1
|
Singh S, Kumar P, Padwad YS, Jaffer FA, Reed GL. Targeting Fibrinolytic Inhibition for Venous Thromboembolism Treatment: Overview of an Emerging Therapeutic Approach. Circulation 2024; 150:884-898. [PMID: 39250537 PMCID: PMC11433585 DOI: 10.1161/circulationaha.124.069728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Venous thrombosis and pulmonary embolism (venous thromboembolism) are important causes of morbidity and mortality worldwide. In patients with venous thromboembolism, thrombi obstruct blood vessels and resist physiological dissolution (fibrinolysis), which can be life threatening and cause chronic complications. Plasminogen activator therapy, which was developed >50 years ago, is effective in dissolving thrombi but has unacceptable bleeding risks. Safe dissolution of thrombi in patients with venous thromboembolism has been elusive despite multiple innovations in plasminogen activator design and catheter-based therapy. Evidence now suggests that fibrinolysis is rigidly controlled by endogenous fibrinolysis inhibitors, including α2-antiplasmin, plasminogen activator inhibitor-1, and thrombin-activable fibrinolysis inhibitor. Elevated levels of these fibrinolysis inhibitors are associated with an increased risk of venous thromboembolism in humans. New therapeutic paradigms suggest that accelerated and effective fibrinolysis may be achieved safely by therapeutically targeting these fibrinolytic inhibitors in venous thromboembolism. In this article, we discuss the role of fibrinolytic components in venous thromboembolism and the current status of research and development targeting fibrinolysis inhibitors.
Collapse
Affiliation(s)
- Satish Singh
- Protein Processing Center, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Translational Cardiovascular Research Center, Dept. of Medicine, University of Arizona, College of Medicine-Phoenix, AZ, USA
| | - Pardeep Kumar
- Protein Processing Center, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yogendra S. Padwad
- Protein Processing Center, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Farouc A. Jaffer
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Guy L. Reed
- Translational Cardiovascular Research Center, Dept. of Medicine, University of Arizona, College of Medicine-Phoenix, AZ, USA
| |
Collapse
|
2
|
Isolation and Characterization of NpCI, a New Metallocarboxypeptidase Inhibitor from the Marine Snail Nerita peloronta with Anti- Plasmodium falciparum Activity. Mar Drugs 2023; 21:md21020094. [PMID: 36827135 PMCID: PMC9966942 DOI: 10.3390/md21020094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Metallocarboxypeptidases are zinc-dependent peptide-hydrolysing enzymes involved in several important physiological and pathological processes. They have been a target of growing interest in the search for natural or synthetic compound binders with biomedical and drug discovery purposes, i.e., with potential as antimicrobials or antiparasitics. Given that marine resources are an extraordinary source of bioactive molecules, we screened marine invertebrates for new inhibitory compounds with such capabilities. In this work, we report the isolation and molecular and functional characterization of NpCI, a novel strong metallocarboxypeptidase inhibitor from the marine snail Nerita peloronta. NpCI was purified until homogeneity using a combination of affinity chromatography and RP-HPLC. It appeared as a 5921.557 Da protein with 53 residues and six disulphide-linked cysteines, displaying a high sequence similarity with NvCI, a carboxypeptidase inhibitor isolated from Nerita versicolor, a mollusc of the same genus. The purified inhibitor was determined to be a slow- and tight-binding inhibitor of bovine CPA (Ki = 1.1·× 10-8 mol/L) and porcine CPB (Ki = 8.15·× 10-8 mol/L) and was not able to inhibit proteases from other mechanistic classes. Importantly, this inhibitor showed antiplasmodial activity against Plasmodium falciparum in an in vitro culture (IC50 = 5.5 μmol/L), reducing parasitaemia mainly by inhibiting the later stages of the parasite's intraerythrocytic cycle whilst having no cytotoxic effects on human fibroblasts. Interestingly, initial attempts with other related proteinaceous carboxypeptidase inhibitors also displayed similar antiplasmodial effects. Coincidentally, in recent years, a metallocarboxypeptidase named PfNna1, which is expressed in the schizont phase during the late intraerythrocytic stage of the parasite's life cycle, has been described. Given that NpCI showed a specific parasiticidal effect on P. falciparum, eliciting pyknotic/dead parasites, our results suggest that this and related inhibitors could be promising starting agents or lead compounds for antimalarial drug discovery strategies.
