1
|
Sadiasa A, Werkmeister JA, Gurung S, Gargett CE. Steps towards the clinical application of endometrial and menstrual fluid mesenchymal stem cells for the treatment of gynecological disorders. Expert Opin Biol Ther 2025; 25:285-307. [PMID: 39925343 DOI: 10.1080/14712598.2025.2465826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION The human endometrium is a highly regenerative tissue that contains mesenchymal stem/stromal cells (MSCs). These MSCs are sourced via office-based biopsies and menstrual fluid, providing a less invasive and readily available option for cell-based therapies. This review provides an update on endometrial-derived MSCs as a treatment option for gynecological diseases. AREAS COVERED This narrative review covers the characterization and therapeutic mechanisms of endometrium biopsy-derived MSCs (eMSCs) and menstrual fluid-derived mesenchymal stromal cells (MenSCs), highlighting similarities and differences. It also covers studies of their application in preclinical animal models and in clinical trials as potential cell-based therapies for gynecological diseases. EXPERT OPINION eMSCs and MenSCs from a homologous tissue source have the potential to promote regenerative activity as a treatment for gynecological diseases. Both eMSCs and MenSCs demonstrate therapeutic benefits through their paracrine activity in tissue regeneration, immunomodulation, angiogenesis, and mitigating fibrosis. Further research is essential to establish standardized isolation and characterization protocols, particularly for heterogeneous MenSCs, and to fully understand their mechanisms of action. Implementing SUSD2 magnetic bead sorting for purifying eMSCs from endometrial tissues and menstrual fluid is crucial for their use in future cell-based therapies. Optimization of production, storage, and delivery methods will maximize their therapeutic effectiveness.
Collapse
Affiliation(s)
- Alexander Sadiasa
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Şimşek HU, Şimşek T, Duruksu G, Rençber SF, Yazır Y. Different Effect of Dienogest on Endometrium Mesenchymal Stem Cells Derived from Healthy and Endometriosis Tissues. Balkan Med J 2024; 41:484-490. [PMID: 39291874 PMCID: PMC11589215 DOI: 10.4274/balkanmedj.galenos.2024.2024-6-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Endometriosis (EM) is an inflammatory condition in which the endometrium is observed to develop outside the uterine cavity. Endometrium has conventionally been recognized as a rich source of endometrial mesenchymal stem cells (E-MSCs). The influence of dienogest, a medication frequently prescribed for EM, on E-MSCs has not been extensively investigated. Aims To explore effects of dienogest on the E-MSCs derived from healthy (E-MSCs-control) and diseased (E-MSCs-endometriosis) endometrial tissue samples in vitro. Study Design In vitro study. Methods We collected samples from healthy and diseased endometrial tissues. E-MSCs were derived from both healthy and EM tissues. The effect of dienogest (VISANNE) on E-MSCs was assessed by examining cell proliferation, telomerase activity, cell migration, and estrogen secretion levels after the isolation and characterization of E-MSCs. Results We discovered that cellular proliferation rate was higher in the E-MSCs derived from EM tissues compared to those derived from healthy tissue. The proliferation rate and telomerase activity were both suppressed by dienogest treatment, particularly in E-MSCs-endometriosis. The drug treatment also resulted in a decrease in the migration capacity of E-MSCs-endometriosis, from 60.4% to 59.2%. The expression of CXCL12, Ki67, and beta-catenin was analyzed in both E-MSCs-endometriosis and E-MSCs-control. The CXCL12 and Ki67 expressions were quite elevated in the E-MSCs-endometriosis without drug treatment compared to the E-MSCs-control. Following the treatment, these levels declined drastically to the levels close to E-MSCs-control. Similarly, this decrease in gene expression was accompanied by a decrease in estrogen secretion into the medium. Conclusion This research demonstrates that dienogest exerts a substantial impact on both stromal and stem cells, as it effectively controls the disease by reversing EM markers, despite the absence of progesterone receptors on endometrial stem cells.
Collapse
Affiliation(s)
- Hayal Uzelli Şimşek
- Department of Obstetrics and Gynecology, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | - Turgay Şimşek
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Türkiye
- Department of Histology and Embryology, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | - Selenay Furat Rençber
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Türkiye
- Department of Histology and Embryology, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| | - Yusufhan Yazır
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Türkiye
- Department of Histology and Embryology, Kocaeli University Faculty of Medicine, Kocaeli, Türkiye
| |
Collapse
|
3
|
Zhang H, Jiang Z, Ye Y, Pan Y, Yu M, Yang G, Wang Y. Mesenchymal stem cells derived from hard palate: An attractive alternative for regenerative medicine. Oral Dis 2024; 30:4145-4151. [PMID: 39007203 DOI: 10.1111/odi.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/21/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE The palatal mucosa exhibits a notable ability to regenerate without causing scarring during the process of wound healing, rendering it a highly valuable reservoir of mesenchymal stem cells (MSCs). The aim of this review is to summarize the different sources of MSCs derived from hard palatal (PMSCs), thereby presenting a promising avenue for the utilization of regenerative medicine. MATERIALS AND METHODS Pertinent literatures focused on the sources, identification methods, and advantageous characteristics of PMSCs are obtained from PubMed and Web of Science. RESULTS PMSCs, originating from the hard palate periosteum, subepithelial adipose tissue, and lamina propria, have been successfully isolated and characterized, with positive markers for MSCs and negative markers for hematopoietic stem cells. Moreover, PMSCs demonstrate resistance to inflammatory stimuli, enabling uninterrupted osteogenesis in the presence of inflammation. Additionally, PMSCs possess a notable migratory capacity, facilitating prompt arrival at the site of injury. Furthermore, PMSCs exhibit various advantageous inherent in stem cells, including clonogenicity, self-renewal capability, and pluripotent differentiation potential. CONCLUSIONS PMSCs have stem cell-related properties and can be used for regenerative medicine of cells and tissues in the future.
Collapse
Affiliation(s)
- Hui Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuer Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yiqi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Mengjia Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Bagheri MJ, Valojerdi MR, Salehnia M. Formation of ovarian organoid by co-culture of human endometrial mesenchymal stem cells and mouse oocyte in 3-dimensional culture system. Cytotechnology 2024; 76:571-584. [PMID: 39188652 PMCID: PMC11344741 DOI: 10.1007/s10616-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/19/2024] [Indexed: 08/28/2024] Open
Abstract
The purpose of this study was to compare the formation of organoid structures by co-culturing of human endometrial mesenchymal stem cells (hEnMSCs) and mouse germinal vesicle (GV) oocytes in hanging drop and sodium alginate hydrogel co-culture methods. Following the preparation of hEnMSCs and partially denuded mouse germinal vesicle oocytes, they were co-cultured in hanging drop and sodium alginate hydrogel systems as two experimental groups. In respected control groups the hEnMSCs were cultured without oocytes. The organoid formation was evaluated under the inverted microscope in all studied groups during the culture period. The hematoxylin and eosin, alcian blue, periodic acid Schiff, and Masson's trichrome methods, were applied for morphological evaluation and extracellular matrix components staining such as glycosaminoglycan, carbohydrate, and collagen fibers. In addition, the germ cell-like characteristics within the organoid structures were investigated via alkaline phosphatase activity immunocytochemistry for DEAD-box polypeptide 4 (DDX4), and the expression of octamer-binding transcription factor 4 (OCT4), DDX4, and synaptonemal complex protein 3 (SYCP3) genes by real-time RT-PCR. The culturing of hEnMSCs in the hanging drop method led to the formation of organoid structures while this structure was not seen in sodium alginate hydrogel culture. The mean diameter of organoid structures was increased during 4 days of culture in both the experimental and control groups in the hanging drop method, reaching 675.50 ± 18.55 µm and 670.25 ± 21.40 µm, respectively (P < 0.05). Morphological staining indicated some large ovoid cells with euchromatin nuclei in the experimental group, whereas, in the control group cells showed dark and dense nuclei. The extracellular matrix components were deposited in organoid structures in both control and experimental groups. The positive alkaline phosphatase activity and immunocytochemistry for DDX4 confirmed the presence of germ cell-like in the experimental group. Real-time RT-PCR showed a significant increase in the expression of DDX4 and SYCP3 genes and a decrease in the level of OCT4 expression in the experimental group compared with its controls. This study successfully generated organoid structures by co-culture of hEnMSCs and oocytes in the hanging drop method and the hEnMSCs could be differentiated into germ cell-like. This organoid structure has potential applications in regenerative medicine and reproductive biology. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00639-w.
Collapse
Affiliation(s)
- Mohammad Jafar Bagheri
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, P. O. BOX: 14115-111, Tehran, Iran
| |
Collapse
|
5
|
Kouchakzadeh F, Ebrahimi-Barough S, Aflatoonian B, Ai J, Mazaheri F, Montazeri F, Hajizadeh-Tafti F, Golzadeh J, Naser R, Sepehri M, Kalantar SM. Therapeutic potential of endometrial stem cells encapsulated in alginate/gelatin hydrogel to treat of polycystic ovary syndrome. Regen Ther 2024; 26:693-707. [PMID: 39286642 PMCID: PMC11403143 DOI: 10.1016/j.reth.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women, often leading to infertility due to anovulation. Recent advances suggest that endometrial stem cells (EnSCs) hold considerable promise for tissue regeneration, which could be pivotal in treating PCOS. To enhance the survival and stabilization of EnSCs within the ovary, the EnSCs were encapsulated in an injectable alginate/gelatin hydrogel (SC-H), which has excellent biocompatibility to support the survival of EnSCs. Polycystic ovary syndrome was induced in female Wistar rats using intraperitoneal injection of letrozole over 21 days. Then the rats were treated with SC, SC-H and clomiphene citrate for one-month post-PCOS induction. The effects of these treatments were evaluated based on changes in body and ovarian weights, inflammatory markers, endocrine profiles, and ovarian histology. The Induction of PCOS led to a significant increase in body and ovarian cyst weight, elevated serum levels of testosterone, luteinizing hormone (LH), and anti-Müllerian hormone (AMH), alongside reduced follicle-stimulating hormone (FSH) and progesterone levels. Histologically, there was a decrease in granulosa cells, immature follicles, and corpus luteum numbers. Treatment with SC and SC-H significantly mitigated these alterations, indicating improved PCOS conditions. Our findings demonstrate that SC and SC-H treatments can effectively ameliorate the symptoms of letrozole-induced PCOS in rats, primarily through their anti-inflammatory effects. This study lays the groundwork for potential clinical applications of EnSCs encapsulated in alginate/gelatin hydrogel as a novel therapeutic strategy for PCOS, highlighting the importance of biomaterials in stem cell-based therapies.
