and rubella vaccination and is inhibited by orally bioavailable polymerase inhibitors in vitro. MBaMV-encoded P/V genes did not antagonize human interferon induction. Finally, we show that MBaMV does not cause disease in Jamaican fruit bats. We conclude that, while zoonotic spillover into humans may theoretically be plausible, MBaMV replication would probably be controlled by the human immune system.
Collapse
Affiliation(s)
- Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jillian C Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather Wells
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Robert L Furler O'Brien
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Aum R Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miles Eckley
- Center for Vector-borne Infectious Diseases Department of Microbiology, Immunology and Pathology College of Veterinary Medicine Colorado State University, Fort Collins, CO, USA
| | - Shijun Zhan
- Center for Vector-borne Infectious Diseases Department of Microbiology, Immunology and Pathology College of Veterinary Medicine Colorado State University, Fort Collins, CO, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ethan C Veit
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew J Evans
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Edison Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tony Schountz
- Center for Vector-borne Infectious Diseases Department of Microbiology, Immunology and Pathology College of Veterinary Medicine Colorado State University, Fort Collins, CO, USA
| | | | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
27
|
Sozzi E, Lelli D, Barbieri I, Chiapponi C, Moreno A, Trogu T, Tosi G, Lavazza A. Isolation and Molecular Characterisation of Respirovirus 3 in Wild Boar. Animals (Basel) 2023; 13:1815. [PMID: 37889684 PMCID: PMC10252080 DOI: 10.3390/ani13111815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Paramyxoviruses are important pathogens affecting various animals, including humans. In this study, we identified a paramyxovirus in 2004 (180608_2004), isolated from a sample of the femoral marrow bone of a wild boar carcass imported from Australia. Antigenic and morphological characteristics indicated that this virus was similar to members of the family Paramyxoviridae. The complete genome phylogenetic analysis grouped this virus into genotype A of bovine parainfluenza virus type 3 (BPIV-3), recently renamed bovine respirovirus type 3 (BRV3), which also includes two swine paramyxoviruses (SPMV)-Texas-81 and ISU-92-isolated from encephalitic pigs in the United States in 1982 and 1992, respectively. The wild boar 180608_2004 strain was more closely related to both the BRV3 shipping fever (SF) strain and the SPMV Texas-81 strain at the nucleotide and amino acid levels than the SPMV ISU-92 strain. The high sequence identity to BRV3 suggested that this virus can be transferred from cattle to wild boars. The potential for cross-species transmission in the Respirovirus genus makes it essential for intensified genomic surveillance.
Collapse
Affiliation(s)
- Enrica Sozzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini” (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy; (D.L.); (I.B.); (C.C.); (A.M.); (T.T.); (G.T.); (A.L.)
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Amaya M, Yin R, Yan L, Borisevich V, Adhikari BN, Bennett A, Malagon F, Cer RZ, Bishop-Lilly KA, Dimitrov AS, Cross RW, Geisbert TW, Broder CC. A Recombinant Chimeric Cedar Virus-Based Surrogate Neutralization Assay Platform for Pathogenic Henipaviruses. Viruses 2023; 15:1077. [PMID: 37243163 PMCID: PMC10223282 DOI: 10.3390/v15051077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The henipaviruses, Nipah virus (NiV), and Hendra virus (HeV) can cause fatal diseases in humans and animals, whereas Cedar virus is a nonpathogenic henipavirus. Here, using a recombinant Cedar virus (rCedV) reverse genetics platform, the fusion (F) and attachment (G) glycoprotein genes of rCedV were replaced with those of NiV-Bangladesh (NiV-B) or HeV, generating replication-competent chimeric viruses (rCedV-NiV-B and rCedV-HeV), both with and without green fluorescent protein (GFP) or luciferase protein genes. The rCedV chimeras induced a Type I interferon response and utilized only ephrin-B2 and ephrin-B3 as entry receptors compared to rCedV. The neutralizing potencies of well-characterized cross-reactive NiV/HeV F and G specific monoclonal antibodies against rCedV-NiV-B-GFP and rCedV-HeV-GFP highly correlated with measurements obtained using authentic NiV-B and HeV when tested in parallel by plaque reduction neutralization tests (PRNT). A rapid, high-throughput, and quantitative fluorescence reduction neutralization test (FRNT) using the GFP-encoding chimeras was established, and monoclonal antibody neutralization data derived by FRNT highly correlated with data derived by PRNT. The FRNT assay could also measure serum neutralization titers from henipavirus G glycoprotein immunized animals. These rCedV chimeras are an authentic henipavirus-based surrogate neutralization assay that is rapid, cost-effective, and can be utilized outside high containment.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Lianying Yan