Collapse
|
3
|
Altin N, Altay FA, Albayrak M, Sahingoz SO, Sencan I. Serum thrombin-activatable fibrinolysis inhibitor levels and its relation with pathogenesis and bleeding and prognosis in patients with Crimean Congo hemorrhagic fever. J Med Virol 2023; 95:e28182. [PMID: 36175009 DOI: 10.1002/jmv.28182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a viral hemorrhagic fever, which is common in Turkey and globally. The pathogenesis of coagulation disorders, which is seen in viral hemorrhagic fevers remains to be elucidated. Thrombin-activatable fibrinolysis inhibitor (TAFI) has a key role in this process In this study, we aimed to evaluate whether TAFI levels contributed to bleeding and whether it is related to prognosis in CCHF patients. Eighty-four patients older than 15 years of age, who were admitted to our hospital who had positive immunoglobulin M (enzyme-linked immunosorbent assay [ELISA]) and/or polymerase chain reaction test results for CCHF between 2009 and 2010, were included in the study. The control group included 30 healthy adults. The plasma TAFI levels were compared between patients and controls, and also between patients with bleeding and no bleeding, and between patients with mild-moderate and severe disease. The mean TAFI levels were lower in patients (mean: 87.82 ng/ml, median: 61.69 ng/ml (interquartile range [IQR] 30.49-537.95) than controls (mean: 313.5 ng/ml with a median: 338.5 ng/ml (IQR 182-418). However, median TAFI levels were significantly higher in patients with bleeding compared to those without bleeding (78.99 and 50.28 ng/ml, respectively; p = 0.032). Median IQR TAFI levels were similar between patients with mild-moderate and severe disease (64.72 (41.37-113.85), and, 58.66 (42.44-118.93) ng/ml, respectively; p = 0.09) and survivors and nonsurvivors (86.14 ± 77.98 and 103.48 ± 69.92, respectively; p = 0.3). Although TAFI levels were lower in the patients with CCHF compared to healthy controls, it does not seem to be a major player in the prognosis.
Collapse
Affiliation(s)
- Nilgun Altin
- Department of Infectious Diseases and Clinical Microbiology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Fatma Aybala Altay
- Department of Infectious Diseases and Clinical Microbiology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Murat Albayrak
- Department of Hematology University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Seyda Ozdemir Sahingoz
- Department of Biochemistry University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Irfan Sencan
- Department of Infectious Diseases and Clinical Microbiology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
4
|
Fibrinogen and Antifibrinolytic Proteins: Interactions and Future Therapeutics. Int J Mol Sci 2021; 22:ijms222212537. [PMID: 34830419 PMCID: PMC8625824 DOI: 10.3390/ijms222212537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombus formation remains a major cause of morbidity and mortality worldwide. Current antiplatelet and anticoagulant therapies have been effective at reducing vascular events, but at the expense of increased bleeding risk. Targeting proteins that interact with fibrinogen and which are involved in hypofibrinolysis represents a more specific approach for the development of effective and safe therapeutic agents. The antifibrinolytic proteins alpha-2 antiplasmin (α2AP), thrombin activatable fibrinolysis inhibitor (TAFI), complement C3 and plasminogen activator inhibitor-2 (PAI-2), can be incorporated into the fibrin clot by FXIIIa and affect fibrinolysis by different mechanisms. Therefore, these antifibrinolytic proteins are attractive targets for the development of novel therapeutics, both for the modulation of thrombosis risk, but also for potentially improving clot instability in bleeding disorders. This review summarises the main properties of fibrinogen-bound antifibrinolytic proteins, their effect on clot lysis and association with thrombotic or bleeding conditions. The role of these proteins in therapeutic strategies targeting the fibrinolytic system for thrombotic diseases or bleeding disorders is also discussed.
