1
|
Wu J, Kamanga BM, Zhang W, Xu Y, Xu L. Research progress of aldehyde oxidases in plants. PeerJ 2022; 10:e13119. [PMID: 35356472 PMCID: PMC8958963 DOI: 10.7717/peerj.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 01/12/2023] Open
Abstract
Plant aldehyde oxidases (AOs) are multi-functional enzymes, and they could oxidize abscisic aldehyde into ABA (abscisic acid) or indole acetaldehyde into IAA (indoleacetic acid) as the last step, respectively. AOs can be divided into four groups based on their biochemical and physiological functions. In this review, we summarized the recent studies about AOs in plants including the motif information, biochemical, and physiological functions. Besides their role in phytohormones biosynthesis and stress response, AOs could also involve in reactive oxygen species homeostasis, aldehyde detoxification and stress tolerance.
Collapse
Affiliation(s)
- Jun Wu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Blair Moses Kamanga
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| | - Yanhao Xu
- Hubei Academy of Agricultural Science, Wuhan, China
| | - Le Xu
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Pueyo JJ, Quiñones MA, Coba de la Peña T, Fedorova EE, Lucas MM. Nitrogen and Phosphorus Interplay in Lupin Root Nodules and Cluster Roots. FRONTIERS IN PLANT SCIENCE 2021; 12:644218. [PMID: 33747024 PMCID: PMC7966414 DOI: 10.3389/fpls.2021.644218] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/25/2021] [Indexed: 05/17/2023]
Abstract
Nitrogen (N) and phosphorus (P) are two major plant nutrients, and their deficiencies often limit plant growth and crop yield. The uptakes of N or P affect each other, and consequently, understanding N-P interactions is fundamental. Their signaling mechanisms have been studied mostly separately, and integrating N-P interactive regulation is becoming the aim of some recent works. Lupins are singular plants, as, under N and P deficiencies, they are capable to develop new organs, the N2-fixing symbiotic nodules, and some species can also transform their root architecture to form cluster roots, hundreds of short rootlets that alter their metabolism to induce a high-affinity P transport system and enhance synthesis and secretion of organic acids, flavonoids, proteases, acid phosphatases, and proton efflux. These modifications lead to mobilization in the soil of, otherwise unavailable, P. White lupin (Lupinus albus) represents a model plant to study cluster roots and for understanding plant acclimation to nutrient deficiency. It tolerates simultaneous P and N deficiencies and also enhances uptake of additional nutrients. Here, we present the structural and functional modifications that occur in conditions of P and N deficiencies and lead to the organogenesis and altered metabolism of nodules and cluster roots. Some known N and P signaling mechanisms include different factors, including phytohormones and miRNAs. The combination of the individual N and P mechanisms uncovers interactive regulation pathways that concur in nodules and cluster roots. L. albus interlinks N and P recycling processes both in the plant itself and in nature.
Collapse
Affiliation(s)
- José J. Pueyo
- Institute of Agricultural Sciences, ICA-CSIC, Madrid, Spain
| | | | | | - Elena E. Fedorova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | | |
Collapse
|
3
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol 2020; 129:1133-1156. [PMID: 32592603 DOI: 10.1111/jam.14754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume-rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume-rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume-rhizobia symbiosis. The means by which these processes enhance the legume-rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume-rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
4
|
Müller TM, Böttcher C, Glawischnig E. Dissection of the network of indolic defence compounds in Arabidopsis thaliana by multiple mutant analysis. PHYTOCHEMISTRY 2019; 161:11-20. [PMID: 30798200 DOI: 10.1016/j.phytochem.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Characteristic for cruciferous plants is the synthesis of a complex array of defence-related indolic compounds. In Arabidopsis, these include indol-3-ylmethyl glucosinolates (IMGs), as well as stress-inducible indole-3-carbaldehyde (ICHO)/indole-3-carboxylic acid (ICOOH) derivatives and camalexin. Key enzymes in the biosynthesis of the inducible metabolites are the cytochrome P450 enzymes CYP71A12, CYP71A13 and CYP71B6 and Arabidopsis Aldehyde Oxidase 1 (AAO1). Multiple mutants in the corresponding genes were generated and their metabolic phenotypes were comprehensively analysed in untreated, UV exposed and silver nitrate-treated leaves. Most strikingly, ICOOH and ICHO derivatives synthesized in response to UV exposure were not metabolically related. While ICHO concentrations correlated with IMGs, ICOOH derivatives were anti-correlated with IMGs and partially dependent on CYP71B6. The AAO1 genotype was shown to not only be important for ICHO metabolism but also for the accumulation of 4-pyridoxic acid, suggesting a dual role of AAO1 in vitamin B6 metabolism and IMG degradation in Arabidopsis.
