1
|
Choi Y, Park JH, Jo A, Lim CW, Park JM, Hwang JW, Lee KS, Kim YS, Lee H, Moon J. Blood-derived APLP1 + extracellular vesicles are potential biomarkers for the early diagnosis of brain diseases. SCIENCE ADVANCES 2025; 11:eado6894. [PMID: 39742488 DOI: 10.1126/sciadv.ado6894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
The early detection of neurodegenerative diseases necessitates the identification of specific brain-derived biomolecules in peripheral blood. In this context, our investigation delineates the role of amyloid precursor-like protein 1 (APLP1)-a protein predominantly localized in oligodendrocytes and neurons-as a previously unidentified biomarker in extracellular vesicles (EVs). Through rigorous analysis, APLP1+ EVs from human sera were unequivocally determined to be of cerebral origin. This assertion was corroborated by distinctive small RNA expression patterns of APLP1+ EVs. The miRNAs' putative targets within these EVs manifested pronounced expression in the brain, fortifying their neurospecific provenance. We subjected our findings to stringent validation using Thy-1 GFP M line mice, transgenic models wherein GFP expression is confined to hippocampal neurons. An amalgamation of these results with an exhaustive data analysis accentuates the potential of APLP1+ EVs as cerebrally originated biomarkers. Synthesizing our findings, APLP1+ EVs are postulated not merely as diagnostic markers but as seminal entities shaping the future trajectory of neurodegenerative disease diagnostics.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jae Hyun Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ala Jo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chul-Woo Lim
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jin Woo Hwang
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
2
|
Taha HB. α-Synuclein in speculative neuronal extracellular vesicles: A marker for Parkinson's disease risk? Eur J Neurosci 2024; 60:4982-4986. [PMID: 39086046 DOI: 10.1111/ejn.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
This opinion piece describes major limitations of using α-synuclein in speculative neuronally enriched for diagnosing or predicting Parkinson's disease risk from prodromal conditions such as REM behaviour disorder. It concludes that such an approach is unreliable and recommends that future researchers divert away to more widely accepted approaches such as seed amplification assays.
Collapse
Affiliation(s)
- Hash Brown Taha
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Gallo PN, Mihelc E, Eisert R, Bradshaw GA, Dimek F, Leffler A, Kalocsay M, Moiseenkova-Bell V. The dynamic TRPV2 ion channel proximity proteome reveals functional links of calcium flux with cellular adhesion factors NCAM and L1CAM in neurite outgrowth. Cell Calcium 2024; 121:102894. [PMID: 38728789 PMCID: PMC11456977 DOI: 10.1016/j.ceca.2024.102894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
TRPV2 voltage-insensitive, calcium-permeable ion channels play important roles in cancer progression, immune response, and neuronal development. Despite TRPV2's physiological impact, underlying endogenous proteins mediating TRPV2 responses and affected signaling pathways remain elusive. Using quantitative peroxidase-catalyzed (APEX2) proximity proteomics we uncover dynamic changes in the TRPV2-proximal proteome and identify calcium signaling and cell adhesion factors recruited to the molecular channel neighborhood in response to activation. Quantitative TRPV2 proximity proteomics further revealed activation-induced enrichment of protein clusters with biological functions in neural and cellular projection. We demonstrate a functional connection between TRPV2 and the neural immunoglobulin cell adhesion molecules NCAM and L1CAM. NCAM and L1CAM stimulation robustly induces TRPV2 [Ca2+]I flux in neuronal PC12 cells and this TRPV2-specific [Ca2+]I flux requires activation of the protein kinase PKCα. TRPV2 expression directly impacts neurite lengths that are modulated by NCAM or L1CAM stimulation. Hence, TRPV2's calcium signaling plays a previously undescribed, yet vital role in cell adhesion, and TRPV2 calcium flux and neurite development are intricately linked via NCAM and L1CAM cell adhesion proteins.
Collapse
Affiliation(s)
- Pamela N Gallo
- University of Pennsylvania, Systems Pharmacology and Translational Therapeutics, Philadelphia, PA, USA
| | - Elaine Mihelc
- University of Pennsylvania, Systems Pharmacology and Translational Therapeutics, Philadelphia, PA, USA
| | - Robyn Eisert
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Boston, MA, USA
| | - Gary A Bradshaw
- Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, USA
| | - Florian Dimek
- Hannover Medical School, Department of Anesthesiology and Intensive Care Medicine, Hannover, Germany
| | - Andreas Leffler
- Hannover Medical School, Department of Anesthesiology and Intensive Care Medicine, Hannover, Germany
| | - Marian Kalocsay
- The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, Houston, TX, USA.
| | - Vera Moiseenkova-Bell
- University of Pennsylvania, Systems Pharmacology and Translational Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
5
|
Baek CH, Kim H, Moon SY, Yang WS. AMPK boosts ADAM10 shedding activity in human aortic endothelial cells by promoting Rab14-dependent ADAM10 cell surface translocation. Biochem Biophys Res Commun 2023; 675:54-60. [PMID: 37451218 DOI: 10.1016/j.bbrc.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
A disintegrin and metalloprotease 10 (ADAM10) regulates the expression of cell surface receptors such as tumor necrosis factor receptor 1, toll-like receptor 4, and the receptor for advanced glycation end products (RAGE) by cleaving their extracellular regions. To function as a sheddase, ADAM10 should translocate from the intracellular compartments to the cell surface, but the translocation mechanism remains unclear. In this study, we explored the possible role of adenosine monophosphate-activated protein kinase (AMPK) in the induction of ADAM10 shedding activity. In cultured human aortic endothelial cells (HAECs), 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator, boosted ADAM10 cell surface translocation and ectodomain shedding of RAGE. ADAM10 inhibition with GI 254023X and ADAM10 siRNA silencing both prevented AICAR-induced RAGE ectodomain shedding. AICAR increased AMPK phosphorylation as well. Both Compound C-mediated AMPK inhibition and AMPKα1-siRNA-mediated AMPK depletion suppressed AICAR-induced ADAM10 cell surface translocation and RAGE ectodomain shedding. On the other hand, siRNA knockdown of Rab14, a small GTPase that facilitates the intracellular trafficking of transmembrane proteins, prevented AICAR-induced ADAM10 cell surface translocation and RAGE ectodomain shedding. In conclusion, AMPK activation is an obvious inducer of ADAM10 shedding activity. Our findings suggest that AMPK boosts ADAM10 shedding activity in HAECs by promoting Rab14-dependent ADAM10 cell surface translocation.
Collapse
Affiliation(s)
- Chung Hee Baek
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyosang Kim
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Young Moon
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Won Seok Yang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Yang W, Chen SC, Wang TE, Tsai PS, Chen JC, Chen PL. L1cam alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Gene 2023; 881:147643. [PMID: 37453721 DOI: 10.1016/j.gene.2023.147643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taiwan; Departments of Medical Genetics, National Taiwan University Hospital, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Lemaigre C, Ceuppens A, Valades-Cruz CA, Ledoux B, Vanbeneden B, Hassan M, Zetterberg FR, Nilsson UJ, Johannes L, Wunder C, Renard HF, Morsomme P. N-BAR and F-BAR proteins-endophilin-A3 and PSTPIP1-control clathrin-independent endocytosis of L1CAM. Traffic 2023; 24:190-212. [PMID: 36843549 DOI: 10.1111/tra.12883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Recent advances in the field demonstrate the high diversity and complexity of endocytic pathways. In the current study, we focus on the endocytosis of L1CAM. This glycoprotein plays a major role in the development of the nervous system, and is involved in cancer development and is associated with metastases and poor prognosis. Two L1CAM isoforms are subject to endocytosis: isoform 1, described as a clathrin-mediated cargo; isoform 2, whose endocytosis has never been studied. Deciphering the molecular machinery of isoform 2 internalisation should contribute to a better understanding of its pathophysiological role. First, we demonstrated in our cellular context that both isoforms of L1CAM are mainly a clathrin-independent cargo, which was not expected for isoform 1. Second, the mechanism of L1CAM endocytosis is specifically mediated by the N-BAR domain protein endophilin-A3. Third, we discovered PSTPIP1, an F-BAR domain protein, as a novel actor in this endocytic process. Finally, we identified galectins as endocytic partners and negative regulators of L1CAM endocytosis. In summary, the interplay of the BAR proteins endophilin-A3 and PSTPIP1, and galectins fine tune the clathrin-independent endocytosis of L1CAM.
Collapse
Affiliation(s)
- Camille Lemaigre
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Apolline Ceuppens
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Cesar Augusto Valades-Cruz
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France.,SERPICO Project Team, UMR144 CNRS Institut Curie, PSL Research University, Paris, France.,SERPICO Project Team, Inria Centre Rennes-Bretagne Atlantique, Campus Universitaire de Beaulieu, Rennes, France
| | - Benjamin Ledoux
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | - Bastien Vanbeneden
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Christian Wunder
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Henri-François Renard
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Namur, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Louvain-la-Neuve, Belgium
| |
Collapse
|
8
|
Khezri MR, Mohebalizadeh M, Ghasemnejad-Berenji M. Therapeutic potential of ADAM10 modulation in Alzheimer's disease: a review of the current evidence. Cell Commun Signal 2023; 21:60. [PMID: 36918870 PMCID: PMC10012555 DOI: 10.1186/s12964-023-01072-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease worldwide, is caused by loss of neurons and synapses in central nervous system. Several causes for neuronal death in AD have been introduced, the most important of which are extracellular amyloid β (Aβ) accumulation and aggregated tau proteins. Increasing evidence suggest that targeting the process of Aβ production to reduce its deposition can serve as a therapeutic option for AD management. In this regard, therapeutic interventions shown that a disintegrin and metalloproteinase domain-containing protein (ADAM) 10, involved in non-amyloidogenic pathway of amyloid precursor protein processing, is known to be a suitable candidate. Therefore, this review aims to examine the molecular properties of ADAM10, its role in AD, and introduce it as a therapeutic target to reduce the progression of the disease. Video abstract.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Sero Road, Urmia, 5715799313, Iran.