Collapse
|
5
|
Mertens JC, Boisseau W, Leenaerts D, Di Meglio L, Loyau S, Lambeir AM, Ducroux C, Jandrot-Perrus M, Michel JB, Mazighi M, Hendriks D, Desilles JP. Selective inhibition of carboxypeptidase U may reduce microvascular thrombosis in rat experimental stroke. J Thromb Haemost 2020; 18:3325-3335. [PMID: 32869423 DOI: 10.1111/jth.15071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Carboxypeptidase U (CPU, CPB2, TAFIa) is a potent attenuator of fibrinolysis. The inhibition of CPU is thus an interesting strategy for improving thrombolysis. OBJECTIVES The time course of CPU generation and proCPU consumption were assessed in an experimental rat model of acute ischemic stroke (AIS). In addition, the effects of the selective CPU inhibitor AZD9684 on CPU kinetics, microvascular thrombosis (MT), and AIS outcome were evaluated. METHODS Rats were subjected to transient middle cerebral artery occlusion (tMCAO) and received recombinant tissue-type plasminogen activator (tPA), a specific CPU inhibitor (AZD9684), combination therapy of tPA and AZD9684, or saline for 1 hour using a randomized treatment regime. CPU and proCPU levels were determined at five time points and assessed in light of outcome parameters (a.o.: infarct volume and fibrin[ogen] deposition as a measure for MT). RESULTS Clear activation of the CPU system was observed after AIS induction, in both saline- and tPA-treated rats. Maximal CPU activities were observed at treatment cessation and were higher in tPA-treated animals compared to the saline group. Concomitant proCPU consumption was more pronounced in tPA-treated rats. AZD9684 suppressed the CPU activity and reduced fibrin(ogen) deposition, suggesting a reduction of MT. Nonetheless, a significant decrease in infarct volume was not observed. CONCLUSIONS A pronounced activation of the CPU system was observed during tMCAO in rats. Selective inhibition of CPU with AZD9684 was able to reduce fibrin(ogen) deposition and brain edema, suggesting a reduction of MT but without a significant effect on final infarct volume.
Collapse
Affiliation(s)
- Joachim C Mertens
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - William Boisseau
- Laboratory for Vascular Translational Sciences, UMR_S1148 Inserm, University of Paris, Paris, France
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Dorien Leenaerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lucas Di Meglio
- Laboratory for Vascular Translational Sciences, UMR_S1148 Inserm, University of Paris, Paris, France
| | - Stéphane Loyau
- Laboratory for Vascular Translational Sciences, UMR_S1148 Inserm, University of Paris, Paris, France
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Célina Ducroux
- Laboratory for Vascular Translational Sciences, UMR_S1148 Inserm, University of Paris, Paris, France
| | - Martine Jandrot-Perrus
- Laboratory for Vascular Translational Sciences, UMR_S1148 Inserm, University of Paris, Paris, France
| | - Jean-Baptiste Michel
- Laboratory for Vascular Translational Sciences, UMR_S1148 Inserm, University of Paris, Paris, France
| | - Mikael Mazighi
- Laboratory for Vascular Translational Sciences, UMR_S1148 Inserm, University of Paris, Paris, France
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| | - Dirk Hendriks
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Philippe Desilles
- Laboratory for Vascular Translational Sciences, UMR_S1148 Inserm, University of Paris, Paris, France
- Department of Interventional Neuroradiology, Rothschild Foundation Hospital, Paris, France
| |
Collapse
|
6
|
Vadivel K, Kumar Y, Ogueli GI, Ponnuraj SM, Wongkongkathep P, Loo JA, Bajaj MS, Bajaj SP. S2'-subsite variations between human and mouse enzymes (plasmin, factor XIa, kallikrein) elucidate inhibition differences by tissue factor pathway inhibitor -2 domain1-wild-type, Leu17Arg-mutant and aprotinin. J Thromb Haemost 2016; 14:2509-2523. [PMID: 27797450 PMCID: PMC5504414 DOI: 10.1111/jth.13538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/20/2022]
Abstract