Collapse
Affiliation(s)
- Teresa M Müller
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany
| | - Christoph Böttcher
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Str. 19, 14195 Berlin, Germany
| | - Erich Glawischnig
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354 Freising, Germany; Microbial Biotechnology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany.
| |
Collapse
|
5
|
Nishimura T, Koshiba T. Immunolocalization of IAA Using an Anti-IAA-C-Antibody Raised Against Carboxyl-Linked IAA. Methods Mol Biol 2019; 1924:165-172. [PMID: 30694474 DOI: 10.1007/978-1-4939-9015-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plant hormone indole-3-acetic acid (IAA) plays a crucial role in plant physiological events such as plant development, differentiation, and environmental responses. IAA is synthesized in specific focal cells and/or tissues such as the coleoptile tip in maize and the root tip and young leaf primordia in Arabidopsis thaliana. Recent studies have shown that formation of an IAA maxima or concentration gradient, created by the changing expression and cellular localization of IAA transport proteins, crucially controls plant physiological events. For this reason, visualization of IAA molecules at the cell and tissue levels is necessary to accurately determine the distribution of IAA in plants. Immunolocalization of IAA is a means to directly visualize IAA and observe its localization and distribution in plant cells and tissues. Here, we introduce an immunolocalization protocol to observe IAA distribution that uses a specific anti-IAA-C-antibody raised against carboxyl-linked IAA. This method is applicable for various plant samples and is reliable for specifically detecting IAA in plant tissues.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | - Tomokazu Koshiba
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
6
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
7
|
Kohlen W, Ng JLP, Deinum EE, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:229-244. [PMID: 28992078 DOI: 10.1093/jxb/erx308] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Most legumes can form a unique type of lateral organ on their roots: root nodules. These structures host symbiotic nitrogen-fixing bacteria called rhizobia. Several different types of nodules can be found in nature, but the two best-studied types are called indeterminate and determinate nodules. These two types differ with respect to the presence or absence of a persistent nodule meristem, which consistently correlates with the cortical cell layers giving rise to the nodule primordia. Similar to other plant developmental processes, auxin signalling overlaps with the site of organ initiation and meristem activity. Here, we review how auxin contributes to early nodule development. We focus on changes in auxin transport, signalling, and metabolism during nodule initiation, describing both experimental evidence and computer modelling. We discuss how indeterminate and determinate nodules may differ in their mechanisms for generating localized auxin response maxima and highlight outstanding questions for future research.
Collapse
Affiliation(s)
- Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University & Research, The Netherlands
| | - Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| | - Eva E Deinum
- Mathematical and Statistical Methods, Wageningen University & Research, The Netherlands
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, The Australian National University, Australia
| |
Collapse
|
8
|
Bouchiba Z, Boukhatem ZF, Ighilhariz Z, Derkaoui N, Kerdouh B, Abdelmoumen H, Abbas Y, Missbah El Idrissi M, Bekki A. Diversity of nodular bacteria ofScorpiurus muricatusin western Algeria and their impact on plant growth. Can J Microbiol 2017; 63:450-463. [DOI: 10.1139/cjm-2016-0493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of 51 bacterial strains were isolated from root nodules of Scorpiurus muricatus sampled from 6 regions of western Algeria. Strain diversity was assessed by rep-PCR amplification fingerprinting, which grouped the isolates into 28 different clusters. Partial nucleotide sequencing of the 16S rRNA gene and BLAST analysis revealed that root nodules of S. muricatus were colonized by different species close to Rhizobium vignae, Rhizobium radiobacter, Rhizobium leguminosarum, Phyllobacterium ifriqiyense, Phyllobacterium endophyticum, Starkeya sp., and Pseudomonas sp. However, none of these strains was able to form nodules on its host plant; even nodC was present in a single strain (SMT8a). The inoculation test showed a great improvement in the growth of inoculated plants compared with noninoculated control plants. A significant amount of indole acetic acid was produced by some strains, but only 2 strains could solubilize phosphate. In this report we described for the first time the diversity of bacteria isolated from root nodules of S. muricatus growing in different regions in western Algeria and demonstrated their potential use in promoting plant growth.
