1
|
Hou J, Hess JL, Zhang C, van Rooij JGJ, Hearn GC, Fan CC, Faraone SV, Fennema-Notestine C, Lin SJ, Escott-Price V, Seshadri S, Holmans P, Tsuang MT, Kremen WS, Gaiteri C, Glatt SJ. Meta-Analysis of Transcriptomic Studies of Blood and Six Brain Regions Identifies a Consensus of 15 Cross-Tissue Mechanisms in Alzheimer's Disease and Suggests an Origin of Cross-Study Heterogeneity. Am J Med Genet B Neuropsychiatr Genet 2025; 198:e33019. [PMID: 39679839 PMCID: PMC12048288 DOI: 10.1002/ajmg.b.33019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The comprehensive genome-wide nature of transcriptome studies in Alzheimer's disease (AD) should provide a reliable description of disease molecular states. However, the genes and molecular systems nominated by transcriptomic studies do not always overlap. Even when results do align, it is not clear if those observations represent true consensus across many studies. A couple of sources of variation have been proposed to explain this variability, including tissue-of-origin and cohort type, but its basis remains uncertain. To address this variability and extract reliable results, we utilized all publicly available blood or brain transcriptomic datasets of AD, comprised of 24 brain studies with 4007 samples from six different brain regions, and eight blood studies with 1566 samples. We identified a consensus of AD-associated genes across brain regions and AD-associated gene-sets across blood and brain, generalizable machine learning and linear scoring classifiers, and significant contributors to biological diversity in AD datasets. While AD-associated genes did not significantly overlap between blood and brain, our findings highlighted 15 dysregulated processes shared across blood and brain in AD. The top five most significantly dysregulated processes were DNA replication, metabolism of proteins, protein localization, cell cycle, and programmed cell death. Conversely, addressing the discord across studies, we found that large-scale gene co-regulation patterns can account for a significant fraction of variability in AD datasets. Overall, this study ranked and characterized a compilation of genes and molecular systems consistently identified across a large assembly of AD transcriptome studies in blood and brain, providing potential candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jiahui Hou
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jonathan L Hess
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gentry C Hearn
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Chun Chieh Fan
- Department of Cognitive Science, University of California San Diego, La Jolla, California, USA
| | - Stephen V Faraone
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Shu-Ju Lin
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Valentina Escott-Price
- Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sudha Seshadri
- Department of Neurology, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Peter Holmans
- Division of Psychological Medicine and Clinical Neurology and Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Chris Gaiteri
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Stephen J Glatt
- Psychiatric Genetic Epidemiology & Neurobiology Laboratory (PsychGENe Lab), Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Public Health and Preventive Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Aljumaah MR, Roach J, Hu Y, Gunstad J, Azcarate-Peril MA. Microbial dipeptidyl peptidases of the S9B family as host-microbe isozymes. SCIENCE ADVANCES 2025; 11:eads5721. [PMID: 40173242 PMCID: PMC11964003 DOI: 10.1126/sciadv.ads5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Human dipeptidyl peptidase 4 (hDPP-4) has been a pharmacological target for metabolic diseases, particularly diabetes, since the early 2000s. As a ubiquitous enzyme found in both prokaryotic and eukaryotic organisms, hDPP-4 plays crucial roles in host homeostasis and disease progression. While many studies have explored hDPP-4's properties, research on gut microbially derived DPP-4 (mDPP-4) remains limited. This review discusses the significance of mDPP-4 and its health implications, analyzing crystal structures of mDPP-4 in comparison to human counterparts. We examine how hDPP-4 inhibitors could influence gut microbiome composition and mDPP-4 activity. Additionally, this review connects ongoing discussions regarding DPP-4 substrate specificity and potential access routes for mDPP-4, emphasizing the urgent need for further research on mDPP-4's role in health and improve the precision of DPP-4 inhibitor therapies.
Collapse
Affiliation(s)
- Mashael R. Aljumaah
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jeffery Roach
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Yunan Hu
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - John Gunstad
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
| | - M. Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease (CGIBD), Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Bukovics P, Lőrinczy D. Deconvolution Analysis of G and F-Actin Unfolding: Insights into the Thermal Stability and Structural Modifications Induced by PACAP. Int J Mol Sci 2025; 26:3336. [PMID: 40244223 PMCID: PMC11989792 DOI: 10.3390/ijms26073336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Actin, a key component of the cytoskeleton, undergoes significant structural and thermal changes in response to various regulatory factors, including the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). In this study, we applied deconvolution analysis to previously obtained differential scanning calorimetry (DSC) data to resolve overlapping thermal transitions in G- and F-actin unfolding. Our findings reveal that PACAP38 and PACAP6-38 significantly alter actin stability, increasing structural cooperativity in G-actin while reducing monomer-monomer interactions in F-actin. These thermodynamic changes suggest a potential role for PACAP in modulating actin polymerization and depolymerization dynamics, contributing to cytoskeletal remodeling.
Collapse
Affiliation(s)
- Péter Bukovics
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary;
| | | |
Collapse
|
4
|
Ilina Y, Kaufmann P, Press M, Uba TI, Bergmann A. Enhancing Stability and Bioavailability of Peptidylglycine Alpha-Amidating Monooxygenase in Circulation for Clinical Use. Biomolecules 2025; 15:224. [PMID: 40001527 PMCID: PMC11853079 DOI: 10.3390/biom15020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM) is the only enzyme known to catalyze C-terminal amidation, a final post-translational modification step essential for the biological activity of over 70 bioactive peptides, including adrenomedullin (ADM), calcitonin gene-related peptide (CGRP), amylin, neuropeptide Y (NPY), and others. Bioactive (amidated) peptide hormones play crucial roles in various physiological processes and have been extensively explored as therapeutic compounds in clinical and preclinical research. However, their therapeutic viability is limited due to their short half-life and, in most cases, the need for prolonged infusion to maintain effective concentrations. PAM itself has also been considered as a therapeutic compound aiming to increase the level of amidated peptide hormones; however, similarly to peptide hormones, PAM's rapid degradation limits its utility. Here, we present a strategy to enhance PAM stability and bioavailability through PEGylation, significantly extending the enzyme's half-life in circulation assessed in healthy rats. Furthermore, single subcutaneous (s.c.), intramuscular (i.m.), or intraperitoneal (i.p.) administration of PEGylated PAM resulted in a sustained increase in circulating amidating activity, with peak activity observed at 12-24 h post-bolus administration. Notably, amidating activity remained significantly elevated above baseline levels for up to seven days post-administration, with no observable adverse effects. These findings highlight PEGylated PAM's potential as a viable therapeutic compound.
Collapse
Affiliation(s)
- Yulia Ilina
- PAM Theragnostics GmbH, 16761 Hennigsdorf, Germany
| | | | | | | | - Andreas Bergmann
- PAM Theragnostics GmbH, 16761 Hennigsdorf, Germany
- 4TEEN4 Pharmaceuticals GmbH, 16761 Hennigsdorf, Germany
| |
Collapse
|
5
|
Chavda VP, Bojarska J. Peptides on patrol: Carrier systems for targeted delivery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 212:129-161. [PMID: 40122644 DOI: 10.1016/bs.pmbts.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The peptide is a small unit of protein that exhibits a diverse range of therapeutic applications, including but not limited to respiratory, inflammatory, oncologic, metabolic and neurological disorders. Peptides also play a significant role in signal transduction in cells. This chapter focuses on the delivery of peptides through the utilization of various carrier molecules, including liposomes, micelles, polymeric nanoparticles, and inorganic materials. These carriers facilitate targeted delivery and site-specific delivery of peptides. Different nanocarriers and therapeutic drug molecules also help with the delivery of peptides. Application to various diseases and different routes of delivery are described in this manuscript, along with current limitations and future prospects.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| | - Joanna Bojarska
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical, University of Lodz, Zeromskiego St., Lodz, Poland
| |
Collapse
|
6
|
Singh A, Shim P, Naeem S, Rahman S, Lutfy K. Pituitary adenylyl cyclase-activating polypeptide modulates the stress response: the involvement of different brain areas and microglia. Front Psychiatry 2025; 15:1495598. [PMID: 39931196 PMCID: PMC11807976 DOI: 10.3389/fpsyt.2024.1495598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/06/2024] [Indexed: 02/13/2025] Open
Abstract
Stress is necessary for survival. However, chronic unnecessary stress exposure leads to cardiovascular, gastrointestinal and neuropsychiatric disorders. Thus, understanding the mechanisms involved in the initiation and maintenance of the stress response is essential since it may reveal the underpinning pathophysiology of these disorders and may aid in the development of medication to treat stress-mediated diseases. Pituitary adenylyl cyclase activating polypeptide (PACAP) and its receptors (PAC1, VPAC1 and VPAC2) are expressed in the hypothalamus and other brain areas as well as in the adrenal gland. Previous research has shown that this peptide/receptor system serves as a modulator of the stress response. In addition to modulating the stress response, this system may also be connected to its emerging role as neuroprotective against hypoxia, ischemia, and neurodegeneration. This article aims to review the literature regarding the role of PACAP and its receptors in the stress response, the involvement of different brain regions and microglia in PACAP-mediated modulation of the stress response, and the long-term adaptation to stress recognizable clinically as survival with resilience while manifested in anxiety, depression and other neurobehavioral disorders.