Essentials Current antifibrinolytics - aminocaproic acid and tranexamic acid-can cause seizures or renal injury. KD1L17R -KT , aprotinin and tranexamic acid were tested in a modified mouse tail-amputation model. S2'-subsite variations between human and mouse factor XIa result in vastly different inhibition profiles. KD1L17R -KT reduces blood loss and D-dimer levels in mouse with unobserved seizures or renal injury. SUMMARY Background Using tissue factor pathway inhibitor (TFPI)-2 Kunitz domain1 (KD1), we obtained a bifunctional antifibrinolytic molecule (KD1L17R -KT ) with C-terminal lysine (kringle domain binding) and P2'-residue arginine (improved specificity towards plasmin). KD1L17R -KT strongly inhibited human plasmin (hPm), with no inhibition of human kallikrein (hKLK) or factor XIa (hXIa). Furthermore, KD1L17R -KT reduced blood loss comparable to aprotinin in a mouse liver-laceration model of organ hemorrhage. However, effectiveness of these antifibrinolytic agents in a model of hemorrhage mimicking extremity trauma and their inhibition efficiencies for mouse enzymes (mPm, mKLK or mXIa) remain to be determined. Objective To determine potential differences in inhibition constants of various antifibrinolytic agents against mouse and human enzymes and test their effectiveness in a modified mouse tail-amputation hemorrhage model. Methods/Results Unexpectedly, mXIa was inhibited with ~ 17-fold increased affinity by aprotinin (Ki ~ 20 nm) and with measurable affinity for KD1L17R -KT (Ki ~ 3 μm); in contrast, KD1WT -VT inhibited hXIa or mXIa with similar affinity. Compared with hPm, mPm had ~ 3-fold reduced affinity, whereas species specificity for hKLK and mKLK was comparable for each inhibitor. S2'-subsite variations largely accounted for the observed differences. KD1L17R -KT and aprotinin were more effective than KD1WT -VT or tranexamic acid in inhibiting tPA-induced mouse plasma clot lysis. Further, KD1L17R -KT was more effective than KD1WT -VT and was comparable to aprotinin and tranexamic acid in reducing blood loss and D-dimer levels in the mouse tail-amputation model. Conclusions Inhibitor potencies differ between antifibrinolytic agents against human and mouse enzymes. KD1L17R -KT is effective in reducing blood loss in a tail-amputation model that mimics extremity injury.
Collapse
Affiliation(s)
- K Vadivel
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | - Y Kumar
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | - G I Ogueli
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | - S M Ponnuraj
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
| | - P Wongkongkathep
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - J A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - M S Bajaj
- Division of Pulmonology and Critical Care, Department of Medicine, University of California, Los Angeles, CA, USA
| | - S P Bajaj
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Shao Z, Nishimura T, Leung LLK, Morser J. Carboxypeptidase B2 deficiency reveals opposite effects of complement C3a and C5a in a murine polymicrobial sepsis model. J Thromb Haemost 2015; 13:1090-102. [PMID: 25851247 PMCID: PMC4452409 DOI: 10.1111/jth.12956] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Carboxypeptidase B2 (CPB2) is a basic carboxypeptidase with fibrin and complement C3a and C5a as physiological substrates. We hypothesized that in polymicrobial sepsis, CPB2-deficient mice would have sustained C5a activity, leading to disease exacerbation. METHODS Polymicrobial sepsis was induced by cecal ligation and puncture (CLP). RESULTS Contrary to our hypothesis, Cpb2(-/-) mice had significantly improved survival, with reduced lung edema, less liver and kidney damage, and less disseminated intravascular coagulation. Hepatic pro-CPB2 was induced by CLP, leading to increased pro-CPB2 levels. Thrombomodulin present on mesothelium supported thrombin activation of pro-CPB2. Both wild-type and Cpb2(-/-) animals treated with a C5a receptor antagonist had improved survival, demonstrating that C5a was detrimental in this model. Treatment with a fibrinolysis inhibitor, tranexamic acid, caused a decrease in survival in both genotypes; however, the Cpb2(-/-) animals retained their survival advantage. Administration of a C3a receptor antagonist exacerbated the disease in both wild-type and Cpb2(-/-) mice and eliminated the survival advantage of Cpb2(-/-) mice. C5a receptor is expressed in both peritoneal macrophages and neutrophils; in contrast, C3a receptor expression is restricted to peritoneal macrophages, and C3a induced signaling in macrophages but not neutrophils. CONCLUSIONS While C5a exacerbates the peritonitis, resulting in a deleterious generalized inflammatory state, C3a activation of peritoneal macrophages may limit the initial infection following CLP, thereby playing a diametrically opposing protective role in this polymicrobial sepsis model.