| | - Mehdi Mohebalizadeh
- Student Research Committee, Urmia University of Medical Sciences, Sero Road, Urmia, 5715799313, Iran.,Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Morteza Ghasemnejad-Berenji
- Student Research Committee, Urmia University of Medical Sciences, Sero Road, Urmia, 5715799313, Iran. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran. .,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Alvarez MR, Zhou Q, Tena J, Barboza M, Wong M, Xie Y, Lebrilla CB, Cabanatan M, Barzaga MT, Tan-Liu N, Heralde FM, Serrano L, Nacario RC, Completo GC. Glycomic, Glycoproteomic, and Proteomic Profiling of Philippine Lung Cancer and Peritumoral Tissues: Case Series Study of Patients Stages I-III. Cancers (Basel) 2023; 15:cancers15051559. [PMID: 36900350 PMCID: PMC10001221 DOI: 10.3390/cancers15051559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Lung cancer is the leading cause of cancer death and non-small cell lung carcinoma (NSCLC) accounting for majority of lung cancers. Thus, it is important to find potential biomarkers, such as glycans and glycoproteins, which can be used as diagnostic tools against NSCLC. Here, the N-glycome, proteome, and N-glycosylation distribution maps of tumor and peritumoral tissues of Filipino lung cancer patients (n = 5) were characterized. We present several case studies with varying stages of cancer development (I-III), mutation status (EGFR, ALK), and biomarker expression based on a three-gene panel (CD133, KRT19, and MUC1). Although the profiles of each patient were unique, specific trends arose that correlated with the role of aberrant glycosylation in cancer progression. Specifically, we observed a general increase in the relative abundance of high-mannose and sialofucosylated N-glycans in tumor samples. Analysis of the glycan distribution per glycosite revealed that these sialofucosylated N-glycans were specifically attached to glycoproteins involved in key cellular processes, including metabolism, cell adhesion, and regulatory pathways. Protein expression profiles showed significant enrichment of dysregulated proteins involved in metabolism, adhesion, cell-ECM interactions, and N-linked glycosylation, supporting the protein glycosylation results. The present case series study provides the first demonstration of a multi-platform mass-spectrometric analysis specifically for Filipino lung cancer patients.
Collapse
Affiliation(s)
- Michael Russelle Alvarez
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
- Institute of Chemistry, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Qingwen Zhou
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Jennyfer Tena
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Mariana Barboza
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Maurice Wong
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Michelle Cabanatan
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1100, Philippines
| | - Ma. Teresa Barzaga
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1100, Philippines
- College of Medicine, De La Salle Health Sciences Institute, Cavite 4114, Philippines
| | - Nelia Tan-Liu
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1100, Philippines
| | - Francisco M. Heralde
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City 1100, Philippines
- College of Medicine, University of the Philippines Manila, Manila City 1000, Philippines
| | - Luster Serrano
- Institute of Chemistry, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Ruel C. Nacario
- Institute of Chemistry, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Gladys Cherisse Completo
- Institute of Chemistry, University of the Philippines Los Baños, Laguna 4031, Philippines
- Correspondence:
| |
Collapse
|
10
|
Bogias KJ, Pederson SM, Leemaqz S, Smith MD, McAninch D, Jankovic-Karasoulos T, McCullough D, Wan Q, Bianco-Miotto T, Breen J, Roberts CT. Placental Transcription Profiling in 6-23 Weeks' Gestation Reveals Differential Transcript Usage in Early Development. Int J Mol Sci 2022; 23:ijms23094506. [PMID: 35562897 PMCID: PMC9105363 DOI: 10.3390/ijms23094506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
The human placenta is a rapidly developing transient organ that is key to pregnancy success. Early development of the conceptus occurs in a low oxygen environment before oxygenated maternal blood begins to flow into the placenta at ~10-12 weeks' gestation. This process is likely to substantially affect overall placental gene expression. Transcript variability underlying gene expression has yet to be profiled. In this study, accurate transcript expression profiles were identified for 84 human placental chorionic villus tissue samples collected across 6-23 weeks' gestation. Differential gene expression (DGE), differential transcript expression (DTE) and differential transcript usage (DTU) between 6-10 weeks' and 11-23 weeks' gestation groups were assessed. In total, 229 genes had significant DTE yet no significant DGE. Integration of DGE and DTE analyses found that differential expression patterns of individual transcripts were commonly masked upon aggregation to the gene-level. Of the 611 genes that exhibited DTU, 534 had no significant DGE or DTE. The four most significant DTU genes ADAM10, VMP1, GPR126, and ASAH1, were associated with hypoxia-responsive pathways. Transcript usage is a likely regulatory mechanism in early placentation. Identification of functional roles will facilitate new insight in understanding the origins of pregnancy complications.
Collapse
Affiliation(s)
- Konstantinos J. Bogias
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Stephen M. Pederson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Shalem Leemaqz
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Dale McAninch
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
| | - Tanja Jankovic-Karasoulos
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Qianhui Wan
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute (Adelaide Office), Adelaide, SA 5000, Australia;
- College of Health & Medicine, Australian National University, Canberra, ACT 2600, Australia
| | - Claire T. Roberts
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
- Correspondence:
| |
Collapse
|
11
|
Gomes DE, Witwer KW. L1CAM-associated extracellular vesicles: A systematic review of nomenclature, sources, separation, and characterization. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e35. [PMID: 35492832 PMCID: PMC9045013 DOI: 10.1002/jex2.35] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/20/2022]
Abstract
When released into biological fluids like blood or saliva, brain extracellular vesicles (EVs) might provide a window into otherwise inaccessible tissue, contributing useful biomarkers of neurodegenerative and other central nervous system (CNS) diseases. To enrich for brain EVs in the periphery, however, cell-specific EV surface markers are needed. The protein that has been used most frequently to obtain EVs of putative neuronal origin is the transmembrane L1 cell adhesion molecule (L1CAM/CD171). In this systematic review, we examine the existing literature on L1CAM and EVs, including investigations of both neurodegenerative disease and cancer through the lens of the minimal information for studies of EVs (MISEV), specifically in the domains of nomenclature usage, EV sources, and EV separation and characterization. Although numerous studies have reported L1CAM-associated biomarker signatures that correlate with disease, interpretation of these results is complicated since L1CAM expression is not restricted to neurons and is also upregulated during cancer progression. A recent study has suggested that L1CAM epitopes are present in biofluids mostly or entirely as cleaved, soluble protein. Our findings on practices and trends in L1CAM-mediated EV separation, enrichment, and characterization yield insights that may assist with interpreting results, evaluating rigor, and suggesting avenues for further exploration.
Collapse
Affiliation(s)
- Dimitria E. Gomes
- Cornell University College of Veterinary MedicineIthacaNew YorkUSA
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Centre of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
12
|
Scramblases as Regulators of Proteolytic ADAM Function. MEMBRANES 2022; 12:membranes12020185. [PMID: 35207106 PMCID: PMC8880048 DOI: 10.3390/membranes12020185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Proteolytic ectodomain release is a key mechanism for regulating the function of many cell surface proteins. The sheddases ADAM10 and ADAM17 are the best-characterized members of the family of transmembrane disintegrin-like metalloproteinase. Constitutive proteolytic activities are low but can be abruptly upregulated via inside-out signaling triggered by diverse activating events. Emerging evidence indicates that the plasma membrane itself must be assigned a dominant role in upregulation of sheddase function. Data are discussed that tentatively identify phospholipid scramblases as central players during these events. We propose that scramblase-dependent externalization of the negatively charged phospholipid phosphatidylserine (PS) plays an important role in the final activation step of ADAM10 and ADAM17. In this manuscript, we summarize the current knowledge on the interplay of cell membrane changes, PS exposure, and proteolytic activity of transmembrane proteases as well as the potential consequences in the context of immune response, infection, and cancer. The novel concept that scramblases regulate the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface.
Collapse
|
13
|
Engeroff P, Vogel M. The Potential of Exosomes in Allergy Immunotherapy. Vaccines (Basel) 2022; 10:vaccines10010133. [PMID: 35062793 PMCID: PMC8780385 DOI: 10.3390/vaccines10010133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Allergic diseases represent a global health and economic burden of increasing significance. The lack of disease-modifying therapies besides specific allergen immunotherapy (AIT) which is not available for all types of allergies, necessitates the study of novel therapeutic approaches. Exosomes are small endosome-derived vesicles delivering cargo between cells and thus allowing inter-cellular communication. Since immune cells make use of exosomes to boost, deviate, or suppress immune responses, exosomes are intriguing candidates for immunotherapy. Here, we review the role of exosomes in allergic sensitization and inflammation, and we discuss the mechanisms by which exosomes could potentially be used in immunotherapeutic approaches for the treatment of allergic diseases. We propose the following approaches: (a) Mast cell-derived exosomes expressing IgE receptor FcεRI could absorb IgE and down-regulate systemic IgE levels. (b) Tolerogenic exosomes could suppress allergic immune responses via induction of regulatory T cells. (c) Exosomes could promote TH1-like responses towards an allergen. (d) Exosomes could modulate IgE-facilitated antigen presentation.