Collapse
Affiliation(s)
- Anika Singh
- College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - Paul Shim
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Sadaf Naeem
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, United States
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
7
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
8
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
10
|
Slabe Z, Balesar RA, Verwer RWH, Van Heerikhuize JJ, Pechler GA, Zorović M, Hoogendijk WJ, Swaab DF. Alterations in pituitary adenylate cyclase-activating polypeptide in major depressive disorder, bipolar disorder, and comorbid depression in Alzheimer's disease in the human hypothalamus and prefrontal cortex. Psychol Med 2023; 53:7537-7549. [PMID: 37226771 PMCID: PMC10755247 DOI: 10.1017/s0033291723001265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is involved in the stress response and may play a key role in mood disorders, but no information is available on PACAP for the human brain in relation to mood disorders. METHODS PACAP-peptide levels were determined in a major stress-response site, the hypothalamic paraventricular nucleus (PVN), of people with major depressive disorder (MDD), bipolar disorder (BD) and of a unique cohort of Alzheimer's disease (AD) patients with and without depression, all with matched controls. The expression of PACAP-(Adcyap1mRNA) and PACAP-receptors was determined in the MDD and BD patients by qPCR in presumed target sites of PACAP in stress-related disorders, the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). RESULTS PACAP cell bodies and/or fibres were localised throughout the hypothalamus with differences between immunocytochemistry and in situ hybridisation. In the controls, PACAP-immunoreactivity-(ir) in the PVN was higher in women than in men. PVN-PACAP-ir was higher in male BD compared to the matched male controls. In all AD patients, the PVN-PACAP-ir was lower compared to the controls, but higher in AD depressed patients compared to those without depression. There was a significant positive correlation between the Cornell depression score and PVN-PACAP-ir in all AD patients combined. In the ACC and DLPFC, alterations in mRNA expression of PACAP and its receptors were associated with mood disorders in a differential way depending on the type of mood disorder, suicide, and psychotic features. CONCLUSION The results support the possibility that PACAP plays a role in mood disorder pathophysiology.
Collapse
Affiliation(s)
- Zala Slabe
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Rawien A. Balesar
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Ronald W. H. Verwer
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Joop J. Van Heerikhuize
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Gwyneth A. Pechler
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Maja Zorović
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Witte J.G. Hoogendijk
- Erasmus University Medical Centre, Department of Psychiatry, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- University of Ljubljana, Faculty of Medicine, Institute of Pharmacology and Experimental Toxicology, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Wu Y, Angelova A. Recent Uses of Lipid Nanoparticles, Cell-Penetrating and Bioactive Peptides for the Development of Brain-Targeted Nanomedicines against Neurodegenerative Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3004. [PMID: 38063700 PMCID: PMC10708303 DOI: 10.3390/nano13233004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2024]
Abstract
The lack of effective treatments for neurodegenerative diseases (NDs) is an important current concern. Lipid nanoparticles can deliver innovative combinations of active molecules to target the various mechanisms of neurodegeneration. A significant challenge in delivering drugs to the brain for ND treatment is associated with the blood-brain barrier, which limits the effectiveness of conventional drug administration. Current strategies utilizing lipid nanoparticles and cell-penetrating peptides, characterized by various uptake mechanisms, have the potential to extend the residence time and bioavailability of encapsulated drugs. Additionally, bioactive molecules with neurotropic or neuroprotective properties can be delivered to potentially mediate the ND targeting pathways, e.g., neurotrophin deficiency, impaired lipid metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, accumulation of misfolded proteins or peptide fragments, toxic protein aggregates, oxidative stress damage, and neuroinflammation. This review discusses recent advancements in lipid nanoparticles and CPPs in view of the integration of these two approaches into nanomedicine development and dual-targeted nanoparticulate systems for brain delivery in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
12
|
Withana M, Castorina A. Potential Crosstalk between the PACAP/VIP Neuropeptide System and Endoplasmic Reticulum Stress-Relevance to Multiple Sclerosis Pathophysiology. Cells 2023; 12:2633. [PMID: 37998368 PMCID: PMC10670126 DOI: 10.3390/cells12222633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder characterized by focal demyelination and chronic inflammation of the central nervous system (CNS). Although the exact etiology is unclear, mounting evidence indicates that endoplasmic reticulum (ER) stress represents a key event in disease pathogenesis. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that are abundant in the CNS and are known to exert neuroprotective and immune modulatory roles. Activation of this endogenous neuropeptide system may interfere with ER stress processes to promote glial cell survival and myelin self-repair. However, the potential crosstalk between the PACAP/VIP system and ER stress remains elusive. In this review, we aim to discuss how these peptides ameliorate ER stress in the CNS, with a focus on MS pathology. Our goal is to emphasize the importance of this potential interaction to aid in the identification of novel therapeutic targets for the treatment of MS and other demyelinating disorders.
Collapse
Affiliation(s)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
13
|
Wang Q, Wang Y, Li S, Shi J. PACAP-Sirtuin3 alleviates cognitive impairment through autophagy in Alzheimer's disease. Alzheimers Res Ther 2023; 15:184. [PMID: 37891608 PMCID: PMC10605376 DOI: 10.1186/s13195-023-01334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Autophagy is vital in the pathogenesis of neurodegeneration. Thus far, no studies have specifically investigated the relationship between pituitary adenylate cyclase-activating polypeptide (PACAP) and autophagy, particularly in the context of Alzheimer's disease (AD). This study used in vitro and in vivo models, along with clinical samples, to explore interactions between PACAP and autophagy in AD. METHODS AD model mice were administered 6 μl of 0.1 mg/ml PACAP liquid intranasally for 4 weeks, then subjected to behavioral analyses to assess the benefits of PACAP treatment. The underlying mechanisms of PACAP-induced effects were investigated by methods including real-time quantitative polymerase chain reaction, RNA sequencing, immunofluorescence, and western blotting. Exosomes were extracted from human serum and subjected to enzyme-linked immunosorbent assays to examine autophagy pathways. The clinical and therapeutic implications of PACAP and autophagy were extensively investigated throughout the experiment. RESULTS Impaired autophagy was a critical step in amyloid β (Aβ) and Tau deposition; PACAP enhanced autophagy and attenuated cognitive impairment. RNA sequencing revealed three pathways that may be involved in AD progression: PI3K-AKT, mTOR, and AMPK. In vivo and in vitro studies showed that sirtuin3 knockdown diminished the ability of PACAP to restore normal autophagy function, resulting in phagocytosis dysregulation and the accumulation of pTau, Tau, and Aβ. Additionally, the autophagic biomarker MAP1LC3 demonstrated a positive association with PACAP in human serum. CONCLUSIONS PACAP reverses AD-induced cognitive impairment through autophagy, using sirtuin3 as a key mediator. MAP1LC3 has a positive relationship with PACAP in humans. These findings provide insights regarding potential uses of intranasal PACAP and sirtuin3 agonists in AD treatment. TRIAL REGISTRATION NCT04320368.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shiping Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Jiong Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South 4Th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Cherait A, Banks WA, Vaudry D. The Potential of the Nose-to-Brain Delivery of PACAP for the Treatment of Neuronal Disease. Pharmaceutics 2023; 15:2032. [PMID: 37631246 PMCID: PMC10459484 DOI: 10.3390/pharmaceutics15082032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Research on the neuroprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) and its use as a therapeutic agent has grown over the past 30 years. Both in vitro and in vivo experiments have shown that PACAP exerts a strong neuroprotective effect in many central and peripheral neuronal diseases. Various delivery routes have been employed from intravenous (IV) injections to intracerebroventricular (ICV) administration, leading either to systemic or topical delivery of the peptide. Over the last decade, a growing interest in the use of intranasal (IN) administration of PACAP and other therapeutic agents has emerged as an alternative delivery route to target the brain. The aim of this review is to summarize the findings on the neuroprotective effect of PACAP and to discuss how the IN administration of PACAP could contribute to target the effects of this pleiotropic peptide.
Collapse
Affiliation(s)
- Asma Cherait
- Univ Rouen Normandie, Inserm U1245, Medical Faculty, Normandie Univ, F-76000 Rouen, France;
- Department of Second Cycle, Higher School of Agronomy Mostaganem, Mostaganem 27000, Algeria
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Sciences, University of Badji Mokhtar Annaba, B.P. 12, Annaba 23000, Algeria
| | - William A. Banks
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - David Vaudry
- Univ Rouen Normandie, Inserm U1245, Medical Faculty, Normandie Univ, F-76000 Rouen, France;
- Univ Rouen Normandie, Inserm US51, Regional Cell Imaging Platform of Normandy (PRIMACEN), Sciences and Technologies Faculty, Normandie Univ, F-76000 Rouen, France
| |
Collapse
|
15
|
Catumbela CSG, Giridharan VV, Barichello T, Morales R. Clinical evidence of human pathogens implicated in Alzheimer's disease pathology and the therapeutic efficacy of antimicrobials: an overview. Transl Neurodegener 2023; 12:37. [PMID: 37496074 PMCID: PMC10369764 DOI: 10.1186/s40035-023-00369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
A wealth of pre-clinical reports and data derived from human subjects and brain autopsies suggest that microbial infections are relevant to Alzheimer's disease (AD). This has inspired the hypothesis that microbial infections increase the risk or even trigger the onset of AD. Multiple models have been developed to explain the increase in pathogenic microbes in AD patients. Although this hypothesis is well accepted in the field, it is not yet clear whether microbial neuroinvasion is a cause of AD or a consequence of the pathological changes experienced by the demented brain. Along the same line, the gut microbiome has also been proposed as a modulator of AD. In this review, we focus on human-based evidence demonstrating the elevated abundance of microbes and microbe-derived molecules in AD hosts as well as their interactions with AD hallmarks. Further, the direct-purpose and potential off-target effects underpinning the efficacy of anti-microbial treatments in AD are also addressed.