Collapse
Affiliation(s)
- Zoulikha Bouchiba
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes, Université d’Oran1 Ahmed Ben Bella, Oran, Algérie
| | - Zineb Faiza Boukhatem
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes, Université d’Oran1 Ahmed Ben Bella, Oran, Algérie
| | - Zohra Ighilhariz
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes, Université d’Oran1 Ahmed Ben Bella, Oran, Algérie
| | - Nouria Derkaoui
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes, Université d’Oran1 Ahmed Ben Bella, Oran, Algérie
| | | | - Hanaa Abdelmoumen
- Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des sciences, Université Mohammed V, Rabat, Maroc
| | - Younes Abbas
- Faculté Polydisciplinaire de Béni Mellal, Mghila B.P. 592, Université Sultan Moulay Slimane, Béni Mellal – Maroc
| | - Mustapha Missbah El Idrissi
- Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des sciences, Université Mohammed V, Rabat, Maroc
| | - Abdelkader Bekki
- Laboratoire de Biotechnologie des Rhizobiums et Amélioration des Plantes, Université d’Oran1 Ahmed Ben Bella, Oran, Algérie
| |
Collapse
|
9
|
Sańko-Sawczenko I, Łotocka B, Czarnocka W. Expression Analysis of PIN Genes in Root Tips and Nodules of Medicago truncatula. Int J Mol Sci 2016; 17:E1197. [PMID: 27463709 PMCID: PMC5000595 DOI: 10.3390/ijms17081197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 07/15/2016] [Indexed: 11/16/2022] Open
Abstract
Polar auxin transport is dependent on the family of PIN-formed proteins (PINs), which are membrane transporters of anionic indole-3-acetic acid (IAA(-)). It is assumed that polar auxin transport may be essential in the development and meristematic activity maintenance of Medicago truncatula (M. truncatula) root nodules. However, little is known about the involvement of specific PIN proteins in M. truncatula nodulation. Using real-time quantitative PCR, we analyzed the expression patterns of all previously identified MtPIN genes and compared them between root nodules and root tips of M. truncatula. Our results demonstrated significant differences in the expression level of all 11 genes (MtPIN1-MtPIN11) between examined organs. Interestingly, MtPIN9 was the only PIN gene with higher expression level in root nodules compared to root tips. This result is the first indication of PIN9 transporter potential involvement in M. truncatula nodulation. Moreover, relatively high expression level in root nodules was attributed to MtPINs encoding orthologs of Arabidopsis thaliana PIN5 subclade. PIN proteins from this subclade have been found to localize in the endoplasmic reticulum, which may indicate that the development and meristematic activity maintenance of M. truncatula root nodules is associated with intracellular homeostasis of auxins level and their metabolism in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Izabela Sańko-Sawczenko
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Barbara Łotocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Weronika Czarnocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
10
|
Possible reasons for tolerance to mercury of Lupinus albus cv. G1 inoculated with Hg-resistant and sensitive Bradyrhizobium canariense strains. Symbiosis 2015. [DOI: 10.1007/s13199-015-0362-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Kumar Ghosh P, Kumar Sen S, Kanti Maiti T. Production and metabolism of IAA by Enterobacter spp. (Gammaproteobacteria) isolated from root nodules of a legume Abrus precatorius L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Production and Metabolism of Indole Acetic Acid in Root Nodules and Symbiont (Rhizobium undicola) Isolated from Root Nodule of Aquatic Medicinal Legume Neptunia oleracea Lour. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/575067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Indole acetic acid is a phytohormone which plays a vital role in plant growth and development. The purpose of this study was to shed some light on the production of IAA in roots, nodules, and symbionts of an aquatic legume Neptunia oleracea and its possible role in nodular symbiosis. The symbiont (N37) was isolated from nodules of this plant and identified as Rhizobium undicola based on biochemical characteristics, 16S rDNA sequence homology, and DNA-DNA hybridization results. The root nodules were found to contain more IAA and tryptophan than root; however, no detectable amount of IAA was found in root. The IAA metabolizing enzymes IAA oxidase, IAA peroxidase (E.C.1.11.1.7), and polyphenol oxidase (E.C.1.14.18.1) were higher in root than nodule but total phenol and IAA content were reversed. The strain N37 was found to produce copious amount of IAA in YEM broth medium with tryptophan and reached its stationary phase at 20 h. An enrichment of the medium with mannitol, ammonium sulphate, B12, and 4-hydroxybenzaldehyde was found to promote the IAA production. The presence of IAA metabolizing enzymes and IAA production with PGPR traits including ACC deaminase activity of the symbionts was essential for plant microbe interaction and nodule function.
