1
|
Khalil MSA, El-Mougy NS, El-Gamal NG, Abdel-Kader MM. First report of black pustule disease in sponge gourd (Luffa cylindrica) in northern Egypt and its biological management. BMC PLANT BIOLOGY 2025; 25:713. [PMID: 40437358 PMCID: PMC12117902 DOI: 10.1186/s12870-025-06655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/30/2025] [Indexed: 06/01/2025]
Abstract
BACKGROUND In October 2022, black pustules were observed on the lower surface of sponge gourd (Luffa cylindrica) leaves in Kafer El-Dawar, North Egypt. Symptoms included abundant black pustules containing fungal conidia on plant leaves, which eventually led to the infected leaves drying out and dying. RESULTS Two causal fungi were isolated from symptomatic leaves and their pathogenicity was confirmed to induce typical disease symptoms. On the base on morphological features and further molecular identification, the isolated pathogens were identified as Alternaria alternata (accession No. PP197255), and Fusarium equiseti (accession No. PP197302). A survey was conducted to detect this disease on luffa plant leaves in northern Egypt, where luffa plants are cultivated. An attempt at biological control of this disease was made for two successive growing seasons under field conditions. BF, algae, Trichoderma harzianum and Bacillus subtilis were applied as seed treatments, and soil drenches were applied, followed by foliar spraying. Throughout the two seasons, the applied bioagent B. subtilis significantly reduced disease severity followed by the T. harzianum and algae treatments. CONCLUSION Seed treatment with two bioagents, T. harzianum and B. subtilis, had the greatest effect on disease severity, followed by soil drenching + foliar spray, soil drench only, and in that respective order. This is the first report of black pustules on the leaves of Luffa plants caused by Alternaria alternata and Fusarium equiseti in Egypt.
Collapse
|
2
|
Grandin-Courbet A, Morvan-Bertrand A, Dehail M, Hennequart F, Prud'homme MP. Laminaria digitata Extract Improved Leaf Meristem Protection Under Drought and Nitrogen Uptake After Rehydration Through Hormesis-Based Chemical Priming in Lolium perenne. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40421759 DOI: 10.1111/pce.15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/23/2025] [Accepted: 05/18/2025] [Indexed: 05/28/2025]
Abstract
Drought is among the most damaging stress for plants, impacting crop yield and grassland sustainability. This study aimed to evaluate the biostimulant effect of an algal extract from Laminaria digitata on Lolium perenne cultivated in a growth chamber. Leaves were sprayed at different concentrations 7 days before stopping irrigation. This priming period was followed by fourteen days of drought and ten days of recovery. Algal extract supplied at 2 and 5 L.ha-1 stimulated nitrogen uptake during recovery, while higher doses were deleterious. During drought, algal extract 2 L.ha-1 increased water content in leaves and shoot 0-3 cm housing the leaf meristems. The improvement in water content arose from the smaller decline in leaf relative water content (RWC), suggesting better osmotic adjustment. Cell membrane stability was less impaired during drought and quickly returned to pre-drought levels during recovery, indicating better membrane protection. The higher fructan content may contribute to osmotic adjustment and membrane protection. The results show that algal extract improved leaf meristem protection under drought and N uptake after rehydration through hormesis-based chemical priming. The treatment limited sucrose accumulation during drought, so that sucrose content can be used as an indicator of biostimulation together with RWC and cell membrane stability.
Collapse
Affiliation(s)
- Antoine Grandin-Courbet
- Normandie Université, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Caen, France
- Algaia SAS, Saint-Lô, France
| | - Annette Morvan-Bertrand
- Normandie Université, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Caen, France
| | | | | | - Marie-Pascale Prud'homme
- Normandie Université, UNICAEN, INRAE, EVA Ecophysiologie Végétale, Agronomie & nutritions NCS, Caen, France
| |
Collapse
|
3
|
Höschele T, Malagol N, Bori SO, Müllner S, Töpfer R, Sturm J, Zyprian E, Trapp O. Rpv10.2: A Haplotype Variant of Locus Rpv10 Enables New Combinations for Pyramiding Downy Mildew Resistance Traits in Grapevine. PLANTS (BASEL, SWITZERLAND) 2024; 13:2624. [PMID: 39339604 PMCID: PMC11434656 DOI: 10.3390/plants13182624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
In viticulture, pathogens like the oomycete Plasmopara viticola, the causal agent of downy mildew, can cause severe yield loss and require extensive application of plant protection chemicals. Breeders are generating pathogen-resistant varieties exploiting American and Asian wild Vitis germplasm as sources of resistance. Several loci mediating resistance to P. viticola have been identified in the past but may be overcome by specifically adapted strains of the pathogen. Aiming to find and characterize novel loci, a cross population with Vitis amurensis ancestry was investigated searching for resistance-correlated quantitative trait loci (QTL). As a prerequisite, a genetic map was generated by analyzing the 244 F1 individuals derived from a cross of the downy mildew susceptible Vitis vinifera cultivar 'Tigvoasa' and the resistant V. amurensis pBC1 breeding line We 90-06-12. This genetic map is based on the information from 627 molecular markers including 56 simple sequence repeats and 571 rhAmpSeq markers. A phenotypic characterization of the progeny showed a clear segregation of the resistance traits in the F1 population after an experimental inoculation of leaf discs with downy mildew. Combining genetic and phenotypic data, an analysis for QTL revealed a major locus on linkage Group 9 that correlates strongly with the resistance to downy mildew. The locus was mapped to a region of about 80 kb on the PN40024 (12x.V2) grapevine reference genome. This genomic region co-localizes with the formerly identified locus Rpv10 from the grapevine cultivar 'Solaris'. As we found different allele sizes of the locus-linked SSR markers than those characterizing the known Rpv10 locus and differences in the sequence of a candidate gene, it was regarded as a haplotype variant and named Rpv10.2.
Collapse
Affiliation(s)
- Tim Höschele
- Staatliche Lehr- und Versuchsanstalt im Wein- und Obstbau Weinsberg (LVWO), Traubenplatz 5, 74189 Weinsberg, Germany
| | - Nagarjun Malagol
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Salvador Olivella Bori
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Sophia Müllner
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Reinhard Töpfer
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Jürgen Sturm
- Staatliche Lehr- und Versuchsanstalt im Wein- und Obstbau Weinsberg (LVWO), Traubenplatz 5, 74189 Weinsberg, Germany
| | - Eva Zyprian
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Oliver Trapp
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| |
Collapse
|
4
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
5
|
Monteiro E, Baltazar M, Pereira S, Correia S, Ferreira H, Bragança R, Cortez I, Castro I, Gonçalves B. Foliar application of nettle and Japanese knotweed extracts on Vitis vinifera: impact on phenylpropanoid biosynthesis and antioxidant activity during veraison and harvest of cv. Touriga Franca. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4260-4267. [PMID: 38385801 DOI: 10.1002/jsfa.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Plant-based extracts have been recently used as sustainable tools to improve biotic and abiotic stress tolerance and increase grape (Vitis vinifera L.) quality. However, knowledge about the effect of these extracts on secondary metabolism compounds, that are fundamental for grape and wine quality, is still scarce. In this study, a trial was installed in an experimental vineyard with the variety Touriga Franca located at University of Trás-os-Montes e Alto Douro, Baixo Corgo sub-region of the Douro Demarcated Region, Portugal in two growing seasons: 2019 and 2020. The aim was to evaluate the effect of foliar application of nettle (Urtica spp.) extract (NE) and Japanese knotweed (Reynoutria japonica) extract (JKE) on grapevines leaves and berries bioactive compounds contents and antioxidant activity, at veraison and harvest. RESULTS The application of NE increased the total carotenoids in leaves and the total phenolics content and the antioxidant activity (ferric reducing antioxidant power, FRAP) in berries while JKE increased flavonoids content in leaves and the antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH) in berries. CONCLUSION These extracts seem to have a stimulatory effect on grapevine, enhancing bioactive compounds contents and antioxidant capacity and, consequently, the physiological performance of the plant and the quality of the berries. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Miguel Baltazar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Sofia Correia
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Helena Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | | | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
6
|
Jiang Y, Yue Y, Wang Z, Lu C, Yin Z, Li Y, Ding X. Plant Biostimulant as an Environmentally Friendly Alternative to Modern Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5107-5121. [PMID: 38428019 DOI: 10.1021/acs.jafc.3c09074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Ensuring the safety of crop production presents a significant challenge to humanity. Pesticides and fertilizers are commonly used to eliminate external interference and provide nutrients, enabling crops to sustain growth and defense. However, the addition of chemical substances does not meet the environmental standards required for agricultural production. Recently, natural sources such as biostimulants have been found to help plants with growth and defense. The development of biostimulants provides new solutions for agricultural product safety and has become a widely utilized tool in agricultural. The review summarizes the classification of biostimulants, including humic-based biostimulant, protein-based biostimulant, oligosaccharide-based biostimulant, metabolites-based biostimulants, inorganic substance, and microbial inoculant. This review attempts to summarize suitable alternative technology that can address the problems and analyze the current state of biostimulants, summarizes the research mechanisms, and anticipates future technological developments and market trends, which provides comprehensive information for researchers to develop biostimulants.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong 271018, China
| |
Collapse
|
7
|
Peng J, Wang X, Wang H, Li X, Zhang Q, Wang M, Yan J. Advances in understanding grapevine downy mildew: From pathogen infection to disease management. MOLECULAR PLANT PATHOLOGY 2024; 25:e13401. [PMID: 37991155 PMCID: PMC10788597 DOI: 10.1111/mpp.13401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023]
Abstract
Plasmopara viticola is geographically widespread in grapevine-growing regions. Grapevine downy mildew disease, caused by this biotrophic pathogen, leads to considerable yield losses in viticulture annually. Because of the great significance of grapevine production and wine quality, research on this disease has been widely performed since its emergence in the 19th century. Here, we review and discuss recent understanding of this pathogen from multiple aspects, including its infection cycle, disease symptoms, genome decoding, effector biology, and management and control strategies. We highlight the identification and characterization of effector proteins with their biological roles in host-pathogen interaction, with a focus on sustainable control methods against P. viticola, especially the use of biocontrol agents and environmentally friendly compounds.