Collapse
Affiliation(s)
- Fatemeh Kouchakzadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahime Mazaheri
- Medical Nanotechnology and Tissue Engineering Research Centre, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Hajizadeh-Tafti
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Jalal Golzadeh
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Reza Naser
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Sepehri
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Kalantar
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| |
Collapse
|
6
|
Fereydani NM, Galehdari H, Hoveizi E, Alghasi A, Ajami M. Ex vivo expansion of hematopoietic stem cells in two/ three-dimensional co-cultures with various source of stromal cells. Tissue Cell 2024; 87:102331. [PMID: 38430847 DOI: 10.1016/j.tice.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/19/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
The ex vivo expansion of hematopoietic stem cells, with both high quantities and quality, is considered a paramount issue in cell and gene therapy for hematological diseases. Complex interactions between the bone marrow microenvironment and hematopoietic stem cells reveal the importance of using 2D and 3D coculture as a physiological system simulator in the proliferation, differentiation, and homeostasis of HSCs. Herein, the capacity of mesenchymal stem cells derived from different sources to support the expansion and maintenance of HSPC was compared with each other. We evaluated the fold increase of HSPC, CD34 marker expression, cytokine secretion profile of different MSCs, and the frequency of hematopoietic colony-forming unit parameters. Our results show that there was no significant difference between adipose tissue-MSC, Wharton jelly-MSC, and Endometrial-MSCs in HSPC expansion (fold increase: 34.74±4.38 in Wj-MSC, 32.22±5.07 in AD-MSC, 25.9±1.27 in En-MSCs); However, there were significantly more than the expansion media alone (4.4±0.69). The results obtained from the cytokine secretion analysis also confirm these results. Also, there were significant differences in the clonogenicity of Wj-MSC, En-MSCs, and expansion media (CFU-GEMM: 7±1.73, 2.3±1.15, and 2.3±1.52), which indicated that Wj-MSC could significantly maintain the primitive state. As a result, using Wj-mesenchymal stem cells on a 3D coculture system effectively increases the HSPC expansion and maintains the colonization potential of hematopoietic stem cells.
Collapse
Affiliation(s)
- Nasim Mayeli Fereydani
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Elham Hoveizi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Arash Alghasi
- Thalassemia & Hemoglobinopathy Research center, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Monireh Ajami
- Department of Hematology, School of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Parashar S, Pajai S, Tarang T. Recent Advancement in the Management of Intrauterine Adhesions Using Stem Cell Therapy: A Review Article. Cureus 2023; 15:e43553. [PMID: 37719487 PMCID: PMC10502444 DOI: 10.7759/cureus.43553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Intrauterine adhesions (IUAs) are the formation of scar tissues in the endometrial cavity. The fibrous tissue in the uterus decreases the space inside the uterine cavity. It includes both endometrium and myometrium. It may lead to hypomenorrhea or amenorrhea, pain, difficulty in conceiving, and recurrent abortion. IUA is caused by uterine tissue damage mostly during surgical procedures such as dilatation and curettage. Other causes may include pregnancy-related complications, miscarriage, abnormal bleeding, infections, fibroid removal, and cesarean section (C-section). Patients generally do not have any symptoms and hence are unaware of the condition. The main therapeutic procedure presently used is hysteroscopic transcervical resection of adhesion (TCRA) with hormonal therapy and nondegradable stent as postoperative adjuvant therapy. It has some major limitations such as failure to prevent recurrence and preserve fertility along with difficulty in endometrial tissue repair due to its anatomical site. These limitations have forced the researchers to think about a better treatment modality. In recent times, a better treatment modality has evolved with stem cell therapy. Therefore, this review presents the recent and advanced therapeutic modalities for the treatment of IUAs.
Collapse
Affiliation(s)
- Shreya Parashar
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Sandhya Pajai
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Tanmay Tarang
- Obstetrics and Gynecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
8
|
de Pedro MÁ, López E, González-Nuño FM, Pulido M, Álvarez V, Marchena AM, Preußer C, Szymański W, Pogge von Strandmann E, Graumann J, Sánchez-Margallo FM, Casado JG, Gómez-Serrano M. Menstrual blood-derived mesenchymal stromal cells: impact of preconditioning on the cargo of extracellular vesicles as potential therapeutics. Stem Cell Res Ther 2023; 14:187. [PMID: 37507751 PMCID: PMC10386225 DOI: 10.1186/s13287-023-03413-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) have been shown to exert their therapeutic effects through the secretion of broad spectrum of paracrine factors, including extracellular vesicles (EVs). Accordingly, EVs are being pursued as a promising alternative to cell-based therapies. Menstrual blood-derived stromal cells (MenSCs) are a type of MSC that, due to their immunomodulatory and regenerative properties, have emerged as an innovative source. Additionally, new strategies of cell priming may potentially alter the concentration and cargo of released EVs, leading to modification of their biological properties. In this study, we aimed to characterize the EVs released by MenSCs and compare their therapeutic potential under three different preconditioning conditions (proinflammatory stimuli, physioxia, and acute hypoxia). METHODS MenSCs were isolated from five healthy women. Following culturing to 80% confluence, MenSCs were exposed to different priming conditions: basal (21% O2), proinflammatory stimuli (IFNγ and TNFα, 21% O2), physioxia (1-2% O2), and acute hypoxia (< 1% O2) for 48-72 h. Conditioned media from MenSCs was collected after 48 h and EVs were isolated by a combination of ultra-filtration and differential centrifugation. An extensive characterization ranging from nano-flow cytometry (nFC) to quantitative high-throughput shotgun proteomics was performed. Bioinformatics analyses were used to derive hypotheses on their biological properties. RESULTS No differences in the morphology, size, or number of EVs released were detected between priming conditions. The proteome analysis associated with basal MenSC-EVs prominently revealed their immunomodulatory and regenerative capabilities. Furthermore, quantitative proteomic analysis of differentially produced MenSC-EVs provided sufficient evidence for the utility of the differential preconditioning in purpose-tailoring EVs for their therapeutic application: proinflammatory priming enhanced the anti-inflammatory, regenerative and immunomodulatory capacity in the innate response of EVs, physioxia priming also improves tissue regeneration, angiogenesis and their immunomodulatory capacity targeting on the adaptive response, while acute hypoxia priming, increased hemostasis and apoptotic processes regulation in MenSC-EVs, also by stimulating immunomodulation mainly through the adaptive response. CONCLUSIONS Priming of MenSCs under proinflammatory and hypoxic conditions affected the cargo proteome of EVs released, resulting in different therapeutic potential, and thus warrants experimental exploration with the aim to generate better-defined MSC-derived bioproducts.
Collapse
Affiliation(s)
- María Ángeles de Pedro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain.
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain.
| | | | - María Pulido
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Ana María Marchena
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - Christian Preußer
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
| | - Witold Szymański
- Institute of Translational Proteomics, Biochemical/Pharmacological Center, Philipps University, 35043, Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
- Core Facility Extracellular Vesicles, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Biochemical/Pharmacological Center, Philipps University, 35043, Marburg, Germany
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - Javier G Casado
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
- Immunology Unit, University of Extremadura, 10003, Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003, Cáceres, Spain
| | - María Gómez-Serrano
- Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University, 35043, Marburg, Germany.
| |
Collapse
|
9
|
Xu Y, Hu J, Lv Q, Shi C, Qiu M, Xie L, Liu W, Yang B, Shan W, Cheng Y, Zhao B, Chen X. Endometrium-derived mesenchymal stem cells suppress progression of endometrial cancer via the DKK1-Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2023; 14:159. [PMID: 37287079 DOI: 10.1186/s13287-023-03387-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/25/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) therapy is an attractive treatment option for various cancers. Whether MSCs can be used to treat well-differentiated endometrial cancer (EC) remains unclear. The aim of this study is to explore the potential therapeutic effects of MSCs on EC and the underlying mechanisms. METHODS The effects of adipose-derived MSCs (AD-MSCs), umbilical-cord-derived MSCs (UC-MSCs), and endometrium-derived MSCs (eMSCs) on the malignant behaviors of EC cells were explored via in vitro and in vivo experiments. Three EC models, including patient-derived EC organoid lines, EC cell lines, and EC xenograft model in female BALB/C nude mice, were used for this study. The effects of MSCs on EC cell proliferation, apoptosis, migration, and the growth of xenograft tumors were evaluated. The potential mechanisms by which eMSCs inhibit EC cell proliferation and stemness were explored by regulating DKK1 expression in eMSCs or Wnt signaling in EC cells. RESULTS Our results showed that eMSCs had the highest inhibitory effect on EC cell viability, and EC xenograft tumor growth in mice compared to AD-MSCs and UC-MSCs. Conditioned medium (CM) obtained from eMSCs significantly suppressed the sphere-forming ability and stemness-related gene expression of EC cells. In comparison to AD-MSCs and UC-MSCs, eMSCs had the highest level of Dickkopf-related protein 1 (DKK1) secretion. Mechanistically, eMSCs inhibited Wnt/β-catenin signaling in EC cells via secretion of DKK1, and eMSCs suppressed EC cell viability and stemness through DKK1-Wnt/β-catenin signaling. Additionally, the combination of eMSCs and medroxyprogesterone acetate (MPA) significantly inhibited the viability of EC organoids and EC cells compared with eMSCs or MPA alone. CONCLUSIONS The eMSCs, but not AD-MSCs or UC-MSCs, could suppress the malignant behaviors of EC both in vivo and in vitro via inhibiting the Wnt/β-catenin signaling pathway by secreting DKK1. The combination of eMSCs and MPA effectively inhibited EC growth, indicating that eMSCs may potentially be a new therapeutic strategy for young EC patients desiring for fertility preservation.
Collapse
Affiliation(s)
- Yuhui Xu
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Jiali Hu
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Qiaoying Lv
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Chenyi Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, People's Republic of China
| | - Mengdi Qiu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, People's Republic of China
| | - Liying Xie
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Wei Liu
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Bingyi Yang
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Weiwei Shan
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Yali Cheng
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Xiaojun Chen
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
10
|
Biglari N, Mehdizadeh A, Vafaei Mastanabad M, Gharaeikhezri MH, Gol Mohammad Pour Afrakoti L, Pourbala H, Yousefi M, Soltani-Zangbar MS. Application of mesenchymal stem cells (MSCs) in neurodegenerative disorders: History, findings, and prospective challenges. Pathol Res Pract 2023; 247:154541. [PMID: 37245265 DOI: 10.1016/j.prp.2023.154541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Over the past few decades, the application of mesenchymal stem cells has captured the attention of researchers and practitioners worldwide. These cells can be obtained from practically every tissue in the body and are used to treat a broad variety of conditions, most notably neurological diseases such as Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Studies are still being conducted, and the results of these studies have led to the identification of several different molecular pathways involved in the neuroglial speciation process. These molecular systems are closely regulated and interconnected due to the coordinated efforts of many components that make up the machinery responsible for cell signaling. Within the scope of this study, we compared and contrasted the numerous mesenchymal cell sources and their cellular features. These many sources of mesenchymal cells included adipocyte cells, fetal umbilical cord tissue, and bone marrow. In addition, we investigated whether these cells can potentially treat and modify neurodegenerative illnesses.