Collapse
Affiliation(s)
- Paul Engeroff
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005 Paris, France;
| | - Monique Vogel
- Department of Immunology, University Hospital for Rheumatology, Immunology, and Allergology, 3010 Bern, Switzerland
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Correspondence:
| |
Collapse
|
14
|
Kleene R, Loers G, Castillo G, Schachner M. Cell adhesion molecule L1 interacts with the chromo shadow domain of heterochromatin protein 1 isoforms α, β, and ɣ via its intracellular domain. FASEB J 2021; 36:e22074. [PMID: 34859928 DOI: 10.1096/fj.202100816r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Cell adhesion molecule L1 regulates multiple cell functions and L1 deficiency is linked to several neural diseases. Proteolytic processing generates functionally decisive L1 fragments, which are imported into the nucleus. By computational analysis, we found at L1's C-terminal end the chromo shadow domain-binding motif PxVxL, which directs the binding of nuclear proteins to the heterochromatin protein 1 (HP1) isoforms α, β, and ɣ. By enzyme-linked immunosorbent assay, we show that the intracellular L1 domain binds to all HP1 isoforms. These interactions involve the HP1 chromo shadow domain and are mediated via the sequence 1158 KDET1161 in the intracellular domain of murine L1, but not by L1's C-terminal PxVxL motif. Immunoprecipitation using nuclear extracts from the brain and from cultured cerebellar and cortical neurons indicates that HP1 isoforms interact with a yet unknown nuclear L1 fragment of approximately 55 kDa (L1-55), which carries ubiquitin residues. Proximity ligation indicates a close association between L1-55 and the HP1 isoforms in neuronal nuclei. This association is reduced after the treatment of neurons with inhibitors of metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1), or ɣ-secretase, suggesting that cleavage of full-length L1 by these proteases generates L1-55. Reduction of HP1α, -β, or -ɣ expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons and decreases the L1-dependent migration of L1-transfected HEK293 cells in a scratch assay. These findings indicate that the interaction of the novel fragment L1-55 with HP1 isoforms in nuclei affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Ralf Kleene
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gaston Castillo
- Research Group Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
15
|
Increased plasmin-mediated proteolysis of L1CAM in a mouse model of idiopathic normal pressure hydrocephalus. Proc Natl Acad Sci U S A 2021; 118:2010528118. [PMID: 34380733 PMCID: PMC8379912 DOI: 10.1073/pnas.2010528118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is the most common form of adult-onset hydrocephalus, but its etiology is poorly understood. Symptoms develop in previously normal individuals and include gait difficulty, incontinence, and dementia. We recently reported that 15% of iNPH patients harbor heterozygous loss-of-function deletions in CWH43, which encodes a protein that modifies other cell membrane proteins. Mice harboring CWH43 deletions develop hydrocephalus and gait dysfunction. Mutations affecting the L1CAM adhesion protein cause developmental brain abnormalities and hydrocephalus from birth. Here, we show that CWH43 deletion leads to L1CAM hypoglycosylation, decreased L1CAM association with lipid microdomains, increased plasmin-mediated L1CAM cleavage, and decreased L1CAM expression. Thus, decreased L1CAM expression appears to occur in adult-onset iNPH and congenital hydrocephalus. Idiopathic normal pressure hydrocephalus (iNPH) is a common neurological disorder that is characterized by enlarged cerebral ventricles, gait difficulty, incontinence, and dementia. iNPH usually develops after the sixth decade of life in previously asymptomatic individuals. We recently reported that loss-of-function deletions in CWH43 lead to the development of iNPH in a subgroup of patients, but how this occurs is poorly understood. Here, we show that deletions in CWH43 decrease expression of the cell adhesion molecule, L1CAM, in the brains of CWH43 mutant mice and in human HeLa cells harboring a CWH43 deletion. Loss-of-function mutations in L1CAM are a common cause of severe neurodevelopmental defects that include congenital X-linked hydrocephalus. Mechanistically, we find that CWH43 deletion leads to decreased N-glycosylation of L1CAM, decreased association of L1CAM with cell membrane lipid microdomains, increased L1CAM cleavage by plasmin, and increased shedding of cleaved L1CAM in the cerebrospinal fluid. CWH43 deletion also decreased L1CAM nuclear translocation, suggesting decreased L1CAM intracellular signaling. Importantly, the increase in L1CAM cleavage occurred primarily in the ventricular and subventricular zones where brain CWH43 is most highly expressed. Thus, CWH43 deletions may contribute to adult-onset iNPH by selectively downregulating L1CAM in the ventricular and subventricular zone.
Collapse
|
16
|
Dräger O, Metz K, Busch M, Dünker N. Role of L1CAM in retinoblastoma tumorigenesis: identification of novel therapeutic targets. Mol Oncol 2021; 16:957-981. [PMID: 34228897 PMCID: PMC8847994 DOI: 10.1002/1878-0261.13054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The study presented focuses on the role of the neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) in retinoblastoma (RB), the most common malignant intraocular childhood tumor. L1CAM is differentially expressed in a variety of human cancers and has been suggested as a promising therapeutic target. We likewise observed differential expression patterns for L1CAM in RB cell lines and patient samples. The two proteases involved in ectodomain shedding of L1CAM (L1CAM sheddases: ADAM10 and ADAM17) were likewise differentially expressed in the RB cell lines investigated, and an involvement in L1CAM processing in RB cells could be verified. We also identified ezrin, galectin-3, and fibroblast growth factor basic as L1CAM signaling target genes in RB cells. Lentiviral L1CAM knockdown induced apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells, whereas L1CAM-overexpressing RB cells displayed the opposite effects. Chicken chorioallantoic membrane assays revealed that L1CAM depletion decreases the tumorigenic and migration potential of RB cells in vivo. Moreover, L1CAM depletion decreased viability and tumor growth of etoposide-resistant RB cell lines upon etoposide treatment in vitro and in vivo. Thus, L1CAM and its processing sheddases are potential novel targets for future therapeutic RB approaches.
Collapse
Affiliation(s)
- Oliver Dräger
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Klaus Metz
- Institute of Pathology, University of Duisburg-Essen, Medical Faculty, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| |
Collapse
|
17
|
Desse VE, Blanchette CR, Nadour M, Perrat P, Rivollet L, Khandekar A, Bénard CY. Neuronal post-developmentally acting SAX-7S/L1CAM can function as cleaved fragments to maintain neuronal architecture in C. elegans. Genetics 2021; 218:6296841. [PMID: 34115111 DOI: 10.1093/genetics/iyab086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
Whereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal's growth, maturation processes, the addition of new neurons, body movements, and aging. The C. elegans protein SAX-7, homologous to the vertebrate L1 protein family of neural adhesion molecules, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles, and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by post-developmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants' neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance, and may help decipher processes that go awry in some neurodegenerative conditions.
Collapse
Affiliation(s)
- Virginie E Desse
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Cassandra R Blanchette
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Malika Nadour
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Paola Perrat
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lise Rivollet
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Anagha Khandekar
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Y Bénard
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
18
|
Tosetti F, Alessio M, Poggi A, Zocchi MR. ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease. Int J Mol Sci 2021; 22:4969. [PMID: 34067041 PMCID: PMC8124674 DOI: 10.3390/ijms22094969] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Enzymes, once considered static molecular machines acting in defined spatial patterns and sites of action, move to different intra- and extracellular locations, changing their function. This topological regulation revealed a close cross-talk between proteases and signaling events involving post-translational modifications, membrane tyrosine kinase receptors and G-protein coupled receptors, motor proteins shuttling cargos in intracellular vesicles, and small-molecule messengers. Here, we highlight recent advances in our knowledge of regulation and function of A Disintegrin And Metalloproteinase (ADAM) endopeptidases at specific subcellular sites, or in multimolecular complexes, with a special focus on ADAM10, and tumor necrosis factor-α convertase (TACE/ADAM17), since these two enzymes belong to the same family, share selected substrates and bioactivity. We will discuss some examples of ADAM10 activity modulated by changing partners and subcellular compartmentalization, with the underlying hypothesis that restraining protease activity by spatial segregation is a complex and powerful regulatory tool.
Collapse
Affiliation(s)
- Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico S. Martino Largo R. Benzi 10, 16132 Genoa, Italy;
| | - Massimo Alessio
- Proteome Biochemistry, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico S. Martino Largo R. Benzi 10, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
19
|
Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis. Neoplasia 2021; 23:415-428. [PMID: 33839455 PMCID: PMC8042651 DOI: 10.1016/j.neo.2021.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022] Open
Abstract
Trop-2 is a transmembrane signal transducer that can induce cancer growth. Using antibody targeting and N-terminal Edman degradation, we show here that Trop-2 undergoes cleavage in the first thyroglobulin domain loop of its extracellular region, between residues R87 and T88. Molecular modeling indicated that this cleavage induces a profound rearrangement of the Trop-2 structure, which suggested a deep impact on its biological function. No Trop-2 cleavage was detected in normal human tissues, whereas most tumors showed Trop-2 cleavage, including skin, ovary, colon, and breast cancers. Coimmunoprecipitation and mass spectrometry analysis revealed that ADAM10 physically interacts with Trop-2. Immunofluorescence/confocal time-lapse microscopy revealed that the two molecules broadly colocalize at the cell membrane. We show that ADAM10 inhibitors, siRNAs and shRNAs abolish the processing of Trop-2, which indicates that ADAM10 is an effector protease. Proteolysis of Trop-2 at R87-T88 triggered cancer cell growth both in vitro and in vivo. A corresponding role was shown for metastatic spreading of colon cancer, as the R87A-T88A Trop-2 mutant abolished xenotransplant metastatic dissemination. Activatory proteolysis of Trop-2 was recapitulated in primary human breast cancers. Together with the prognostic impact of Trop-2 and ADAM10 on cancers of the skin, ovary, colon, lung, and pancreas, these data indicate a driving role of this activatory cleavage of Trop-2 on malignant progression of tumors.
Collapse
|
20
|
Sonnenberg SB, Rauer J, Göhr C, Gorinski N, Schade SK, Abdel Galil D, Naumenko V, Zeug A, Bischoff SC, Ponimaskin E, Guseva D. The 5-HT 4 receptor interacts with adhesion molecule L1 to modulate morphogenic signaling in neurons. J Cell Sci 2021; 134:jcs.249193. [PMID: 33536244 DOI: 10.1242/jcs.249193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022] Open
Abstract
Morphological remodeling of dendritic spines is critically involved in memory formation and depends on adhesion molecules. Serotonin receptors are also implicated in this remodeling, though the underlying mechanisms remain enigmatic. Here, we uncovered a signaling pathway involving the adhesion molecule L1CAM (L1) and serotonin receptor 5-HT4 (5-HT4R, encoded by HTR4). Using Förster resonance energy transfer (FRET) imaging, we demonstrated a physical interaction between 5-HT4R and L1, and found that 5-HT4R-L1 heterodimerization facilitates mitogen-activated protein kinase activation in a Gs-dependent manner. We also found that 5-HT4R-L1-mediated signaling is involved in G13-dependent modulation of cofilin-1 activity. In hippocampal neurons in vitro, the 5-HT4R-L1 pathway triggers maturation of dendritic spines. Thus, the 5-HT4R-L1 signaling module represents a previously unknown molecular pathway regulating synaptic remodeling.
Collapse
Affiliation(s)
| | - Jonah Rauer
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Christoph Göhr
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Nataliya Gorinski
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Sophie Kristin Schade
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Dalia Abdel Galil
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Vladimir Naumenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - André Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Stephan C Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany .,Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.,Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany .,Department of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Germany
| |
Collapse
|
21
|
Seifert A, Düsterhöft S, Wozniak J, Koo CZ, Tomlinson MG, Nuti E, Rossello A, Cuffaro D, Yildiz D, Ludwig A. The metalloproteinase ADAM10 requires its activity to sustain surface expression. Cell Mol Life Sci 2021; 78:715-732. [PMID: 32372373 PMCID: PMC7873107 DOI: 10.1007/s00018-020-03507-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
The metalloproteinase ADAM10 critically contributes to development, inflammation, and cancer and can be controlled by endogenous or synthetic inhibitors. Here, we demonstrate for the first time that loss of proteolytic activity of ADAM10 by either inhibition or loss of function mutations induces removal of the protease from the cell surface and the whole cell. This process is temperature dependent, restricted to mature ADAM10, and associated with an increased internalization, lysosomal degradation, and release of mature ADAM10 in extracellular vesicles. Recovery from this depletion requires de novo synthesis. Functionally, this is reflected by loss and recovery of ADAM10 substrate shedding. Finally, ADAM10 inhibition in mice reduces systemic ADAM10 levels in different tissues. Thus, ADAM10 activity is critically required for its surface expression in vitro and in vivo. These findings are crucial for development of therapeutic ADAM10 inhibition strategies and may showcase a novel, physiologically relevant mechanism of protease removal due to activity loss.