Collapse
Affiliation(s)
- Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Qi Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Meng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
8
|
Bouyahya A, Bakrim S, Chamkhi I, Taha D, El Omari N, El Mneyiy N, El Hachlafi N, El-Shazly M, Khalid A, Abdalla AN, Goh KW, Ming LC, Goh BH, Aanniz T. Bioactive substances of cyanobacteria and microalgae: Sources, metabolism, and anticancer mechanism insights. Biomed Pharmacother 2024; 170:115989. [PMID: 38103309 DOI: 10.1016/j.biopha.2023.115989] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
Cyanobacteria and microalgae contain various phytochemicals, including bioactive components in the form of secondary metabolites, namely flavonoids, phenolic acids, terpenoids, and tannins, with remarkable anticancer effects. This review highlights the recent advances in bioactive compounds, with potential anticancer activity, produced by cyanobacteria and microalgae. Previous in vitro investigations showed that many of these bioactive compounds exhibit potent effects against different human cancer types, such as leukemia and breast cancers. Multiple mechanisms implicated in the antitumor effect of these compounds were elucidated, including their ability to target cellular, subcellular, and molecular checkpoints linked to cancer development and promotion. Recent findings have highlighted various mechanisms of action of bioactive compounds produced by cyanobacteria and microalgae, including induction of autophagy and apoptosis, inhibition of telomerase and protein kinases, as well as modulation of epigenetic modifications. In vivo investigations have demonstrated a potent anti-angiogenesis effect on solid tumors, as well as a reduction in tumor volume. Some of these compounds were examined in clinical investigations for certain types of cancers, making them potent candidates/scaffolds for antitumor drug development.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies, and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Mohammed V University, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Mneyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, 34025 Taouanate, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt; Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo 11432, Egypt
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum, Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, 71800 Nilai, Malaysia
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tarik Aanniz
- Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Rabat Medical and Pharmacy School, Mohammed V University, Rabat, Morocco
| |
Collapse
|
9
|
Li ZJ, Tang SY, Gao HS, Ren JY, Xu PL, Dong WP, Zheng Y, Yang W, Yu YY, Guo JH, Luo YM, Niu DD, Jiang CH. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis. PLANT, CELL & ENVIRONMENT 2024; 47:337-353. [PMID: 37775913 DOI: 10.1111/pce.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Phytoalexins play a crucial role in plant immunity. However, the mechanism of how phytoalexin is primed by beneficial microorganisms against broad-spectrum pathogens remains elusive. This study showed that Bacillus cereus AR156 could trigger ISR against broad-spectrum disease. RNA-sequencing and camalexin content assays showed that AR156-triggered ISR can prime the accumulation of camalexin synthesis and secretion-related genes. Moreover, it was found that AR156-triggered ISR elevates camalexin accumulation by increasing the expression of camalexin synthesis genes upon pathogen infection. We observed that the priming of camalexin accumulation by AR156 was abolished in cyp71a13 and pad3 mutants. Further investigations reveal that in the wrky33 mutant, the ability of AR156 to prime camalexin accumulation is abolished, and the mediated ISR against the three pathogens is significantly compromised. Furthermore, PEN3 and PDR12, acting as camalexin transporters, participate in AR156-induced ISR against broad-spectrum pathogens differently. In addition, salicylic acid and JA/ET signalling pathways participate in AR156-primed camalexin synthesis to resist pathogens in different forms depending on the pathogen. In summary, B. cereus AR156 triggers ISR against Botrytis cinerea, Pst DC3000 and Phytophthora capsici by priming camalexin synthesis. Our study provides deeper insights into the significant role of camalexin for AR156-induced ISR against broad-spectrum pathogens.
Collapse
Affiliation(s)
- Zi-Jie Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Shu-Ya Tang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Hong-Shan Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jin-Yao Ren
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Pei-Ling Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Wen-Pan Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Ying Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Wei Yang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, China
| | - Yi-Yang Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jian-Hua Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Yu-Ming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, China
| | - Dong-Dong Niu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
| |
Collapse
|
10
|
Riseh RS, Vazvani MG, Kennedy JF. β-glucan-induced disease resistance in plants: A review. Int J Biol Macromol 2023; 253:127043. [PMID: 37742892 DOI: 10.1016/j.ijbiomac.2023.127043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are caused by various factors, including both pathogenic and non-pathogenic ones. β-glucan primarily originates from bacteria and fungi, some species of these organisms work as biological agents in causing diseases. When β-glucan enters plants, it triggers the defense system, leading to various reactions such as the production of proteins related to pathogenicity and defense enzymes. By extracting β-glucan from disturbed microorganisms and using it as an inducing agent, plant diseases can be effectively controlled by activating the plant's defense system. β-glucan plays a crucial role during the interaction between plants and pathogens. Therefore, modeling the plant-pathogen relationship and using the molecules involved in this interaction can help in controlling plant diseases, as pathogens have genes related to resistance against pathogenicity. Thus, it is reasonable to identify and use biological induction agents at a large scale by extracting these compounds.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
11
|
Moine A, Pugliese M, Monchiero M, Gribaudo I, Gullino ML, Pagliarani C, Gambino G. Effects of fungicide application on physiological and molecular responses of grapevine (Vitis vinifera L.): a comparison between copper and sulfur fungicides applied alone and in combination with novel fungicides. PEST MANAGEMENT SCIENCE 2023; 79:4569-4588. [PMID: 37434047 DOI: 10.1002/ps.7660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/12/2023] [Accepted: 07/12/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Chemical products against fungi and oomycetes pose serious environmental issues. In the last decade, the use of less impacting active ingredients was encouraged to reduce chemical inputs in viticulture. In this study, the effect of different antifungal compounds on grapevine agronomic, physiological, and molecular responses in the vineyard was evaluated in addition to protection against powdery and downy mildews. RESULTS In 2 years and in two Vitis vinifera cultivars (Nebbiolo and Arneis), a conventional crop protection approach, based on traditional fungicides (sulfur and copper), was compared to combined strategies. A well-known resistance inducer (potassium phosphonate), Bacillus pumilus strain QST 2808 and calcium oxide, both active ingredients whose biological interaction with grapevine is poorly characterized, were applied in the combined strategies in association with chemical fungicides. Despite a genotype effect occurred, all treatments optimally controlled powdery and downy mildews, with minimal variations in physiological and molecular responses. Gas exchange, chlorophyll content and photosystem II efficiency increased in treated plants at the end of season, along with a slight improvement in the agronomic performances, and an activation of molecular defense processes linked to stilbene and jasmonate pathways. CONCLUSION The disease control strategies based on potassium phosphonate, Bacillus pumilus strain QST 2808 or calcium oxide combined with traditional chemical compounds did not cause severe limitations in plant ecophysiology, grape quality, and productive yields. The combination of potassium phosphonate and calcium oxide with traditional fungicides can represent a valuable strategy for reducing copper and sulfur inputs in the vineyards, including those organically managed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Massimo Pugliese
- Centre of competence for the innovation in the agro-environmental sector (Agroinnova), Grugliasco, Italy
| | | | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Maria Lodovica Gullino
- Centre of competence for the innovation in the agro-environmental sector (Agroinnova), Grugliasco, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| |
Collapse
|
12
|
Mirande-Ney C, Arnaudin Q, Durambur G, Plasson C, Bernard S, Chamot C, Grivotte J, Mati-Baouche N, Driouich A, Brebion J, Hennequart F, Lerouge P, Boulogne I. LAM2: An Unusual Laminaran Structure for a Novel Plant Elicitor Candidate. Biomolecules 2023; 13:1483. [PMID: 37892165 PMCID: PMC10605138 DOI: 10.3390/biom13101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Laminarans are of interest because they have been shown to induce various immune responses in animals and plants. These β-D-glucans differ from each other by their branching rate, which is possibly responsible for their biological activities. In the present study, we characterized a laminaran fraction extracted from Laminaria hyperborea and named LAM2 using sugar composition and structural analyses (NMR). Then, we evaluated its activity as a potential plant elicitor in vitro on tomato seedlings using gene expression analysis and cell wall immunofluorescence labeling. Our study showed that LAM2 isolated from L. hyperborea is a succinylated laminaran which significantly enhanced the plant defense of tomato seedlings and induced cell wall modifications, suggesting a higher elicitor activity than the laminaran standard extracted from Laminaria digitata.
Collapse
Affiliation(s)
- Cathleen Mirande-Ney
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Quentin Arnaudin
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Gaëlle Durambur
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Carole Plasson
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Sophie Bernard
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
- INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, University of Rouen Normandie, F-76000 Rouen, France
| | - Christophe Chamot
- INSERM, CNRS, HeRacLeS US 51 UAR 2026, PRIMACEN, University of Rouen Normandie, F-76000 Rouen, France
| | - Julie Grivotte
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Narimane Mati-Baouche
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Azeddine Driouich
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Jeremy Brebion
- ALGAIA R&D Center, 91 Rue Edouard Branly, F-50000 Saint-Lô, France
| | | | - Patrice Lerouge
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| | - Isabelle Boulogne
- GLYCOMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, University of Rouen Normandie, IRIB, F-76000 Rouen, France
| |
Collapse
|
13
|
Frick K, Ebbing T, Yeh Y, Schmid‐Staiger U, Tovar GEM. Influence of light conditions on the production of chrysolaminarin using Phaeodactylum tricornutum in artificially illuminated photobioreactors. Microbiologyopen 2023; 12:e1378. [PMID: 37877659 PMCID: PMC10505944 DOI: 10.1002/mbo3.1378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
The light conditions are of utmost importance in any microalgae production process especially involving artificial illumination. This also applies to a chrysolaminarin (soluble 1,3-β-glucan) production process using the diatom Phaeodactylum tricornutum. Here we examine the influence of the amount of light per gram biomass (specific light availability) and the influence of two different biomass densities (at the same amount of light per gram biomass) on the accumulation of the storage product chrysolaminarin during nitrogen depletion in artificially illuminated flat-panel airlift photobioreactors. Besides chrysolaminarin, other compounds (fucoxanthin, fatty acids used for energy storage [C16 fatty acids], and eicosapentaenoic acid) are regarded as well. Our results show that the time course of C-allocation between chrysolaminarin and fatty acids, serving as storage compounds, is influenced by specific light availability and cell concentration. Furthermore, our findings demonstrate that with increasing specific light availability, the maximal chrysolaminarin content increases. However, this effect is limited. Beyond a certain specific light availability (here: 5 µmolphotons gDW -1 s-1 ) the maximal chrysolaminarin content no longer increases, but the rate of increase becomes faster. Furthermore, the conversion of light to chrysolaminarin is best at the beginning of nitrogen depletion. Additionally, our results show that a high biomass concentration has a negative effect on the maximal chrysolaminarin content, most likely due to the occurring self-shading effects.