Collapse
|
13
|
Fernández H, Prandoni N, Fernández-Pascual M, Fajardo S, Morcillo C, Díaz E, Carmona M. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PLoS One 2014; 9:e110771. [PMID: 25340341 PMCID: PMC4207700 DOI: 10.1371/journal.pone.0110771] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/16/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.
Collapse
Affiliation(s)
- Helga Fernández
- Department of Environmental Biology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Nicolás Prandoni
- Department of Environmental Biology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Susana Fajardo
- Plant Protection Department, Instituto de Ciencias Agrarias-CSIC, Madrid, Spain
| | - César Morcillo
- Plant Protection Department, Instituto de Ciencias Agrarias-CSIC, Madrid, Spain
| | - Eduardo Díaz
- Department of Environmental Biology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Manuel Carmona
- Department of Environmental Biology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| |
Collapse
|
14
|
Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microbiol Biotechnol 2014; 30:719-25. [PMID: 24072498 DOI: 10.1007/s11274-013-1488-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 01/30/2013] [Indexed: 10/26/2022]
Abstract
Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation.
Collapse
Affiliation(s)
- Mohsin Tariq
- Microbial Physiology Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE)/ PAEC, Islamabad, Pakistan,
| | | | | | | | | |
Collapse
|
15
|
Grijalbo L, Fernandez-Pascual M, García-Seco D, Gutierrez-Mañero FJ, Lucas JA. Spent metal working fluids produced alterations on photosynthetic parameters and cell-ultrastructure of leaves and roots of maize plants. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:220-230. [PMID: 23770488 DOI: 10.1016/j.jhazmat.2013.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
In this work we assess the capacity of maize (Zea mays) plants to phytoremediate spent metal working fluids (MWFs) and its effects on photosynthesis and ultrastructure of mesophyll and root cells. A corn-esparto fibre system patented by us has been used to phytoremediate MWFs in hydroponic culture. Furthermore, a plant growth promoting rhizobacteria (PGPR) has been used to improve the process. The results show that this system is capable of significantly reducing the chemical oxygen demand, under local legislation limits. However, plant systems are really damaged, mainly its photosynthetic system, as shown by the photosynthetical parameters. Nevertheless, strain inoculated improves these parameters, especially Hill reaction. The ultrastructure of photosynthetic apparatus was also affected. Chloroplast number decreased and becomes degraded in the mesophyll of MWFs treated plants. In some cases even plasmolysis of chloroplast membrane was detected. Early senescence symptoms were detected in root ultrastructural study. Severe cellular damage was observed in the parenchymal root cells of plants grown with MWFs, while vascular bundles cell remained unchanged. It seems that the inoculation minimises the damage originated by the MWFs pollutants, appearing as less degenerative organelles and higher chloroplast number than in non-inoculated ones.