Collapse
Affiliation(s)
- Negin Biglari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | - Hooman Pourbala
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Chaudhari LR, Kawale AA, Desai SS, Kashte SB, Joshi MG. Pathophysiology of Spinal Cord Injury and Tissue Engineering Approach for Its Neuronal Regeneration: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:51-81. [PMID: 36038807 DOI: 10.1007/5584_2022_731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A spinal cord injury (SCI) is a very debilitating condition causing loss of sensory and motor function as well as multiple organ failures. Current therapeutic options like surgery and pharmacotherapy show positive results but are incapable of providing a complete cure for chronic SCI symptoms. Tissue engineering, including neuroprotective or growth factors, stem cells, and biomaterial scaffolds, grabs attention because of their potential for regeneration and ability to bridge the gap in the injured spinal cord (SC). Preclinical studies with tissue engineering showed functional recovery and neurorestorative effects. Few clinical trials show the safety and efficacy of the tissue engineering approach. However, more studies should be carried out for potential treatment modalities. In this review, we summarize the pathophysiology of SCI and its current treatment modalities, including surgical, pharmacological, and tissue engineering approaches following SCI in preclinical and clinical phases.
Collapse
Affiliation(s)
- Leena R Chaudhari
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Akshay A Kawale
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Sangeeta S Desai
- Department of Obstetrics and Gynecology, Dr. D Y Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra, India
| | - Shivaji B Kashte
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
- Stem Plus Biotech, SMK Commercial Complex, Sangli, Maharashtra, India.
| |
Collapse
|
12
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
13
|
Research progress of stem cell therapy for endometrial injury. Mater Today Bio 2022; 16:100389. [PMID: 36033375 PMCID: PMC9403503 DOI: 10.1016/j.mtbio.2022.100389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Endometrial damage is an important factor leading to infertility and traditional conventional treatments have limited efficacy. As an emerging technology in recent years, stem cell therapy has provided new hope for the treatment of this disease. By comparing the advantages of stem cells from different sources, it is believed that menstrual blood endometrial stem cells have a good application prospect as a new source of stem cells. However, the clinical utility of stem cells is still limited by issues such as colonization rates, long-term efficacy, tumor formation, and storage and transportation. This paper summarizes the mechanism by which stem cells repair endometrial damage and clarifies the material basis of their effects from four aspects: replacement of damaged sites, paracrine effects, interaction with growth factors, and other new targets. According to the pathological characteristics and treatment requirements of intrauterine adhesion (IUA), the research work to solve the above problems from the aspects of functional bioscaffold preparation and multi-functional platform construction is also summarized. From the perspective of scaffold materials and component functions, this review will provide a reference for comprehensively optimizing the clinical application of stem cells.
Collapse
|
14
|
Zheng Z, Li P, Shen F, Shi Y, Shao C. Mesenchymal Stem/Stromal Cells in Cancer: from Initiation to Metastasis. Arch Med Res 2022; 53:785-793. [PMID: 36462949 DOI: 10.1016/j.arcmed.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 12/05/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) exist in many tissues and have pleiotropic potential to self-renew and differentiate into multiple cell types. Recent research in tumor biology has focused on their low immunogenicity and tumorhoming properties. MSCs promote cancer initiation, progression, and metastasis through several different mechanisms, including epithelial-mesenchymal transition (EMT), angiogenesis, and through their interaction with immune cells. In this review, we discuss the recent advances in our understanding of the pathogenic role of MSCs in regulating tumor initiation, progression, and metastasis, thus providing a strong rationale for targeting MSCs in cancer therapy.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Suzhou, Jiangsu, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Center, Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peng Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Cancer Center, Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Suzhou, Jiangsu, China.
| | - Changshun Shao
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Izadi M, Rezvani ME, Aliabadi A, Karimi M, Aflatoonian B. Mesenchymal stem cells-derived exosomes as a promising new approach for the treatment of infertility caused by polycystic ovary syndrome. Front Pharmacol 2022; 13:1021581. [PMID: 36299896 PMCID: PMC9589245 DOI: 10.3389/fphar.2022.1021581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a multifactorial metabolic and most common endocrine disorder that its prevalence, depending on different methods of evaluating PCOS traits, varies from 4% to 21%. Chronic low-grade inflammation and irregular apoptosis of granulosa cells play a crucial role in the pathogenesis of PCOS infertility. Mesenchymal stem cells (MSCs)-derived exosomes and extracellular vesicles (EVs) are lipid bilayer complexes that act as a means of intercellular transferring of proteins, lipids, DNA and different types of RNAs. It seems that this nanoparticles have therapeutic effects on the PCOS ovary such as regulating immunity response, anti-inflammatory (local and systemic) and suppress of granulosa cells (GCs) apoptosis. Although there are few studies demonstrating the effects of exosomes on PCOS and their exact mechanisms is still unknown, in the present study we reviewed the available studies of the functions of MSC-derived exosome, EVs and secretome on apoptosis of granulosa cells and inflammation in the ovary. Therefore, the novel cell-free therapeutic approaches for PCOS were suggested in this study.
Collapse
Affiliation(s)
- Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Aliabadi
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
16
|
Endometrial stem/progenitor cells: Properties, origins, and functions. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Prajwal GS, Jeyaraman N, Kanth V K, Jeyaraman M, Muthu S, Rajendran SNS, Rajendran RL, Khanna M, Oh EJ, Choi KY, Chung HY, Ahn BC, Gangadaran P. Lineage Differentiation Potential of Different Sources of Mesenchymal Stem Cells for Osteoarthritis Knee. Pharmaceuticals (Basel) 2022; 15:386. [PMID: 35455383 PMCID: PMC9028477 DOI: 10.3390/ph15040386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) have paved a way for treating musculoskeletal diseases in a minimally invasive manner. The regenerative medicine cocktail involves the usage of mesenchymal stem/stromal cells (MSCs), either uncultured or culture-expanded cells along with growth factors, cytokines, exosomes, and secretomes to provide a better regenerative milieu in degenerative diseases. The successful regeneration of cartilage depends on the selection of the appropriate source of MSCs, the quality, quantity, and frequency of MSCs to be injected, and the selection of the patient at an appropriate stage of the disease. However, confirmation on the most favorable source of MSCs remains uncertain to clinicians. The lack of knowledge in the current cellular treatment is uncertain in terms of how beneficial MSCs are in the long-term or short-term (resolution of pain) and improved quality of life. Whether MSCs treatments have any superiority, exists due to sources of MSCs utilized in their potential to objectively regenerate the cartilage at the target area. Many questions on source and condition remain unanswered. Hence, in this review, we discuss the lineage differentiation potentials of various sources of MSCs used in the management of knee osteoarthritis and emphasize the role of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Gollahalli Shivashankar Prajwal
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Mallika Spine Centre, Guntur 522001, Andhra Pradesh, India
| | - Naveen Jeyaraman
- Research Fellow, Fellowship in Orthopaedic Rheumatology (FEIORA), Dr. Ram Manohar Lohiya National Law University, Lucknow 226010, Uttar Pradesh, India; (G.S.P.); (N.J.)
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India
| | - Krishna Kanth V
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, Uttar Pradesh, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sathish Muthu
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College, Mahabubabad 506104, Telangana, India;
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore 641001, Tamil Nadu, India
| | - Sree Naga Sowndary Rajendran
- Department of Medicine, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry 605102, Puducherry, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 110048, Uttar Pradesh, India; (S.M.); (M.K.)
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul 624001, Tamil Nadu, India
- Department of Orthopaedics, Prasad Institute of Medical Sciences, Lucknow 226010, Uttar Pradesh, India
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Kang Young Choi
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea; (E.J.O.); (K.Y.C.); (H.Y.C.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
18
|
Mamillapalli R, Cho S, Mutlu L, Taylor HS. Therapeutic role of uterine-derived stem cells in acute kidney injury. Stem Cell Res Ther 2022; 13:107. [PMID: 35279204 PMCID: PMC8917641 DOI: 10.1186/s13287-022-02789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) causes abrupt deterioration in kidney function that disrupts metabolic, electrolyte and fluid homeostasis. Although the prevalence of AKI is steadily increasing, no definitive treatment options are available, leading to severe morbidity and mortality. We evaluated the role of uterine-derived multipotent stem cells in kidney regeneration after ischemic AKI. METHODS Female C57BL/6J mice were hysterectomized and subsequently subject to AKI by either unilateral or bilateral renal ischemia-reperfusion injury. Uterine-derived cells (UDCs), containing a population of uterine stem cells, were isolated from the uteri of female transgenic DsRed mice and injected intravenously to AKI mice. Engraftment of DsRed cells was analyzed by flow cytometry while serum creatinine levels were determined colorimetrically. Expression of UDC markers and cytokine markers were analyzed by immunohistochemical and qRT-PCR methods, respectively. The Kaplan-Meier method was used to analyze survival time while unpaired t test with Welch's correction used for data analysis between two groups. RESULTS Mice with an intact uterus, and hence an endogenous source of UDCs, had a higher survival rate after bilateral ischemic AKI compared to hysterectomized mice. Mice treated with infusion of exogenous UDCs after hysterectomy/AKI had lower serum creatinine levels and higher survival rates compared to controls that did not receive UDCs. Engraftment of labeled UDCs was significantly higher in kidneys of bilateral ischemic AKI mice compared to those that underwent a sham surgery. When unilateral ischemic AKI was induced, higher numbers of UDCs were found in the injured than non-injured kidney. Immunofluorescence staining demonstrated double-positive DsRed/Lotus tetragonolobus agglutinin (LTA) positive cells and DsRed/CD31 positive cells indicating contribution of UDCs in renal tubular and vascular regeneration. Expression of Cxcl12, Bmp2, Bmp4, and Ctnf in renal tissue was significantly higher in the UDCs injection group than the control group. CONCLUSIONS UDCs engrafted injured kidneys, contributed to proximal tubule and vascular regeneration, improved kidney function and increased survival in AKI mice. UDC administration is a promising new therapy for AKI. Endogenous uterine stem cells likely also preserve kidney function, suggesting a novel interaction between the uterus and kidney. We suggest that hysterectomy may have a detrimental effect on response to renal injury.
Collapse
Affiliation(s)
- Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA.
| | - SiHyun Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, College of Medicine, Yonsei University, Seoul, South Korea
| | - Levent Mutlu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06510, USA
| |
Collapse
|
19
|
Chen JM, Huang QY, Zhao YX, Chen WH, Lin S, Shi QY. The Latest Developments in Immunomodulation of Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions, Both Allogeneic and Autologous. Front Immunol 2021; 12:785717. [PMID: 34868069 PMCID: PMC8634714 DOI: 10.3389/fimmu.2021.785717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesion (IUA) is an endometrial fibrosis disease caused by repeated operations of the uterus and is a common cause of female infertility. In recent years, treatment using mesenchymal stem cells (MSCs) has been proposed by many researchers and is now widely used in clinics because of the low immunogenicity of MSCs. It is believed that allogeneic MSCs can be used to treat IUA because MSCs express only low levels of MHC class I molecules and no MHC class II or co-stimulatory molecules. However, many scholars still believe that the use of allogeneic MSCs to treat IUA may lead to immune rejection. Compared with allogeneic MSCs, autologous MSCs are safer, more ethical, and can better adapt to the body. Here, we review recently published articles on the immunomodulation of allogeneic and autologous MSCs in IUA therapy, with the aim of proving that the use of autologous MSCs can reduce the possibility of immune rejection in the treatment of IUAs.