Collapse
Affiliation(s)
- Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, Bioprocess EngineeringUniversity of StuttgartStuttgartGermany
- Industrial BiotechnologyFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Tobias Ebbing
- Institute of Interfacial Process Engineering and Plasma Technology, Bioprocess EngineeringUniversity of StuttgartStuttgartGermany
- Industrial BiotechnologyFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Yen‐Cheng Yeh
- Industrial BiotechnologyFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Ulrike Schmid‐Staiger
- Industrial BiotechnologyFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Günter E. M. Tovar
- Institute of Interfacial Process Engineering and Plasma Technology, Bioprocess EngineeringUniversity of StuttgartStuttgartGermany
- Industrial BiotechnologyFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| |
Collapse
|
14
|
Toffolatti SL, Davillerd Y, D’Isita I, Facchinelli C, Germinara GS, Ippolito A, Khamis Y, Kowalska J, Maddalena G, Marchand P, Marcianò D, Mihály K, Mincuzzi A, Mori N, Piancatelli S, Sándor E, Romanazzi G. Are Basic Substances a Key to Sustainable Pest and Disease Management in Agriculture? An Open Field Perspective. PLANTS (BASEL, SWITZERLAND) 2023; 12:3152. [PMID: 37687399 PMCID: PMC10490370 DOI: 10.3390/plants12173152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Pathogens and pests constantly challenge food security and safety worldwide. The use of plant protection products to manage them raises concerns related to human health, the environment, and economic costs. Basic substances are active, non-toxic compounds that are not predominantly used as plant protection products but hold potential in crop protection. Basic substances' attention is rising due to their safety and cost-effectiveness. However, data on their protection levels in crop protection strategies are lacking. In this review, we critically analyzed the literature concerning the field application of known and potential basic substances for managing diseases and pests, investigating their efficacy and potential integration into plant protection programs. Case studies related to grapevine, potato, and fruit protection from pre- and post-harvest diseases and pests were considered. In specific cases, basic substances and chitosan in particular, could complement or even substitute plant protection products, either chemicals or biologicals, but their efficacy varied greatly according to various factors, including the origin of the substance, the crop, the pathogen or pest, and the timing and method of application. Therefore, a careful evaluation of the field application is needed to promote the successful use of basic substances in sustainable pest management strategies in specific contexts.
Collapse
Affiliation(s)
- Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Yann Davillerd
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Ilaria D’Isita
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Chiara Facchinelli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Giacinto Salvatore Germinara
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (I.D.); (G.S.G.)
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy;
| | - Youssef Khamis
- Agricultural Research Center, Plant Pathology Research Institute, 9 Gamaa St., Giza 12619, Egypt;
| | - Jolanta Kowalska
- Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection–National Research Institute, Władysława Wêgorka 20, 60-318 Poznañ, Poland;
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Patrice Marchand
- Institut de l’Agriculture et de l’Alimentation Biologiques (ITAB), 149 rue de BERCY, F-75012 Paris, France; (Y.D.); (P.M.)
| | - Demetrio Marcianò
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (G.M.); (D.M.)
| | - Kata Mihály
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Annamaria Mincuzzi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Nicola Mori
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (C.F.); (A.M.); (N.M.)
| | - Simone Piancatelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| | - Erzsébet Sándor
- Faculty of Agricultural and Food Science and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary; (K.M.); (E.S.)
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy; (S.P.); (G.R.)
| |
Collapse
|
15
|
Taibi O, Salotti I, Rossi V. Plant Resistance Inducers Affect Multiple Epidemiological Components of Plasmopara viticola on Grapevine Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:2938. [PMID: 37631150 PMCID: PMC10459891 DOI: 10.3390/plants12162938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Plant resistance inducers (PRIs) harbor promising potential for use in downy mildew (DM) control in viticulture. Here, the effects of six commercial PRIs on some epidemiological components of Plasmopara viticola (Pv) on grapevine leaves were studied over 3 years. Disease severity, mycelial colonization of leaf tissue, sporulation severity, production of sporangia on affected leaves, and per unit of DM lesion were evaluated by inoculating the leaves of PRI-treated plants at 1, 3, 6, 12, and 19 days after treatment (DAT). Laminarin, potassium phosphonate (PHO), and fosetyl-aluminium (FOS) were the most effective in reducing disease severity as well as the Pv DNA concentration of DM lesions on leaves treated and inoculated at 1 and 3 DAT; PHO and FOS also showed long-lasting effects on leaves established after treatment (inoculations at 6 to 19 DAT). PRIs also prevented the sporulation of Pv on lesions; all the PRI-treated leaves produced fewer sporangia than the nontreated control, especially in PHO-, FOS-, and cerevisane-treated leaves (>75% reduction). These results illustrate the broader and longer effect of PRIs on DM epidemics. The findings open up new perspectives for using PRIs in a defense program based on single, timely, and preventative field interventions.
Collapse
Affiliation(s)
| | | | - Vittorio Rossi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy; (O.T.); (I.S.)
| |
Collapse
|
16
|
Sivaramakrishnan M, Goel S, Ratnaparkhi N, Chandrasekar B. Chemiluminescence-Based Assay to Monitor Early Oxidative Bursts in Soybean (Glycine max) Lateral Roots. Curr Protoc 2023; 3:e869. [PMID: 37625015 DOI: 10.1002/cpz1.869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The reactive oxygen species (ROS) burst assay is a valuable tool for studying pattern-triggered immunity (PTI) in plants. During PTI, the interaction between pathogen recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) leads to the rapid production of ROS in the apoplastic space. The resultant ROS can be measured using a chemiluminescent approach that involves the usage of horseradish peroxidase and luminol. Although several methods and protocols are available to detect early ROS bursts in leaf tissues, no dedicated method is available for root tissues. Here, we have established a reliable method to measure the PAMP-triggered ROS burst response in soybean lateral roots. In plants, lateral roots are the potential entry and colonization sites for pathogens in the rhizosphere. We have used important PAMPs such as chitohexaose, flagellin 22 peptide fragment, and laminarin to validate our method. In addition, we provide a detailed methodology for the isolation and application of fungal cell wall components to monitor the oxidative burst in soybean lateral roots. Furthermore, we provide methodology for performing ROS burst assays in soybean leaf discs with laminarin and fungal cell walls. This approach could also be applied to leaf and root tissues of other plant species to study the PTI response upon elicitor treatment. © 2023 Wiley Periodicals LLC. Basic Protocol: Reactive oxygen species (ROS) burst assay in soybean lateral root tissues Alternate Protocol: ROS burst assay in soybean leaf discs Support Protocol: Isolating fungal cell wall fractions.
Collapse
Affiliation(s)
| | - Sakshi Goel
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS Pilani), Pilani, India
| | - Nikhil Ratnaparkhi
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS Pilani), Pilani, India
| | - Balakumaran Chandrasekar
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS Pilani), Pilani, India
| |
Collapse
|
17
|
Li Z, Wang J, Lin K, Liu M, Wang J, Zhang L, Xia C, Liu L, Zhang B, Yangzong Y, Han J, Zhao Y, Ye X, Huang Y, Cui Z. Insights into the Antifungal Properties of Myxobacteria Outer Membrane β-1,6-Glucanase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37326459 DOI: 10.1021/acs.jafc.3c00578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fungal cell wall decomposition enzymes exhibit great potential for the development of efficient antifungal agents. However, their practical application is restricted due to incomplete understanding of the action mode. In our previous study, we identified that a novel outer membrane (OM) β-1,6-glucanase GluM is deployed by predatory myxobacteria to feed on fungi. In this work, we provide deep insights into the antifungal mechanism of β-1,6-glucanase and its potential in improving plant disease resistance. The fungal cell wall decomposition ability of GluM resulted in irregular hyphae morphology, changed chitin distribution, increased membrane permeability, and leakage of cell constituents in Magnaporthe oryzae Guy11. Under the attack pattern, the cell wall integrity pathway was activated by strain Guy11 for self-protection. GluM exhibited a distinct endo-model toward fungal cell wall; the favorite substrate of GluM toward fungal β-1,6-glucan may give reason for its efficient antifungal activity compared with Trichoderma β-1,6-glucanase. Moreover, released glucans from GluM hydrolysis of fungal cell wall functioned as an elicitor and induced rice immunity by means of jasmonic acid pathway. Based on the dual roles of antifungal properties, gluM transgenic plants conferred enhanced resistance against fungal infection.
Collapse
Affiliation(s)
- Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kanghui Lin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Muxing Liu
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
| | - Juying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Biying Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunzhen Yangzong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Han
- College of Agriculture, Xinjiang Agricultural University, Ürümqi, XinJiang 830052, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Kahlon PS, Förner A, Muser M, Oubounyt M, Gigl M, Hammerl R, Baumbach J, Hückelhoven R, Dawid C, Stam R. Laminarin-triggered defence responses are geographically dependent in natural populations of Solanum chilense. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3240-3254. [PMID: 36880316 DOI: 10.1093/jxb/erad087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/06/2023] [Indexed: 05/21/2023]
Abstract
Natural plant populations are polymorphic and show intraspecific variation in resistance properties against pathogens. The activation of the underlying defence responses can depend on variation in perception of pathogen-associated molecular patterns or elicitors. To dissect such variation, we evaluated the responses induced by laminarin (a glucan, representing an elicitor from oomycetes) in the wild tomato species Solanum chilense and correlated this to observed infection frequencies of Phytophthora infestans. We measured reactive oxygen species burst and levels of diverse phytohormones upon elicitation in 83 plants originating from nine populations. We found high diversity in basal and elicitor-induced levels of each component. Further we generated linear models to explain the observed infection frequency of P. infestans. The effect of individual components differed dependent on the geographical origin of the plants. We found that the resistance in the southern coastal region, but not in the other regions, was directly correlated to ethylene responses and confirmed this positive correlation using ethylene inhibition assays. Our findings reveal high diversity in the strength of defence responses within a species and the involvement of different components with a quantitatively different contribution of individual components to resistance in geographically separated populations of a wild plant species.
Collapse
Affiliation(s)
- Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Andrea Förner
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Michael Muser
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Mhaned Oubounyt
- Research Group of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
| | - Michael Gigl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Richard Hammerl
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Jan Baumbach
- Research Group of Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607, Hamburg, Germany
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, Odense, Denmark
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, Germany
| | - Corinna Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Remco Stam
- Department of Phytopathology and Crop Protection, Institute for Phytopathology, Kiel University, Hermann Rodewald Str 9, 24118 Kiel, Germany
| |
Collapse
|
19
|
Kelly S, Hansen SB, Rübsam H, Saake P, Pedersen EB, Gysel K, Madland E, Wu S, Wawra S, Reid D, Sullivan JT, Blahovska Z, Vinther M, Muszynski A, Azadi P, Thygesen MB, Aachmann FL, Ronson CW, Zuccaro A, Andersen KR, Radutoiu S, Stougaard J. A glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia in the legume Lotus japonicus. PLoS Biol 2023; 21:e3002127. [PMID: 37200394 DOI: 10.1371/journal.pbio.3002127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 05/31/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined β-1,3/β-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.