Collapse
Affiliation(s)
- Lucía Grijalbo
- Departamento de Biología, Facultad de Farmacia, Universidad San Pablo CEU, Urb. Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Sánchez-Pardo B, Fernández-Pascual M, Zornoza P. Copper microlocalisation and changes in leaf morphology, chloroplast ultrastructure and antioxidative response in white lupin and soybean grown in copper excess. JOURNAL OF PLANT RESEARCH 2013; 127:119-29. [PMID: 23979008 DOI: 10.1007/s10265-013-0583-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/25/2013] [Indexed: 05/23/2023]
Abstract
The microlocalisation of Cu was examined in the leaves of white lupin and soybean grown hydroponically in the presence of 1.6 (control) or 192 μM (excess) Cu, along with its effect on leaf morphology, (ultra)structure and the antioxidative response. The 192 μM dose led to a reduction in the total leaf area and leaf thickness in both species, although more strongly so in white lupin. In the latter species it was also associated with smaller spongy parenchyma cells, and smaller spaces between them, while in the soybean it more strongly reduced the size of the palisade parenchyma and epidermal cells. Energy-dispersive X-ray microanalysis showed that under Cu excess the metal was mainly localised inside the spongy parenchyma cells of the white lupin leaves, and in the lower epidermis cell walls in those of the soybean. Cu excess also promoted ultrastructural chloroplast alterations, reducing the photosynthetic capacity index and the green area of the leaves, especially in the soybean. Despite this, soybean appeared to be more tolerant to Cu excess than white lupin, because soybean displayed (1) lower accumulation of Cu in the leaves, (2) enhanced microlocalisation of Cu in the cell walls and (3) greater levels of induced total -SH content and superoxide dismutase and catalase activities that are expected for better antioxidative responses.
Collapse
Affiliation(s)
- Beatriz Sánchez-Pardo
- Dpto. Química Agrícola, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | |
Collapse
|
17
|
Zarepour M, Simon K, Wilch M, Nieländer U, Koshiba T, Seo M, Lindel T, Bittner F. Identification of superoxide production by Arabidopsis thaliana aldehyde oxidases AAO1 and AAO3. PLANT MOLECULAR BIOLOGY 2012; 80:659-71. [PMID: 23065119 DOI: 10.1007/s11103-012-9975-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/28/2012] [Indexed: 05/07/2023]
Abstract
Plant aldehyde oxidases (AOs) have gained great attention during the last years as they catalyze the last step in the biosynthesis of the phytohormone abscisic acid by oxidation of abscisic aldehyde. Furthermore, oxidation of indole-3-acetaldehyde by AOs is likely to represent one route to produce another phytohormone, indole-3-acetic acid, and thus, AOs play important roles in many aspects of plant growth and development. In the present work we demonstrate that heterologously expressed AAO1 and AAO3, two prominent members of the AO family from Arabidopsis thaliana, do not only generate hydrogen peroxide but also superoxide anions by transferring aldehyde-derived electrons to molecular oxygen. In support of this, superoxide production has also been found for native AO proteins in Arabidopsis leaf extracts. In addition to their aldehyde oxidation activity, AAO1 and AAO3 were found to exhibit NADH oxidase activity, which likewise is associated with the production of superoxide anions. According to these results and due to the fact that molecular oxygen is the only known physiological electron acceptor of AOs, the production of hydrogen peroxide and/or superoxide has to be considered in any physiological condition in which aldehydes or NADH serve as substrate for AOs. In this respect, conditions such as natural senescence and stress-induced stomatal movement, which both require simultaneously elevated levels of abscisic acid and hydrogen peroxide/superoxide, are likely to benefit from AOs in two ways, namely by formation of abscisic acid and by concomitant formation of reactive oxygen species.