Collapse
Affiliation(s)
- Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Xia Zhao
- Department of Gynaecology and Obstetrics, Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Wei-Hong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
20
|
Liu Y, Zhang Z, Yang F, Wang H, Liang S, Wang H, Yang J, Lin J. The role of endometrial stem cells in the pathogenesis of endometriosis and their application to its early diagnosis†. Biol Reprod 2021; 102:1153-1159. [PMID: 31965165 DOI: 10.1093/biolre/ioaa011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/21/2019] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pelvic pain, infertility, and a high postoperative recurrence rate are associated with endometriosis and adversely affect the physical and mental health of patients. Moreover, these factors place a heavy burden on families and society. The identification of endometrial stem cells (EnSCs) in the eutopic endometrium, menstrual blood, and ectopic lesions of women with endometriosis not only provides new research objects in the context of endometriosis but also promotes and improves our understanding of its pathogenesis. Furthermore, based on previous studies, we reasonably suppose that dysfunctions of eutopic EnSCs play a critical role in the onset of endometriosis and directly cause abnormalities in the endometrium; subsequently, retrograde menstruation facilitates the delivery of abnormal endometrial tissues to the ovaries and pelvic cavity, where they ectopically implant, grow, and form ectopic lesions. Additionally, as a chronically progressive disease, there is a delay (3-11 years) from the first onset of symptoms to the diagnosis of endometriosis. Therefore, the development of a method for early diagnosis with high sensitivity and specificity is essential for endometriosis patients and has the potential to enable early treatment, prevent endometriosis progression, and relieve pain in patients. Thus, focusing on EnSCs will contribute to clarifying the potential pathogenesis of endometriosis and provide support for the application of EnSCs as therapeutic and early diagnostic targets in endometriosis treatment. SUMMARY SENTENCE Focusing on endometrial stem cells (EnSCs) will contribute to clarifying the potential pathogenesis of endometriosis and provide support for the application of EnSCs as therapeutic and early diagnostic targets in endometriosis treatment.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhiqin Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fen Yang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Hongmei Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shengying Liang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Huiling Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jun Yang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
21
|
Leñero C, Bowles AC, Correa D, Kouroupis D. Characterization and response to inflammatory stimulation of human endometrial-derived mesenchymal stem/stromal cells. Cytotherapy 2021; 24:124-136. [PMID: 34465515 DOI: 10.1016/j.jcyt.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS The human endometrium has emerged as an attractive source of endometrial-derived mesenchymal stem/stromal cells (eMSCs) that can be easily isolated by non-invasive procedures. The prominent capacity of the endometrium for efficient and scarless regeneration each menstrual cycle indicates the increased eMSC immunomodulatory and pro-angiogenic properties. Herein the authors investigated the molecular responses of eMSCs to an inflammatory environment and whether those intrinsic responses affected their functional attributes. METHODS Human eMSCs immunophenotypic, transcriptional and secretory profiles were evaluated at passage three (P3) and passage eight (P8) to determine culture effects. Functionally, P3 and P8 non-induced and TNF-α/IFN-γ-induced eMSCs were interrogated for their capacity to suppress stimulated peripheral blood mononuclear cell (PBMC) proliferation, whereas non-induced eMSCs were assessed for their support to vascular network formation in co-cultures with human umbilical vein endothelial cells in vitro. RESULTS Non-induced P3 and P8 eMSCs exhibited similar spindle-shaped morphology and clonogenic capacity. Nevertheless, P8 eMSCs showed reduced growth rate capacity and telomere length. The eMSCs displayed the typical MSC-related immunophenotypic profile, with P3 and P8 eMSCs expressing high levels (>98%) of CD140β, intermediate levels (35-60%) of CD146 and SUSD2 and low levels (∼8%) of NG2 pericytic markers. Non-induced P3 and P8 showed similar transcriptional and secretory profiles, though the expression of immunomodulatory HLA-G and IL-8 genes was significantly downregulated in P8 compared with P3 eMSCs. Upon TNF-α/IFN-γ induction, eMSCs showed an immunophenotypic profile similar to that of non-induced eMSCs, except for significant upregulation of HLA-DR protein expression in both induced P3 and P8 eMSCs. However, induced P3 and P8 eMSCs showed significant upregulation of CD10, HLA-G, IDO, IL-6, IL-8, LIF and TSG gene expression compared with non-induced cultures. TNF-α/IFN-γ induction strongly increased the secretion of inflammatory-/angiogenesis-related molecules, whereas growth factor secretion was similar to the non-induced eMSCs. Functionally, P3 and P8 eMSCs showed a strong inhibitory effect on stimulated PBMC proliferation and the capacity to support neovascularization in vitro. CONCLUSIONS The authors' study suggests that serial expansion does not affect eMSC immunophenotypic, transcriptional and secretory profiles. This is directly reflected by the functional immunomodulatory and pro-angiogenic properties of eMSCs, which remain unaltered until P8 in vitro. However, exposure of eMSCs to inflammatory environments enhances their immunomodulatory transcriptional and inflammatory-/angiogenesis-related secretory profiles. Therefore, the resulting evidence of eMSCs serial expansion and exposure to inflammation could serve as a foundation for improved eMSCs manufacturing and potential clinical translation efforts.
Collapse
Affiliation(s)
- Clarissa Leñero
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA; CryoVida Banco de Células Madre Adultas, Guadalajara, México
| | - Annie C Bowles
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biomedical Engineering, University of Miami College of Engineering, Miami, Florida, USA
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
22
|
Abuwala N, Tal R. Endometrial stem cells: origin, biological function, and therapeutic applications for reproductive disorders. Curr Opin Obstet Gynecol 2021; 33:232-240. [PMID: 33896919 PMCID: PMC9313610 DOI: 10.1097/gco.0000000000000702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Endometrial stem cells (ESCs) are multipotent cells that are thought to originate locally in the endometrium as well as in the bone marrow (BM). They have remarkable plasticity and hold promise as an autologous source for regenerative medicine. This review focuses on recent studies that have advanced our understanding of the biology and function of ESCs and BM-derived stem cells (BMDSCs) as related to physiological reproductive processes and pathologies. Moreover, it reviews recent data on potential therapeutic applications of stem cells to endometrial disorders that lead to reproductive failure. RECENT FINDINGS Growing evidence from basic and preclinical studies suggests that ESCs participate in endometrial tissue regeneration and repair. Recent evidence also suggests that ESCs and BMDSCs play important roles in physiological reproductive functions including decidualization, implantation, pregnancy maintenance, and postpartum uterine remodeling. Initial preclinical and clinical studies with ESCs and BMDSCs suggest they have the potential to provide new therapies for various endometrial disorders associated with reproductive failure. SUMMARY Uterine ESCs and BMDSCs appear to play an important biological role in reproductive success and failure, and have the potential to become treatment targets for reproductive diseases including recurrent implantation failure, thin endometrium, Asherman, and recurrent pregnancy loss.
Collapse
Affiliation(s)
- Nafeesa Abuwala
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Cao D, Chan RWS, Ng EHY, Gemzell-Danielsson K, Yeung WSB. Single-cell RNA sequencing of cultured human endometrial CD140b +CD146 + perivascular cells highlights the importance of in vivo microenvironment. Stem Cell Res Ther 2021; 12:306. [PMID: 34051872 PMCID: PMC8164319 DOI: 10.1186/s13287-021-02354-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/25/2021] [Indexed: 01/09/2023] Open
Abstract
Background Endometrial mesenchymal-like stromal/stem cells (eMSCs) have been proposed as adult stem cells contributing to endometrial regeneration. One set of perivascular markers (CD140b&CD146) has been widely used to enrich eMSCs. Although eMSCs are easily accessible for regenerative medicine and have long been studied, their cellular heterogeneity, relationship to primary counterpart, remains largely unclear. Methods In this study, we applied 10X genomics single-cell RNA sequencing (scRNA-seq) to cultured human CD140b+CD146+ endometrial perivascular cells (ePCs) from menstrual and secretory endometrium. We also analyzed publicly available scRNA-seq data of primary endometrium and performed transcriptome comparison between cultured ePCs and primary ePCs at single-cell level. Results Transcriptomic expression-based clustering revealed limited heterogeneity within cultured menstrual and secretory ePCs. A main subpopulation and a small stress-induced subpopulation were identified in secretory and menstrual ePCs. Cell identity analysis demonstrated the similar cellular composition in secretory and menstrual ePCs. Marker gene expression analysis showed that the main subpopulations identified from cultured secretory and menstrual ePCs simultaneously expressed genes marking mesenchymal stem cell (MSC), perivascular cell, smooth muscle cell, and stromal fibroblast. GO enrichment analysis revealed that genes upregulated in the main subpopulation enriched in actin filament organization, cellular division, etc., while genes upregulated in the small subpopulation enriched in extracellular matrix disassembly, stress response, etc. By comparing subpopulations of cultured ePCs to the publicly available primary endometrial cells, it was found that the main subpopulation identified from cultured ePCs was culture-unique which was unlike primary ePCs or primary endometrial stromal fibroblast cells. Conclusion In summary, these data for the first time provides a single-cell atlas of the cultured human CD140b+CD146+ ePCs. The identification of culture-unique relatively homogenous cell population of CD140b+CD146+ ePCs underscores the importance of in vivo microenvironment in maintaining cellular identity. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02354-1.
Collapse
Affiliation(s)
- Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Rachel W S Chan
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Ernest H Y Ng
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Kristina Gemzell-Danielsson
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China. .,Department of Obstetrics and Gynecology, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
24
|
Applications of Mesenchymal Stem Cells in Skin Regeneration and Rejuvenation. Int J Mol Sci 2021; 22:ijms22052410. [PMID: 33673711 PMCID: PMC7957487 DOI: 10.3390/ijms22052410] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. The skin can be damaged by wounds, caused by cutting or breaking of the tissue, and burns. Moreover, skin aging is a process that occurs naturally but can be worsened by environmental pollution, exposure to ultraviolet radiation, alcohol consumption, tobacco use, and undernourishment. MSCs have healing capacities that can be applied in damaged and aged skin. In skin regeneration, MSCs increase cell proliferation and neovascularization, and decrease inflammation in skin injury lesions. In skin rejuvenation, MSCs lead to production of collagen and elastic fibers, inhibition of metalloproteinase activation, and promote protection from ultraviolet radiation-induced senescence. In this review, we focus on how MSCs and MSC-derived molecules improve diseased and aged skin. Additionally, we emphasize that induced pluripotent stem cell (iPSC)-derived MSCs are potentially advanced MSCs, which are suitable for cell therapy.