Collapse
Affiliation(s)
- Celso S G Catumbela
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Vijayasree V Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993, Santiago, Chile.
| |
Collapse
|
16
|
Cunliffe G, Lim YT, Chae W, Jung S. Alternative Pharmacological Strategies for the Treatment of Alzheimer's Disease: Focus on Neuromodulator Function. Biomedicines 2022; 10:3064. [PMID: 36551821 PMCID: PMC9776382 DOI: 10.3390/biomedicines10123064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, comprising 70% of dementia diagnoses worldwide and affecting 1 in 9 people over the age of 65. However, the majority of its treatments, which predominantly target the cholinergic system, remain insufficient at reversing pathology and act simply to slow the inevitable progression of the disease. The most recent neurotransmitter-targeting drug for AD was approved in 2003, strongly suggesting that targeting neurotransmitter systems alone is unlikely to be sufficient, and that research into alternate treatment avenues is urgently required. Neuromodulators are substances released by neurons which influence neurotransmitter release and signal transmission across synapses. Neuromodulators including neuropeptides, hormones, neurotrophins, ATP and metal ions display altered function in AD, which underlies aberrant neuronal activity and pathology. However, research into how the manipulation of neuromodulators may be useful in the treatment of AD is relatively understudied. Combining neuromodulator targeting with more novel methods of drug delivery, such as the use of multi-targeted directed ligands, combinatorial drugs and encapsulated nanoparticle delivery systems, may help to overcome limitations of conventional treatments. These include difficulty crossing the blood-brain-barrier and the exertion of effects on a single target only. This review aims to highlight the ways in which neuromodulator functions are altered in AD and investigate how future therapies targeting such substances, which act upstream to classical neurotransmitter systems, may be of potential therapeutic benefit in the sustained search for more effective treatments.
Collapse
Affiliation(s)
- Grace Cunliffe
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Yi Tang Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Woori Chae
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Seongnam-si 13120, Republic of Korea
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
17
|
Figueiredo CA, Düsedau HP, Steffen J, Ehrentraut S, Dunay MP, Toth G, Reglödi D, Heimesaat MM, Dunay IR. The neuropeptide PACAP alleviates T. gondii infection-induced neuroinflammation and neuronal impairment. J Neuroinflammation 2022; 19:274. [PMCID: PMC9675261 DOI: 10.1186/s12974-022-02639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral infection with the protozoan Toxoplasma gondii (T. gondii) is responsible for inflammation of the central nervous system (CNS) contributing to subtle neuronal alterations. Albeit essential for brain parasite control, continuous microglia activation and recruitment of peripheral immune cells entail distinct neuronal impairment upon infection-induced neuroinflammation. PACAP is an endogenous neuropeptide known to inhibit inflammation and promote neuronal survival. Since PACAP is actively transported into the CNS, we aimed to assess the impact of PACAP on the T. gondii-induced neuroinflammation and subsequent effects on neuronal homeostasis. Methods Exogenous PACAP was administered intraperitoneally in the chronic stage of T. gondii infection, and brains were isolated for histopathological analysis and determination of pathogen levels. Immune cells from the brain, blood, and spleen were analyzed by flow cytometry, and the further production of inflammatory mediators was investigated by intracellular protein staining as well as expression levels by RT-qPCR. Neuronal and synaptic alterations were assessed on the transcriptional and protein level, focusing on neurotrophins, neurotrophin-receptors and signature synaptic markers. Results Here, we reveal that PACAP administration reduced the inflammatory foci and the number of apoptotic cells in the brain parenchyma and restrained the activation of microglia and recruitment of monocytes. The neuropeptide reduced the expression of inflammatory mediators such as IFN-γ, IL-6, iNOS, and IL-1β. Moreover, PACAP diminished IFN-γ production by recruited CD4+ T cells in the CNS. Importantly, PACAP promoted neuronal health via increased expression of the neurotrophin BDNF and reduction of p75NTR, a receptor related to neuronal cell death. In addition, PACAP administration was associated with increased expression of transporters involved in glutamatergic and GABAergic signaling that are particularly affected during cerebral toxoplasmosis. Conclusions Together, our findings unravel the beneficial effects of exogenous PACAP treatment upon infection-induced neuroinflammation, highlighting the potential implication of neuropeptides to promote neuronal survival and minimize synaptic prejudice. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02639-z.
Collapse
Affiliation(s)
- Caio Andreeta Figueiredo
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Henning Peter Düsedau
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Johannes Steffen
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Stefanie Ehrentraut
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Miklos P. Dunay
- grid.483037.b0000 0001 2226 5083Department and Clinic of Surgery and Ophthalmology, University of Veterinary Medicine, Budapest, Hungary
| | - Gabor Toth
- grid.9008.10000 0001 1016 9625Department of Medical Chemistry, University of Szeged, Budapest, Hungary
| | - Dora Reglödi
- grid.9679.10000 0001 0663 9479Department of Anatomy, MTA-PTE PACAP Research Team and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Markus M. Heimesaat
- grid.6363.00000 0001 2218 4662Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences – CBBS, Magdeburg, Germany
| |
Collapse
|
18
|
Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells 2022; 11:3629. [PMID: 36429060 PMCID: PMC9688574 DOI: 10.3390/cells11223629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.
Collapse
Affiliation(s)
- Meenakshi Bose
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Farias Quipildor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Di Scala C, Armstrong N, Chahinian H, Chabrière E, Fantini J, Yahi N. AmyP53, a Therapeutic Peptide Candidate for the Treatment of Alzheimer’s and Parkinson’s Disease: Safety, Stability, Pharmacokinetics Parameters and Nose-to Brain Delivery. Int J Mol Sci 2022; 23:ijms232113383. [PMID: 36362170 PMCID: PMC9654333 DOI: 10.3390/ijms232113383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans.
Collapse
Affiliation(s)
- Coralie Di Scala
- Neuroscience Center—HiLIFE, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Nicholas Armstrong
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Henri Chahinian
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Eric Chabrière
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille University, 13005 Marseille, France
| | - Jacques Fantini
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
- Correspondence:
| |
Collapse
|
20
|
Gopalakrishna R, Lin CY, Oh A, Le C, Yang S, Hicks A, Kindy MS, Mack WJ, Bhat NR. cAMP-induced decrease in cell-surface laminin receptor and cellular prion protein attenuates amyloid-β uptake and amyloid-β-induced neuronal cell death. FEBS Lett 2022; 596:2914-2927. [PMID: 35971617 PMCID: PMC9712173 DOI: 10.1002/1873-3468.14467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 02/07/2023]
Abstract
Previous studies have shown that amyloid-β oligomers (AβO) bind with high affinity to cellular prion protein (PrPC ). The AβO-PrPC complex binds to cell-surface co-receptors, including the laminin receptor (67LR). Our current studies revealed that in Neuroscreen-1 cells, 67LR is the major co-receptor involved in the cellular uptake of AβO and AβΟ-induced cell death. Both pharmacological (dibutyryl-cAMP, forskolin and rolipram) and physiological (pituitary adenylate cyclase-activating polypeptide) cAMP-elevating agents decreased cell-surface PrPC and 67LR, thereby attenuating the uptake of AβO and the resultant neuronal cell death. These cAMP protective effects are dependent on protein kinase A, but not dependent on the exchange protein directly activated by cAMP. Conceivably, cAMP protects neuronal cells from AβO-induced cytotoxicity by decreasing cell-surface-associated PrPC and 67LR.
Collapse
Affiliation(s)
- Rayudu Gopalakrishna
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: Department of Integrative Anatomical Sciences, 1333 San Pablo Street, Keck School of Medicine, Los Angeles, CA 90089, USA, Phone: 1 + 323-442-1770; Fax: 1 + 323-442-1771:
| | - Charlotte Y. Lin
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Oh
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Calvin Le
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Seolyn Yang
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexandra Hicks
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; James A. Haley VA Medical Center, Tampa, FL 33612, USA
| | - William J. Mack
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Narayan R. Bhat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
21
|
Barra T, Falanga A, Bellavita R, Pisano J, Laforgia V, Prisco M, Galdiero S, Valiante S. Neuroprotective Effects of gH625-lipoPACAP in an In Vitro Fluid Dynamic Model of Parkinson’s Disease. Biomedicines 2022; 10:biomedicines10102644. [PMID: 36289905 PMCID: PMC9599564 DOI: 10.3390/biomedicines10102644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is an aggressive and devastating age-related disorder. Although the causes are still unclear, several factors, including genetic and environmental, are involved. Except for symptomatic drugs, there are not, to date, any real cures for PD. For this purpose, it is necessary develop a model to better study this disease. Neuroblastoma cell line, SH-SY5Y, differentiated with retinoic acid represents a good in vitro model to explore PD, since it maintains growth cells to differentiated neurons. In the present study, SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that induces Parkinsonism, and the neuroprotective effects of pituitary adenylate cyclase-activating polypeptide (PACAP), delivered by functionalized liposomes in a blood–brain barrier fluid dynamic model, were evaluated. We demonstrated PACAP neuroprotective effects when delivered by gH625-liposome on MPP+-damaged SH-SY5Y spheroids.