Collapse
Affiliation(s)
- Anke Seifert
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Justyna Wozniak
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Chek Z Koo
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Daniela Yildiz
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, PZMS, ZHMB, Saarland University, Homburg, Germany
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
22
|
Girbes Minguez M, Wolters-Eisfeld G, Lutz D, Buck F, Schachner M, Kleene R. The cell adhesion molecule L1 interacts with nuclear proteins via its intracellular domain. FASEB J 2020; 34:9869-9883. [PMID: 32533745 DOI: 10.1096/fj.201902242r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the cell adhesion molecule L1 (L1) in brain tissue and in cultured cerebellar neurons results in the generation and nuclear import of a 30 kDa fragment comprising most of L1's C-terminal, intracellular domain. In search of molecules that interact with this domain, we performed affinity chromatography with the recombinant intracellular L1 domain and a nuclear extract from mouse brains, and identified potential nuclear L1 binding partners involved in transcriptional regulation, RNA processing and transport, DNA repair, chromatin remodeling, and nucleocytoplasmic transport. By co-immunoprecipitation and enzyme-linked immunosorbent assay using recombinant proteins, we verified the direct interaction between L1 and the nuclear binding partners non-POU domain containing octamer-binding protein and splicing factor proline/glutamine-rich. The proximity ligation assay confirmed this close interaction in cultures of cerebellar granule cells. Our findings suggest that L1 fragments regulate multiple nuclear functions in the nervous system. We discuss possible physiological and pathological roles of these interactions in regulation of chromatin structure, gene expression, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Zentrum für Diagnostik, Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Giordano M, Cavallaro U. Different Shades of L1CAM in the Pathophysiology of Cancer Stem Cells. J Clin Med 2020; 9:E1502. [PMID: 32429448 PMCID: PMC7291284 DOI: 10.3390/jcm9051502] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is aberrantly expressed in several tumor types where it is causally linked to malignancy and therapy resistance, acting also as a poor prognosis factor. Accordingly, several approaches have been developed to interfere with L1CAM function or to deliver cytotoxic agents to L1CAM-expressing tumors. Metastatic dissemination, tumor relapse and drug resistance can be fueled by a subpopulation of neoplastic cells endowed with peculiar biological properties that include self-renewal, efficient DNA repair, drug efflux machineries, quiescence, and immune evasion. These cells, known as cancer stem cells (CSC) or tumor-initiating cells, represent, therefore, an ideal target for tumor eradication. However, the molecular and functional traits of CSC have been unveiled only to a limited extent. In this context, it appears that L1CAM is expressed in the CSC compartment of certain tumors, where it plays a causal role in stemness itself and/or in biological processes intimately associated with CSC (e.g., epithelial-mesenchymal transition (EMT) and chemoresistance). This review summarizes the role of L1CAM in cancer focusing on its functional contribution to CSC pathophysiology. We also discuss the clinical usefulness of therapeutic strategies aimed at targeting L1CAM in the context of anti-CSC treatments.
Collapse
Affiliation(s)
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, 20128 Milan, Italy;
| |
Collapse
|
24
|
Paolini L, Federici S, Consoli G, Arceri D, Radeghieri A, Alessandri I, Bergese P. Fourier-transform Infrared (FT-IR) spectroscopy fingerprints subpopulations of extracellular vesicles of different sizes and cellular origin. J Extracell Vesicles 2020; 9:1741174. [PMID: 32341767 PMCID: PMC7170381 DOI: 10.1080/20013078.2020.1741174] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Identification of extracellular vesicle (EV) subpopulations remains an open challenge. To date, the common strategy is based on searching and probing set of molecular components and physical properties intended to be univocally characteristics of the target subpopulation. Pitfalls include the risk to opt for an unsuitable marker set - which may either not represent the subpopulation or also cover other unintended subpopulations - and the need to use different characterization techniques and equipment. This approach focused on specific markers may result inadequate to routinely deal with EV subpopulations that have an intrinsic high level of heterogeneity. In this paper, we show that Fourier-transform Infrared (FT-IR) spectroscopy can provide a collective fingerprint of EV subpopulations in one single experiment. FT-IR measurements were performed on large (LEVs, ~600 nm), medium (MEVs, ~200 nm) and small (SEVs ~60 nm) EVs enriched from two different cell lines medium: murine prostate cancer (TRAMP-C2) and skin melanoma (B16). Spectral regions between 3100-2800 cm-1 and 1880-900 cm-1, corresponding to functional groups mainly ascribed to lipid and protein contributions, were acquired and processed by Principal Component Analysis (PCA). LEVs, MEVs and SEVs were separately grouped for both the considered cell lines. Moreover, subpopulations of the same size but from different sources were assigned (with different degrees of accuracy) to two different groups. These findings demonstrate that FT-IR has the potential to quickly fingerprint EV subpopulations as a whole, suggesting an appealing complement/alternative for their characterization and grading, extendable to healthy and pathological EVs and fully artificial nanovesicles.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Consorzio Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Florence, Italy
| | - Giovanni Consoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Diletta Arceri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Consorzio Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
| | - Ivano Alessandri
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Florence, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
- National Institute of Optics, National Research Council of Italy (CNR-INO), Unit of Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Consorzio Sistemi a Grande Interfase (CSGI), Department of Chemistry, University of Florence, Sesto Fiorentino (FI), Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), Florence, Italy
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| |
Collapse
|
25
|
Zingoni A, Vulpis E, Loconte L, Santoni A. NKG2D Ligand Shedding in Response to Stress: Role of ADAM10. Front Immunol 2020; 11:447. [PMID: 32269567 PMCID: PMC7109295 DOI: 10.3389/fimmu.2020.00447] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
NKG2D is an activating receptor expressed by NK cells and some subsets of T cells and represents a major recognition receptor for detection and elimination of cancer cells. The ligands of NKG2D are stress-induced self-proteins that can be secreted as soluble molecules by protease-mediated cleavage. The release of NKG2D ligands in the extracellular milieu is considered a mode of finely controlling their surface expression levels and represents a relevant immune evasion mechanism employed by cancer cells to elude NKG2D-mediated immune surveillance. A disintegrin and metalloproteinase 10 (ADAM10), a catalytically active member of the ADAM family of proteases, is involved in the cleavage of some NKG2D ligands in various types of cancer cells either in steady state conditions and in response to an ample variety of stress stimuli. Appealing immunotherapeutic strategies devoted to promoting NK cell-mediated recognition and elimination of cancer cells are based on the upregulation of NK cell activating ligands. In particular, activation of DNA damage response (DDR) and the induction of cellular senescence by chemotherapeutic agents are associated with increased expression of NKG2D ligands on cancer cell surface. Herein, we will review advances on the protease-mediated cleavage of NKG2D ligands in response to chemotherapy-induced stress focusing on: (i) the role played by ADAM10 in this process and (ii) the implications of NKG2D ligand shedding in the course of cancer therapy and in senescent cells.
Collapse
Affiliation(s)
- Alessandra Zingoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Vulpis
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Luisa Loconte
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
26
|
Maurer S, Kopp HG, Salih HR, Kropp KN. Modulation of Immune Responses by Platelet-Derived ADAM10. Front Immunol 2020; 11:44. [PMID: 32117229 PMCID: PMC7012935 DOI: 10.3389/fimmu.2020.00044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
Platelets have a crucial function in maintaining hemostasis. However, beyond their role in coagulation and thrombus formation, platelets have been implicated to affect various pathophysiological conditions such as infectious diseases, autoimmune disorders, and cancer. It is well-established that platelets aid local cancer growth by providing growth factors or contributing to cancer angiogenesis. In addition, they promote metastasis, among others by facilitation of tumor cell-extravasation and epithelial-to-mesenchymal-like transition as well as protecting metastasizing cancer cells from immunosurveillance. A variety of membrane-bound and soluble platelet-derived factors are involved in these processes, and many aspects of platelet biology in both health and disease are regulated by platelet-associated metalloproteinases and their inhibitors. Platelets synthesize (i) members of the matrix metalloproteinase (MMP) family and also inhibitors of MMPs such as members of the "tissue inhibitor of metalloproteinases" (TIMP) family as well as (ii) members of the "a disintegrin and metalloproteinase" (ADAM) family including ADAM10. Notably, platelet-associated metalloproteinase activity not only influences functions of platelets themselves: platelets can also induce expression and/or release of metalloproteinases e.g., in leukocytes or cancer cells, and ADAMs are emerging as important components by which platelets directly affect other cell types and function. This review outlines the function of metalloproteinases in platelet biology with a focus on ADAM10 and discusses the role of platelet-derived metalloproteinases in the interaction of platelets with components of the immune system and/or cancer cells.
Collapse
Affiliation(s)
- Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tuebingen, Tubingen, Germany.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hans-Georg Kopp
- Departments of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Stuttgart, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany.,DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy' (IFIT), University of Tuebingen, Tubingen, Germany
| | - Korbinian N Kropp
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of Mainz, Mainz, Germany
| |
Collapse
|
27
|
Proximity ligation assay reveals both pre- and postsynaptic localization of the APP-processing enzymes ADAM10 and BACE1 in rat and human adult brain. BMC Neurosci 2020; 21:6. [PMID: 32019490 PMCID: PMC7001251 DOI: 10.1186/s12868-020-0554-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/27/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Synaptic degeneration and accumulation of amyloid β-peptides (Aβ) are hallmarks of the Alzheimer diseased brain. Aβ is synaptotoxic and produced by sequential cleavage of the amyloid precursor protein (APP) by the β-secretase BACE1 and by γ-secretase. If APP is instead cleaved by the α-secretase ADAM10, Aβ will not be generated. Although BACE1 is considered to be a presynaptic protein and ADAM10 has been reported to mainly localize to the postsynaptic density, we have previously shown that both ADAM10 and BACE1 are highly enriched in synaptic vesicles of rat brain and mouse primary hippocampal neurons. RESULTS Here, using brightfield proximity ligation assay, we expanded our previous result in primary neurons and investigated the in situ synaptic localization of ADAM10 and BACE1 in rat and human adult brain using both pre- and postsynaptic markers. We found that ADAM10 and BACE1 were in close proximity with both the presynaptic marker synaptophysin and the postsynaptic marker PSD-95. The substrate APP was also detected both pre- and postsynaptically. Subcellular fractionation confirmed that ADAM10 and BACE1 are enriched to a similar degree in synaptic vesicles and as well as in the postsynaptic density. CONCLUSIONS We show that the α-secretase ADAM10 and the β-secretase BACE1 are located in both the pre- and postsynaptic compartments in intact brain sections. These findings increase our understanding of the regulation of APP processing, thereby facilitating development of more specific treatment strategies.