Collapse
|
25
|
Li X, Lv HF, Zhao R, Ying MF, Samuriwo A, Zhao YZ. Recent developments in bio-scaffold materials as delivery strategies for therapeutics for endometrium regeneration. Mater Today Bio 2021; 11:100101. [PMID: 34036261 PMCID: PMC8138682 DOI: 10.1016/j.mtbio.2021.100101] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesions (IUAs) refer to the repair disorder after endometrial injury and may lead to uterine infertility, recurrent miscarriage, abnormal menstrual bleeding, and other obstetric complications. It is a pressing public health issue among women of childbearing age. Presently, there are limited clinical treatments for IUA, and there is no sufficient evidence that these treatment modalities can effectively promote regeneration after severe endometrial injury or improve pregnancy outcome. The inhibitory pathological micro-environment is the main factor hindering the repair of endometrial damaged tissues. To address this, tissue engineering and regenerative medicine have been achieving promising developments. Particularly, biomaterials have been used to load stem cells or therapeutic factors or construct an in situ delivery system as a treatment strategy for endometrial injury repair. This article comprehensively discusses the characteristics of various bio-scaffold materials and their application as stem cell or therapeutic factor delivery systems constructed for uterine tissue regeneration.
Collapse
Key Words
- Asherman's syndrome/endometrium regeneration
- BMNCs, autologous bone marrow mononuclear cells
- BMSCs, bone marrow mesenchymal stem cells
- Biological scaffold material
- D&C, Dilatation and curettage
- ECM, extracellular matrix
- En-PSC, endometrial perivascular cells
- IUA, Intrauterine adhesions
- KGF, Keratinocyte growth factor
- MSC-Sec, Mesenchymal stem cell-secretome
- SDF-1α, stromal cell-derived factor-1α
- Scaffold-based therapeutics delivery systems
- Stem cell
- Therapeutic factor
- UCMSCs, umbilical cord derived mesenchymal stem cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factors
- dEMSCs, endometrial stromal cells
- hESCs, human embryonic stem cells
Collapse
Affiliation(s)
- X. Li
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - H.-F. Lv
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
- Corresponding author.
| | - R. Zhao
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - M.-f. Ying
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - A.T. Samuriwo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Y.-Z. Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Corresponding author.
| |
Collapse
|
26
|
Vishnyakova P, Artemova D, Elchaninov A, Efendieva Z, Apolikhina I, Sukhikh G, Fatkhudinov T. Effects of platelet-rich plasma on mesenchymal stem cells isolated from rat uterus. PeerJ 2020; 8:e10415. [PMID: 33335809 PMCID: PMC7713597 DOI: 10.7717/peerj.10415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP), which represents a valuable source of growth factors, is increasingly being applied in regenerative medicine. Recent findings suggest the feasibility of using PRP in the treatment of infertility secondary to refractory thin endometrium. Mesenchymal stem/stromal cells (MSCs) of the endometrium are an essential cellular component responsible for extracellular matrix remodeling, angiogenesis, cell-to-cell communication, and postmenstrual tissue repair. Using a rat model, we examine the effects of autologous PRP on MSCs isolated from the uterus and compare them with the effects of autologous ordinary plasma (OP) and complete growth medium. METHODS MSCs were isolated from uterine tissues via enzymatic disaggregation. Flow cytometry immunophenotyping of the primary cell cultures was complemented by immunocytochemistry for Ki-67 and vimentin. The ability of MSCs to differentiate in osteo-, chondro-, and adipogenic directions was assessed using differentiation-inducing media. The levels of autophagy and apoptosis markers, as well as the levels of matrix metalloproteinase 9 (MMP9) and estrogen receptor α, were assessed by western blotting. RESULTS After 24 h incubation, the proliferation index of the PRP-treated MSC cultures was significantly higher than that of the MSC cultures treated with complete growth medium. PRP treatment elevated production of LC3B protein, an autophagy marker, while OP treatment upregulated the expression of stress-induced protein p53 and extracellular enzyme MMP9. The results indicate practical relevance and validity for PRP use in the treatment of infertility.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Daria Artemova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Scientific Research Institute of Human Morphology, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Zulfiia Efendieva
- I. M. Sechenov First Moscow State Medical University of Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Inna Apolikhina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University of Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University of Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Timur Fatkhudinov
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Scientific Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
27
|
Jalali Tehrani H, Daryabari SS, Fendereski K, Alijani Zirdehi M, Kajbafzadeh AM. Application of adipose-derived, muscle-derived, and co-cultured stem cells for the treatment of stress urinary incontinence in rat models. Low Urin Tract Symptoms 2020; 13:308-318. [PMID: 33098273 DOI: 10.1111/luts.12360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Based on the recent advancements in cell therapy techniques, we aimed to evaluate the efficacy of transurethral injection of autologous adipose-derived stem cells, muscle-derived stem cells, and co-cultured cells for the rehabilitation of stress urinary incontinence rat models. We hypothesized that the utilization of co-cultured stem cells could result in enhanced therapeutic outcomes attributed to their more comprehensive environment of paracrine factors and cytokines. METHODS We performed bilateral pudendal nerve transection surgeries to simulate urinary incontinence in 25 female Wistar rats and employed urodynamic evaluations to confirm the injury. We autologously isolated and cultured adipose-derived mesenchymal stem cells, muscle-derived stem cells, and a mixed culture of the two types, which we subsequently injected into the urethral lumen of the damaged animals. Three weeks after the injection, urodynamic assays, histological staining, and immunohistochemical evaluations were performed to determine the efficacy of the implanted cell cultures in sphincter function improvements or structural modifications. RESULTS Histological evaluations suggested a regenerative process in the muscular layer of the external sphincter 3 weeks after the injection. Also, immunohistochemical analysis revealed a thickened periurethral striated muscle layer in the co-cultured group. Postinjection urodynamic analysis indicated that the urethral pressure profile significantly increased in the co-cultured group compared with other groups. CONCLUSIONS The outcomes of this investigation indicated that the application of co-cultured adipose-derived and muscle-derived stem cells could be associated with higher therapeutic value in stress urinary incontinence patients compared with singular-cell treatments.
Collapse
Affiliation(s)
- Hora Jalali Tehrani
- Department of Developmental Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sima Daryabari
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarad Fendereski
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alijani Zirdehi
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
An update on stem cell therapy for Asherman syndrome. J Assist Reprod Genet 2020; 37:1511-1529. [PMID: 32445154 DOI: 10.1007/s10815-020-01801-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
The current treatment for Asherman syndrome is limited and not very effective. The aim of this review is to summarize the most recent evidence for stem cells in the treatment of Asherman syndrome. The advent of stem cell therapy has propagated experimentation on mice and humans as a novel treatment. The consensus is that the regenerative capacity of stem cells has demonstrated improved outcomes in terms of fertility and fibrosis in both mice and humans with Asherman syndrome. Stem cells have effects on tissue repair by homing to the injured site, recruiting other cells by secreting chemokines, modulating the immune system, differentiating into other types of cells, proliferating into daughter cells, and potentially having antimicrobial activity. The studies reviewed examine different origins and administration modalities of stem cells. In preclinical models, therapeutic systemic injection of stem cells is more effective than direct intrauterine injection in regenerating the endometrium. In conjunction, bone marrow-derived stem cells have a stronger effect on uterine regeneration than uterine-derived stem cells, likely due to their broader differentiation potency. Clinical trials have demonstrated the initial safety and effectiveness profiles of menstrual, bone marrow, umbilical cord, and adipose tissue-derived stem cells in resumption of menstruation, fertility outcomes, and endometrial regeneration.
Collapse
|
29
|
Perivascular Stem Cell-Derived Cyclophilin A Improves Uterine Environment with Asherman's Syndrome via HIF1α-Dependent Angiogenesis. Mol Ther 2020; 28:1818-1832. [PMID: 32534604 DOI: 10.1016/j.ymthe.2020.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Asherman's syndrome (AS) is characterized by intrauterine adhesions or fibrosis resulting from scarring inside the endometrium. AS is associated with infertility, recurrent miscarriage, and placental abnormalities. Although mesenchymal stem cells show therapeutic promise for the treatment of AS, the molecular mechanisms underlying its pathophysiology remain unclear. We ascertained that mice with AS, like human patients with AS, suffer from extensive fibrosis, oligo/amenorrhea, and infertility. Human perivascular stem cells (hPVSCs) from umbilical cords repaired uterine damage in mice with AS, regardless of their delivery routes. In mice with AS, embryo implantation is aberrantly deferred, which leads to intrauterine growth restriction followed by no delivery at term. hPVSC administration significantly improved implantation defects and subsequent poor pregnancy outcomes via hypoxia inducible factor 1α (HIF1α)-dependent angiogenesis in a dose-dependent manner. Pharmacologic inhibition of HIF1α activity hindered hPVSC actions on pregnancy outcomes, whereas stabilization of HIF1α activity facilitated such actions. Furthermore, therapeutic effects of hPVSCs were not observed in uterine-specific HIF1α-knockout mice with AS. Secretome analyses of hPVSCs identified cyclophilin-A as the major paracrine factor for hPVSC therapy via HIF1α-dependent angiogenesis. Collectively, we demonstrate that hPVSCs-derived cyclophilin-A facilitates HIF1α-dependent angiogenesis to ameliorate compromised uterine environments in mice with AS, representing the major pathophysiologic features of humans with AS.
Collapse
|
30
|
Santamaria X, Isaacson K, Simón C. Asherman's Syndrome: it may not be all our fault. Hum Reprod 2020; 33:1374-1380. [PMID: 31986212 DOI: 10.1093/humrep/dey232] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 01/24/2023] Open
Abstract
Asherman's Syndrome (AS) is an acquired condition defined by the presence of intrauterine adhesions (IUA) that cause symptoms such as menstrual abnormalities, pelvic pain, infertility, recurrent miscarriage, abnormal placentation and attendant psychological distress. Classically, AS is considered an iatrogenic disease triggered by trauma to the pregnant uterus. Different factors can cause the destruction of the endometrium, thus affecting the endometrial stem cell niche and creating IUAs. Curettage of the pregnant uterus appears to be the most common source of this destruction. Nevertheless, some AS cases have been associated with congenital uterine abnormalities and infections, and there are some idiopathic cases without any prior surgical procedures, suggesting a putative constitutional predisposition to IUA. Factors reported to cause AS share an underlying inflammatory mechanism leading to defective endometrial healing and vascularization. Interestingly, distinct genetic profiles have been observed in the endometrium of AS patients. These data suggest that AS might not just be an iatrogenic complication, but also the result of a genetic predisposition. Elucidating the possible physiopathological processes that contribute to AS will help to identify patients at risk for this condition, providing an opportunity for prevention.