Collapse
Affiliation(s)
- Maryam Zarepour
- Department of Plant Biology, Braunschweig University of Technology, Humboldtstrasse 1, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Łotocka B, Kopcińska J, Skalniak M. Review article: The meristem in indeterminate root nodules of Faboideae. Symbiosis 2012; 58:63-72. [PMID: 23482442 PMCID: PMC3589660 DOI: 10.1007/s13199-013-0225-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
Abstract
In this review, the anatomy of indeterminate legume root nodule is briefly summarized. Next, the indeterminate nodule meristem activity, organization and cell ultrastructure are described in species with a distinct nodule meristem zonation. Finally, the putative primary endogenous factors controlling nodule meristem maintenance are discussed in the context of the well-studied root apical meristem (RAM) of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Barbara Łotocka
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Joanna Kopcińska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Monika Skalniak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
19
|
Nishimura T, Toyooka K, Sato M, Matsumoto S, Lucas MM, Strnad M, Baluska F, Koshiba T. Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. PLANT SIGNALING & BEHAVIOR 2011; 6:2013-22. [PMID: 22112455 PMCID: PMC3337196 DOI: 10.4161/psb.6.12.18080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To investigate the distribution of IAA (indole-3-acetic acid) and the IAA synthetic cells in maize coleoptiles, we established immunohistochemistry of IAA using an anti-IAA-C-monoclonal antibody. We first confirmed the specificity of the antibody by comparing the amounts of endogenous free and conjugated IAA to the IAA signal obtained from the IAA antibody. Depletion of endogenous IAA showed a corresponding decrease in immuno-signal intensity and negligible cross-reactivity against IAA-related compounds, including tryptophan, indole-3-acetamide, and conjugated-IAA was observed. Immunolocalization showed that the IAA signal was intense in the approximately 1 mm region and the outer epidermis at the approximately 0.5 mm region from the top of coleoptiles treated with 1-N-naphthylphthalamic acid. By contrast, the IAA immuno-signal in the outer epidermis almost disappeared after 5-methyl-tryptophan treatment. Immunogold labeling of IAA with an anti-IAA-N-polyclonal antibody in the outer-epidermal cells showed cytoplasmic localization of free-IAA, but none in cell walls or vacuoles. These findings indicated that IAA is synthesized in the 0–2.0 mm region of maize coleoptile tips from Trp, in which the outer-epidermal cells of the 0.5 mm tip are the most active IAA synthetic cells.
Collapse
Affiliation(s)
- Takeshi Nishimura
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Mandal SM, Mandal S, Mandal M, Das AK, Das A, Pati BR, Pati B, Ghosh AK, Ghosh A. Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids. Arch Microbiol 2009; 191:389-93. [PMID: 19151966 DOI: 10.1007/s00203-008-0455-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 12/17/2008] [Accepted: 12/23/2008] [Indexed: 11/24/2022]
Abstract
The influence of endogenous root nodules phenolic acids on indoleacetic acid (IAA) production by its symbiont (Rhizobium) was examined. The root nodules contain higher amount of IAA and phenolic acids than non-nodulated roots. Presence of IAA metabolizing enzymes, IAA oxidase, peroxidase, and polyphenol oxidase indicate the metabolism of IAA in the nodules and roots. Three most abundant endogenous root nodule phenolic acids (protocatechuic acid, 4-hydroxybenzaldehyde and p-coumaric acid) have been identified and their effects on IAA production by the symbiont have been studied in L-tryptophan supplemented yeast extract basal medium. Protocatechuic acid (1.5 microg ml(-1)) showed maximum stimulation (2.15-fold over control) of IAA production in rhizobial culture. These results indicate that the phenolic acids present in the nodule might serve as a stimulator for IAA production by the symbiont (Rhizobium).
Collapse
Affiliation(s)
- Santi M Mandal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. MOLECULAR PLANT PATHOLOGY 2008; 9:339-55. [PMID: 18705875 PMCID: PMC6640242 DOI: 10.1111/j.1364-3703.2008.00470.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Infection of maize (Zea mays) plants with the smut fungus Ustilago maydis is characterized by excessive host tumour formation. U. maydis is able to produce indole-3-acetic acid (IAA) efficiently from tryptophan. To assess a possible connection to the induction of host tumours, we investigated the pathways leading to fungal IAA biosynthesis. Besides the previously identified iad1 gene, we identified a second indole-3-acetaldehyde dehydrogenase gene, iad2. Deltaiad1Deltaiad2 mutants were blocked in the conversion of both indole-3-acetaldehyde and tryptamine to IAA, although the reduction in IAA formation from tryptophan was not significantly different from Deltaiad1 mutants. To assess an influence of indole-3-pyruvic acid on IAA formation, we deleted the aromatic amino acid aminotransferase genes tam1 and tam2 in Deltaiad1Deltaiad2 mutants. This revealed a further reduction in IAA levels by five- and tenfold in mutant strains harbouring theDeltatam1 andDeltatam1Deltatam2 deletions, respectively. This illustrates that indole-3-pyruvic acid serves as an efficient precursor for IAA formation in U. maydis. Interestingly, the rise in host IAA levels upon U. maydis infection was significantly reduced in tissue infected with Deltaiad1Deltaiad2Deltatam1 orDeltaiad1Deltaiad2Deltatam1Deltatam2 mutants, whereas induction of tumours was not compromised. Together, these results indicate that fungal IAA production critically contributes to IAA levels in infected tissue, but this is apparently not important for triggering host tumour formation.