Collapse
Affiliation(s)
- Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simon B Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Henriette Rübsam
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Pia Saake
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Plant Sciences, Cologne, Germany
| | - Emil B Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Eva Madland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shunliang Wu
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Plant Sciences, Cologne, Germany
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - John T Sullivan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zuzana Blahovska
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Vinther
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Artur Muszynski
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Finn L Aachmann
- NOBIPOL (Norwegian Biopolymer Laboratory), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alga Zuccaro
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Plant Sciences, Cologne, Germany
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Yacoub A, Haidar R, Mesguida O, Gerbore J, Hachicha M, Attard E, Guyoneaud R, Rey P. Deciphering Plant-Induced Responses toward Botrytis cinerea and Plasmopara viticola Attacks in Two Grapevine Cultivars Colonized by the Root Biocontrol Oomycete, Pythium oligandrum. J Fungi (Basel) 2023; 9:jof9050511. [PMID: 37233222 DOI: 10.3390/jof9050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Two major diseases that affect grapevine leaves and berries are controlled by the oomycete Pythium oligandrum. As the efficacy of biocontrol agents strongly depends on factors such as the trophic behaviors of pathogens and cultivar susceptibility, a two-disease approach was implemented to evaluate the activity of P. oligandrum against Botrytis cinerea (the necrotrophic fungus of gray mold) and Plasmopara viticola (the biotrophic oomycete of downy mildew) on two grapevine cultivars with different susceptibilities to these two pathogens. The results show that grapevine root inoculation with P. oligandrum significantly reduced P. viticola and B. cinerea infection on the leaves of the two cultivars, but with differences. This was observed when the relative expression of 10 genes was measured in response to each pathogen, and could be attributed to their lifestyles, i.e., biotrophic or necrotrophic, which are related to the activation of specific metabolic pathways of the plant. In response to P. viticola infection, genes from the jasmonate and ethylene pathways were mainly induced, whereas for B. cinerea, the genes induced were those of the ethylene-jasmonate pathway. The different levels of defense against B. cinerea and P. viticola could also explain the difference in cultivar susceptibility to these pathogens.
Collapse
Affiliation(s)
- Amira Yacoub
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- INRAE, UMR1065, Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883 Villenave d'Ornon, France
| | - Rana Haidar
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- INRAE, UMR1065, Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883 Villenave d'Ornon, France
| | - Ouiza Mesguida
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- GreenCell, Biopôle Clermont-Limagne, 63360 Saint Beauzire, France
| | - Jonathan Gerbore
- GreenCell, Biopôle Clermont-Limagne, 63360 Saint Beauzire, France
| | - Maya Hachicha
- INRAE, UMR1065, Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883 Villenave d'Ornon, France
| | - Eléonore Attard
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Rémy Guyoneaud
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, 64000 Pau, France
| | - Patrice Rey
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, 64000 Pau, France
- INRAE, UMR1065, Santé et Agroécologie du Vignoble (SAVE), ISVV, 33883 Villenave d'Ornon, France
| |
Collapse
|
21
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
22
|
Chavanke SN, Penna S, Dalvi SG. β-Glucan and its nanocomposites in sustainable agriculture and environment: an overview of mechanisms and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80062-80087. [PMID: 35641741 DOI: 10.1007/s11356-022-20938-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 05/23/2023]
Abstract
β-Glucan is an eco-friendly, biodegradable, and economical biopolymer with important roles for acquiring adaptations to mitigate climate change in crop plants. β-Glucan plays a crucial role in the activation of functional plant innate immune system by triggering the downward signaling cascade/s, resulting in the accumulation of different pathogenesis-related proteins (PR-proteins), reactive oxygen species (ROS), antioxidant defense enzymes, Ca2+-influx as well as activation of mitogen-activated protein kinase (MAPK) pathway. Recent experimental studies have shown that β-glucan recognition is mediated by co-receptor LysMPRR (lysin motif pattern recognition receptor)-CERK1 (chitin elicitor receptor kinase 1), LYK4, and LYK5 (LysM-containing receptor-like kinase), as well as different receptor systems in plants that could be plant species-specific and/or age and/or tissue-dependent. Transgenic overexpression of β-glucanase, chitinase, and/or in combination with other PR-proteins like cationic peroxidase, AP24,thaumatin-likeprotein 1 (TLP-1) has also been achieved for improving plant disease resistance in crop plants, but the transgenic methods have some ethical and environmental concerns. In this regard, elicitation of plant immunity using biopolymer like β-glucan and chitosan offers an economical, safe, and publicly acceptable method. The β-glucan and chitosan nanocomposites have proven to be useful for the activation of plant defense pathways and to enhance plant response/systemic acquired resistance (SAR) against broad types of plant pathogens and mitigating multiple stresses under the changing climate conditions.
Collapse
Affiliation(s)
- Somnath N Chavanke
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India
| | | | - Sunil Govind Dalvi
- Tissue Culture Section, Agri. Sci. & Tech. Dept., Vasantdada Sugar Institute, Pune, India.
| |
Collapse
|
23
|
Jindo K, Goron TL, Pizarro-Tobías P, Sánchez-Monedero MÁ, Audette Y, Deolu-Ajayi AO, van der Werf A, Goitom Teklu M, Shenker M, Pombo Sudré C, Busato JG, Ochoa-Hueso R, Nocentini M, Rippen J, Aroca R, Mesa S, Delgado MJ, Tortosa G. Application of biostimulant products and biological control agents in sustainable viticulture: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:932311. [PMID: 36330258 PMCID: PMC9623300 DOI: 10.3389/fpls.2022.932311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Current and continuing climate change in the Anthropocene epoch requires sustainable agricultural practices. Additionally, due to changing consumer preferences, organic approaches to cultivation are gaining popularity. The global market for organic grapes, grape products, and wine is growing. Biostimulant and biocontrol products are often applied in organic vineyards and can reduce the synthetic fertilizer, pesticide, and fungicide requirements of a vineyard. Plant growth promotion following application is also observed under a variety of challenging conditions associated with global warming. This paper reviews different groups of biostimulants and their effects on viticulture, including microorganisms, protein hydrolysates, humic acids, pyrogenic materials, and seaweed extracts. Of special interest are biostimulants with utility in protecting plants against the effects of climate change, including drought and heat stress. While many beneficial effects have been reported following the application of these materials, most studies lack a mechanistic explanation, and important parameters are often undefined (e.g., soil characteristics and nutrient availability). We recommend an increased study of the underlying mechanisms of these products to enable the selection of proper biostimulants, application methods, and dosage in viticulture. A detailed understanding of processes dictating beneficial effects in vineyards following application may allow for biostimulants with increased efficacy, uptake, and sustainability.
Collapse
Affiliation(s)
- Keiji Jindo
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | - Travis L. Goron
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Paloma Pizarro-Tobías
- Faculty of Computer Sciences, Multimedia and Telecommunication, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Miguel Ángel Sánchez-Monedero
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Agencia Estatal CSIC, Murcia, Spain
| | - Yuki Audette
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
- Chitose Laboratory Corp., Kawasaki, Japan
| | | | - Adrie van der Werf
- Agrosystems Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Moshe Shenker
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, Israel
| | - Cláudia Pombo Sudré
- Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, Brazil
| | - Jader Galba Busato
- Faculdade de Agronomia e Medicina Veterinária, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, Brazil
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, Agroalimentario, Campus del Rio San Pedro, University of Cádiz, Cádiz, Spain
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Marco Nocentini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi Firenze, Firenze, Italy
| | | | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - María J. Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| | - Germán Tortosa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), Agencia Estatal CSIC, Granada, Spain
| |
Collapse
|
24
|
Calderone F, Vitale A, Panebianco S, Lombardo MF, Cirvilleri G. COS-OGA Applications in Organic Vineyard Manage Major Airborne Diseases and Maintain Postharvest Quality of Wine Grapes. PLANTS (BASEL, SWITZERLAND) 2022; 11:1763. [PMID: 35807715 PMCID: PMC9269060 DOI: 10.3390/plants11131763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/05/2022]
Abstract
In most wine-growing countries of the world the interest for organic viticulture and eco-friendly grape production processes increased significantly in the last decade. Organic viticulture is currently dependent on the availability of Cu and S compounds, but their massive use over time has led to negative effects on environment health. Consequently, the purpose of this study was to evaluate the effectiveness of alternative and sustainable treatments against powdery mildew, gray mold and sour rot under the field conditions on Nero d'Avola and Inzolia Sicilian cultivars. In detail, the efficacy of COS-OGA, composed by a complex of oligochitosans and oligopectates, and its effects in combination with arbuscular mycorrhizal fungi (AMF) were evaluated to reduce airborne disease infections of grape. COS-OGA combined with AMF induced a significant reduction in powdery mildew severity both on Nero d'Avola and Inzolia with a mean percentage decrease of about 15% and 33%, respectively. Moreover, COS-OGA alone and combined with AMF gave a good protection against gray mold and sour rot with results similar to the Cu-S complex (performance in disease reduction ranging from 65 to 100%) on tested cultivars. Similarly, the COS-OGA and AMF integration provided good performances in enhancing average yield and did not negatively impact quality and microbial communities of wine grape. Overall, COS-OGA alone and in combination could be proposed as a valid and safer option for the sustainable management of the main grapevine pathogens in organic agroecosystems.
Collapse
Affiliation(s)
- Francesca Calderone
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy; (F.C.); (M.F.L.); (G.C.)
| | - Alessandro Vitale
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy; (F.C.); (M.F.L.); (G.C.)
| | - Salvina Panebianco
- Dipartimento di Fisica e Astronomia, University of Catania, Via S. Sofia 64, 95123 Catania, Italy;
| | - Monia Federica Lombardo
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy; (F.C.); (M.F.L.); (G.C.)
| | - Gabriella Cirvilleri
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, 95123 Catania, Italy; (F.C.); (M.F.L.); (G.C.)
| |
Collapse
|
25
|
Nguyen NH, Trotel-Aziz P, Villaume S, Rabenoelina F, Clément C, Baillieul F, Aziz A. Priming of camalexin accumulation in induced systemic resistance by beneficial bacteria against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3743-3757. [PMID: 35191984 DOI: 10.1093/jxb/erac070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Plants harbor various beneficial microbes that modulate their innate immunity, resulting in induced systemic resistance (ISR) against a broad range of pathogens. Camalexin is an integral part of Arabidopsis innate immunity, but the contribution of its biosynthesis in ISR is poorly investigated. We focused on camalexin accumulation primed by two beneficial bacteria, Pseudomonas fluorescens and Bacillus subtilis, and its role in ISR against Botrytis cinerea and Pseudomonas syringae Pst DC3000. Our data show that colonization of Arabidopsis thaliana roots by beneficial bacteria triggers ISR against both pathogens and primes plants for enhanced accumulation of camalexin and CYP71A12 transcript in leaf tissues. Pseudomonas fluorescens induced the most efficient ISR response against B. cinerea, while B. subtilis was more efficient against Pst DC3000. Analysis of cyp71a12 and pad3 mutants revealed that loss of camalexin synthesis affected ISR mediated by both bacteria against B. cinerea. CYP71A12 and PAD3 contributed significantly to the pathogen-triggered accumulation of camalexin, but PAD3 does not seem to contribute to ISR against Pst DC3000. This indicated a significant contribution of camalexin in ISR against B. cinerea, but not always against Pst DC3000. Experiments with Arabidopsis mutants compromised in different hormonal signaling pathways highlighted that B. subtilis stimulates similar signaling pathways upon infection with both pathogens, since salicylic acid (SA), but not jasmonic acid (JA) or ethylene, is required for ISR camalexin accumulation. However, P. fluorescens-induced ISR differs depending on the pathogen; both SA and JA are required for camalexin accumulation upon B. cinerea infection, while camalexin is not necessary for priming against Pst DC3000.