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bishwo N. Adhikari
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Andrew Bennett
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Francisco Malagon
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
- Leidos, Inc., Reston, VA 20190, USA
| | - Regina Z. Cer
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Kimberly A. Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Command–Frederick, Fort Detrick, Frederick, MD 21702, USA
| | - Antony S. Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20814, USA
| | - Robert W. Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
29
|
Roy A, Chan Mine E, Gaifas L, Leyrat C, Volchkova VA, Baudin F, Martinez-Gil L, Volchkov VE, Karlin DG, Bourhis JM, Jamin M. Orthoparamyxovirinae C Proteins Have a Common Origin and a Common Structural Organization. Biomolecules 2023; 13:biom13030455. [PMID: 36979390 PMCID: PMC10046310 DOI: 10.3390/biom13030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The protein C is a small viral protein encoded in an overlapping frame of the P gene in the subfamily Orthoparamyxovirinae. This protein, expressed by alternative translation initiation, is a virulence factor that regulates viral transcription, replication, and production of defective interfering RNA, interferes with the host-cell innate immunity systems and supports the assembly of viral particles and budding. We expressed and purified full-length and an N-terminally truncated C protein from Tupaia paramyxovirus (TupV) C protein (genus Narmovirus). We solved the crystal structure of the C-terminal part of TupV C protein at a resolution of 2.4 Å and found that it is structurally similar to Sendai virus C protein, suggesting that despite undetectable sequence conservation, these proteins are homologous. We characterized both truncated and full-length proteins by SEC-MALLS and SEC-SAXS and described their solution structures by ensemble models. We established a mini-replicon assay for the related Nipah virus (NiV) and showed that TupV C inhibited the expression of NiV minigenome in a concentration-dependent manner as efficiently as the NiV C protein. A previous study found that the Orthoparamyxovirinae C proteins form two clusters without detectable sequence similarity, raising the question of whether they were homologous or instead had originated independently. Since TupV C and SeV C are representatives of these two clusters, our discovery that they have a similar structure indicates that all Orthoparamyxovirine C proteins are homologous. Our results also imply that, strikingly, a STAT1-binding site is encoded by exactly the same RNA region of the P/C gene across Paramyxovirinae, but in different reading frames (P or C), depending on which cluster they belong to.
Collapse
Affiliation(s)
- Ada Roy
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Emeric Chan Mine
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, 69365 Lyon, France
| | - Lorenzo Gaifas
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Cédric Leyrat
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Valentina A. Volchkova
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, 69365 Lyon, France
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Luis Martinez-Gil
- Department of Biochemistry and Molecular Biology, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46010 Valencia, Spain
| | - Viktor E. Volchkov
- Molecular Basis of Viral Pathogenicity, Centre International de Recherche en Infectiologie (CIRI), INSERMU1111-CNRS UMR5308, Université Claude Bernard Lyon 1, ENS de Lyon, 69365 Lyon, France
| | - David G. Karlin
- Division Phytomedicine, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55/57, 14195 Berlin, Germany
- Correspondence: (D.G.K.); (J.-M.B.); (M.J.); Tel.: +33-4-57-42-86-36 (J.-M.B.); +33-4-76-20-94-62 (M.J.)
| | - Jean-Marie Bourhis
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
- Correspondence: (D.G.K.); (J.-M.B.); (M.J.); Tel.: +33-4-57-42-86-36 (J.-M.B.); +33-4-76-20-94-62 (M.J.)