Collapse
|
28
|
Zaborowski MP, Cheah PS, Zhang X, Bushko I, Lee K, Sammarco A, Zappulli V, Maas SLN, Allen RM, Rumde P, György B, Aufiero M, Schweiger MW, Lai CPK, Weissleder R, Lee H, Vickers KC, Tannous BA, Breakefield XO. Membrane-bound Gaussia luciferase as a tool to track shedding of membrane proteins from the surface of extracellular vesicles. Sci Rep 2019; 9:17387. [PMID: 31758005 PMCID: PMC6874653 DOI: 10.1038/s41598-019-53554-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles (EVs) released by cells play a role in intercellular communication. Reporter and targeting proteins can be modified and exposed on the surface of EVs to investigate their half-life and biodistribution. A characterization of membrane-bound Gaussia luciferase (mbGluc) revealed that its signal was detected also in a form smaller than common EVs (<70 nm). We demonstrated that mbGluc initially exposed on the surface of EVs, likely undergoes proteolytic cleavage and processed fragments of the protein are released into the extracellular space in active form. Based on this observation, we developed a new assay to quantitatively track shedding of membrane proteins from the surface of EVs. We used this assay to show that ectodomain shedding in EVs is continuous and is mediated by specific proteases, e.g. metalloproteinases. Here, we present a novel tool to study membrane protein cleavage and release using both in vitro and in vivo models.
Collapse
Affiliation(s)
- Mikołaj Piotr Zaborowski
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, 60-535, Poznań, Poland.
| | - Pike See Cheah
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Xuan Zhang
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Isabella Bushko
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Kyungheon Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Alessandro Sammarco
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Valentina Zappulli
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Sybren Lein Nikola Maas
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurosurgery, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 CX, Utrecht, The Netherlands
| | - Ryan M Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Purva Rumde
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Bence György
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
| | - Massimo Aufiero
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Markus W Schweiger
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Charles Pin-Kuang Lai
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bakhos A Tannous
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
29
|
Płatek R, Grycz K, Więckowska A, Czarkowska-Bauch J, Skup M. L1 Cell Adhesion Molecule Overexpression Down Regulates Phosphacan and Up Regulates Structural Plasticity-Related Genes Rostral and Caudal to the Complete Spinal Cord Transection. J Neurotrauma 2019; 37:534-554. [PMID: 31426714 DOI: 10.1089/neu.2018.6103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) supports spinal cord cellular milieu after contusion and compression lesions, contributing to neuroprotection, promoting axonal outgrowth, and reducing outgrowth-inhibitory molecules in lesion proximity. We extended investigations into L1CAM molecular targets and explored long-distance effects of L1CAM rostral and caudal to complete spinal cord transection (SCT) in adult rats. L1CAM overexpression in neurons and glia after Th10/Th11 SCT was achieved using adeno-associated viral vector serotype 5 (AAV5) injected into an L1-lumbar segment immediately after transection. At 5 weeks, a L1CAM mRNA profound decrease detected rostral and caudal to the transection site was alleviated by AAV5-L1CAM treatment, with increased endogenous L1CAM rostral to the SCT. Transected corticospinal tract fibers showed attenuated retraction after treatment, accompanied by a multi-segmental increase of lesion-reduced expression of adenylate cyclase 1 (Adcy1), synaptophysin, growth-associated protein 43, and myelin basic protein genes caudal to transection, and Adcy1 rostral to transection. In parallel, chondroitin sulfate proteoglycan phosphacan elevated after SCT was downregulated after treatment. Low-molecular L1CAM isoforms generated after spinalization indicated the involvement of sheddases in L1CAM processing and long-distance effects. A disintegrin and metalloproteinase (ADAM)10 sheddase immunoreactivity, stronger in AAV5-L1CAM than AAV5- enhanced green fluorescent protein (EGFP)-transduced motoneurons indicated local ADAM10 upregulation by L1CAM. The results suggest that increased L1CAM availability and penetration of diffusible L1CAM fragments post-lesion induce both local and long-distance neuronal and glial responses toward better neuronal maintenance, neurite growth, and myelination. Despite the fact that intervention promoted beneficial molecular changes, kinematic analysis of hindlimb movements showed minor improvement, indicating that spinalized rats require longer L1CAM treatment to regain locomotor functions.
Collapse
Affiliation(s)
- Rafał Płatek
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Kamil Grycz
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
30
|
Camodeca C, Cuffaro D, Nuti E, Rossello A. ADAM Metalloproteinases as Potential Drug Targets. Curr Med Chem 2019; 26:2661-2689. [PMID: 29589526 DOI: 10.2174/0929867325666180326164104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
Abstract
The ADAMs, together with ADAMTSs and snake venom metalloproteases (SVMPs), are members of the Adamalysin family. Differences in structural organization, functions and localization are known and their domains, catalytic or non-catalytic, show key roles in the substrate recognition and protease activity. Some ADAMs, as membrane-bound enzymes, show sheddase activity. Sheddases are key to modulation of functional proteins such as the tumor necrosis factor, growth factors, cytokines and their receptors, adhesion proteins, signaling molecules and stress molecules involved in immunity. These activities take part in the regulation of several physiological and pathological processes including inflammation, tumor growth, metastatic progression and infectious diseases. On these bases, some ADAMs are currently investigated as drug targets to develop new alternative therapies in many fields of medicine. This review will be focused on these aspects.
Collapse
Affiliation(s)
- Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| |
Collapse
|
31
|
Maten MVD, Reijnen C, Pijnenborg JMA, Zegers MM. L1 Cell Adhesion Molecule in Cancer, a Systematic Review on Domain-Specific Functions. Int J Mol Sci 2019; 20:ijms20174180. [PMID: 31455004 PMCID: PMC6747497 DOI: 10.3390/ijms20174180] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is a glycoprotein involved in cancer development and is associated with metastases and poor prognosis. Cellular processing of L1CAM results in expression of either full-length or cleaved forms of the protein. The different forms of L1CAM may localize at the plasma membrane as a transmembrane protein, or in the intra- or extracellular environment as cleaved or exosomal forms. Here, we systematically analyze available literature that directly relates to L1CAM domains and associated signaling pathways in cancer. Specifically, we chart its domain-specific functions in relation to cancer progression, and outline pre-clinical assays used to assess L1CAM. It is found that full-length L1CAM has both intracellular and extracellular targets, including interactions with integrins, and linkage with ezrin. Cellular processing leading to proteolytic cleavage and/or exosome formation results in extracellular soluble forms of L1CAM that may act through similar mechanisms as compared to full-length L1CAM, such as integrin-dependent signals, but also through distinct mechanisms. We provide an algorithm to guide a step-wise analysis on L1CAM in clinical samples, to promote interpretation of domain-specific expression. This systematic review infers that L1CAM has an important role in cancer progression that can be attributed to domain-specific forms. Most studies focus on the full-length plasma membrane L1CAM, yet knowledge on the domain-specific forms is a prerequisite for selective targeting treatment.
Collapse
Affiliation(s)
- Miriam van der Maten
- Department of Obstetrics and Gynaecology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
| | - Casper Reijnen
- Department of Obstetrics and Gynaecology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
- Department of Obstetrics and Gynaecology, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynaecology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands.
| | - Mirjam M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Liu W, Li J, Zhang P, Hou Q, Feng S, Liu L, Cui D, Shi H, Fu Y, Luo Y. A novel pan-cancer biomarker plasma heat shock protein 90alpha and its diagnosis determinants in clinic. Cancer Sci 2019; 110:2941-2959. [PMID: 31343810 PMCID: PMC6726694 DOI: 10.1111/cas.14143] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 02/05/2023] Open
Abstract
A sensitive and specific diagnosis biomarker, in principle scalable to most cancer types, is needed to reduce the prevalent cancer mortality. Meanwhile, the investigation of diagnosis determinants of a biomarker will facilitate the interpretation of its screening results in clinic. Here we design a large-scale (1558 enrollments), multicenter (multiple hospitals), and cross-validation (two datasets) clinic study to validate plasma Hsp90α quantified by ELISA as a pan-cancer biomarker. ROC curve shows the optimum diagnostic cutoff is 69.19 ng/mL in discriminating various cancer patients from all controls (AUC 0.895, sensitivity 81.33% and specificity 81.65% in test cohort; AUC 0.893, sensitivity 81.72% and specificity 81.03% in validation cohort). Similar results are noted in detecting early-stage cancer patients. Plasma Hsp90α maintains also broad-spectrum for cancer subtypes, especially with 91.78% sensitivity and 91.96% specificity in patients with AFP-limited liver cancer. In addition, we demonstrate levels of plasma Hsp90α are determined by ADAM10 expression, which will affect Hsp90α content in exosomes. Furthermore, Western blotting and PRM-based quantitative proteomics identify that partial false ELISA-negative patients secret high levels of plasma Hsp90α. Mechanism analysis reveal that TGFβ-PKCγ gene signature defines a distinct pool of hyperphosphorylated Hsp90α at Theronine residue. In clinic, a mechanistically relevant population of false ELISA-negative patients express also higher levels of PKCγ. In sum, plasma Hsp90α is a novel pan-cancer diagnosis biomarker, and cancer diagnosis with plasma Hsp90α is particularly effective in those patients with high expression of ADAM10, but may be insufficient to detect the patients with low ADAM10 and those with hyperphosphorylated Hsp90α.