Collapse
Affiliation(s)
- Ngoc Huu Nguyen
- Induced Resistance and Plant Bioprotection USC INRAE 1488, SFR Condorcet FR-CNRS 3417, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
- Department of Plant Biology, Faculty of Agriculture and Forestry, Tay Nguyen University, 567 Le Duan, Daklak, Vietnam
| | - Patricia Trotel-Aziz
- Induced Resistance and Plant Bioprotection USC INRAE 1488, SFR Condorcet FR-CNRS 3417, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Sandra Villaume
- Induced Resistance and Plant Bioprotection USC INRAE 1488, SFR Condorcet FR-CNRS 3417, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Fanja Rabenoelina
- Induced Resistance and Plant Bioprotection USC INRAE 1488, SFR Condorcet FR-CNRS 3417, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Christophe Clément
- Induced Resistance and Plant Bioprotection USC INRAE 1488, SFR Condorcet FR-CNRS 3417, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Fabienne Baillieul
- Induced Resistance and Plant Bioprotection USC INRAE 1488, SFR Condorcet FR-CNRS 3417, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection USC INRAE 1488, SFR Condorcet FR-CNRS 3417, University of Reims, UFR Sciences, Campus Moulin de la Housse, 51687 Reims Cedex 02, France
| |
Collapse
|
26
|
Koledenkova K, Esmaeel Q, Jacquard C, Nowak J, Clément C, Ait Barka E. Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Front Microbiol 2022; 13:889472. [PMID: 35633680 PMCID: PMC9130769 DOI: 10.3389/fmicb.2022.889472] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni) causing grapevine downy mildew is one of the most damaging pathogens to viticulture worldwide. Since its recognition in the middle of nineteenth century, this disease has spread from America to Europe and then to all grapevine-growing countries, leading to significant economic losses due to the lack of efficient disease control. In 1885 copper was found to suppress many pathogens, and is still the most effective way to control downy mildews. During the twentieth century, contact and penetrating single-site fungicides have been developed for use against plant pathogens including downy mildews, but wide application has led to the appearance of pathogenic strains resistant to these treatments. Additionally, due to the negative environmental impact of chemical pesticides, the European Union restricted their use, triggering a rush to develop alternative tools such as resistant cultivars breeding, creation of new active ingredients, search for natural products and biocontrol agents that can be applied alone or in combination to kill the pathogen or mitigate its effect. This review summarizes data about the history, distribution, epidemiology, taxonomy, morphology, reproduction and infection mechanisms, symptoms, host-pathogen interactions, host resistance and control of the P. viticola, with a focus on sustainable methods, especially the use of biocontrol agents.
Collapse
Affiliation(s)
- Kseniia Koledenkova
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Jerzy Nowak
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Saunders Hall, Blacksburg, VA, United States
| | - Christophe Clément
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Essaid Ait Barka
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| |
Collapse
|
27
|
Yang C, Wang E, Liu J. CERK1, more than a co-receptor in plant-microbe interactions. THE NEW PHYTOLOGIST 2022; 234:1606-1613. [PMID: 35297054 DOI: 10.1111/nph.18074] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
CERK1 (Chitin Elicitor Receptor Kinase 1), a lysin motif-containing pattern recognition receptor (PRR), perceives chitooligosaccharides (COs) to mount immune and symbiotic responses. However, CERK1, for a relatively long time, has been regarded as a co-receptor in plant immunity, mainly due to its lack of high binding affinity to known elicitors. Recent studies demonstrated several novel carbohydrates as ligands of CERK1 in different plant species and recognized CERK1 as a key receptor in plant immunity and symbiosis. This review summarizes recent knowledge acquired on the role of CERK1 in plant-microbe interactions.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, 100193, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory for Monitoring and Green Management of Crop Pests, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Giudice G, Moffa L, Niero M, Duso C, Sandrini M, Vazzoler LF, Luison M, Pasini E, Chitarra W, Nerva L. Novel sustainable strategies to control Plasmopara viticola in grapevine unveil new insights on priming responses and arthropods ecology. PEST MANAGEMENT SCIENCE 2022; 78:2342-2356. [PMID: 35246907 DOI: 10.1002/ps.6860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Reduction of fungicide consumption in agriculture is globally recognized as a priority. Government authorities are fostering research to achieve a reduction of risks associated with conventional pesticides and promoting the development of sustainable alternatives. To address these issues, in the present study, alternative protocols for the control of downy mildew infection in grapevine were compared to the standard protocol. In the first protocol, only resistance inducers were used, comprising a single formulation with Acibenzolar S-methyl, laminarin and disodium-phosphonate. The second and third protocols followed the standard protocol but substituted phosphonates with phosphorus pentoxide and Ecklonia maxima extract. RESULTS The results showed that at veraison downy mildew incidence and severity in all tested protocols were significantly reduced compared to nontreated controls on both canopy and bunches. Expression analysis of key genes involved in plant stress response, indicated that the two protocols for phosphites substitution induced a remodulation of salicylic acid (SA) and jasmonic acid (JA), with positive impact on yields. Analysis of the first protocol revealed that the primed state induced a short delay in bunch ripening, with a shift of carbohydrate metabolism to boost the plant defences, involving an upregulation of defence related-gene, SAR response and a decreased ROS detoxification. Additionally, analysis on the arthropods populations, in parallel with the positive results achieved using alternatives to conventional fungicides, were enriched by those showing the potential of naturally occurring predators of spider mites. CONCLUSION This study provides practical solutions to reduce the environmental impact of treatments for the control downy mildew in viticulture. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gaetano Giudice
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DiSAA), University of Milano, Milan, Italy
| | - Loredana Moffa
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Marina Niero
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
| | - Carlo Duso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Marco Sandrini
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | | | | | | | - Walter Chitarra
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Institute for Sustainable Plant Protection, CNR, Torino, Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology CREA-VE, Conegliano, Italy
- Institute for Sustainable Plant Protection, CNR, Torino, Italy
| |
Collapse
|
29
|
Kang JE, Yoo N, Jeon BJ, Kim BS, Chung EH. Resveratrol Oligomers, Plant-Produced Natural Products With Anti-virulence and Plant Immune-Priming Roles. FRONTIERS IN PLANT SCIENCE 2022; 13:885625. [PMID: 35712595 PMCID: PMC9197177 DOI: 10.3389/fpls.2022.885625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance has become increasingly prevalent in the environment. Many alternative strategies have been proposed for the treatment and prevention of diverse diseases in agriculture. Among them, the modulation of bacterial virulence to bypass antibiotic resistance or boost plant innate immunity can be considered a promising drug target. Plant-produced natural products offer a broad spectrum of stereochemistry and a wide range of pharmacophores, providing a great diversity of biological activities. Here, we present a perspective on the putative role of plant-produced resveratrol oligomers as anti-virulence and plant-immune priming agents for efficient disease management. Resveratrol oligomers can decrease (1) bacterial motility directly and (2) indirectly by attenuating the bacterial type III secretion system (TT3S). They induce enhanced local immune responses mediated by two-layered plant innate immunity, demonstrating (3) a putative plant immune priming role.
Collapse
Affiliation(s)
- Ji Eun Kang
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
| | - Nayeon Yoo
- Department of Plant Biotechnology, Graduate School, Korea University, Seoul, South Korea
| | - Byeong Jun Jeon
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung Institute, Gangneung, South Korea
| | - Beom Seok Kim
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
- Department of Plant Biotechnology, Graduate School, Korea University, Seoul, South Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eui-Hwan Chung
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
- Department of Plant Biotechnology, Graduate School, Korea University, Seoul, South Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
30
|
Přerovská T, Jindřichová B, Henke S, Yvin JC, Ferrieres V, Burketová L, Lipovová P, Nguema-Ona E. Arabinogalactan Protein-Like Proteins From Ulva lactuca Activate Immune Responses and Plant Resistance in an Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:893858. [PMID: 35668790 PMCID: PMC9164130 DOI: 10.3389/fpls.2022.893858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.
Collapse
Affiliation(s)
- Tereza Přerovská
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Barbora Jindřichová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Svatopluk Henke
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jean-Claude Yvin
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| | - Vincent Ferrieres
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Eric Nguema-Ona
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| |
Collapse
|
31
|
de Borba MC, Velho AC, de Freitas MB, Holvoet M, Maia-Grondard A, Baltenweck R, Magnin-Robert M, Randoux B, Hilbert JL, Reignault P, Hugueney P, Siah A, Stadnik MJ. A Laminarin-Based Formulation Protects Wheat Against Zymoseptoria tritici via Direct Antifungal Activity and Elicitation of Host Defense-Related Genes. PLANT DISEASE 2022; 106:1408-1418. [PMID: 34978870 DOI: 10.1094/pdis-08-21-1675-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study aimed to evaluate the potential of the laminarin-based formulation Vacciplant to protect and induce resistance in wheat against Zymoseptoria tritici, a major pathogen on this crop. Under greenhouse conditions, a single foliar spraying of the product 2 days before inoculation with Z. tritici reduced disease severity and pycnidium density by 42 and 45%, respectively. Vacciplant exhibited a direct antifungal activity on Z. tritici conidial germination both in vitro and in planta. Moreover, it reduced in planta substomatal colonization as well as pycnidium formation on treated leaves. Molecular investigations revealed that Vacciplant elicits but did not prime the expression of several wheat genes related to defense pathways, including phenylpropanoids (phenylalanine ammonia-lyase and chalcone synthase), octadecanoids (lipoxygenase and allene oxide synthase), and pathogenesis-related proteins (β-1,3-endoglucanase and chitinase). By contrast, it did not modulate the expression of oxalate oxidase gene involved in the reactive oxygen species metabolism. Ultrahigh-performance liquid chromatography-mass spectrometry analysis indicated limited changes in leaf metabolome after product application in both noninoculated and inoculated conditions, suggesting a low metabolic cost associated with induction of plant resistance. This study provides evidence that the laminarin-based formulation confers protection to wheat against Z. tritici through direct antifungal activity and elicitation of plant defense-associated genes.