Collapse
Affiliation(s)
| | - Keith Isaacson
- Department of Obstetrics and Gynecology and Reproductive Endocrinology, Harvard Medical School, Boston, MA, USA
| | - Carlos Simón
- Igenomix Academy, Valencia, Spain
- Department of Obstetrics and Gynecology. Stanford University, Stanford, CA, USA
- Department of Obstetrics and Gynecology. Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
31
|
Tal R, Kisa J. Uterine stem cells: potential and pitfalls. Maturitas 2020; 134:54-55. [PMID: 31668789 DOI: 10.1016/j.maturitas.2019.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Jacqueline Kisa
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
32
|
Ebrahimi-Barough S, Ai J, Payab M, Alavi-Moghadam S, Shokati A, Aghayan HR, Larijani B, Arjmand B. Standard Operating Procedure for the Good Manufacturing Practice-Compliant Production of Human Endometrial Stem Cells for Multiple Sclerosis. Methods Mol Biol 2020; 2286:199-212. [PMID: 32504294 DOI: 10.1007/7651_2020_281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is the most common cause of neurological diseases. Although, there are some effective medications with regulatory approval for treating MS, they are only partially effective and cannot promote repairing of tissue damage directly which occurs in the central nervous system. Therefore, there is an essential need to develop novel therapeutic approaches for neuroprotection or repairing damaged tissue in MS. Accordingly, cell-based therapies as a novel therapeutic strategy have opened a new horizon in treatment of MS. Each setting in cell therapy has potential benefits. Human endometrial stem cells as an invaluable source for cell therapy have introduced treatment for MS. In this respect, good manufacturing practice (GMP) has a pivotal role in clinical production of stem cells. This chapter tries to describe the protocol of GMP-grade endometrial stem cells for treatment of MS.
Collapse
Affiliation(s)
- Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Shokati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Reig A, Mamillapalli R, Coolidge A, Johnson J, Taylor HS. Uterine Cells Improved Ovarian Function in a Murine Model of Ovarian Insufficiency. Reprod Sci 2019; 26:1633-1639. [PMID: 31530098 PMCID: PMC6949960 DOI: 10.1177/1933719119875818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Primary ovarian insufficiency (POI) is defined as ovarian dysfunction in women younger than 40 years. It affects 1% of the women in this age-group and can occur iatrogenically after chemotherapy. Stem cells have been used in attempt to restore ovarian function in POI. In particular, endometrial mesenchymal stem cells (eMSCs) are easily obtainable in humans and have shown great potential for regenerative medicine. Here, we studied the potential for uterine cell (UC) suspensions containing eMSCs to improve ovarian function in a murine model of chemotherapy-induced POI. Green fluorescent protein (GFP)-labeled UC or phosphate-buffered solution (PBS) was delivered intravenously after chemotherapy. There was a significant increase in oocytes production and serum anti-Müllerian hormone concentrations after 6 weeks, as well as a 19% higher body mass in UC-treated mice. Similarly, we observed an increased number of pups in mice treated with UC than in mice treated with PBS. None of the oocytes or pups incorporated GFP, suggesting that there was no contribution of these stem cells to the oocyte pool. We conclude that treatment with UC indirectly improved ovarian function in mice with chemotherapy-induced POI. Furthermore, our study suggests that endometrial stem cell therapy may be beneficial to young women who undergo ovotoxic chemotherapy.
Collapse
Affiliation(s)
- Andres Reig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Alexis Coolidge
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Joshua Johnson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
34
|
Cen PP, Fan LX, Wang J, Chen JJ, Li LJ. Therapeutic potential of menstrual blood stem cells in treating acute liver failure. World J Gastroenterol 2019; 25:6190-6204. [PMID: 31745380 PMCID: PMC6848012 DOI: 10.3748/wjg.v25.i41.6190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute liver failure (ALF) is a significant and complex hepatic insult that may rapidly progress to life-threatening conditions. Recently, menstrual blood stem cells (MenSCs) have been identified as a group of easily accessible mesenchymal stem cells with the advantages of non-invasive acquisition, low immunogenicity, a greater capacity of self-renewal and multi-lineage differentiation, making them promising candidates for stem cell-based therapy to revolutionize the treatment strategies for liver failure. AIM To investigate the therapeutic potential of MenSCs for treating ALF in pigs and to dynamically trace the biodistribution of transplanted cells. METHODS MenSCs were labeled in vitro with PKH26, a lipophilic fluorescent dye. The treatment group received immediate transplantation of PKH26-labelled MenSCs (2.5 × 106/kg) via the portal vein after D-galactosamine injection, and the control group underwent sham operation. The survival time, liver function, and hepatic pathological changes were compared between the two groups. Three major organs (liver, lungs and spleen) were extracted from animals and imaged directly with the In vivo Imaging System (IVIS) at the predetermined time points. The regions of interest were drawn to quantify the cell uptake in different organs. RESULTS The labelling procedure did not affect the morphology, viability or multipotential differentiation of MenSCs. Biochemical analysis showed that the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL) and prothrombin time (PT) measured at selected time points 24 h after transplantation were significantly decreased in the treatment group (P < 0.05). The survival time of ALF animals was prolonged in the treatment group compared with the control group (75.75 ± 5.11 h vs 53.75 ± 2.37 h, log rank, P < 0.001). The liver pathological tissue in the MenSC treatment group showed obviously increased numbers of remaining hepatocytes and a comparatively slight necrotic degree and area. In addition, the IVIS imaging revealed that PKH26-positive MenSCs were clearly retained in the liver initially and then diffused through the systemic circulation. Interestingly, the signal intensity in the liver increased obviously at 36 h, which corresponded to the biochemical result that liver function deteriorated most rapidly at 24 - 36 h. CONCLUSION Our study demonstrates the therapeutic efficacy and homing ability of transplanted MenSCs in a large animal model of ALF and suggests that MenSC transplantation could be a promising strategy for treating ALF.
Collapse
Affiliation(s)
- Pan-Pan Cen
- Department of Infectious Diseases, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Lin-Xiao Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jia-Jia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; National Clinical Research Center for Infectious Diseases; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
35
|
Pavathuparambil Abdul Manaph N, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10:293. [PMID: 31547868 PMCID: PMC6757413 DOI: 10.1186/s13287-019-1396-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from patients' own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior. Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells. Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of human beta cells, thereby generating "beta cell-like cells" as opposed to mature beta cells. Diabetic therapy becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells. In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented from the references within this review would suggest that although mesenchymal stem cells are an attractive cell type for cell therapy they are not readily converted into functional mature beta cells.
Collapse
Affiliation(s)
- Nimshitha Pavathuparambil Abdul Manaph
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia. .,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kisha N Sivanathan
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jodie Nitschke
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Patrick T Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher John Drogemuller
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
36
|
Tal R, Shaikh S, Pallavi P, Tal A, López-Giráldez F, Lyu F, Fang YY, Chinchanikar S, Liu Y, Kliman HJ, Alderman M, Pluchino N, Kayani J, Mamillapalli R, Krause DS, Taylor HS. Adult bone marrow progenitors become decidual cells and contribute to embryo implantation and pregnancy. PLoS Biol 2019; 17:e3000421. [PMID: 31513564 PMCID: PMC6742226 DOI: 10.1371/journal.pbio.3000421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Decidua is a transient uterine tissue shared by mammals with hemochorial placenta and is essential for pregnancy. The decidua is infiltrated by many immune cells promoting pregnancy. Adult bone marrow (BM)-derived cells (BMDCs) differentiate into rare populations of nonhematopoietic endometrial cells in the uterus. However, whether adult BMDCs become nonhematopoietic decidual cells and contribute functionally to pregnancy is unknown. Here, we show that pregnancy mobilizes mesenchymal stem cells (MSCs) to the circulation and that pregnancy induces considerable adult BMDCs recruitment to decidua, where some differentiate into nonhematopoietic prolactin-expressing decidual cells. To explore the functional importance of nonhematopoietic BMDCs to pregnancy, we used Homeobox a11 (Hoxa11)-deficient mice, having endometrial stromal-specific defects precluding decidualization and successful pregnancy. Hoxa11 expression in BM is restricted to nonhematopoietic cells. BM transplant (BMT) from wild-type (WT) to Hoxa11-/- mice results in stromal expansion, gland formation, and marked decidualization otherwise absent in Hoxa11-/- mice. Moreover, in Hoxa11+/- mice, which have increased pregnancy losses, BMT from WT donors leads to normalized uterine expression of numerous decidualization-related genes and rescue of pregnancy loss. Collectively, these findings reveal that adult BMDCs have a previously unrecognized nonhematopoietic physiologic contribution to decidual stroma, thereby playing important roles in decidualization and pregnancy.
Collapse
Affiliation(s)
- Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shafiq Shaikh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Pallavi Pallavi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Aya Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis (YCGA), Yale University, New Haven, Connecticut, United States of America
| | - Fang Lyu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Yuan-Yuan Fang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Shruti Chinchanikar
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ying Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Harvey J. Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Myles Alderman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nicola Pluchino
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jehanzeb Kayani
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Diane S. Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
37
|
Hoveizi E, Mohammadi T. Differentiation of endometrial stem cells into insulin-producing cells using signaling molecules and zinc oxide nanoparticles, and three-dimensional culture on nanofibrous scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:101. [PMID: 31473826 DOI: 10.1007/s10856-019-6301-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Diabetes mellitus is the most common metabolic disorder with a high mortality and morbidity rate. A new promising strategy to treat DM is pancreatic tissue engineering. We described a 3D culture system accompanied by signaling factors to differentiate hEnSCs into IPCs in the presence of nZnO. We isolated EnSCs and cultured it in DMEM/F12 medium. Nanofibrous PLA/Cs scaffold was prepared through the electrospinning method. The morphological properties of the scaffolds and cells were evaluated by SEM. MTT assay was used to investigate the metabolic activity of the hEnSCs cultured on the scaffolds and a four-stage protocol was applied to differentiate hEnSCs. The differentiated cells were tested for pancreatic markers by immunocytochemistry, qRT-PCR and DTZ staining. The results of this study revealed that hEnSCs cultured on PLA/Cs scaffold and treated with nZnO can efficiently differentiate into IPCs. The examination of differentiated cell morphology showed their near similarity with pancreatic islet cells, and DTZ staining emphasized the presence of insulin granules inside their cytoplasm. Moreover, qRT-PCR and immunofluorescent staining results showed the efficient expression of specific gene markers of IPCs in resultant differentiated cells. Moreover, PLA/CS and nZnO were able to provide a good nanoenvironment for the differentiation of hEnSCs into IPCS the in presence of other molecules.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Tayebeh Mohammadi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
38
|
Bagheri-Mohammadi S, Alani B, Karimian M, Moradian-Tehrani R, Noureddini M. Intranasal administration of endometrial mesenchymal stem cells as a suitable approach for Parkinson's disease therapy. Mol Biol Rep 2019; 46:4293-4302. [PMID: 31123907 DOI: 10.1007/s11033-019-04883-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
This study aimed to investigate the therapeutic effects of intranasal administration of human endometrium-derived stem cells (HEDSCs) in the mouse model of Parkinson's disease (PD). Thirty days after intrastriatal injection of 6-OHDA, HEDSCs were administrated intranasally in three doses (104, 5 × 104 and 105 cells µl-1). During 120 days after stem cell administration, behavioral tests were examined. Then the mice were sacrificed and the fresh section of the substantia nigra pars compacta (SNpc) was used for detection of HEDSCs-GFP labeled by fluorescence microscopy method. In addition, immunohistochemistry was used to assay GFP, human neural Nestin, and tyrosine hydroxylase (TH) markers in the fixed brain tissue at the SNpc. Our data revealed that behavioral parameters were significantly improved after cell therapy. Fluorescence microscopy assay in fresh tissue and GFP analysis in fixed tissue were showed that the HEDSCs-GFP labeled migrated to SNpc. The data from immunohistochemistry revealed that the Nestin as a differential neuronal biomarker was expressed in SNpc. Also, TH as a dopaminergic neuron marker significantly increased after HEDSCs therapy in an optimized dose 5 × 104 cells µl-1. Our results suggest that intranasal administration of HEDSCs improve the PD symptoms in the mouse model of PD dose-dependent manner as a noninvasive method.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Moradian-Tehrani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Noureddini
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
39
|
Bulun SE, Yilmaz BD, Sison C, Miyazaki K, Bernardi L, Liu S, Kohlmeier A, Yin P, Milad M, Wei J. Endometriosis. Endocr Rev 2019; 40:1048-1079. [PMID: 30994890 PMCID: PMC6693056 DOI: 10.1210/er.2018-00242] [Citation(s) in RCA: 477] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
Pelvic endometriosis is a complex syndrome characterized by an estrogen-dependent chronic inflammatory process that affects primarily pelvic tissues, including the ovaries. It is caused when shed endometrial tissue travels retrograde into the lower abdominal cavity. Endometriosis is the most common cause of chronic pelvic pain in women and is associated with infertility. The underlying pathologic mechanisms in the intracavitary endometrium and extrauterine endometriotic tissue involve defectively programmed endometrial mesenchymal progenitor/stem cells. Although endometriotic stromal cells, which compose the bulk of endometriotic lesions, do not carry somatic mutations, they demonstrate specific epigenetic abnormalities that alter expression of key transcription factors. For example, GATA-binding factor-6 overexpression transforms an endometrial stromal cell to an endometriotic phenotype, and steroidogenic factor-1 overexpression causes excessive production of estrogen, which drives inflammation via pathologically high levels of estrogen receptor-β. Progesterone receptor deficiency causes progesterone resistance. Populations of endometrial and endometriotic epithelial cells also harbor multiple cancer driver mutations, such as KRAS, which may be associated with the establishment of pelvic endometriosis or ovarian cancer. It is not known how interactions between epigenomically defective stromal cells and the mutated genes in epithelial cells contribute to the pathogenesis of endometriosis. Endometriosis-associated pelvic pain is managed by suppression of ovulatory menses and estrogen production, cyclooxygenase inhibitors, and surgical removal of pelvic lesions, and in vitro fertilization is frequently used to overcome infertility. Although novel targeted treatments are becoming available, as endometriosis pathophysiology is better understood, preventive approaches such as long-term ovulation suppression may play a critical role in the future.