Collapse
Affiliation(s)
- Gavin Reineke
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 2008; 190:67-77. [DOI: 10.1007/s00203-008-0365-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 01/22/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
23
|
Zdunek-Zastocka E. Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:19-28. [PMID: 18006324 DOI: 10.1016/j.plaphy.2007.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Indexed: 05/25/2023]
Abstract
Aldehyde oxidase (AO, EC 1.2.3.1) is a molybdenohydroxylase that is considered to catalyze the last step of abscisic acid (ABA) and indole-3-acetic acid (IAA) synthesis. Three cDNAs encoding aldehyde oxidase proteins in Pisum sativum (cv. Little Marvel) were obtained based on RT-PCR (reverse transcriptase-polymerase chain reaction) strategy. The cloned genes, designated as PsAO1, PsAO2 and PsAO3, are 4630, 4347, 4600 bp in length, respectively, and show high sequence identity to each other and to aldehyde oxidases from other plant species. The deduced PsAO1, PsAO2, and PsAO3 proteins are 1373, 1367, 1367 amino acids in length, respectively, and contain consensus sequences for two iron-sulfur centers, a FAD binding domain, and a molybdenum cofactor (Moco) binding domain. PsAO1 and PsAO2 were mainly expressed in leaves of seedlings and young leaves of adult plants, while the highest PsAO3 transcript level was observed in aging leaves and matured seeds. PsAO2 mRNA was not affected by salinity or ammonium treatment, whereas the transcript level of PsAO3 increased significantly under both stress conditions, with the most pronounced changes in aging leaves, fully expanded leaves and roots. The PsAO1 transcript level was enhanced only in the presence of ammonium in the nutrient medium, but not under salinity. Based on the molecular mass of the deduced proteins and on organ-specific gene expression, studied both under control and stress conditions, the contribution of each PsAO cDNA in the formation of the previously described three dimeric pea AO isoforms and the possible involvement of the PsAO3 in abscisic acid (ABA) synthesis is discussed.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry, Warsaw Agricultural University, Nowoursynowska 159, Warsaw, Poland.
| |
Collapse
|
24
|
Ando S, Tsushima S, Tagiri A, Kamachi S, Konagaya KI, Hagio T, Tabei Y. Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.). MOLECULAR PLANT PATHOLOGY 2006; 7:223-34. [PMID: 20507442 DOI: 10.1111/j.1364-3703.2006.00333.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
SUMMARY In clubroot disease, gall formation is induced by infection with the obligate biotroph Plasmodiophora brassicae due to increased levels of auxins and cytokinins. Because aldehyde oxidase (AO) may be involved in auxin biosynthesis in plants, we isolated two AO genes (BrAO1 and BrAO2) from Chinese cabbage (Brassica rapa ssp. pekinensis cv. Muso), which are the most similar to AAO1 among Arabidopsis AO genes, and examined their expressions during clubroot development. The expression of BrAO1 was enhanced in inoculated roots from 15 days post-inoculation (dpi) when visible clubroots were still undetectable. Thereafter, BrAO1 expression increased with clubroot development compared with uninoculated roots, although BrAO2 expression was repressed. In situ hybridization revealed that BrAO1 was strongly expressed in tissues that were invaded by immature plasmodia at 35 dpi, suggesting that BrAO1 expression was enhanced by the pathogen in order to establish its pathogenesis. In addition, we detected AO activity, as evidenced by the occurrence of at least six bands (BrAO-a to BrAO-f) in the roots of Chinese cabbage using an active staining method with benzaldehyde and indlole-3-aldehyde as the substrate. Coincidental with BrAO1 expression, the signals of BrAO-a and BrAO-d increased with inoculation by P. brassicae during clubroot development compared with healthy roots, resulting in an increase in total AO activity. By contrast, the band BrAO-b decreased post-inoculation, in parallel with the expression of BrAO2. The other bands of activity were not clearly influenced by the infection. Based on these results, we discuss the involvement of AO in auxin-overproduction during clubroot development in Chinese cabbage.
Collapse
Affiliation(s)
- Sugihiro Ando
- Plant Biotechnology Department, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|