Collapse
Affiliation(s)
- Z. Shao
- Stanford University School of Medicine, Division of Hematology, Department of Medicine, Stanford, CA 94305, USA and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - T. Nishimura
- Stanford University School of Medicine, Department of Anesthesiology, Stanford, CA 94305, USA
| | - L. L. K. Leung
- Stanford University School of Medicine, Division of Hematology, Department of Medicine, Stanford, CA 94305, USA and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - J. Morser
- Stanford University School of Medicine, Division of Hematology, Department of Medicine, Stanford, CA 94305, USA and Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
8
|
Sapio MR, Fricker LD. Carboxypeptidases in disease: insights from peptidomic studies. Proteomics Clin Appl 2014; 8:327-37. [PMID: 24470285 DOI: 10.1002/prca.201300090] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/10/2013] [Accepted: 10/30/2013] [Indexed: 12/19/2022]
Abstract
Carboxypeptidases (CPs) perform many diverse physiological functions by removing C-terminal amino acids from proteins and peptides. Some CPs function in the degradation of proteins in the digestive tract while other enzymes play biosynthetic roles in the formation of neuropeptides and peptide hormones. Another set of CPs modify tubulin by removing amino acids from the C-terminus and from polyglutamyl side chains, thereby altering the properties of microtubules. This review focuses on three CPs: carboxypeptidase E, carboxypeptidase A6, and cytosolic carboxypeptidase 1. Naturally occurring mutations in all three of these enzymes are associated with disease phenotypes, ranging from obesity to epilepsy to neurodegeneration. Peptidomics is a useful tool to investigate the relationship between these mutations and alterations in peptide levels. This technique has also been used to define the function and characteristics of CPs. Results from peptidomics studies have helped to elucidate the function of CPs and clarify the biological underpinnings of pathologies by identifying peptides altered in disease states. This review describes the use of peptidomic techniques to gain insights into the normal function of CPs and the molecular defects caused by mutations in the enzymes.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
9
|
Martin FA, Murphy RP, Cummins PM. Thrombomodulin and the vascular endothelium: insights into functional, regulatory, and therapeutic aspects. Am J Physiol Heart Circ Physiol 2013; 304:H1585-97. [PMID: 23604713 PMCID: PMC7212260 DOI: 10.1152/ajpheart.00096.2013] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thrombomodulin (TM) is a 557-amino acid protein with a broad cell and tissue distribution consistent with its wide-ranging physiological roles. When expressed on the lumenal surface of vascular endothelial cells in both large vessels and capillaries, its primary function is to mediate endothelial thromboresistance. The complete integral membrane-bound protein form displays five distinct functional domains, although shorter soluble (functional) variants comprising the extracellular domains have also been reported in fluids such as serum and urine. TM-mediated binding of thrombin is known to enhance the specificity of the latter serine protease toward both protein C and thrombin activatable fibrinolysis inhibitor (TAFI), increasing their proteolytic activation rate by almost three orders of magnitude with concomitant anticoagulant, antifibrinolytic, and anti-inflammatory benefits to the vascular wall. Recent years have seen an abundance of research into the cellular mechanisms governing endothelial TM production, processing, and regulation (including flow-mediated mechanoregulation)--from transcriptional and posttranscriptional (miRNA) regulation of TM gene expression, to posttranslational processing and release of the expressed protein--facilitating greater exploitation of its therapeutic potential. The goal of the present paper is to comprehensively review the endothelial/TM system from these regulatory perspectives and draw some fresh conclusions. This paper will conclude with a timely examination of the current status of TM's growing therapeutic appeal, from novel strategies to improve the clinical efficacy of recombinant TM analogs for resolution of vascular disorders such as disseminated intravascular coagulation (DIC), to an examination of the complex pleiotropic relationship between statin treatment and TM expression.