Collapse
Affiliation(s)
- Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bahar D Yilmaz
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christia Sison
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kaoru Miyazaki
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lia Bernardi
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shimeng Liu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Amanda Kohlmeier
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ping Yin
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Magdy Milad
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - JianJun Wei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
40
|
Sun L, Zhang S, Chang Q, Tan J. Establishment and comparison of different intrauterine adhesion modelling procedures in rats. Reprod Fertil Dev 2019; 31:1360-1368. [PMID: 30958978 DOI: 10.1071/rd18397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/07/2019] [Indexed: 01/14/2023] Open
Abstract
Intrauterine adhesion (IUA) is caused by endometrial damage and leads to the formation of scar fibrosis and repair disorders. We compared four different rat IUA modelling procedures in order to establish a stable animal model suitable for investigating IUA. Twenty female Sprague--Dawley rats were randomly divided into four groups. IUA was induced on one side of each rat uterus by ethanol instillation, heat stripping, mechanical injury or mechanical injury with infection (dual-injury); the other side of the uterus was left intact as a control. After 8 days the rats were sacrificed, their uteri were examined for histomorphology and expression of endometrial markers was checked using immunohistochemistry. All four IUA modelling procedures resulted in visual pathophysiological changes in the rat uterus, including stenosis, congestion and loss of elasticity. Endometrial thinning, shrinkage of glands and formation of fibrotic hyperplasia were also observed. All four procedures resulted in the downregulation of cytokeratin 18 and vimentin expression compared with control tissues, as well as the upregulation of collagen I expression. After mechanical injury and dual-injury the expression of interleukin 6 was significantly increased. Overall, our results suggest that ethanol instillation is the most stable IUA modelling procedure. Mechanical injury reliably yielded inflammatory indicators.
Collapse
Affiliation(s)
- Li Sun
- Assisted Reproduction Centre, Obstetrics and Gynaecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; and Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodelling of Liaoning Province, Shengjing Hospital affiliated to China Medical University, Shenyang 110022, China
| | - Siwen Zhang
- Assisted Reproduction Centre, Obstetrics and Gynaecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; and Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodelling of Liaoning Province, Shengjing Hospital affiliated to China Medical University, Shenyang 110022, China
| | - Qiyuan Chang
- Assisted Reproduction Centre, Obstetrics and Gynaecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; and Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodelling of Liaoning Province, Shengjing Hospital affiliated to China Medical University, Shenyang 110022, China
| | - Jichun Tan
- Assisted Reproduction Centre, Obstetrics and Gynaecology Department, Shengjing Hospital affiliated to China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; and Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodelling of Liaoning Province, Shengjing Hospital affiliated to China Medical University, Shenyang 110022, China; and Corresponding author
| |
Collapse
|
41
|
Zolbin MM, Mamillapalli R, Nematian SE, Goetz TG, Taylor HS. Adipocyte alterations in endometriosis: reduced numbers of stem cells and microRNA induced alterations in adipocyte metabolic gene expression. Reprod Biol Endocrinol 2019; 17:36. [PMID: 30982470 PMCID: PMC6463663 DOI: 10.1186/s12958-019-0480-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Endometriosis is an estrogen dependent, inflammatory disorder occurring in 5-10% of reproductive-aged women. Women with endometriosis have a lower body mass index (BMI) and decreased body fat compared to those without the disease, yet few studies have focused on the metabolic abnormalities in adipose tissue in women with endometriosis. Previously, we identified microRNAs that are differentially expressed in endometriosis and altered in the serum of women with the disease. Here we explore the effect of endometriosis on fat tissue and identified a role for endometriosis-related microRNAs in fat metabolism and a reduction in adipocyte stem cell number. METHODS Primary adipocyte cells cultured from 20 patients with and without endometriosis were transfected with mimics and inhibitors of microRNAs 342-3p or Let 7b-5p to model the status of these microRNAs in endometriosis. RNA was extracted for gene expression analysis by qRT-PCR. PCNA expression was used as a marker of adipocyte proliferation. Endometriosis was induced experimentally in 9-week old female C57BL/6 mice and after 10 months fat tissue was harvested from both the subcutaneous (inguinal) and visceral (mesenteric) tissue. Adipose-derived mesenchymal stem cells in fat tissue were characterized in both endometriosis and non-endometriosis mice by FACS analysis. RESULTS Gene expression analysis showed that endometriosis altered the expression of Cebpa, Cebpb, Ppar-γ, leptin, adiponectin, IL-6, and HSL, which are involved in driving brown adipocyte differentiation, appetite, insulin sensitivity and fat metabolism. Each gene was regulated by an alteration in microRNA expression known to occur in endometriosis. Analysis of the stem cell content of adipose tissue in a mouse model of endometriosis demonstrated a reduced number of adipocyte stem cells. CONCLUSIONS We demonstrate that microRNAs Let-7b and miR-342-3p affected metabolic gene expression significantly in adipocytes of women with endometriosis. Similarly, there is a reduction in the adipose stem cell population in a mouse model of endometriosis. Taken together these data suggest that endometriosis alters BMI in part through an effect on adipocytes and fat metabolism.
Collapse
Affiliation(s)
- Masoumeh Majidi Zolbin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA.
| | - Sepide E Nematian
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA
| | - Teddy G Goetz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
42
|
Durand N, Russell A, Zubair AC. Effect of Comedications and Endotoxins on Mesenchymal Stem Cell Secretomes, Migratory and Immunomodulatory Capacity. J Clin Med 2019; 8:jcm8040497. [PMID: 30979082 PMCID: PMC6517980 DOI: 10.3390/jcm8040497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are becoming an increasingly popular therapeutic option among patients with a broad range of ailments to modulate immunity and induce regeneration. The majority of patients receiving these MSC therapies are on concurrent medication or have ongoing infection. In the present study, we examined the effect of immunosuppressive drugs and lipopolysaccharides (LPS)/endotoxins on the secretory profile, migration towards site of injury, and suppression of lymphocyte proliferation of bone marrow-derived MSCs (BMSCs). Generally, LPS coculture augmented the secretory capacity of BMSCs while exposure to immunosuppressive drugs resulted primarily in no change or attenuated secretion, with some cases of increased secretion, dependent on the cytokine assayed. Among the immunosuppressants evaluated, Hydrocortisone had the most widespread inhibitory effect, while LPS from E. coli O111:B4 had the most potent stimulatory effect. In addition, we also showed that Hydrocortisone or LPS from E. coli O111:B4 affected the migratory and immunosuppressive capacity of BMSCs. Following simulation with Hydrocortisone, BMSC migration was attenuated, and immunosuppressive capacity against T cell proliferation was enhanced, however, the opposite effects were seen with LPS from E. coli O111:B4. Our data suggests that the clinical outcomes of MSC-based therapy are affected by the use of immunosuppressive medication or the presence of endotoxemia in patients.
Collapse
Affiliation(s)
- Nisha Durand
- Transfusion Medicine, Department of Laboratory Medicine and Pathology and Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
43
|
Babaloo H, Ebrahimi-Barough S, Derakhshan MA, Yazdankhah M, Lotfibakhshaiesh N, Soleimani M, Joghataei MT, Ai J. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol 2018; 234:11060-11069. [PMID: 30584656 DOI: 10.1002/jcp.27936] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/25/2018] [Indexed: 12/28/2022]
Abstract
The significant consequences of spinal cord injury (SCI) include sensory and motor disability resulting from the death of neuronal cells and axon degeneration. In this respect, overcoming the consequences of SCI including the recovery of sensory and motor functions is considered to be a difficult tasks that requires attention to multiple aspects of treatment. The breakthrough in tissue engineering through the integration of biomaterial scaffolds and stem cells has brought a new hope for the treatment of SCI. In the present study, human endometrial stem cells (hEnSCs) were cultured with human Schwann cells (hSC) in transwells, their differentiation into nerve-like cells was confirmed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) and immunocytochemistry techniques. The differentiated cells (co-hEnSC) were then seeded on the poly ε-caprolactone (PCL)/gelatin scaffolds. The SEM images displayed the favorable seeding and survival of the cells on the scaffolds. The seeded scaffolds were then transplanted into hemisected SCI rats. The growth of neuronal cells was confirmed with immunohistochemical study using NF-H as a neuronal marker. Finally, the Basso, Beattie, and Bresnahan (BBB) test confirmed the recovery of sensory and motor functions. The results suggested that combination therapy using the differentiated hEnSC seeded on PCL/gelatin scaffolds has the potential to heal the injured spinal cord and to limit the secondary damage.