Collapse
Affiliation(s)
- Teresa Barra
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Jessica Pisano
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Valiante
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-081-2535169
| |
Collapse
|
22
|
Anti-neuroinflammatory of Chloroform Extract of Panax ginseng Root Culture on Lipopolysaccharide-stimulated BV2 Microglia Cells. Rep Biochem Mol Biol 2022; 11:125-137. [PMID: 35765526 PMCID: PMC9208560 DOI: 10.52547/rbmb.11.1.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 01/11/2023]
Abstract
Background It is believed that activation of microglia in the central nervous system upon detection of stimulus like lipopolysaccharides provokes neuroinflammation via the production of pro-inflammatory mediators and cytokines. The cytoprotective and anti-inflammatory properties of various folk medicine has been gaining attention as a strategy to combat various disease. This study aimed to assess the anti-neuroinflammatory properties of chloroform extract of in vitro Panax ginseng root culture based on nitric oxide and cytokines production. Methods The study was initiated with the determination of maximum non-toxic dose (MNTD) of P. ginseng root culture chloroform extract using the MTT assay. The lipopolysaccharides-stimulated BV2 microglia cells were treated with MNTD and ½MNTD of the extract and its anti-neuroinflammatory properties were assessed by measuring the production of nitric oxide (NO) via Griess assay, as well as TNF-α, IL-6 and IL-10 using Quantikine ELISA. Results It was found that the MNTD and ½MNTD of the extract did not play a significant role in the production of pro-inflammatory cytokines such as NO, TNF-α and IL-6. However, the MNTD and ½MNTD of chloroform extract significantly increased the anti-inflammatory IL-10 compared to the untreated cells. Conclusion With this, the chloroform extract of P. ginseng root culture potentially exerts anti-neuroinflammatory properties.
Collapse
|
23
|
A Mutant Variant of E2F4 Triggers Multifactorial Therapeutic Effects in 5xFAD Mice. Mol Neurobiol 2022; 59:3016-3039. [PMID: 35254651 PMCID: PMC9016056 DOI: 10.1007/s12035-022-02764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer’s disease (AD) has a complex etiology, which requires a multifactorial approach for an efficient treatment. We have focused on E2 factor 4 (E2F4), a transcription factor that regulates cell quiescence and tissue homeostasis, controls gene networks affected in AD, and is upregulated in the brains of Alzheimer’s patients and of APPswe/PS1dE9 and 5xFAD transgenic mice. E2F4 contains an evolutionarily conserved Thr-motif that, when phosphorylated, modulates its activity, thus constituting a potential target for intervention. In this study, we generated a knock-in mouse strain with neuronal expression of a mouse E2F4 variant lacking this Thr-motif (E2F4DN), which was mated with 5xFAD mice. Here, we show that neuronal expression of E2F4DN in 5xFAD mice potentiates a transcriptional program consistent with the attenuation of the immune response and brain homeostasis. This correlates with reduced microgliosis and astrogliosis, modulation of amyloid-β peptide proteostasis, and blocking of neuronal tetraploidization. Moreover, E2F4DN prevents cognitive impairment and body weight loss, a known somatic alteration associated with AD. We also show that our finding is significant for AD, since E2F4 is expressed in cortical neurons from Alzheimer patients in association with Thr-specific phosphorylation, as evidenced by an anti-E2F4/anti-phosphoThr proximity ligation assay. We propose E2F4DN-based gene therapy as a promising multifactorial approach against AD.
Collapse
|
24
|
Lu P, Shi Y, Ye D, Lu X, Tang X, Cheng L, Xu Y, Huang J. Intravitreal Injection of PACAP Attenuates Acute Ocular Hypertension-Induced Retinal Injury Via Anti-Apoptosis and Anti-Inflammation in Mice. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35293951 PMCID: PMC8944396 DOI: 10.1167/iovs.63.3.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Pituitary adenylate cyclase-activating polypeptide (PACAP) has shown potent neuroprotective effects in central nervous system and retina disorders. However, whether PACAP can attenuate retinal neurodegeneration induced by acute ocular hypertension (AOH) and the underlying mechanisms remain unknown. In this study, we aimed to investigate the effects of PACAP on the survival and function of retinal ganglion cells (RGCs), apoptosis, and inflammation in a mouse model of AOH injury. Methods PACAP was injected into the vitreous body immediately after inducing AOH injury. Hematoxylin and eosin staining and optical coherence tomography were used to evaluate the loss of retina tissue. Pattern electroretinogram was used to evaluate the function of RGCs. TUNEL assay was used to detect apoptosis. Immunofluorescence and western blot were employed to evaluate protein expression levels. Results PACAP treatment significantly reduced the losses of whole retina and inner retina thicknesses, Tuj1-positive RGCs, and the amplitudes of pattern electroretinograms induced by AOH injury. Additionally, PACAP treatment remarkably reduced the number of TUNEL-positive cells and inhibited the upregulation of Bim, Bax, and cleaved caspase-3 and downregulation of Bcl-xL after AOH injury. Moreover, PACAP markedly inhibited retinal reactive gliosis and vascular inflammation, as demonstrated by the downregulation of GFAP, Iba1, CD68, and CD45 in PACAP-treated mice. Furthermore, upregulated expression of NF-κB and phosphorylated NF-κB induced by AOH injury was attenuated by PACAP treatment. Conclusions PACAP could prevent the loss of retinal tissue and improve the survival and function of RGCs. The neuroprotective effect of PACAP is probably associated with its potent anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Peng Lu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dan Ye
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lu Cheng
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
25
|
Solés-Tarrés I, Cabezas-Llobet N, Lefranc B, Leprince J, Alberch J, Vaudry D, Xifró X. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Protects Striatal Cells and Improves Motor Function in Huntington’s Disease Models: Role of PAC1 Receptor. Front Pharmacol 2022; 12:797541. [PMID: 35153755 PMCID: PMC8832515 DOI: 10.3389/fphar.2021.797541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by the expression of mutant huntingtin (mHtt). One of the main features of HD is the degeneration of the striatum that leads to motor discoordination. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that acts through three receptors named PAC1R, VPAC1R, and VPAC2R. In the present study, we first investigated the effect of PACAP on STHdhQ7/Q7 and STHdhQ111/Q111 cells that express wild-type Htt with 7 and mHtt with 111 glutamines, respectively. Then we explored the capacity of PACAP to rescue motor symptoms in the R6/1, a murine model of HD. We found that PACAP treatment (10–7 M) for 24 h protects STHdhQ111/Q111 cells from mHtt-induced apoptosis. This effect is associated with an increase in PAC1R transcription, phosphorylation of ERK and Akt, and an increase of intracellular c-fos, egr1, CBP, and BDNF protein content. Moreover, the use of pharmacological inhibitors revealed that activation of ERK and Akt mediates these antiapoptotic and neurotrophic effects of PACAP. To find out PAC1R implication, we treated STHdh cells with vasoactive intestinal peptide (VIP), which exhibits equal affinity for VPAC1R and VPAC2R, but lower affinity for PAC1R, in contrast to PACAP which has same affinity for the three receptors. VIP reduced cleaved caspase-3 protein level, without promoting the expression of c-fos, egr1, CBP, and the neurotrophin BDNF. We next measured the protein level of PACAP receptors in the striatum and cortex of R6/1 mice. We observed a specific reduction of PAC1R at the onset of motor symptoms. Importantly, the intranasal administration of PACAP to R6/1 animals restored the motor function and increased the striatal levels of PAC1R, CBP, and BDNF. In conclusion, PACAP exerts antiapoptotic and neurotrophic effects in striatal neurons mainly through PAC1R. This effect in HD striatum allows the recovery of motor function and point out PAC1R as a therapeutic target for treatment of HD.