Collapse
Affiliation(s)
- Fiona A Martin
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
10
|
Foley JH, Kim PY, Mutch NJ, Gils A. Insights into thrombin activatable fibrinolysis inhibitor function and regulation. J Thromb Haemost 2013; 11 Suppl 1:306-15. [PMID: 23809134 DOI: 10.1111/jth.12216] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibrinolysis is initiated when the zymogen plasminogen is converted to plasmin via the action of plasminogen activators. Proteolytic cleavage of fibrin by plasmin generates C-terminal lysine residues capable of binding both plasminogen and the plasminogen activator, thereby stimulating plasminogen activator-mediated plasminogen activation and propagating fibrinolysis. This positive feedback mechanism is regulated by activated thrombin activatable fibrinolysis inhibitor (TAFIa), which cleaves C-terminal lysine residues from the fibrin surface, thereby decreasing its cofactor activity. TAFI can be activated by thrombin alone, but the rate of activation is accelerated when in complex with thrombomodulin. Plasmin is also known to activate TAFI. TAFIa has no known physiologic inhibitors and consequently, its primary regulatory mechanism involves its intrinsic thermal instability. The rate of TAFI activation and stability of the active form, TAFIa, function in maintaining its concentration above the threshold value required to down-regulate fibrinolysis. Although all methods to quantify TAFI or TAFIa have their limitations, epidemiologic studies have indicated that elevated TAFI levels are correlated with an increased risk of venous thrombosis. Major efforts have been made to develop TAFI inhibitors that can either directly interfere with TAFIa activity or impair its activation. However, the anti-inflammatory properties of TAFIa might complicate the development and application of a TAFIa inhibitor that aims to increase the efficiency of thrombolytic therapy.
Collapse
Affiliation(s)
- J H Foley
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
11
|
Hugenholtz GCG, Meijers JCM, Adelmeijer J, Porte RJ, Lisman T. TAFI deficiency promotes liver damage in murine models of liver failure through defective down-regulation of hepatic inflammation. Thromb Haemost 2013; 109:948-55. [PMID: 23467679 DOI: 10.1160/th12-12-0930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/04/2013] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that various haemostatic components can regulate the progression of liver disease. Thrombin-activatable fibrinolysis inhibitor (TAFI) possesses anti-inflammatory properties besides its anti-fibrinolytic function. Here, we investigated the contribution of TAFI to the progression of disease in murine models of chronic and acute liver failure. Chronic carbon tetrachloride (CCL4) administration induced liver damage and fibrosis both in TAFI knockout (TAFI-/-) mice and wild-type controls. Smooth muscle actin-α (α-SMA) content of liver tissue was significantly increased after 1 and 3 weeks, and pro-collagen α1 expression was significantly increased after 3 and 6 weeks in TAFI-/- mice. TAFI-/- mice showed significantly elevated levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) after 3 weeks of CCL4. Neutrophil influx was significantly increased in TAFI-/- mice after 6 weeks of CCL4. No difference in hepatic fibrin deposition between TAFI-/- and wild-types was observed. After acetaminophen intoxication, necrosis was significantly increased in TAFI-/- mice at 24 hours (h) after injection. AST and ALT levels were decreased at 2 and 6 h after acetaminophen injection in TAFI-/- mice, but were significantly higher in the TAFI-/- mice at 24 h. Similarly, hepatic fibrin deposition was decreased at 6 h in TAFI-/- mice, but was comparable to wild-types at 24 h after injection. In conclusion, TAFI deficiency results in accelerated fibrogenesis and increased liver damage in murine models of chronic and acute liver disease, which may be related to increased inflammation.