Collapse
Affiliation(s)
- Wei Liu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ping Zhang
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China
| | - Qiaoyun Hou
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shi Feng
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lisheng Liu
- Clinical Laboratory, Shandong Cancer Hospital, Jinan, China
| | - Dawei Cui
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yan Fu
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongzhang Luo
- The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing, China.,Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing, China.,Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
33
|
Sadlon A, Takousis P, Alexopoulos P, Evangelou E, Prokopenko I, Perneczky R. miRNAs Identify Shared Pathways in Alzheimer's and Parkinson's Diseases. Trends Mol Med 2019; 25:662-672. [PMID: 31221572 DOI: 10.1016/j.molmed.2019.05.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Despite the identification of several dozens of common genetic variants associated with Alzheimer's disease (AD) and Parkinson's disease (PD), most of the genetic risk remains uncharacterised. Therefore, it is important to understand the role of regulatory elements, such as miRNAs. Dysregulated miRNAs are implicated in AD and PD, with potential value in dissecting the shared pathophysiology between the two disorders. miRNAs relevant to both neurodegenerative diseases are related to axonal guidance, apoptosis, and inflammation, therefore, AD and PD likely arise from similar underlying biological pathway defects. Furthermore, pathways regulated by APP, L1CAM, and genes of the caspase family may represent promising therapeutic miRNA targets in AD and PD since they are targeted by dysregulated miRNAs in both disorders.
Collapse
Affiliation(s)
- Angélique Sadlon
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Petros Takousis
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Panagiotis Alexopoulos
- Department of Psychiatry, University of Patras, Patras, Greece; Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Inga Prokopenko
- Section of Genomics of Common Disease, Department of Medicine, Imperial College London, London, UK; Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Robert Perneczky
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
34
|
Tan JZA, Gleeson PA. The trans-Golgi network is a major site for α-secretase processing of amyloid precursor protein in primary neurons. J Biol Chem 2019; 294:1618-1631. [PMID: 30545942 PMCID: PMC6364769 DOI: 10.1074/jbc.ra118.005222] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Amyloid precursor protein (APP) is processed along the amyloidogenic pathway by the β-secretase, BACE1, generating β-amyloid (Aβ), or along the nonamyloidogenic pathway by α-secretase, precluding Aβ production. The plasma membrane is considered the major site for α-secretase-mediated APP cleavage, but other cellular locations have not been rigorously investigated. Here, we report that APP is processed by endogenous α-secretase at the trans-Golgi network (TGN) of both transfected HeLa cells and mouse primary neurons. We have previously shown the adaptor protein complex, AP-4, and small G protein ADP-ribosylation factor-like GTPase 5b (Arl5b) are required for efficient post-Golgi transport of APP to endosomes. We found here that AP-4 or Arl5b depletion results in Golgi accumulation of APP and increased secretion of the soluble α-secretase cleavage product sAPPα. Moreover, inhibition of γ-secretase following APP accumulation in the TGN increases the levels of the membrane-bound C-terminal fragments of APP from both α-secretase cleavage (α-CTF, named C83 according to its band size) and BACE1 cleavage (β-CTF/C99). The level of C83 was ∼4 times higher than that of C99, indicating that α-secretase processing is the major pathway and that BACE1 processing is the minor pathway in the TGN. AP-4 silencing in mouse primary neurons also resulted in the accumulation of endogenous APP in the TGN and enhanced α-secretase processing. These findings identify the TGN as a major site for α-secretase processing in HeLa cells and primary neurons and indicate that both APP processing pathways can occur within the TGN compartment along the secretory pathway.
Collapse
Affiliation(s)
- Jing Zhi A Tan
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
35
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
36
|
Wu JD, Hong CQ, Huang WH, Wei XL, Zhang F, Zhuang YX, Zhang YQ, Zhang GJ. L1 Cell Adhesion Molecule and Its Soluble Form sL1 Exhibit Poor Prognosis in Primary Breast Cancer Patients. Clin Breast Cancer 2018; 18:e851-e861. [PMID: 29510897 DOI: 10.1016/j.clbc.2017.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The L1 cell adhesion molecule (L1-CAM) and its soluble form sL1 play a prominent role in invasion and metastasis in several cancers. However, its association with breast cancer is still unclear. PATIENTS AND METHODS We analyzed L1-CAM expression and serum sL1 levels in cancer and para-carcinoma tissues from 162 consecutive patients with primary invasive breast cancer (PBC) using immunohistochemistry and an enzyme-linked immunosorbent assay, respectively. The serum sL1 levels were also examined in 38 patients with benign breast disease and 36 healthy controls. RESULTS L1-CAM was expressed more frequently in cancer tissues than in para-carcinoma tissues (24.1% vs. 5.6%; P < .001), and the mean sL1 levels were significantly greater in PBC than in those with benign breast disease and healthy controls (P = .027). Both L1-CAM+ expression and higher mean sL1 levels correlated significantly with larger tumor size, lymph node involvement, higher histologic grade, advanced TNM stage, and shorter disease-free survival for PBC patients. Moreover, higher mean sL1 levels were also significantly associated with estrogen receptor-α-negative expression, human epidermal growth factor receptor 2-positive (HER2+) expression, HER2-enriched and triple-negative molecular subtypes, and L1-CAM+ expression (P < .05). On multivariate analysis, larger tumor size, nodal involvement, HER2+, and higher sL1 levels (≥ 0.7 ng/mL) were independent factors associated with L1-CAM+ expression (P < .05). No association was found between L1-CAM expression or sL1 level with age, gender, histologic type, or expression of progesterone receptor, Ki-67, p53, or vascular endothelial growth factor C (P > .05). CONCLUSION These results indicate that L1-CAM and sL1 are elevated in PBC and both might affect the prognosis of PBC patients. In addition, sL1 might be a useful marker for screening and diagnosis.
Collapse
Affiliation(s)
- Jun-Dong Wu
- The Breast Center, Central Laboratory, Cancer Hospital of Shantou University Medical College, Guangdong, China
| | - Chao-Qun Hong
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Guangdong, China
| | - Wen-He Huang
- The Breast Center, Central Laboratory, Cancer Hospital of Shantou University Medical College, Guangdong, China
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Guangdong, China
| | - Fan Zhang
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Guangdong, China
| | - Yi-Xuan Zhuang
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Guangdong, China
| | - Yong-Qu Zhang
- The Breast Center, Central Laboratory, Cancer Hospital of Shantou University Medical College, Guangdong, China
| | - Guo-Jun Zhang
- Changjiang Scholar's Laboratory, Shantou University Medical College, Guangdong, China.
| |
Collapse
|
37
|
Kraus K, Kleene R, Henis M, Braren I, Kataria H, Sharaf A, Loers G, Schachner M, Lutz D. A Fragment of Adhesion Molecule L1 Binds to Nuclear Receptors to Regulate Synaptic Plasticity and Motor Coordination. Mol Neurobiol 2018; 55:7164-7178. [PMID: 29383692 DOI: 10.1007/s12035-018-0901-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the neuronal isoform of the murine cell adhesion molecule L1, triggered by stimulation of the cognate L1-dependent signaling pathways, results in the generation and nuclear import of an L1 fragment that contains the intracellular domain, the transmembrane domain, and part of the extracellular domain. Here, we show that the LXXLL and FXXLF motifs in the extracellular and transmembrane domain of this L1 fragment mediate the interaction with the nuclear estrogen receptors α (ERα) and β (ERβ), peroxisome proliferator-activated receptor γ (PPARγ), and retinoid X receptor β (RXRβ). Mutations of the LXXLL motif in the transmembrane domain and of the FXXLF motif in the extracellular domain disturb the interaction of the L1 fragment with these nuclear receptors and, when introduced by viral transduction into mouse embryos in utero, result in impaired motor coordination, learning and memory, as well as synaptic connectivity in the cerebellum, in adulthood. These impairments are similar to those observed in the L1-deficient mouse. Our findings suggest that the interplay of nuclear L1 and distinct nuclear receptors is associated with synaptic contact formation and plasticity.
Collapse
Affiliation(s)
- Kristina Kraus
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralf Kleene
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melad Henis
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ingke Braren
- Vector Core Unit, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hardeep Kataria
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ahmed Sharaf
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gabriele Loers
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| | - David Lutz
- Arbeitsgruppe für Biosynthese Neuraler Strukturen, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Institut für Strukturelle Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
38
|
Lichtenthaler SF, Lemberg MK, Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J 2018; 37:e99456. [PMID: 29976761 PMCID: PMC6068445 DOI: 10.15252/embj.201899456] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/05/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolytic removal of membrane protein ectodomains (ectodomain shedding) is a post-translational modification that controls levels and function of hundreds of membrane proteins. The contributing proteases, referred to as sheddases, act as important molecular switches in processes ranging from signaling to cell adhesion. When deregulated, ectodomain shedding is linked to pathologies such as inflammation and Alzheimer's disease. While proteases of the "a disintegrin and metalloprotease" (ADAM) and "beta-site APP cleaving enzyme" (BACE) families are widely considered as sheddases, in recent years a much broader range of proteases, including intramembrane and soluble proteases, were shown to catalyze similar cleavage reactions. This review demonstrates that shedding is a fundamental process in cell biology and discusses the current understanding of sheddases and their substrates, molecular mechanisms and cellular localizations, as well as physiological functions of protein ectodomain shedding. Moreover, we provide an operational definition of shedding and highlight recent conceptual advances in the field. While new developments in proteomics facilitate substrate discovery, we expect that shedding is not a rare exception, but rather the rule for many membrane proteins, and that many more interesting shedding functions await discovery.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, School of Medicine, and Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedizinisches Centrum (BMC), Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
39
|
Abstract
As a member of the A Disintegrin And Metalloproteinase (ADAM) family, ADAM10 has been identified as the constitutive α-secretase in the process of amyloid-β protein precursor (AβPP) cleavage and plays a critical role in reducing the generation of the amyloid-β (Aβ) peptides. Recent studies have demonstrated its beneficial role in alleviating the pathologic impairment in Alzheimer's disease (AD) both in vitro and in vivo. However, the role of ADAM10 in AD and the underlying molecular mechanisms are still not well established. Increasing evidence indicates that ADAM10 not only reduces the generation of Aβ but may also affect the pathology of AD through potential mechanisms including reducing tau pathology, maintaining normal synaptic functions, and promoting hippocampal neurogenesis and the homeostasis of neuronal networks. Mechanistically, ADAM10 regulates these functions by interacting with postsynaptic substrates in brain, especially synaptic cell receptors and adhesion molecules. Furthermore, ADAM10 protein in platelets seems to be a promising biomarker for AD diagnosis. This review will summarize the role of ADAM10 in AD and highlight its functions besides its role as the α-secretase in AβPP cleavage. Meanwhile, we will discuss the therapeutic potential of ADAM10 in treating AD.