Collapse
Affiliation(s)
- Irene Solés-Tarrés
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Núria Cabezas-Llobet
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Xavier Xifró
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
- *Correspondence: Xavier Xifró,
| |
Collapse
|
26
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
27
|
Papiri G, Luzzi S, Marcucci M, Vignini A. Vasoactive neuropeptides and Alzheimer's disease: a systematic review focusing on calcitonin gene-related peptide. J Integr Neurosci 2021; 20:1059-1065. [PMID: 34997729 DOI: 10.31083/j.jin2004107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/15/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022] Open
Abstract
Vasoactive peptides constitute a heterogenous family of mediators exerting various physiological functions, mostly studied for their vasotropic effects and role as peripheral neurotransmitters/neuromodulators, mainly involved in nociceptive transmission modulation. They have been divided into vasodilatory or vasoconstrictive peptides, according to their predominant effects on vascular tone. Recent research has shown in the Central Nervous System effects as transmitters and "growth factor-like" signals. Therefore, deregulation of their signaling systems has been thought to play a role in neural cell death and in the pathogenesis of neurodegenerative disorders, including Alzheimer's disease, since these peptides can regulate neuronal stress signaling, survival cascades, synaptic plasticity. This review considers evidence about the implication of neuropeptide systems in Alzheimer's disease while focusing mainly on calcitonin gene-related peptide-alpha. In vitro and in vivo studies have shown potential implications in its pathogenesis. It has been possibly proposed as a neuroprotective agent, considering not only its pleiotropic actions on blood vessels, neurovascular coupling, energy metabolism, but also its potential actions on neuronal, glial, and immune system stress signaling, which might also derive from its structural homology to amylin. Amylin signaling is thought to be disrupted in Alzheimer's disease, and amylin itself takes part in the composition of senile plaques. Calcitonin gene-related peptide-containing systems seem more closely related to Alzheimer's disease pathogenesis than other neuropeptidergic systems, and their regulation might represent an interesting mechanism in developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Giulio Papiri
- Neurology Clinic, Azienda Ospedaliero Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy
| | - Simona Luzzi
- Neurology Clinic, Azienda Ospedaliero Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Matteo Marcucci
- Radiology Department, Azienda Ospedaliero Universitaria, Ospedali Riuniti di Ancona, 60126 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
28
|
Ciranna L, Reglodi D, Chow BK, Vaudry D. Editorial: Novel Therapeutic Potential for Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), Vasoactive Intestinal Peptide (VIP) and Related Peptides in Cognition Deficits. Front Cell Neurosci 2021; 15:748970. [PMID: 34588958 PMCID: PMC8473805 DOI: 10.3389/fncel.2021.748970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Dora Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, University of Pecs Medical School, Pecs, Hungary
| | - Billy K Chow
- The University of Hong Kong Pokfulam, Hong Kong, SAR China
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
| |
Collapse
|
29
|
Zuccaro E, Piol D, Basso M, Pennuto M. Motor Neuron Diseases and Neuroprotective Peptides: A Closer Look to Neurons. Front Aging Neurosci 2021; 13:723871. [PMID: 34603008 PMCID: PMC8484953 DOI: 10.3389/fnagi.2021.723871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Motor neurons (MNs) are specialized neurons responsible for muscle contraction that specifically degenerate in motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), spinal and bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Distinct classes of MNs degenerate at different rates in disease, with a particular class named fast-fatigable MNs (FF-MNs) degenerating first. The etiology behind the selective vulnerability of FF-MNs is still largely under investigation. Among the different strategies to target MNs, the administration of protective neuropeptides is one of the potential therapeutic interventions. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with beneficial effects in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and more recently SBMA. Another neuropeptide that has a neurotrophic effect on MNs is insulin-like growth factor 1 (IGF-1), also known as somatomedin C. These two peptides are implicated in the activation of neuroprotective pathways exploitable in the amelioration of pathological outcomes related to MNDs.
Collapse
Affiliation(s)
- Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padua, Italy
| | - Diana Piol
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padua, Italy
| |
Collapse
|
30
|
Guo X, Tian Y, Yang Y, Li S, Guo L, Shi J. Pituitary Adenylate Cyclase-Activating Polypeptide Protects Against Cognitive Impairment Caused by Chronic Cerebral Hypoperfusion. Mol Neurobiol 2021; 58:4309-4322. [PMID: 33999349 DOI: 10.1007/s12035-021-02381-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) has beneficial effects in learning and memory. However, the mechanism by which PACAP improves cognitive impairment of vascular dementia (VaD) is not clear. METHODS We established a VaD model by bilateral common carotid stenosis (BCAS) to investigate the molecular mechanism of cognitive impairment. Protein levels of PACAP, Sirtuin 3 (Sirt3), brain-derived neurotrophic factor (BDNF), and postsynaptic density 95 (PSD-95) were assessed by Western blot. In vitro, oxygen glucose deprivation (OGD) was used to simulate the ischemia/hypoxia state. HT22 cells were transfected with Sirt3 knockdown and overexpression to study the relationship between PACAP, Sirt3, and BDNF. In vivo, PACAP was administered intranasally to assess its protective effects on BCAS. RESULTS The study showed that the levels of PACAP, Sirt3, BDNF, and PSD-95 were decreased in the BCAS model of VaD. PACAP increased the protein levels of Sirt3, BDNF, PSD-95, Bcl-2, and Bax under OGD condition in vitro. Sirt3 regulated BDNF and synaptic plasticity. Intranasal PACAP increased the protein levels of PAC1, Sirt3, BDNF, and PSD-95 in vivo. CONCLUSIONS This study provides evidence that PACAP regulates synaptic plasticity and plays an antiapoptotic role through Sirt3.
Collapse
Affiliation(s)
- Xiaosu Guo
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ye Tian
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaping Yang
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiping Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Guo
- The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Jiong Shi
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China. .,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. Physiol Behav 2021; 234:113370. [PMID: 33621561 PMCID: PMC8053680 DOI: 10.1016/j.physbeh.2021.113370] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
The intranasal (IN) administration of neuropeptides, such as insulin and orexins, has been suggested as a treatment strategy for age-related cognitive decline (ARCD). Because dysfunctional neuropeptide signaling is an observed characteristic of ARCD, it has been suggested that IN delivery of insulin and/or orexins may restore endogenous peptide signaling and thereby preserve cognition. IN administration is particularly alluring as it is a relatively non-invasive method that directly targets peptides to the brain. Several laboratories have examined the behavioral effects of IN insulin in young, aged, and cognitively impaired rodents and humans. These studies demonstrated improved performance on various cognitive tasks following IN insulin administration. Fewer laboratories have assessed the effects of IN orexins; however, this peptide also holds promise as an effective treatment for ARCD through the activation of the cholinergic system and/or the reduction of neuroinflammation. Here, we provide a brief overview of the advantages of IN administration and the delivery pathway, then summarize the current literature on IN insulin and orexins. Additional preclinical studies will be useful to ultimately uncover the mechanisms underlying the pro-cognitive effects of IN insulin and orexins, whereas future clinical studies will aid in the determination of the most efficacious dose and dosing paradigm. Eventually, IN insulin and/or orexin administration may be a widely used treatment strategy in the clinic for ARCD.
Collapse
Affiliation(s)
- Jennifer M Erichsen
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States.
| | - Coleman B Calva
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| | - Lawrence P Reagan
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States; Columbia VA Health Care System, Columbia, SC, 29208, United States
| | - Jim R Fadel
- University of South Carolina School of Medicine, Department of Pharmacology, Physiology, and Neuroscience, Columbia, SC 29208, United States
| |
Collapse
|
32
|
Braschi C, Capsoni S, Narducci R, Poli A, Sansevero G, Brandi R, Maffei L, Cattaneo A, Berardi N. Intranasal delivery of BDNF rescues memory deficits in AD11 mice and reduces brain microgliosis. Aging Clin Exp Res 2021; 33:1223-1238. [PMID: 32676979 PMCID: PMC8081712 DOI: 10.1007/s40520-020-01646-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
A decrease in brain-derived neurotrophic factor (BDNF), a neurotrophin essential for synaptic function, plasticity and neuronal survival, is evident early in the progression of Alzheimer's disease (AD), being apparent in subjects with mild cognitive impairment or mild AD, and both proBDNF and mature BDNF levels are positively correlated with cognitive measures. BDNF delivery is, therefore, considered of great interest as a potentially useful therapeutic strategy to contrast AD. Invasive BDNF administration has indeed been recently used in animal models of AD with promising results in rescuing memory deficits, synaptic density and cell loss. Here, we tested whether non-invasive intranasal administration of different BDNF concentrations after the onset of cognitive and anatomical deficits (6 months of age) could rescue neuropathological and memory deficits in AD11 mice, a model of NGF deprivation-induced neurodegeneration. In addition to AD hallmarks, we investigated BDNF effects on microglia presence in the brain of AD11 mice, since alterations in microglia activation have been associated with ageing-related cognitive decline and with the progression of neurodegenerative diseases, including AD. We found that intranasal delivery of 42 pmol BDNF (1 μM), but not PBS, was sufficient to completely rescue performance of AD11 mice both in the object recognition test and in the object context test. No further improvement was obtained with 420 pmol (10 μM) BDNF dose. The strong improvement in memory performance in BDNF-treated mice was not accompanied by an amelioration of AD-like pathology, Aβ burden, tau hyperphosphorylation and cholinergic deficit, but there was a dramatic decrease of CD11b immunoreactive brain microglia. These results reinforce the potential therapeutic uses of BDNF in AD and the non-invasive intranasal route as an effective delivery strategy of BDNF to the brain. They also strengthen the connection between neuroinflammation and neurodegenerative dementia and suggest microglia as a possible mediator of BDNF therapeutic actions in the brain.