Collapse
Affiliation(s)
- Marlon C de Borba
- Federal University of Santa Catarina, Agricultural Science Center (UFSC-CCA), Laboratory of Plant Pathology, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | - Aline C Velho
- Federal University of Santa Catarina, Agricultural Science Center (UFSC-CCA), Laboratory of Plant Pathology, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), CS 80699, F-62228 Calais Cedex, France
| | - Mateus B de Freitas
- Federal University of Santa Catarina, Agricultural Science Center (UFSC-CCA), Laboratory of Plant Pathology, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | - Maxime Holvoet
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | | | | | - Maryline Magnin-Robert
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), CS 80699, F-62228 Calais Cedex, France
| | - Béatrice Randoux
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), CS 80699, F-62228 Calais Cedex, France
| | - Jean-Louis Hilbert
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | - Philippe Reignault
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (EA 4492), CS 80699, F-62228 Calais Cedex, France
| | - Philippe Hugueney
- Université de Strasbourg, INRAE, SVQV UMR-A1131, 68000 Colmar, France
| | - Ali Siah
- Joint Research Unit Number 1158 BioEcoAgro, Junia, Université de Lille, Université Liège, UPJV, Université d'Artois, ULCO, INRAE, 2 Rue Norbert Ségard, BP 41290, F-59014 Lille Cedex, France
| | - Marciel J Stadnik
- Federal University of Santa Catarina, Agricultural Science Center (UFSC-CCA), Laboratory of Plant Pathology, Rod. Admar Gonzaga 1346, 88034-001 Florianópolis-SC, Brazil
| |
Collapse
|
32
|
Besrukow P, Irmler J, Schmid J, Stoll M, Winterhalter P, Schweiggert R, Will F. Variability of Constitutive Stilbenoid Levels and Profiles in Grape Cane ( Vitis vinifera L.) Depending upon Variety and Clone, Location in the Vineyard, Pruning Time, and Vintage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4342-4352. [PMID: 35352562 DOI: 10.1021/acs.jafc.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stilbenoids in grape cane (Vitis vinifera L.) are bioactive compounds relevant for plant defense and the potential valorization of this byproduct. Our screening of grape cane from 102 varieties showed constitutive stilbenoid levels in a wide range (557-7748 mg/kg of dry weight). Analyses of genetically distinct clones of selected cultivars unraveled that intravarietal variability (e.g., cv. Riesling, 3236-6541 mg/kg) was higher than that across samples from a single clone but different vineyard positions (3017-3710 mg/kg). Furthermore, stilbenoid levels in samples obtained in October, December, and February (3 years, 2017-2019) showed pronounced quantitative and qualitative variability and the highest yields upon December pruning. For instance, vitisin B and ε-viniferin in cv. Pinot Noir and Accent were predominant in 2017 and 2019 (both >90% of total stilbenoids) but not in 2018 (both <55%) when temperatures were high and precipitation low. In brief, we report the variability of stilbenoid levels in grape cane depending upon genetic and environmental factors.
Collapse
Affiliation(s)
- Paul Besrukow
- Department of Beverage Research, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Jan Irmler
- Department of Beverage Research, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Joachim Schmid
- Department of Grapevine Breeding, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Manfred Stoll
- Department of General and Organic Viticulture, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| | - Ralf Schweiggert
- Department of Beverage Research, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Frank Will
- Department of Beverage Research, Geisenheim University, von-Lade-Straße 1, 65366 Geisenheim, Germany
| |
Collapse
|
33
|
Monteiro E, Gonçalves B, Cortez I, Castro I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030396. [PMID: 35161376 PMCID: PMC8839214 DOI: 10.3390/plants11030396] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/01/2023]
Abstract
The viticulture and wine industry contribute to the economy and reputation of many countries all over the world. With the predicted climate change, a negative impact on grapevine physiology, growth, production, and quality of berries is expected. On the other hand, the impact of these changes in phytopathogenic fungi development, survival rates, and host susceptibility is unpredictable. Grapevine fungal diseases control has been a great challenge to winegrowers worldwide. The use of chemicals in viticulture is high, which can result in the development of pathogen resistance, increasingly raising concerns regarding residues in wine and effects on human and environmental health. Promoting sustainable patterns of production is one of the overarching objectives and essential requirements for sustainable development. Alternative holistic approaches, such as those making use of biostimulants, are emerging in order to reduce the consequences of biotic and abiotic stresses in the grapevine, namely preventing grape fungal diseases, improving grapevine resistance to water stress, and increasing yield and berry quality.
Collapse
Affiliation(s)
- Eliana Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Agronomy, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Isaura Castro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (B.G.); (I.C.); (I.C.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
34
|
Samuels LJ, Setati ME, Blancquaert EH. Towards a Better Understanding of the Potential Benefits of Seaweed Based Biostimulants in Vitis vinifera L. Cultivars. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030348. [PMID: 35161328 PMCID: PMC8839555 DOI: 10.3390/plants11030348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 05/03/2023]
Abstract
Globally, 7.4 million hectares of arable land is planted with grapevine with a farm gate value of $68.3 billion. The production of grapes faces growing pressure associated with challenges such as climate change, diminishing resources as well as the overuse of chemical fertilizers and synthetic pesticides, which have an impact on sustainability. Consequently, viticulture has over the years embraced and implemented various practices such integrated pest management, organic and biodynamic farming to curb the high chemical inputs typically used in conventional farming. Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers and plant growth regulators. Seaweed is of particular interest because of its availability globally. It was reported that brown seaweed (Ascophyllum spp.) improves plant growth and agricultural productivity, hormonal signalling, and an improved secondary plant metabolism. It also provides an alternative to soil supplementation, avoiding some of the negative effects of fertilizers through the leaching of nutrients into groundwater sources. This review aims to provide a summary of the use of seaweed extracts in grape production and their influence on grapevine physiology and stress adaptation mechanisms.
Collapse
|
35
|
Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H, Yilmaz M, Tsiamis G. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms 2022; 10:microorganisms10020307. [PMID: 35208762 PMCID: PMC8877611 DOI: 10.3390/microorganisms10020307] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
An increasing human population necessitates more food production, yet current techniques in agriculture, such as chemical pesticide use, have negative impacts on the ecosystems and strong public opposition. Alternatives to synthetic pesticides should be safe for humans, the environment, and be sustainable. Extremely diverse ecological niches and millions of years of competition have shaped the genomes of algae to produce a myriad of substances that may serve humans in various biotechnological areas. Among the thousands of described algal species, only a small number have been investigated for valuable metabolites, yet these revealed the potential of algal metabolites as bio-pesticides. This review focuses on macroalgae and microalgae (including cyanobacteria) and their extracts or purified compounds, that have proven to be effective antibacterial, antiviral, antifungal, nematocides, insecticides, herbicides, and plant growth stimulants. Moreover, the mechanisms of action of the majority of these metabolites against plant pests are thoroughly discussed. The available information demonstrated herbicidal activities via inhibition of photosynthesis, antimicrobial activities via induction of plant defense responses, inhibition of quorum sensing and blocking virus entry, and insecticidal activities via neurotoxicity. The discovery of antimetabolites also seems to hold great potential as one recent example showed antimicrobial and herbicidal properties. Algae, especially microalgae, represent a vast untapped resource for discovering novel and safe biopesticide compounds.
Collapse
Affiliation(s)
- Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
| | - Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany;
| | - Wolfgang Eisenreich
- Bavarian NMR Center—Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, 85748 Garching, Germany;
| | - Fatma Acheuk
- Laboratory for Valorization and Conservation of Biological Resources, Faculty of Sciences, University M’Hamed Bougara of Boumerdes, Boumerdes 35000, Algeria;
| | - Salma Lasram
- Laboratory of Molecular Physiology of Plants, Borj-Cedria Biotechnology Center. BP. 901, Hammam-Lif 2050, Tunisia;
| | - Shereen Basiouni
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mevlüt Emekci
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Keçiören, Ankara 06135, Turkey;
| | - Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece;
| | - Gökçe Taner
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mete Yilmaz
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
- Correspondence: (M.Y.); (G.T.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
- Correspondence: (M.Y.); (G.T.)
| |
Collapse
|
36
|
D-Tagatose-Based Product Triggers Sweet Immunity and Resistance of Grapevine to Downy Mildew, but Not to Gray Mold Disease. PLANTS 2022; 11:plants11030296. [PMID: 35161277 PMCID: PMC8839929 DOI: 10.3390/plants11030296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/02/2022]
Abstract
The use of natural bio-based compounds becomes an eco-friendly strategy to control plant diseases. Rare sugars would be promising compounds as inducers of plant “sweet immunity”. The present study aimed to investigate the induced resistance of grapevine leaves against Plasmopara viticola and Botrytis cinerea by a rare sugar-based product (IFP48) and its active ingredient D-tagatose (TAG), in order to elucidate molecular mechanism involved in defense-related metabolic regulations before and after pathogen challenge. Data showed that spraying leaves with IFP48 and TAG lead to a significant reduction of downy mildew, but not of gray mold disease. The induced protection against P. viticola relies on IFP48’s and to a lesser extent TAG’s ability to potentiate the activation of salicylic acid- and jasmonic acid/ethylene-responsive genes and stilbene phytoalexin accumulation. Most of defense responses remained upregulated in IFP48-treated plants after infection with P. viticola, but inconsistent following challenge with B. cinerea. The beneficial effects of IFP48 were associated with an enhanced accumulation of tagatose inside leaf tissues compared to TAG treatment. Meanwhile, the amounts of sugars, glucose, fructose, maltose, galactose and trehalose remained unchanged or decreased in IFP48-treated leaves after P. viticola infection, although only a few genes involved in sugar transport and metabolism showed transcriptional regulation. This suggests a contribution of sugar homeostasis to the IFP48-induced sweet immune response and priming plants for enhanced resistance to P. viticola, but not to B. cinerea.