| | - Marc Jamin
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
- Correspondence: (D.G.K.); (J.-M.B.); (M.J.); Tel.: +33-4-57-42-86-36 (J.-M.B.); +33-4-76-20-94-62 (M.J.)
| |
Collapse
|
30
|
Haas GD, Lee B. Paramyxoviruses from bats: changes in receptor specificity and their role in host adaptation. Curr Opin Virol 2023; 58:101292. [PMID: 36508860 PMCID: PMC9974588 DOI: 10.1016/j.coviro.2022.101292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Global metagenomic surveys have revealed that bats host a diverse array of paramyxoviruses, including species from at least five major genera. An essential determinant of successful spillover is the entry of a virus into a new host. We evaluate the role of receptor usage in the zoonotic potential of bat-borne henipaviruses, morbilliviruses, pararubulaviruses, orthorubulaviruses, and jeilongviruses; successful spillover into humans depends upon compatibility of a respective viral attachment protein with its cognate receptor. We also emphasize the importance of postentry restrictions in preventing spillover. Metagenomics and characterization of newly identified paramyxoviruses have greatly improved our understanding of spillover determinants, allowing for better forecasts of which bat-borne viruses may pose the greatest risk for cross-species transmission into humans.
Collapse
Affiliation(s)
- Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.
| |
Collapse
|
31
|
Debat HJ. A South American Mouse Morbillivirus Provides Insight into a Clade of Rodent-Borne Morbilliviruses. Viruses 2022; 14:v14112403. [PMID: 36366501 PMCID: PMC9697977 DOI: 10.3390/v14112403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/31/2023] Open
Abstract
Morbilliviruses are negative-sense single-stranded monosegmented RNA viruses in the family Paramyxoviridae (order Mononegavirales). Morbilliviruses infect diverse mammals including humans, dogs, cats, small ruminants, seals, and cetaceans, which serve as natural hosts. Here, I report the identification and characterization of novel viruses detected in public RNAseq datasets of South American long-haired and olive field mice. The divergent viruses dubbed Ratón oliváceo morbillivirus (RoMV) detected in renal samples from mice collected from Chile and Argentina are characterized by an unusually large genome including long intergenic regions and the presence of an accessory protein between the F and H genes redounding in a genome architecture consisting in 3'-N-P/V/C-M-F-hp-H-L-5'. Structural and functional annotation, genetic distance, and evolutionary insights suggest that RoMV is a member of a novel species within genus Morbillivirus tentatively named as South American mouse morbillivirus. Phylogenetic analysis suggests that this mouse morbillivirus is closely related to and clusters into a monophyletic group of novel rodent-borne morbilliviruses. This subclade of divergent viruses expands the host range, redefines the genomic organization and provides insights on the evolutionary history of genus Morbillivirus.
Collapse
Affiliation(s)
- Humberto J. Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba X5020ICA, Argentina; ; Tel./Fax: +54-9-351-4973636
- Unidad de Fitopatología y Modelización Agrícola (UFYMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5020ICA, Argentina
| |
Collapse
|
32
|
First Genomic Evidence of a Henipa-like Virus in Brazil. Viruses 2022; 14:v14102167. [PMID: 36298723 PMCID: PMC9608811 DOI: 10.3390/v14102167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
The viral genus Henipavirus includes two highly virulent zoonotic viruses of serious public health concern. Hendra henipavirus and Nipah henipavirus outbreaks are restricted to Australia and Southeast Asia, respectively. The Henipavirus genus comprises mostly bat-borne viruses, but exceptions have already been described as novel viruses with rodents and shrews as reservoir animals. In the Americas, scarce evidence supports the circulation of these viruses. In this communication, we report a novel henipa-like virus from opossums (Marmosa demerarae) from a forest fragment area in the Peixe-Boi municipality, Brazil, after which the virus was named the Peixe-Boi virus (PBV). The application of next-generation sequencing and metagenomic approach led us to discover the original evidence of a henipa-like virus genome in Brazil and South America and the original description of a henipa-like virus in marsupial species. These findings emphasize the importance of further studies to characterize PBV and clarify its ecology, impact on public health, and its relationship with didelphid marsupials and henipaviruses.
Collapse
|