Collapse
Affiliation(s)
- Chiara Braschi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | - Simona Capsoni
- Scuola Normale Superiore, Pisa, Italy
- Human Physiology Section, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Narducci
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | | | - Gabriele Sansevero
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- IRCCS Stella Maris, Calambrone, Pisa, Italy
| | | | - Lamberto Maffei
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Antonino Cattaneo
- Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute, Rome, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy.
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy.
| |
Collapse
|
33
|
Ben-Shushan S, Miller Y. Neuropeptides: Roles and Activities as Metal Chelators in Neurodegenerative Diseases. J Phys Chem B 2021; 125:2796-2811. [PMID: 33570949 PMCID: PMC8389909 DOI: 10.1021/acs.jpcb.0c11151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by deposits of amyloid proteins. The homeostasis of metal ions is crucial for the normal biological functions in the brain. However, in AD and PD, the imbalance of metal ions leads to formation of amyloid deposits. In the past four decades, there has been extensive effort to design compound agents than can chelate metal ions with the aim of preventing the formation of the amyloid deposits. Unfortunately, the compounds to date that were designed were not successful candidates to be used in clinical trials. Neuropeptides are small molecules that are produced and released by neurons. It has been shown that neuropeptides have neuroprotective effects in the brain and reduce the formation of amyloid deposits. This Review Article is focused on the function of neuropeptides as metal chelators. Experimental and computational studies demonstrated that neuropeptides could bind metal ions, such as Cu2+ and Zn2+. This Review Article provides perspectives and initiates future studies to investigate the role of neuropeptides as metal chelators in neurodegenerative diseases.
Collapse
Affiliation(s)
- Shira Ben-Shushan
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Be'er Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
34
|
Lee EY, Chan LC, Wang H, Lieng J, Hung M, Srinivasan Y, Wang J, Waschek JA, Ferguson AL, Lee KF, Yount NY, Yeaman MR, Wong GCL. PACAP is a pathogen-inducible resident antimicrobial neuropeptide affording rapid and contextual molecular host defense of the brain. Proc Natl Acad Sci U S A 2021; 118:e1917623117. [PMID: 33372152 PMCID: PMC7817161 DOI: 10.1073/pnas.1917623117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Defense of the central nervous system (CNS) against infection must be accomplished without generation of potentially injurious immune cell-mediated or off-target inflammation which could impair key functions. As the CNS is an immune-privileged compartment, inducible innate defense mechanisms endogenous to the CNS likely play an essential role in this regard. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known to regulate neurodevelopment, emotion, and certain stress responses. While PACAP is known to interact with the immune system, its significance in direct defense of brain or other tissues is not established. Here, we show that our machine-learning classifier can screen for immune activity in neuropeptides, and correctly identified PACAP as an antimicrobial neuropeptide in agreement with previous experimental work. Furthermore, synchrotron X-ray scattering, antimicrobial assays, and mechanistic fingerprinting provided precise insights into how PACAP exerts antimicrobial activities vs. pathogens via multiple and synergistic mechanisms, including dysregulation of membrane integrity and energetics and activation of cell death pathways. Importantly, resident PACAP is selectively induced up to 50-fold in the brain in mouse models of Staphylococcus aureus or Candida albicans infection in vivo, without inducing immune cell infiltration. We show differential PACAP induction even in various tissues outside the CNS, and how these observed patterns of induction are consistent with the antimicrobial efficacy of PACAP measured in conditions simulating specific physiologic contexts of those tissues. Phylogenetic analysis of PACAP revealed close conservation of predicted antimicrobial properties spanning primitive invertebrates to modern mammals. Together, these findings substantiate our hypothesis that PACAP is an ancient neuro-endocrine-immune effector that defends the CNS against infection while minimizing potentially injurious neuroinflammation.
Collapse
Affiliation(s)
- Ernest Y Lee
- Department of Bioengineering, University of California, Los Angeles, CA 90095
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Liana C Chan
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Huiyuan Wang
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Juelline Lieng
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Mandy Hung
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Yashes Srinivasan
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - Jennifer Wang
- Department of Bioengineering, University of California, Los Angeles, CA 90095
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Nannette Y Yount
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, CA 90509
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
| | - Michael R Yeaman
- Division of Molecular Medicine, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509;
- Division of Infectious Diseases, Los Angeles County, Harbor-UCLA Medical Center, Torrance, CA 90509
- Semel Institute for Neuroscience and Human Behavior, Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, CA 90095;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| |
Collapse
|
35
|
Fang Y, Ren R, Shi H, Huang L, Lenahan C, Lu Q, Tang L, Huang Y, Tang J, Zhang J, Zhang JH. Pituitary Adenylate Cyclase-Activating Polypeptide: A Promising Neuroprotective Peptide in Stroke. Aging Dis 2020; 11:1496-1512. [PMID: 33269103 PMCID: PMC7673855 DOI: 10.14336/ad.2020.0626] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
The search for viable, effective treatments for acute stroke continues to be a global priority due to the high mortality and morbidity. Current therapeutic treatments have limited effects, making the search for new treatments imperative. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a well-established cytoprotective neuropeptide that participates in diverse neural physiological and pathological activities, such as neuronal proliferation, differentiation, and migration, as well as neuroprotection. It is considered a promising treatment in numerous neurological diseases. Thus, PACAP bears potential as a new therapeutic strategy for stroke treatment. Herein, we provide an overview pertaining to the current knowledge of PACAP, its receptors, and its potential neuroprotective role in the setting of stroke, as well as various mechanisms of neuroprotection involving ionic homeostasis, excitotoxicity, cell edema, oxidative stress, inflammation, and cell death, as well as the route of PACAP administration.
Collapse
Affiliation(s)
- Yuanjian Fang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Reng Ren
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Shi
- 2Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Cameron Lenahan
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,5Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Qin Lu
- 6Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Lihui Tang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Huang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- 1Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - John H Zhang
- 3Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.,4Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA.,7Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
36
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
37
|
Liu R, Wei P, Keller C, Orefice NS, Shi Y, Li Z, Huang J, Cui Y, Frost DC, Han S, Cross TWL, Rey FE, Li L. Integrated Label-Free and 10-Plex DiLeu Isobaric Tag Quantitative Methods for Profiling Changes in the Mouse Hypothalamic Neuropeptidome and Proteome: Assessment of the Impact of the Gut Microbiome. Anal Chem 2020; 92:14021-14030. [PMID: 32926775 DOI: 10.1021/acs.analchem.0c02939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gut microbiota can regulate host physiological and pathological status through gut-brain communications or pathways. However, the impact of the gut microbiome on neuropeptides and proteins involved in regulating brain functions and behaviors is still not clearly understood. To address the problem, integrated label-free and 10-plex DiLeu isobaric tag-based quantitative methods were implemented to compare the profiling of neuropeptides and proteins in the hypothalamus of germ-free (GF)- vs conventionally raised (ConvR)-mice. A total of 2943 endogenous peptides from 63 neuropeptide precursors and 3971 proteins in the mouse hypothalamus were identified. Among these 368 significantly changed peptides (fold changes over 1.5 and a p-value of <0.05), 73.6% of the peptides showed higher levels in GF-mice than in ConvR-mice, and 26.4% of the peptides had higher levels in ConvR-mice than in GF-mice. These peptides were mainly from secretogranin-2, phosphatidylethanolamine-binding protein-1, ProSAAS, and proenkephalin-A. A quantitative proteomic analysis employing DiLeu isobaric tags revealed that 282 proteins were significantly up- or down-regulated (fold changes over 1.2 and a p-value of <0.05) among the 3277 quantified proteins. These neuropeptides and proteins were mainly involved in regulating behaviors, transmitter release, signaling pathways, and synapses. Interestingly, pathways including long-term potentiation, long-term depression, and circadian entrainment were involved. In the present study, a combined label-free and 10-plex DiLeu-based quantitative method enabled a comprehensive profiling of gut microbiome-induced dynamic changes of neuropeptides and proteins in the hypothalamus, suggesting that the gut microbiome might mediate a range of behavioral changes, brain development, and learning and memory through these neuropeptides and proteins.
Collapse
Affiliation(s)
- Rui Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China.,Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Pingli Wei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yusi Cui
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Dustin C Frost
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Shuying Han
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, P. R. China
| | - Tzu-Wen L Cross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Cardiovascular Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
38
|
Nonaka N, Banks WA, Shioda S. Pituitary adenylate cyclase-activating polypeptide: Protective effects in stroke and dementia. Peptides 2020; 130:170332. [PMID: 32445876 DOI: 10.1016/j.peptides.2020.170332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 01/05/2023]
Abstract
Evidence shows that pituitary adenylate cyclase-activating polypeptide (PACAP) improves stroke outcomes and dementia. The blood-brain barrier (BBB) controls the peptide and regulatory protein exchange between the central nervous system and the blood; the transport of these regulatory substances across the BBB has been altered in animal models of stroke and Alzheimer's disease (AD). PACAP is a powerful neurotrophin that can cross the BBB, which may aid in the therapy of neurodegenerative diseases, including stroke and AD. PACAP may function as a potential drug in the treatment, prevention, or management of stroke and AD and other neurodegenerative conditions. Here, we review the effects of PACAP in studies on stroke and dementias.