Collapse
|
37
|
Pirrello C, Malacarne G, Moretto M, Lenzi L, Perazzolli M, Zeilmaker T, Van den Ackerveken G, Pilati S, Moser C, Giacomelli L. Grapevine DMR6-1 Is a Candidate Gene for Susceptibility to Downy Mildew. Biomolecules 2022; 12:182. [PMID: 35204683 PMCID: PMC8961545 DOI: 10.3390/biom12020182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine (Vitis vinifera) is a valuable crop in Europe for both economical and cultural reasons, but highly susceptible to Downy mildew (DM). The generation of resistant vines is of critical importance for a sustainable viticulture and can be achieved either by introgression of resistance genes in susceptible varieties or by mutation of Susceptibility (S) genes, e.g., by gene editing. This second approach offers several advantages: it maintains the genetic identity of cultivars otherwise disrupted by crossing and generally results in a broad-spectrum and durable resistance, but it is hindered by the poor knowledge about S genes in grapevines. Candidate S genes are Downy mildew Resistance 6 (DMR6) and DMR6-Like Oxygenases (DLOs), whose mutations confer resistance to DM in Arabidopsis. In this work, we show that grapevine VviDMR6-1 complements the Arabidopsis dmr6-1 resistant mutant. We studied the expression of grapevine VviDMR6 and VviDLO genes in different organs and in response to the DM causative agent Plasmopara viticola. Through an automated evaluation of causal relationships among genes, we show that VviDMR6-1, VviDMR6-2, and VviDLO1 group into different co-regulatory networks, suggesting distinct functions, and that mostly VviDMR6-1 is connected with pathogenesis-responsive genes. Therefore, VviDMR6-1 represents a good candidate to produce resistant cultivars with a gene-editing approach.
Collapse
Affiliation(s)
- Carlotta Pirrello
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giulia Malacarne
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Luisa Lenzi
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Tieme Zeilmaker
- SciENZA Biotechnologies B.V., Sciencepark 904, 1098 XH Amsterdam, The Netherlands;
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| | - Lisa Giacomelli
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (C.P.); (G.M.); (M.M.); (L.L.); (M.P.); (S.P.); (C.M.)
| |
Collapse
|
38
|
Bouissil S, Guérin C, Roche J, Dubessay P, El Alaoui-Talibi Z, Pierre G, Michaud P, Mouzeyar S, Delattre C, El Modafar C. Induction of Defense Gene Expression and the Resistance of Date Palm to Fusarium oxysporum f. sp. Albedinis in Response to Alginate Extracted from Bifurcaria bifurcata. Mar Drugs 2022; 20:88. [PMID: 35200618 PMCID: PMC8876945 DOI: 10.3390/md20020088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/31/2022] Open
Abstract
In many African countries, the Bayoud is a common disease spread involving the fungus Fusarium oxusporum f. sp. albedinis (Foa). The induction of plant natural defenses through the use of seaweed polysaccharides to help plants against pathogens is currently a biological and ecological approach that is gaining more and more importance. In the present study, we used alginate, a natural polysaccharide extracted from a brown algae Bifurcaria bifurcata, to activate date palm defenses, which involve phenylalanine ammonia-lyase (PAL), a key enzyme of phenylpropanoid metabolism. The results obtained showed that at low concentration (1 g·L-1), alginate stimulated PAL activity in date palm roots 5 times more compared to the negative control (water-treated) after 24 h following treatment and 2.5 times more compared to the laminarin used as a positive stimulator of plant natural defenses (positive control of induction). Using qRT-PCR, the expression of a selection of genes involved in three different levels of defense mechanisms known to be involved in response to biotic stresses were investigated. The results showed that, generally, the PAL gene tested and the genes encoding enzymes involved in early oxidative events (SOD and LOX) were overexpressed in the alginate-treated plants compared to their levels in the positive and negative controls. POD and PR protein genes selected encoding β-(1,3)-glucanases and chitinases in this study did not show any significant difference between treatments; suggesting that other genes encoding POD and PR proteins that were not selected may be involved. After 17 weeks following the inoculation of the plants with the pathogen Foa, treatment with alginate reduced the mortality rate by up to 80% compared to the rate in control plants (non-elicited) and plants pretreated with laminarin, which agrees with the induction of defense gene expression and the stimulation of natural defenses in date palm with alginate after 24 h. These results open promising prospects for the use of alginate in agriculture as an inducer that triggers immunity of plants against telluric pathogens in general and of date palm against Fusarium oxysporum f. sp. albedinis in particular.
Collapse
Affiliation(s)
- Soukaina Bouissil
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco; (Z.E.A.-T.); (C.E.M.)
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
| | - Claire Guérin
- UMR 1095 GDEC INRA-Université Clermont-Auvergne, 1 Impasse Amélie Murat, 63178 Aubière, France; (C.G.); (J.R.); (S.M.)
| | - Jane Roche
- UMR 1095 GDEC INRA-Université Clermont-Auvergne, 1 Impasse Amélie Murat, 63178 Aubière, France; (C.G.); (J.R.); (S.M.)
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
| | - Zainab El Alaoui-Talibi
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco; (Z.E.A.-T.); (C.E.M.)
| | - Guillaume Pierre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
| | - Said Mouzeyar
- UMR 1095 GDEC INRA-Université Clermont-Auvergne, 1 Impasse Amélie Murat, 63178 Aubière, France; (C.G.); (J.R.); (S.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000 Clermont-Ferrand, France; (P.D.); (G.P.); (C.D.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Cherkaoui El Modafar
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech-URL-CNRST-05), Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco; (Z.E.A.-T.); (C.E.M.)
| |
Collapse
|
39
|
Cataldo E, Fucile M, Mattii GB. Biostimulants in Viticulture: A Sustainable Approach against Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:162. [PMID: 35050049 PMCID: PMC8777853 DOI: 10.3390/plants11020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/12/2023]
Abstract
Climate change and disproportionate anthropogenic interventions, such as the excess of phytopharmaceutical products and continuous soil tillage, are jeopardizing viticulture by subjecting plants to continuous abiotic stress. One of the main physiological repercussions of abiotic stress is represented by the unbalanced redox homeostasis due to the overproduction of reactive oxygen species (ROS), ultimately leading to a state of oxidative stress (detrimental to grape quality). To these are added the direct and indirect damages caused by pathogens (biotic stresses). In light of this scenario, it is inevitable that sustainable techniques and sensitivity approaches for environmental and human health have to be applied in viticulture. Sustainable viticulture can only be made with the aid of sustainable products. Biostimulant (PB) applications (including resistance inducers or elicitors) in the vineyard have become interesting maneuvers for counteracting vine diseases and improving grape quality. These also represent a partial alternative to soil fertilization by improving nutrient absorption and avoiding its leaching into the groundwater. Their role as elicitors has important repercussions in the stimulation of the phenylpropanoid pathway by triggering the activation of several enzymes, such as polyphenol oxidase, lipoxygenase, phenylalanine ammonia-lyase, and peroxidase (with the accumulation of phenolic compounds). The present review paper summarizes the PBs' implications in viticulture, gathering historical, functional, and applicative information. This work aims to highlight the innumerable beneficial effects on vines brought by these products. It also serves to spur the scientific community to a greater contribution in investigating the response mechanisms of the plant to positive inductions.
Collapse
Affiliation(s)
- Eleonora Cataldo
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, 50019 Sesto Fiorentino, Italy; (M.F.); (G.B.M.)
| | | | | |
Collapse
|
40
|
Taibi O, Bardelloni V, Bove F, Scaglia F, Caffi T, Rossi V. Activity of resistance inducers against Plasmopara viticola in vineyard. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225003003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Bergamaschi AR, Cavazza F, Bugiani R. Optimization of copper applications using Laminarine for the sustainable control of grape downy mildew. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225003005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
42
|
Pane C, Galieni A, Riefolo C, Nicastro N, Castrignanò A. Hyperspectral Reflectance Response of Wild Rocket ( Diplotaxis tenuifolia) Baby-Leaf to Bio-Based Disease Resistance Inducers Using a Linear Mixed Effect Model. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122575. [PMID: 34961046 PMCID: PMC8707134 DOI: 10.3390/plants10122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Baby leaf wild rocket cropping systems feeding the high convenience salad chain are prone to a set of disease agents that require management measures compatible with the sustainability-own features of the ready-to-eat food segment. In this light, bio-based disease resistance inducers able to elicit the plant's defense mechanism(s) against a wide-spectrum of pathogens are proposed as safe and effective remedies as alternatives to synthetic fungicides, to be, however, implemented under practical field applications. Hyperspectral-based proximal sensing was applied here to detect plant reflectance response to treatment of wild rocket beds with Trichoderma atroviride strain TA35, laminarin-based Vacciplant®, and Saccharomyces cerevisiae strain LAS117 cell wall extract-based Romeo®, compared to a local standard approach including synthetic fungicides (i.e., cyprodinil, fludioxonil, mandipropamid, and metalaxyl-m) and a not-treated control. Variability of the spectral information acquired in VIS-NIR-SWIR regions per treatment was explained by three principal components associated with foliar absorption of water, structural characteristics of the vegetation, and the ecophysiological plant status. Therefore, the following model-based statistical approach returned the interpretation of the inducers' performances at field scale consistent with their putative biological effects. The study stated that compost and laminarin-based treatments were the highest crop impacting ones, resulting in enhanced water intake and in stress-related pigment adjustment, respectively. Whereas plants under the conventional chemical management proved to be in better vigor and health status than the untreated control.
Collapse
Affiliation(s)
- Catello Pane
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy;
| | - Angelica Galieni
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Via Salaria 1, 63030 Monsampolo del Tronto, Italy;
| | - Carmela Riefolo
- Council for Agricultural Research and Economics (CREA), Research Centre for Agriculture and Environment, Via Celso Ulpiani 5, 70125 Bari, Italy;
| | - Nicola Nicastro
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy;
| | - Annamaria Castrignanò
- Department of Engineering and Geology (InGeo), “Gabriele D’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti, Italy;
| |
Collapse
|
43
|
Gaikwad HD, Dalvi SG, Hasabnis S, Suprasanna P. Electron Beam Irradiated Chitosan elicits enhanced antioxidant properties combating resistance to Purple Blotch Disease ( Alternaria porri) in Onion ( Allium cepa). Int J Radiat Biol 2021; 98:100-108. [PMID: 34587466 DOI: 10.1080/09553002.2021.1987569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE This study was carried out to assess the effect of irradiated chitosan as an elicitor on the biochemical traits associated with resistance to purple blotch disease in onion. MATERIALS AND METHODS Chitosan was electron beam irradiated at 100 kGy dose to obtain low molecular weight chitosan. Irradiated chitosan at 20 and 0.04% concentration and different time intervals was used as a biological elicitor cum antimicrobial agent against purple blotch disease in onion. Field grown onion (Variety Basanvant 780) plants were foliar sprayed with irradiated chitosan and the biochemical responses were monitored using parameters namely chlorophylls, carotenoids, antioxidant enzymes, phenols, and antifungal enzyme β-1,3 Glucanase using standard methods. RESULTS Compared to control treatment, a positive correlation with irradiated chitosan treatment was observed for an increase in β-1,3-glucanase, peroxidase activity, and contents of total phenolics, chlorophylls, and carotenoids, which cumulatively contributed to resistance response against the purple blotch disease. Irradiated chitosan (0.04%) treated onion plants at 30, 45, and 60 DAT showed a higher total phenolics, β-1,3-glucanase activity, and peroxidase activity besides enhanced antioxidant properties. CONCLUSION The results suggest that irradiated chitosan has elicited resistance responses against purple blotch disease in onion. The increased production of antioxidant metabolites may provide value addition to onion as a food commodity.