Collapse
Affiliation(s)
- Xiang-Zhen Yuan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sen Sun
- Qingdao Blood Center, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Wang X, Wang C, Pei G. α-secretase ADAM10 physically interacts with β-secretase BACE1 in neurons and regulates CHL1 proteolysis. J Mol Cell Biol 2018; 10:411-422. [DOI: 10.1093/jmcb/mjy001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/06/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xin Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Congcong Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
41
|
Abdel Azim S, Duggan-Peer M, Sprung S, Reimer D, Fiegl H, Soleiman A, Marth C, Zeimet AG. Clinical impact of L1CAM expression measured on the transcriptome level in ovarian cancer. Oncotarget 2018; 7:37205-37214. [PMID: 27174921 PMCID: PMC5095069 DOI: 10.18632/oncotarget.9291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 04/18/2016] [Indexed: 01/14/2023] Open
Abstract
Background High expression of L1 cell adhesion molecules (L1CAM) has been repeatedly shown to be associated with aggressive disease behavior, which translates in poor clinical outcome in various cancer entities. However, in ovarian cancer results based either on immunohistochemistry or cytosolic protein quantifications remained conflicting regarding clinical behavior. In the present work we assessed L1CAM expression on the transcriptome level with the highly sensitive quantitative real-time PCR (qRT-PCR) to define its relevance in ovarian cancer biology. Results There was a significant difference in L1CAM high and low mRNA expressing cancers with regard to disease-free (p=0.002) and overall survival (p=0.008). L1CAM proofed to be an independent predictor for disease progression (HR 1.8, p=0.01) and overall survival (HR 1.6, p=0.04). Furthermore, a significant positive correlation between the level of L1CAM and the grade of tumor differentiation (p=0.04), the FIGO stage (p=0.025) as well as the histological subtype (p= 0.002) was found. Methods This study included fresh frozen tissue samples of 138 patients with FIGO I-IV stage ovarian cancer. L1CAM mRNA expression was determined using qRT-PCR. In the calculations special attention was put on the various histological subtypes. In survival analysis median L1CAM mRNA expression obtained in the entire cohort of ovarian cancer samples was used as a cut-off to distinguish between high and low L1CAM mRNA expression. Conclusion L1CAM mRNA expression appears to play a substantial role in the pathophysiology of ovarian cancer that is translated into poor clinical outcome. Additionally humanized L1CAM antibodies, which can serve as potential future treatment options are under testing.
Collapse
Affiliation(s)
- Samira Abdel Azim
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Duggan-Peer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Susanne Sprung
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniel Reimer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Heidi Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Department of Obstetrics and Gynecology, Laboratory for Clinical Biochemistry, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Afschin Soleiman
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
42
|
Musardo S, Marcello E. Synaptic dysfunction in Alzheimer's disease: From the role of amyloid β-peptide to the α-secretase ADAM10. Eur J Pharmacol 2017. [DOI: 10.1016/j.ejphar.2017.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Nadanaka S, Kinouchi H, Kitagawa H. Chondroitin sulfate-mediated N-cadherin/β-catenin signaling is associated with basal-like breast cancer cell invasion. J Biol Chem 2017; 293:444-465. [PMID: 29183998 DOI: 10.1074/jbc.m117.814509] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Tumor metastasis involves cancer cell invasion across basement membranes and interstitial tissues. The initial invasion step consists of adherence of the tumor cell to the extracellular matrix (ECM), and this binding transduces a variety of signals from the ECM to the tumor cell. Accordingly, it is critical to establish the mechanisms by which extracellular cues influence the intracellular activities that regulate tumor cell invasion. Here, we found that invasion of the basal-like breast cancer cell line BT-549 is enhanced by the ECM component chondroitin sulfates (CSs). CSs interacted with and induced proteolytic cleavage of N-cadherin in the BT-549 cells, yielding a C-terminal intracellular N-cadherin fragment that formed a complex with β-catenin. Of note, the cleavage of N-cadherin increased cytoplasmic and nuclear β-catenin levels; induced the matrix metalloproteinase 9 (MMP9) gene, a target of β-catenin nuclear signaling; and augmented the invasion potential of the cells. We also found that CS-induced N-cadherin proteolysis requires caveolae-mediated endocytosis. An inhibitor of that process, nystatin, blocked both the endocytosis and proteolytic cleavage of N-cadherin induced by CS and also suppressed BT-549 cell invasion. Knock-out of chondroitin 4-O-sulfotransferase-1 (C4ST-1), a key CS biosynthetic enzyme, suppressed activation of the N-cadherin/β-catenin pathway through N-cadherin endocytosis and significantly decreased BT-549 cell invasion. These results suggest that CSs produced by C4ST-1 might be useful therapeutic targets in the management of basal-like breast cancers.
Collapse
Affiliation(s)
- Satomi Nadanaka
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroki Kinouchi
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroshi Kitagawa
- From the Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| |
Collapse
|
44
|
Paolini L, Orizio F, Busatto S, Radeghieri A, Bresciani R, Bergese P, Monti E. Exosomes Secreted by HeLa Cells Shuttle on Their Surface the Plasma Membrane-Associated Sialidase NEU3. Biochemistry 2017; 56:6401-6408. [PMID: 29039925 DOI: 10.1021/acs.biochem.7b00665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sialidases are glycohydrolases that remove terminal sialic acid residues from oligosaccharides, glycolipids, and glycoproteins. The plasma membrane-associated sialidase NEU3 is involved in the fine-tuning of sialic acid-containing glycans directly on the cell surface and plays relevant roles in important biological phenomena such as cell differentiation, molecular recognition, and cancer transformation. Extracellular vesicles are membranous structures with a diameter of 0.03-1 μm released by cells and can be detected in blood, urine, and culture media. Among extracellular vesicles, exosomes play roles in intercellular communication and maintenance of several physiological and pathological conditions, including cancer, and could represent a useful diagnostic tool for personalized nanomedicine approaches. Using inducible expression of the murine form of NEU3 in HeLa cells, a study of the association of the enzyme with exosomes released in the culture media has been performed. Briefly, NEU3 is associated with highly purified exosomes and localizes on the external leaflet of these nanovesicles, as demonstrated by enzyme activity measurements, Western blot analysis, and dot blot analysis using specific protein markers. On the basis of these results, it is plausible that NEU3 activity on exosome glycans enhances the dynamic biological behavior of these small extracellular vesicles by modifying the negative charge and steric hindrance of their glycocalyx. The presence of NEU3 on the exosomal surface could represent a useful marker for the detection of these nanovesicles and a tool for improving our understanding of the biology of these important extracellular carriers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Flavia Orizio
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine (DMTM), University of Brescia , 25123 Brescia, Italy
| |
Collapse
|
45
|
Chiarini A, Armato U, Liu D, Dal Prà I. Calcium-Sensing Receptor Antagonist NPS 2143 Restores Amyloid Precursor Protein Physiological Non-Amyloidogenic Processing in Aβ-Exposed Adult Human Astrocytes. Sci Rep 2017; 7:1277. [PMID: 28455519 PMCID: PMC5430644 DOI: 10.1038/s41598-017-01215-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/27/2017] [Indexed: 12/11/2022] Open
Abstract
Physiological non-amyloidogenic processing (NAP) of amyloid precursor holoprotein (hAPP) by α-secretases (e.g., ADAM10) extracellularly sheds neurotrophic/neuroprotective soluble (s)APPα and precludes amyloid-β peptides (Aβs) production via β-secretase amyloidogenic processing (AP). Evidence exists that Aβs interact with calcium-sensing receptors (CaSRs) in human astrocytes and neurons, driving the overrelease of toxic Aβ42/Aβ42-os (oligomers), which is completely blocked by CaSR antagonist (calcilytic) NPS 2143. Here, we investigated the mechanisms underlying NPS 2143 beneficial effects in human astrocytes. Moreover, because Alzheimer's disease (AD) involves neuroinflammation, we examined whether NPS 2143 remained beneficial when both fibrillary (f)Aβ25-35 and a microglial cytokine mixture (CMT) were present. Thus, hAPP NAP prevailed over AP in untreated astrocytes, which extracellularly shed all synthesized sAPPα while secreting basal Aβ40/42 amounts. Conversely, fAβ25-35 alone dramatically reduced sAPPα extracellular shedding while driving Aβ42/Aβ42-os oversecretion that CMT accelerated but not increased, despite a concurring hAPP overexpression. NPS 2143 promoted hAPP and ADAM10 translocation to the plasma membrane, thereby restoring sAPPα extracellular shedding and fully suppressing any Aβ42/Aβ42-os oversecretion, but left hAPP expression unaffected. Therefore, as anti-AD therapeutics calcilytics support neuronal viability by safeguarding astrocytes neurotrophic/neuroprotective sAPPα shedding, suppressing neurons and astrocytes Aβ42/Aβ42-os build-up/secretion, and remaining effective even under AD-typical neuroinflammatory conditions.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Venetia, Italy.
| | - Ubaldo Armato
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Venetia, Italy
| | - Daisong Liu
- The Third Xiangya Hospital of Central South University, Department of Plastic Surgery, Changsha, Hunan, China
| | - Ilaria Dal Prà
- Human Histology & Embryology Unit, Medical School, University of Verona, Verona, Venetia, Italy.
| |
Collapse
|
46
|
Endres K, Deller T. Regulation of Alpha-Secretase ADAM10 In vitro and In vivo: Genetic, Epigenetic, and Protein-Based Mechanisms. Front Mol Neurosci 2017; 10:56. [PMID: 28367112 PMCID: PMC5355436 DOI: 10.3389/fnmol.2017.00056] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
ADAM10 (A Disintegrin and Metalloproteinase 10) has been identified as the major physiological alpha-secretase in neurons, responsible for cleaving APP in a non-amyloidogenic manner. This cleavage results in the production of a neuroprotective APP-derived fragment, APPs-alpha, and an attenuated production of neurotoxic A-beta peptides. An increase in ADAM10 activity shifts the balance of APP processing toward APPs-alpha and protects the brain from amyloid deposition and disease. Thus, increasing ADAM10 activity has been proposed an attractive target for the treatment of neurodegenerative diseases and it appears to be timely to investigate the physiological mechanisms regulating ADAM10 expression. Therefore, in this article, we will (1) review reports on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or protein interactions, (2) describe conditions, which change ADAM10 expression in vitro and in vivo, (3) report how neuronal ADAM10 expression may be regulated in humans, and (4) discuss how this knowledge on the physiological and pathophysiological regulation of ADAM10 may help to preserve or restore brain function.