Collapse
Affiliation(s)
- Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan.
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | - Seiji Shioda
- Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, Japan.
| |
Collapse
|
39
|
Solés-Tarrés I, Cabezas-Llobet N, Vaudry D, Xifró X. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide Against Cognitive Decline in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:221. [PMID: 32765225 PMCID: PMC7380167 DOI: 10.3389/fncel.2020.00221] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022] Open
Abstract
Cognitive impairment is one of the major symptoms in most neurodegenerative disorders such as Alzheimer’s (AD), Parkinson (PD), and Huntington diseases (HD), affecting millions of people worldwide. Unfortunately, there is no treatment to cure or prevent the progression of those diseases. Cognitive impairment has been related to neuronal cell death and/or synaptic plasticity alteration in important brain regions, such as the cerebral cortex, substantia nigra, striatum, and hippocampus. Therefore, compounds that can act to protect the neuronal loss and/or to reestablish the synaptic activity are needed to prevent cognitive decline in neurodegenerative diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two highly related multifunctional neuropeptides widely distributed in the central nervous system (CNS). PACAP and VIP exert their action through two common receptors, VPAC1 and VPAC2, while PACAP has an additional specific receptor, PAC1. In this review article, we first presented evidence showing the therapeutic potential of PACAP and VIP to fight the cognitive decline observed in models of AD, PD, and HD. We also reviewed the main transduction pathways activated by PACAP and VIP receptors to reduce cognitive dysfunction. Furthermore, we identified the therapeutic targets of PACAP and VIP, and finally, we evaluated different novel synthetic PACAP and VIP analogs as promising pharmacological tools.
Collapse
Affiliation(s)
- Irene Solés-Tarrés
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| | - Núria Cabezas-Llobet
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Normandie University, UNIROUEN, Inserm, Rouen, France
| | - Xavier Xifró
- New Therapeutic Targets Group (TargetsLab), Department of Medical Science, Faculty of Medicine, Universitat de Girona, Girona, Spain
| |
Collapse
|
40
|
Ladjimi MH, Barbouche R, Ben Rhouma K, Sakly M, Tebourbi O, Save E. Effects of PACAP-38 and an analog, acetyl-[Ala15, Ala20] PACAP-38-propylamide, on memory consolidation in the detection of spatial novelty task in rats. Brain Res 2020; 1739:146858. [DOI: 10.1016/j.brainres.2020.146858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022]
|
41
|
Bioinformatic Analysis Reveals Phosphodiesterase 4D-Interacting Protein as a Key Frontal Cortex Dementia Switch Gene. Int J Mol Sci 2020; 21:ijms21113787. [PMID: 32471155 PMCID: PMC7313474 DOI: 10.3390/ijms21113787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that initiate dementia are poorly understood and there are currently no treatments that can slow their progression. The identification of key genes and molecular pathways that may trigger dementia should help reveal potential therapeutic reagents. In this study, SWItch Miner software was used to identify phosphodiesterase 4D-interacting protein as a key factor that may lead to the development of Alzheimer’s disease, vascular dementia, and frontotemporal dementia. Inflammation, PI3K-AKT, and ubiquitin-mediated proteolysis were identified as the main pathways that are dysregulated in these dementias. All of these dementias are regulated by 12 shared transcription factors. Protein–chemical interaction network analysis of dementia switch genes revealed that valproic acid may be neuroprotective for these dementias. Collectively, we identified shared and unique dysregulated gene expression, pathways and regulatory factors among dementias. New key mechanisms that lead to the development of dementia were revealed and it is expected that these data will advance personalized medicine for patients.
Collapse
|
42
|
Can dipeptidyl peptidase-4 inhibitors treat cognitive disorders? Pharmacol Ther 2020; 212:107559. [PMID: 32380197 DOI: 10.1016/j.pharmthera.2020.107559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
The linkage of neurodegenerative diseases with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), including oxidative stress, mitochondrial dysfunction, excessive inflammatory responses and abnormal protein processing, and the correlation between cerebrovascular diseases and hyperglycemia has opened a new window for novel therapeutics for these cognitive disorders. Various antidiabetic agents have been studied for their potential treatment of cognitive disorders, among which the dipeptidyl peptidase-4 (DPP-4) inhibitors have been investigated more recently. So far, DPP-4 inhibitors have demonstrated neuroprotection and cognitive improvements in animal models, and cognitive benefits in diabetic patients with or without cognitive impairments. This review aims to summarize the potential mechanisms, advantages and limitations, and currently available evidence for developing DPP-4 inhibitors as a treatment of cognitive disorders.
Collapse
|
43
|
D’Amico AG, Maugeri G, Saccone S, Federico C, Cavallaro S, Reglodi D, D’Agata V. PACAP Modulates the Autophagy Process in an In Vitro Model of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21082943. [PMID: 32331311 PMCID: PMC7216177 DOI: 10.3390/ijms21082943] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of complex etiology leading to motor neuron degeneration. Many gene alterations cause this pathology, including mutation in Cu, Zn superoxide dismutase (SOD1), which leads to its gain of function. Mutant SOD1 proteins are prone to aberrant misfolding and create aggregates that impair autophagy. The hypoxic stress is strictly linked to the disease progression since it induces uncontrolled autophagy activation and the consequent high rates of cell death. Previously, we showed that pituitary adenylate cyclase-activating polypeptide (PACAP) exerts neurotrophic activity in cultured mSOD1 motor neurons exposed to serum deprivation. To date, no studies have examined whether the protective effect of PACAP on mSOD1 cells exposed to hypoxic insult is mediated through the regulation of the autophagy process. In the present study, we used the neuroblastoma-spinal cord-34 (NSC-34) cell line, stably expressing human wild type or mutant SOD1 G93A, to represent a well characterized in vitro model of a familial form of ALS. These cells were exposed to 100-µM desferrioxamine mesylate salt for 24h, to mimic the hypoxic stress affecting motor neurons during the disease progression. Our results showed that PACAP treatment significantly reduced cell death and hypoxia-induced mSOD1 accumulation by modulating the autophagy process in G93A motor neurons, as revealed by the decreased LC3II and the increased p62 levels, two autophagy indicators. These results were also confirmed by evaluating the vacuole formation detected through light chain 3 (LC3) immunofluorescence. Furthermore, the PACAP effects on autophagy seem to be mediated through the activation of the MAPK/ERK signaling pathway. Overall, our data demonstrated that PACAP exerts an ameliorative effect on the mSOD1 motor neuron viability by modulating a hypoxia-induced autophagy process through activation of MAPK/ERK signaling cascade.
Collapse
Affiliation(s)
- Agata Grazia D’Amico
- Department of Human Science and Promotion of quality of Life, San Raffaele Open University of Rome, Via di Val Cannuta, 247, 00166 Roma, Italy;
| | - Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy;
| | - Salvatore Saccone
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (C.F.)
| | - Concetta Federico
- Section of Animal Biology, Department of Biological, Geological and Environmental Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (C.F.)
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, Italian National Research Council, 95123 Catania, Italy;
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, 7622 Pécs, Hungary;
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy;
- Correspondence: ; Tel.: +39-095-378-2039; Fax: +39-095-378-2046
| |
Collapse
|
44
|
Understanding PDE4's function in Alzheimer's disease; a target for novel therapeutic approaches. Biochem Soc Trans 2020; 47:1557-1565. [PMID: 31642904 PMCID: PMC6824677 DOI: 10.1042/bst20190763] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
Phosphodiesterases (PDEs) have long been considered as targets for the treatment of Alzheimer's disease (AD) and a substantial body of evidence suggests that one sub-family from the super-family of PDEs, namely PDE4D, has particular significance in this context. This review discusses the role of PDE4 in the orchestration of cAMP response element binding signaling in AD and outlines the benefits of targeting PDE4D specifically. We examine the limited available literature that suggests PDE4 expression does not change in AD brains together with reports that show PDE4 inhibition as an effective treatment in this age-related neurodegenerative disease. Actually, aging induces changes in PDE4 expression/activity in an isoform and brain-region specific manner that proposes a similar complexity in AD brains. Therefore, a more detailed account of AD-related alterations in cellular/tissue location and the activation status of PDE4 is required before novel therapies can be developed to target cAMP signaling in this disease.
Collapse
|
45
|
Cherait A, Maucotel J, Lefranc B, Leprince J, Vaudry D. Intranasal Administration of PACAP Is an Efficient Delivery Route to Reduce Infarct Volume and Promote Functional Recovery After Transient and Permanent Middle Cerebral Artery Occlusion. Front Endocrinol (Lausanne) 2020; 11:585082. [PMID: 33551991 PMCID: PMC7855853 DOI: 10.3389/fendo.2020.585082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Intranasal (IN) administration appears to be a suitable route for clinical use as it allows direct delivery of bioactive molecules to the central nervous system, reducing systemic exposure and sides effects. Nevertheless, only some molecules can be transported to the brain from the nasal cavity. This led us to compare the efficiency of an IN, intravenous (IV), and intraperitoneal (IP) administration of pituitary adenylate cyclase-activating polypeptide (PACAP) after transient or permanent middle cerebral artery occlusion (MCAO) in C57BL/6 mice. The results show that the neuroprotective effect of PACAP is much more efficient after IN administration than IV injection while IP injection had no effect. IN administration of PACAP reduced the infarct volume when injected within 6 h after the reperfusion and improved functional recovery up to at least 1 week after the ischemia.