Collapse
Affiliation(s)
| | - Sunil Govind Dalvi
- Department of Agricultural Sciences and Technology Vasantdada Sugar Institute, Manjari (Bk), Pune, India
| | | | - Penna Suprasanna
- Nuclear Agricultural Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
44
|
Manghi MC, Masiol M, Calzavara R, Graziano PL, Peruzzi E, Pavoni B. The use of phosphonates in agriculture. Chemical, biological properties and legislative issues. CHEMOSPHERE 2021; 283:131187. [PMID: 34157623 DOI: 10.1016/j.chemosphere.2021.131187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
The Phosphorus (III) derivatives, named Phosphonates, include congeners with properties as fungicides that are effective in controlling Oomycetes. Examples are organic compounds like Fosetyl-Al [Aluminium tris-(ethylphosphonate)] and salts formed with the anion of phosphonic acid [(OH)2HPO] and Potassium, Sodium and Ammonium cations. According to IUPAC, the correct nomenclature for these compounds is "phosphonates", but in common language and scientific literature they are often named "phosphites", creating ambiguity. The European legislation restricts the use of phosphonates, with the ban for application in organic agriculture. However, phosphonate residues were detected in some organic products due to their addition to fertilizers allowed in organic agriculture. The legitimacy of this addition is controversial, as it is not evident if phosphonates have also a nutritional role in addition to their fungicidal properties. The new European Directive EU 1009/2019 resolves the problem by banning the phosphonates addition to fertilizers and placing a limit of 0.5% by mass for unintentional addition. However, an official method is not available for phosphonates determination in fertilizers and approval by the European Committee for Standardization (CEN) is necessary in a short time. This review presents an overview about the chemical, biological, analytical and legislative aspects of phosphonates and aims at providing: clarity on the correct nomenclature to avoid misunderstandings; the evaluation of phosphonates properties with the absence of a nutritional role, justifying the ban on adding to fertilizers; a summary of analytical techniques that could be considered by CEN to complete the analytical background for the agricultural use of phosphonates.
Collapse
Affiliation(s)
- Maria Chiara Manghi
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Via Torino 155, I-30172, Mestre Venezia, Italy.
| | - Mauro Masiol
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Via Torino 155, I-30172, Mestre Venezia, Italy.
| | | | | | | | - Bruno Pavoni
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Via Torino 155, I-30172, Mestre Venezia, Italy
| |
Collapse
|
45
|
Romanazzi G, Mancini V, Foglia R, Marcolini D, Kavari M, Piancatelli S. Use of Chitosan and Other Natural Compounds Alone or in Different Strategies with Copper Hydroxide for Control of Grapevine Downy Mildew. PLANT DISEASE 2021; 105:3261-3268. [PMID: 33206016 DOI: 10.1094/pdis-06-20-1268-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Grapevine downy mildew (GDM) is one of the most serious diseases of grapevines. Limitations to the use of copper-based products in organic agriculture according to the European Union (EU) regulation EU/2002/473 and the later EU Commission implementing regulation 2018/1981 have promoted a search for alternatives. This 5-year field trial evaluated the effectiveness of several strategies against GDM using different chitosan-based formulations and application rates in comparison with other natural compounds applied individually or with copper hydroxide. Trials were performed in commercial vineyards with different environmental conditions and grapevine cultivars. For the natural compounds applied as individual treatments, a 0.5%/0.8% chitosan formulation provided the best protection against GDM; the other compounds and formulations were less effective. When copper hydroxide use was halved by combining it with the natural compounds according to three different strategies, the GDM incidence, severity, and McKinney index were reduced, particularly for copper hydroxide applied in combination with the 0.5%/0.8% chitosan formulation. The 0.5%/0.8% chitosan formulation alone and with copper hydroxide provided good protection against GDM during both high-pressure and low-pressure disease seasons. Therefore, chitosan represents a good alternative to copper formulations for the control of GDM and both organic and integrated disease management.
Collapse
Affiliation(s)
- Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Valeria Mancini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Renzo Foglia
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Diego Marcolini
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Simone Piancatelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
46
|
Agarwal PK, Dangariya M, Agarwal P. Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic. Viruses 2021; 13:v13091817. [PMID: 34578399 PMCID: PMC8473461 DOI: 10.3390/v13091817] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the decades, the world has witnessed diverse virus associated pandemics. The significant inhibitory effects of marine sulfated polysaccharides against SARS-CoV-2 shows its therapeutic potential in future biomedical applications and drug development. Algal polysaccharides exhibited significant role in antimicrobial, antitumor, antioxidative, antiviral, anticoagulant, antihepatotoxic and immunomodulating activities. Owing to their health benefits, the sulfated polysaccharides from marine algae are a great deal of interest globally. Algal polysaccharides such as agar, alginate, carrageenans, porphyran, fucoidan, laminaran and ulvans are investigated for their nutraceutical potential at different stages of infection processes, structural diversity, complexity and mechanism of action. In this review, we focus on the recent antiviral studies of the marine algae-based polysaccharides and their potential towards antiviral medicines.
Collapse
|
48
|
VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine. Molecules 2021; 26:molecules26144258. [PMID: 34299533 PMCID: PMC8306312 DOI: 10.3390/molecules26144258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Grapevine is susceptible to fungal diseases generally controlled by numerous chemical fungicides. Elicitors of plant defence are a way of reducing the use of these chemicals, but still provide inconsistent efficiency. Easy-to-analyse markers of grapevine responses to elicitors are needed to determine the best conditions for their efficiency and position them in protection strategies. We previously reported that the elicitor sulphated laminarin induced the emission of volatile organic compounds (VOCs) by grapevine leaves. The present study was conducted to characterise and compare VOC emissions in response to other elicitors. Bastid® was first used to test the conditions of VOC collection and analysis. Using SBSE-GC-MS, we detected several VOCs, including the sesquiterpene α-farnesene, in a time-dependent manner. This was correlated with the induction of farnesene synthase gene expression, in parallel with stilbene synthesis (another defence response), and associated to resistance against downy mildew. The other elicitors (Redeli®, Romeo®, Bion®, chitosan, and an oligogalacturonide) induced VOC emission, but with qualitative and quantitative differences. VOC emission thus constitutes a response of grapevine to elicitors of various chemical structures. Therefore, VOC analysis is relevant for studying the impact of environmental factors on grapevine defence responses and optimising the performance of elicitors in vineyards.
Collapse
|
49
|
Barghahn S, Arnal G, Jain N, Petutschnig E, Brumer H, Lipka V. Mixed Linkage β-1,3/1,4-Glucan Oligosaccharides Induce Defense Responses in Hordeum vulgare and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:682439. [PMID: 34220903 PMCID: PMC8247929 DOI: 10.3389/fpls.2021.682439] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 05/06/2023]
Abstract
Plants detect conserved microbe-associated molecular patterns (MAMPs) and modified "self" molecules produced during pathogen infection [danger associated molecular patterns (DAMPs)] with plasma membrane-resident pattern recognition receptors (PRRs). PRR-mediated MAMP and/or DAMP perception activates signal transduction cascades, transcriptional reprogramming and plant immune responses collectively referred to as pattern-triggered immunity (PTI). Potential sources for MAMPs and DAMPs are microbial and plant cell walls, which are complex extracellular matrices composed of different carbohydrates and glycoproteins. Mixed linkage β-1,3/1,4-glucan (β-1,3/1,4-MLG) oligosaccharides are abundant components of monocot plant cell walls and are present in symbiotic, pathogenic and apathogenic fungi, oomycetes and bacteria, but have not been detected in the cell walls of dicot plant species so far. Here, we provide evidence that the monocot crop plant H. vulgare and the dicot A. thaliana can perceive β-1,3/1,4-MLG oligosaccharides and react with prototypical PTI responses. A collection of Arabidopsis innate immunity signaling mutants and >100 Arabidopsis ecotypes showed unaltered responses upon treatment with β-1,3/1,4-MLG oligosaccharides suggesting the employment of a so far unknown and highly conserved perception machinery. In conclusion, we postulate that β-1,3/1,4-MLG oligosaccharides have the dual capacity to act as immune-active DAMPs and/or MAMPs in monocot and dicot plant species.
Collapse
Affiliation(s)
- Sina Barghahn
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute of Plant Sciences, The University of Göttingen, Göttingen, Germany
| | - Gregory Arnal
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | - Namrata Jain
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | - Elena Petutschnig
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute of Plant Sciences, The University of Göttingen, Göttingen, Germany
| | - Harry Brumer
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute of Plant Sciences, The University of Göttingen, Göttingen, Germany
| |
Collapse
|
50
|
The non-sulfated ulvanobiuronic acid of ulvans is the smallest active unit able to induce an oxidative burst in dicot cells. Carbohydr Polym 2021; 270:118338. [PMID: 34364593 DOI: 10.1016/j.carbpol.2021.118338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 06/13/2021] [Indexed: 11/23/2022]
Abstract
Ulvans from green algae are promising compounds for plant protection because they are environmentally friendly and induce plant defense responses. We analyzed the structure-function relationship of ulvan polymers and oligomers for their elicitor activity in suspension-cultured cells of three dicot species. The polysaccharide from Ulva fasciata was characterized regarding its monosaccharide composition, degree of sulfation, and molecular mass. The polymer was partially depolymerized using acid hydrolysis, and the oligomers were separated using size exclusion chromatography. The oligomeric fractions were analyzed revealing mostly sulfated and de-sulfated ulvan dimers. Both the polymer and the oligomer fractions induced an NADPH oxidase-dependent oxidative burst in plant cells. The elicitor activity of the ulvan dimers did not require sulfation. By identifying the smallest elicitor-active unit, HexA-Rha, we took an important next step to understand how the structure influences ulvan elicitor responses. The desulfated ulvan dimer is discussed as a promising agro-biologic for sustainable agriculture.
Collapse
|