Collapse
Affiliation(s)
- Kristina Endres
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt/Main, Germany
| |
Collapse
|
47
|
Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases. Mediators Inflamm 2017; 2017:9621724. [PMID: 28260841 PMCID: PMC5316459 DOI: 10.1155/2017/9621724] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity.
Collapse
|
48
|
Petrica L, Ursoniu S, Gadalean F, Vlad A, Gluhovschi G, Dumitrascu V, Vlad D, Gluhovschi C, Velciov S, Bob F, Matusz P, Milas O, Secara A, Simulescu A, Popescu R. Urinary podocyte-associated mRNA levels correlate with proximal tubule dysfunction in early diabetic nephropathy of type 2 diabetes mellitus. Diabetol Metab Syndr 2017; 9:31. [PMID: 28484521 PMCID: PMC5420400 DOI: 10.1186/s13098-017-0228-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
AIM The study assessed mRNA expression of podocyte-associated molecules in urinary sediments of patients with type 2 diabetes mellitus (DM) in relation to urinary podocytes, biomarkers of podocyte injury and of proximal tubule (PT) dysfunction. METHODS A total of 76 patients with type 2 DM and 20 healthy subjects were enrolled in a cross-sectional study, and assessed concerning urinary podocytes, urinary mRNA of podocyte-associated genes, urinary biomarkers of podocyte damage and of PT dysfunction. RESULTS We found significant differences between urinary mRNA of podocyte-associated molecules in relation with albuminuria stage. In multivariable regression analysis, urinary mRNA of nephrin, podocin, alpha-actinin-4, CD2-associated protein, glomerular epithelial protein 1 (GLEPP1), ADAM 10, and NFκB correlated directly with urinary podocytes, albuminuria, urinary alpha1-microglobulin, urinary kidney-injury molecule-1, nephrinuria, urinary vascular endothelial growth factor, urinary advanced glycation end-products (AGE), and indirectly with eGFR (p < 0.0001, R2 = 0.808; p < 0.0001, R2 = 0.825; p < 0.0001, R2 = 0.805; p < 0.0001, R2 = 0.663; p < 0.0001, R2 = 0.726; p < 0.0001, R2 = 0.720; p < 0.0001, R2 = 0.724). CONCLUSIONS In patients with type 2 DM there is an association between urinary mRNA of podocyte-associated molecules, biomarkers of podocyte damage, and of PT dysfunction. GLEPP1, ADAM10, and NFκB may be considered additional candidate molecules indicative of early diabetic nephropathy. AGE could be involved in this association.
Collapse
Affiliation(s)
- Ligia Petrica
- Department of Nephrology, ‘Victor Babes’ University of Medicine and Pharmacy, Str. Iuliu Grozescu, No 6, Bl T27, Ap 10, Timisoara, Romania
- Centre for Translational Research and Systems Medicine, ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Sorin Ursoniu
- Department of Public Health Medicine, ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Florica Gadalean
- Department of Nephrology, ‘Victor Babes’ University of Medicine and Pharmacy, Str. Iuliu Grozescu, No 6, Bl T27, Ap 10, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Adrian Vlad
- Department of Diabetes and Metabolic Diseases, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Gheorghe Gluhovschi
- Department of Nephrology, ‘Victor Babes’ University of Medicine and Pharmacy, Str. Iuliu Grozescu, No 6, Bl T27, Ap 10, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Victor Dumitrascu
- Department of Pharmacology, ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Daliborca Vlad
- Department of Pharmacology, ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Cristina Gluhovschi
- Department of Nephrology, ‘Victor Babes’ University of Medicine and Pharmacy, Str. Iuliu Grozescu, No 6, Bl T27, Ap 10, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Silvia Velciov
- Department of Nephrology, ‘Victor Babes’ University of Medicine and Pharmacy, Str. Iuliu Grozescu, No 6, Bl T27, Ap 10, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Flaviu Bob
- Department of Nephrology, ‘Victor Babes’ University of Medicine and Pharmacy, Str. Iuliu Grozescu, No 6, Bl T27, Ap 10, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Petru Matusz
- Department of Anatomy and Embryology, ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Oana Milas
- Department of Nephrology, ‘Victor Babes’ University of Medicine and Pharmacy, Str. Iuliu Grozescu, No 6, Bl T27, Ap 10, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Alina Secara
- Department of Nephrology, ‘Victor Babes’ University of Medicine and Pharmacy, Str. Iuliu Grozescu, No 6, Bl T27, Ap 10, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Anca Simulescu
- Department of Nephrology, ‘Victor Babes’ University of Medicine and Pharmacy, Str. Iuliu Grozescu, No 6, Bl T27, Ap 10, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| | - Roxana Popescu
- Department of Cellular and Molecular Biology, ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- ‘Victor Babes’ University of Medicine and Pharmacy, Timisoara, Romania
- County Emergency Hospital, Timisoara, Romania
| |
Collapse
|
49
|
Nawaz M, Fatima F, Nazarenko I, Ekström K, Murtaza I, Anees M, Sultan A, Neder L, Camussi G, Valadi H, Squire JA, Kislinger T. Extracellular vesicles in ovarian cancer: applications to tumor biology, immunotherapy and biomarker discovery. Expert Rev Proteomics 2016; 13:395-409. [PMID: 26973172 DOI: 10.1586/14789450.2016.1165613] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years there has been tremendous interest in both the basic biology and applications of extracellular vesicles (EVs) in translational cancer research. This includes a better understanding of their biogenesis and mechanisms of selective cargo packaging, their precise roles in horizontal communication, and their application as non-invasive biomarkers. The rapid advances in next-generation omics technologies are the driving forces for these discoveries. In this review, the authors focus on recent results of EV research in ovarian cancer. A deeper understanding of ovarian cancer-derived EVs, the types of cargo molecules and their biological roles in cancer growth, metastases and drug resistance, could have significant impact on the discovery of novel biomarkers and innovative therapeutics. Insights into the role of EVs in immune regulation could lead to novel approaches built on EV-based immunotherapy.
Collapse
Affiliation(s)
- Muhammad Nawaz
- a Department of Pathology and Forensic Medicine, Ribeirao Preto School of Medicine , University of Sao Paulo , Sao Paulo , Brazil.,b Department of Rheumatology and Inflammation Research , Sahlgrenska Academy at the University of Gothenburg , Guldhedsgatan Sweden
| | - Farah Fatima
- a Department of Pathology and Forensic Medicine, Ribeirao Preto School of Medicine , University of Sao Paulo , Sao Paulo , Brazil.,b Department of Rheumatology and Inflammation Research , Sahlgrenska Academy at the University of Gothenburg , Guldhedsgatan Sweden
| | - Irina Nazarenko
- c Institute for Environmental Health Sciences and Hospital Infection Control , University Medical Centre Freiburg , Freiburg im Breisgau , Germany
| | - Karin Ekström
- d Department of Biomaterials , Sahlgrenska Academy at the University of Gothenburg , Gothenburg , Sweden.,e BIOMATCELL VINN Excellence Centre of Biomaterials and Cell Therapy , Gothenburg , Sweden
| | - Iram Murtaza
- f Department of Biochemistry, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Islamabad , Pakistan
| | - Mariam Anees
- f Department of Biochemistry, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Islamabad , Pakistan
| | - Aneesa Sultan
- f Department of Biochemistry, Faculty of Biological Sciences , Quaid-i-Azam University Islamabad , Islamabad , Pakistan
| | - Luciano Neder
- a Department of Pathology and Forensic Medicine, Ribeirao Preto School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Giovanni Camussi
- g Department of Medical Sciences and Molecular Biotechnology Centre , University of Torino , Torino , Italy
| | - Hadi Valadi
- b Department of Rheumatology and Inflammation Research , Sahlgrenska Academy at the University of Gothenburg , Guldhedsgatan Sweden
| | - Jeremy A Squire
- a Department of Pathology and Forensic Medicine, Ribeirao Preto School of Medicine , University of Sao Paulo , Sao Paulo , Brazil
| | - Thomas Kislinger
- h Princess Margaret Cancer Centre and Department of Medical Biophysics , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
50
|
Pechriggl EJ, Concin N, Blumer MJ, Bitsche M, Zwierzina M, Dudas J, Koziel K, Altevogt P, Zeimet AG, Fritsch H. L1CAM in the Early Enteric and Urogenital System. J Histochem Cytochem 2016; 65:21-32. [PMID: 28026654 DOI: 10.1369/0022155416677241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is a transmembrane molecule belonging to the L1 protein family. It has shown to be a key player in axonal guidance in the course of neuronal development. Furthermore, L1CAM is also crucial for the establishment of the enteric and urogenital organs and is aberrantly expressed in cancer originating in these organs. Carcinogenesis and embryogenesis follow a lot of similar molecular pathways, but unfortunately, comprehensive data on L1CAM expression and localization in human developing organs are lacking so far. In the present study we, therefore, examined the spatiotemporal distribution of L1CAM in the early human fetal period (weeks 8-12 of gestation) by means of immunohistochemistry and in situ hybridization (ISH). In the epithelia of the gastrointestinal organs, L1CAM localization cannot be observed in the examined stages most likely due to their advanced polarization and differentiation. Despite these results, our ISH data indicate weak L1CAM expression, but only in few epithelial cells. The genital tracts, however, are distinctly L1CAM positive throughout the entire fetal period. We, therefore, conclude that in embryogenesis L1CAM is crucial for further differentiation of epithelia.
Collapse
Affiliation(s)
- Elisabeth Judith Pechriggl
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| | - Nicole Concin
- Department of Gynaecology and Obstetrics (NC, KK, A-GZ), Medical University of Innsbruck, Innsbruck, Austria
| | - Michael J Blumer
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| | - Mario Bitsche
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| | - Marit Zwierzina
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otolaryngology (JD), Medical University of Innsbruck, Innsbruck, Austria
| | - Katarzyna Koziel
- Department of Gynaecology and Obstetrics (NC, KK, A-GZ), Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany (PA).,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany (PA)
| | - Alain-Gustave Zeimet
- Department of Gynaecology and Obstetrics (NC, KK, A-GZ), Medical University of Innsbruck, Innsbruck, Austria
| | - Helga Fritsch
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology (EJP, MJB, MB, MZ, HF), Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|