Collapse
Affiliation(s)
- Asma Cherait
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Department of Natural and Life Sciences, Faculty of Sciences, University of Algiers, Algiers, Algeria
- Laboratory of Valorization and Bioengineering of Natural Resources, University of Algiers, Algiers, Algeria
- *Correspondence: David Vaudry, ; Asma Cherait,
| | - Julie Maucotel
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Benjamin Lefranc
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
- *Correspondence: David Vaudry, ; Asma Cherait,
| |
Collapse
|
46
|
Ciranna L, Costa L. Pituitary Adenylate Cyclase-Activating Polypeptide Modulates Hippocampal Synaptic Transmission and Plasticity: New Therapeutic Suggestions for Fragile X Syndrome. Front Cell Neurosci 2019; 13:524. [PMID: 31827422 PMCID: PMC6890831 DOI: 10.3389/fncel.2019.00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic synaptic transmission and plasticity in the hippocampus, a brain area with a key role in learning and memory. In agreement, several studies have demonstrated that PACAP modulates learning in physiological conditions. Recent publications show reduced PACAP levels and/or alterations in PACAP receptor expression in different conditions associated with cognitive disability. It is noteworthy that PACAP administration rescued impaired synaptic plasticity and learning in animal models of aging, Alzheimer's disease, Parkinson's disease, and Huntington's chorea. In this context, results from our laboratory demonstrate that PACAP rescued metabotropic glutamate receptor-mediated synaptic plasticity in the hippocampus of a mouse model of fragile X syndrome (FXS), a genetic form of intellectual disability. PACAP is actively transported through the blood-brain barrier and reaches the brain following intranasal or intravenous administration. Besides, new studies have identified synthetic PACAP analog peptides with improved selectivity and pharmacokinetic properties with respect to the native peptide. Our review supports the shared idea that pharmacological activation of PACAP receptors might be beneficial for brain pathologies with cognitive disability. In addition, we suggest that the effects of PACAP treatment might be further studied as a possible therapy in FXS.
Collapse
Affiliation(s)
- Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
47
|
Liao C, de Molliens MP, Schneebeli ST, Brewer M, Song G, Chatenet D, Braas KM, May V, Li J. Targeting the PAC1 Receptor for Neurological and Metabolic Disorders. Curr Top Med Chem 2019; 19:1399-1417. [PMID: 31284862 PMCID: PMC6761004 DOI: 10.2174/1568026619666190709092647] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/16/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor (PAC1R, ADCYAP1R1) is a member of the vasoactive intestinal peptide (VIP)/secretin/glucagon family of G protein-coupled receptors (GPCRs). PAC1R has been shown to play crucial roles in the central and peripheral nervous systems. The activation of PAC1R initiates diverse downstream signal transduction pathways, including adenylyl cyclase, phospholipase C, MEK/ERK, and Akt pathways that regulate a number of physiological systems to maintain functional homeostasis. Accordingly, at times of tissue injury or insult, PACAP/PAC1R activation of these pathways can be trophic to blunt or delay apoptotic events and enhance cell survival. Enhancing PAC1R signaling under these conditions has the potential to mitigate cellular damages associated with cerebrovascular trauma (including stroke), neurodegeneration (such as Parkinson's and Alzheimer's disease), or peripheral organ insults. Conversely, maladaptive PACAP/PAC1R signaling has been implicated in a number of disorders, including stressrelated psychopathologies (i.e., depression, posttraumatic stress disorder, and related abnormalities), chronic pain and migraine, and metabolic diseases; abrogating PAC1R signaling under these pathological conditions represent opportunities for therapeutic intervention. Given the diverse PAC1R-mediated biological activities, the receptor has emerged as a relevant pharmaceutical target. In this review, we first describe the current knowledge regarding the molecular structure, dynamics, and function of PAC1R. Then, we discuss the roles of PACAP and PAC1R in the activation of a variety of signaling cascades related to the physiology and diseases of the nervous system. Lastly, we examine current drug design and development of peptides and small molecules targeting PAC1R based on a number of structure- activity relationship studies and key pharmacophore elements. At present, the rational design of PAC1R-selective peptide or small-molecule therapeutics is largely hindered by the lack of structural information regarding PAC1R activation mechanisms, the PACAP-PAC1R interface, and the core segments involved in receptor activation. Understanding the molecular basis governing the PACAP interactions with its different cognate receptors will undoubtedly provide a basis for the development and/or refinement of receptor-selective therapeutics.
Collapse
Affiliation(s)
- Chenyi Liao
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | | | - Severin T Schneebeli
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Matthias Brewer
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - David Chatenet
- INRS - Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT 05405, United States
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
48
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
49
|
Sragovich S, Ziv Y, Vaisvaser S, Shomron N, Hendler T, Gozes I. The autism-mutated ADNP plays a key role in stress response. Transl Psychiatry 2019; 9:235. [PMID: 31534115 PMCID: PMC6751176 DOI: 10.1038/s41398-019-0569-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/01/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Activity-dependent neuroprotective protein (ADNP), discovered and first characterized in our laboratory (IG), is vital for mammalian brain formation and presents one of the leading genes mutated de novo causing an autistic syndrome, namely the ADNP syndrome. Furthermore, a unique mouse model of Adnp-haploinsufficiency was developed in the laboratory (IG), with mice exhibiting cognitive and social deficiencies. ADNP is regulated by vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP). In this respect, PACAP was independently identified as a sexual divergent master regulator of the stress response. Here, we sought to determine the impact of the Adnp genotype and the efficacy of PACAP pre-treatment when subjecting Adnp+/- mice to stressful conditions. Significant sex differences were observed with Adnp+/- males being more susceptible to stress in the object and social recognition tests, and the females more susceptible in the open field and elevated plus maze tests. Splenic Adnp expression and plasma cortisol levels in mice were correlated with cognition (male mice) and anxiety-related behavior. These findings were further translated to humans, with observed correlations between ADNP expression and stress/cortisol content in a young men cohort. Altogether, our current results may establish ADNP as a marker of stress response.
Collapse
Affiliation(s)
- Shlomo Sragovich
- 0000 0004 1937 0546grid.12136.37The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Yarden Ziv
- 0000 0004 1937 0546grid.12136.37The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Sharon Vaisvaser
- 0000 0001 0518 6922grid.413449.fFunctional Brain Center, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- 0000 0004 1937 0546grid.12136.37Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Talma Hendler
- 0000 0001 0518 6922grid.413449.fFunctional Brain Center, Wohl Institute for Advanced Imaging, Sourasky Medical Center, Tel Aviv, Israel ,0000 0004 1937 0546grid.12136.37School of Psychological Sciences, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
50
|
Lamine A, Poujol de Molliens M, Létourneau M, Hébert TE, Vaudry D, Fournier A, Chatenet D. The amidated PACAP 1-23 fragment is a potent reduced-size neuroprotective agent. Biochim Biophys Acta Gen Subj 2019; 1863:129410. [PMID: 31401178 DOI: 10.1016/j.bbagen.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by neuronal death involving, among other events, mitochondrial dysfunction and excitotoxicity. Along these lines, several attempts have been made to slow this pathology but none have been yet discovered. Based on its capacity to cross the blood-brain barrier and provide neuronal protection in vitro and in vivo, the pituitary adenylate cyclase-activating polypeptide (PACAP) represents a promising lead molecule. Pharmacological studies showed that PACAP interacts with three different G protein-coupled receptors, i.e. PAC1, VPAC1 and VPAC2. However, only PAC1 is associated with neuronal anti-apoptotic actions, whilst VPAC activation might cause adverse effects. In the context of the development of PAC1-selective agonists, PACAP(1-23) (PACAP23) appears as the shortest known PACAP bioactive fragment. METHODS Hence, the capacity of this peptide to bind PACAP receptors and protect neuroblastoma cells was evaluated under conditions of mitochondrial dysfunction and glutamate excitotoxicity. In addition, its ability to activate downstream signaling events involving G proteins (Gαs and Gαq), EPAC, and calcium was also assessed. RESULTS Compared to the endogenous peptide, PACAP23 showed a reduced affinity towards PAC1, although this fragment exerted potent neuroprotection. However, surprisingly, some disparities were observed for PACAP23 signaling compared to full length PACAP, suggesting that downstream signaling related to neuroprotection is distinctly regulated following subtle differences in their PAC1 interactions. CONCLUSIONS Altogether, this study demonstrates the potent neuroprotective action of amidated PACAP23. GENERAL SIGNIFICANCE PACAP23 represents an attractive template for development of shorter PACAP-derived neuroprotective molecules.
Collapse
Affiliation(s)
- A Lamine
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - M Poujol de Molliens
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada
| | - M Létourneau
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada
| | - T E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - D Vaudry
- INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - A Fournier
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada.
| | - D Chatenet
- INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada.
| |
Collapse
|