Collapse
Affiliation(s)
- Hamideh Babaloo
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Derakhshan
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Meysam Yazdankhah
- Department of Ophthalmology, Glia Research Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad-Taghi Joghataei
- Department of Anatomical Sciences, Neuroscience Research Center & Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Generation of Progesterone-Responsive Endometrial Stromal Fibroblasts from Human Induced Pluripotent Stem Cells: Role of the WNT/CTNNB1 Pathway. Stem Cell Reports 2018; 11:1136-1155. [PMID: 30392973 PMCID: PMC6234962 DOI: 10.1016/j.stemcr.2018.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022] Open
Abstract
Defective endometrial stromal fibroblasts (EMSFs) contribute to uterine factor infertility, endometriosis, and endometrial cancer. Induced pluripotent stem cells (iPSCs) derived from skin or bone marrow biopsies provide a patient-specific source that can be differentiated to various cells types. Replacement of abnormal EMSFs is a potential novel therapeutic approach for endometrial disease; however, the methodology or mechanism for differentiating iPSCs to EMSFs is unknown. The uterus differentiates from the intermediate mesoderm (IM) to form coelomic epithelium (CE) followed by the Müllerian duct (MD). Here, we successfully directed the differentiation of human iPSCs (hiPSCs) through IM, CE, and MD to EMSFs under molecularly defined embryoid body culture conditions using specific hormonal treatments. Activation of CTNNB1 was essential for expression of progesterone receptor that mediated the final differentiation step of EMSFs before implantation. These hiPSC-derived tissues illustrate the potential for iPSC-based endometrial regeneration for future cell-based treatments. We developed a molecularly defined system for differentiating hiPSCs to EMSFs hiPSC-derived EMSFs undergo decidualization in response to hormonal stimulation D14 embryoid bodies recapitulate the molecular signature of primary EMSFs The WNT/CTNNB1 pathway is required for induction of EMSF from hiPSCs
Collapse
|
45
|
Sahin C, Mamillapalli R, Yi KW, Taylor HS. microRNA Let-7b: A Novel treatment for endometriosis. J Cell Mol Med 2018; 22:5346-5353. [PMID: 30063121 PMCID: PMC6201226 DOI: 10.1111/jcmm.13807] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is an oestrogen-dependent, chronic inflammatory disease that affects 10% of reproductive-aged women. Current treatment options depend on female sex steroid hormone modulation; however, all have side effects and are not useful in women who want to conceive. microRNAs treatments have provided promising results for some chronic diseases and cancers. We have previously shown the microRNA Let-7b is repressed in endometriosis and that loss of Let-7 contributes to the pathophysiology of the disease. Here, we propose using microRNA Let-7b for the treatment of endometriosis in a murine model. Endometriosis was treated using microRNA Let-7b or a scrambled control microRNA. Let-7b treatment resulted in reduced endometriosis lesion size. Decreased gene expression was noted in several genes known to promote endometriosis growth including ER-α, ER-ß, Cyp19a, KRAS 4A, KRAS 4B and IL-6. These results indicate that microRNA Let-7b has a pleiotropic role in endometriosis pathophysiology affecting oestrogen signalling, inflammation and growth factor receptors. Local treatment of endometriosis with Let-7b is a promising therapy for endometriosis that simultaneously affects multiple pathways driving endometriosis without systemic hormonal side effects.
Collapse
Affiliation(s)
- Cagdas Sahin
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
| | - Kyong W. Yi
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticut
| |
Collapse
|
46
|
Ebrahimikia Y, Darabi S, Rajaei F. Roles of stem cells in the treatment of Parkinson's disease. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.4.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
47
|
Bagheri-Mohammadi S, Karimian M, Alani B, Verdi J, Tehrani RM, Noureddini M. Stem cell-based therapy for Parkinson's disease with a focus on human endometrium-derived mesenchymal stem cells. J Cell Physiol 2018; 234:1326-1335. [PMID: 30146713 DOI: 10.1002/jcp.27182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) as an increasing clinical syndrome is a multifunctional impairment with systemic involvement. At present, therapeutic approaches such as l-3,4-dihydroxy-phenylalanine replacement therapy, dopaminergic agonist administration, and neurosurgical treatment intend to relieve PD symptoms which are palliative and incompetent in counteracting PD progression. These mentioned therapies have not been able to replace the lost cells and they could not effectively slow down the relentless neurodegenerative process. Till now, there is a lack of eligible treatment for PD, and stem cells therapy recently has been considered for PD treatment. In this review, we demonstrate how human stem cell technology especially human endometrium-derived stem cells have made advancement as a therapeutic source for PD compared with other treatments.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Karimian
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Behrang Alani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Moradian Tehrani
- Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Noureddini
- Physiology Research Centre, Kashan University of Medical Sciences, Kashan, Iran.,Department of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
48
|
Subbarao RB, Shivakumar SB, Choe YH, Son YB, Lee HJ, Ullah I, Jang SJ, Ock SA, Lee SL, Rho GJ. CD105 + Porcine Endometrial Stromal Mesenchymal Stem Cells Possess Differentiation Potential Toward Cardiomyocyte-Like Cells and Insulin-Producing β Cell-Like Cells In Vitro. Reprod Sci 2018; 26:669-682. [PMID: 29986624 DOI: 10.1177/1933719118786461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porcine mesenchymal stem cells (MSCs) are similar to human MSCs, hence considered a valuable model for assessing potential for cell therapy. Porcine adipose-derived MSCs (AD-MSCs) and endometrial stromal MSCs (EMSCs) displayed fibroblast-like morphology and were positive for MSC markers CD73, CD90, and CD105 and negative for hematopoietic markers CD34 and CD45. The EMSCs had similar or slightly higher growth rate compared to AD-MSCs, and similar percentage of cells of both EMSCs and AD-MSCs were at G0/G1 and G2/M phases; however, EMSCs had significantly ( P < .05) higher percentage of cells at S phase of cell cycle than AD-MSCs. Transdifferentiation ability to cardiomyocyte-like cells was confirmed in differentiated cells by the expression of lineage-specific marker genes such as DES, ACTA2, cTnT, and ACTC1 by real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, cardiomyocyte-specific protein markers cTnT and ACTC1 were expressed in completely differentiated cells. Endodermal differentiation capacity of EMSCs to pancreatic β cell-like cells was evident with the changes in morphology and the expression of β-cell-specific marker genes such as PDX1, GLUT2, SST, NKX6.1, PAX4, and NGN3 as analyzed by RT-qPCR. The differentiated cells secreted insulin and C-peptide upon glucose challenge and also they expressed insulin, PDX1, PAX4, NGN3, and GLUT2 at protein level as assessed by immunostaining confirming the successful differentiation to β cell-like cells. Porcine EMSCs possess all the characteristics of MSCs and are suitable model for studying molecular mechanisms of cellular differentiation.
Collapse
Affiliation(s)
- Raghavendra Baregundi Subbarao
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sharath Belame Shivakumar
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choe
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Si-Jung Jang
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sun-A Ock
- 2 Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sung-Lim Lee
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- 1 Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,3 Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
49
|
Simoni M, Taylor HS. Therapeutic strategies involving uterine stem cells in reproductive medicine. Curr Opin Obstet Gynecol 2018; 30:209-216. [PMID: 29652725 DOI: 10.1097/gco.0000000000000457] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The current review provides an update on recent advances in stem cell biology relevant to female reproduction. RECENT FINDINGS Stem cells are undifferentiated cells that often serve as a reservoir of cells to regenerate tissue in settings or injury or cell loss. The endometrium has progenitor stem cells that can replace all of the endometrium during each menstrual cycle. In addition, multipotent endometrial cells replace these progenitor cells when depleted. Recruitment of stem cells from outside of the uterus occurs in setting of increased demand such as ischemia or injury. Bone marrow-derived multipotent stem cells are recruited to the uterus by estrogen or injury-induced expression of the chemokine CXCL12. In the setting of overwhelming injury, especially in the setting of low estrogen levels, there may be insufficient stem cell recruitment to adequately repair the uterus resulting in conditions such as Asherman syndrome or other endometrial defects. In contrast, excessive recruitment of stem cells underlies endometriosis. Enhanced understanding of stem-cell mobilization, recruitment, and engraftment has created the possibility of improved therapy for endometrial defects and endometriosis through enhanced manipulation of stem-cell trafficking. Further, the normal endometrium is a rich source of multipotent stem cells that can be used for numerous applications in regenerative medicine beyond reproduction. SUMMARY A better understanding of reproductive stem-cell biology may allow improved treatment of endometrial disease such as Asherman syndrome and other endometrial receptivity defects. Inhibiting stem-cell mobilization may also be helpful in endometriosis therapy. Finally, endometrial derived multipotent stem cells may play a crucial role in cell therapy for regenerative medicine.
Collapse
Affiliation(s)
- Michael Simoni
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
50
|
Blázquez R, Sánchez-Margallo FM, Álvarez V, Matilla E, Hernández N, Marinaro F, Gómez-Serrano M, Jorge I, Casado JG, Macías-García B. Murine embryos exposed to human endometrial MSCs-derived extracellular vesicles exhibit higher VEGF/PDGF AA release, increased blastomere count and hatching rates. PLoS One 2018; 13:e0196080. [PMID: 29684038 PMCID: PMC5912768 DOI: 10.1371/journal.pone.0196080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Endometrial Mesenchymal Stromal Cells (endMSCs) are multipotent cells with immunomodulatory and pro-regenerative activity which is mainly mediated by a paracrine effect. The exosomes released by MSCs have become a promising therapeutic tool for the treatment of immune-mediated diseases. More specifically, extracellular vesicles derived from endMSCs (EV-endMSCs) have demonstrated a cardioprotective effect through the release of anti-apoptotic and pro-angiogenic factors. Here we hypothesize that EV-endMSCs may be used as a co-adjuvant to improve in vitro fertilization outcomes and embryo quality. Firstly, endMSCs and EV-endMSCs were isolated and phenotypically characterized for in vitro assays. Then, in vitro studies were performed on murine embryos co-cultured with EV-endMSCs at different concentrations. Our results firstly demonstrated a significant increase on the total blastomere count of expanded murine blastocysts. Moreover, EV-endMSCs triggered the release of pro-angiogenic molecules from embryos demonstrating an EV-endMSCs concentration-dependent increase of VEGF and PDGF-AA. The release of VEGF and PDGF-AA by the embryos may indicate that the beneficial effect of EV-endMSCs could be mediating not only an increase in the blastocyst’s total cell number, but also may promote endometrial angiogenesis, vascularization, differentiation and tissue remodeling. In summary, these results could be relevant for assisted reproduction being the first report describing the beneficial effect of human EV-endMSCs on embryo development.
Collapse
Affiliation(s)
- Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Elvira Matilla
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Nuria Hernández
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | | | - Inmaculada Jorge
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Javier G. Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- * E-mail:
| | - Beatriz Macías-García
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|