Collapse
Affiliation(s)
- G C G Hugenholtz
- Department of Surgery, BA44, University Medical Center Groningen, Groningen, the Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Vercauteren E, Peeters M, Hoylaerts MF, Lijnen HR, Meijers JCM, Declerck PJ, Gils A. The hyperfibrinolytic state of mice with combined thrombin-activatable fibrinolysis inhibitor (TAFI) and plasminogen activator inhibitor-1 gene deficiency is critically dependent on TAFI deficiency. J Thromb Haemost 2012; 10:2555-62. [PMID: 23083123 DOI: 10.1111/jth.12036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mice with single gene deficiency of thrombin-activatable fibrinolysis inhibitor (TAFI) or plasminogen activator inhibitor-1 (PAI-1) have an enhanced fibrinolytic capacity. OBJECTIVES To unravel the function and relevance of both antifibrinolytic proteins through the generation and characterization of mice with combined TAFI and PAI-1 gene deficiency. RESULTS Mating of TAFI knockout (KO) mice with PAI-1 KO mice resulted in the production of TAFI/PAI-1 double-KO mice that were viable, were fertile, and developed normally. In a tail vein bleeding model, the bleeding time and hemoglobin content of the TAFI/PAI-1 double-KO mice did not deviate significantly from those of the single-KO mice or of the wild-type (WT) counterparts. Interestingly, in ex vivo rotational thromboelastometry measurements with whole blood samples, TAFI KO mice and TAFI/PAI-1 double-KO mice were more sensitive to fibrinolytic activation with tissue-type plasminogen activator than WT or PAI-1 KO mice. This enhanced fibrinolytic capacity was confirmed in vivo in a mouse thromboembolism model, as shown by decreased fibrin deposition in the lungs of TAFI KO mice and TAFI/PAI-1 double-KO mice as compared with WT or PAI-1 KO mice. CONCLUSIONS TAFI gene inactivation predominantly contributes to the increased fibrinolytic capacity of TAFI and PAI-1 double-gene-deficient mice, as observed in some basic thrombosis models.
Collapse
Affiliation(s)
- E Vercauteren
- Laboratory for Pharmaceutical Biology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Endothelial cells form the inner lining of vascular networks and maintain blood fluidity by inhibiting blood coagulation and promoting blood clot dissolution (fibrinolysis). Plasmin, the primary fibrinolytic enzyme, is generated by the cleavage of the plasma protein, plasminogen, by its activator, tissue plasminogen activator. This reaction is regulated by plasminogen receptors at the surface of the vascular endothelial cells. Previous studies have identified the plasminogen receptor protein S100A10 as a key regulator of plasmin generation by cancer cells and macrophages. Here we examine the role of S100A10 and its annexin A2 binding partner in endothelial cell function using a homozygous S100A10-null mouse. Compared with wild-type mice, S100A10-null mice displayed increased deposition of fibrin in the vasculature and reduced clearance of batroxobin-induced vascular thrombi, suggesting a role for S100A10 in fibrinolysis in vivo. Compared with wild-type cells, endothelial cells from S100A10-null mice demonstrated a 40% reduction in plasminogen binding and plasmin generation in vitro. Furthermore, S100A10-deficient endothelial cells demonstrated impaired neovascularization of Matrigel plugs in vivo, suggesting a role for S100A10 in angiogenesis. These results establish an important role for S100A10 in the regulation of fibrinolysis and angiogenesis in vivo, suggesting S100A10 plays a critical role in endothelial cell function.
Collapse
|
14
|
Declerck PJ. Thrombin activatable fibrinolysis inhibitor. Hamostaseologie 2011; 31:165-6, 168-73. [PMID: 21629966 DOI: 10.5482/ha-1155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/26/2011] [Indexed: 12/14/2022] Open
Abstract
Thrombin activatable fibrinolysis inhibitor (TAFI) was discovered two decades ago as a consequence of the identification of an unstable carboxypeptidase (CPU), which was formed upon thrombin activation of the respective pro-enzyme (proCPU). The antifibrinolytic function of the activated form (TAFIa, CPU) is directly linked to its capacity to remove C-terminal lysines from the surface of the fibrin clot. No endogenous inhibitors have been identified, but TAFIa activity is regulated by its intrinsic temperature-dependent instability with a half-life of 8 to 15 min at 37 °C. A variety of studies have demonstrated a role for TAFI/TAFIa in venous and arterial diseases. In addition, a role in inflammation and cell migration has been shown. Since an elevated level of TAFIa it is a potential risk factor for thrombotic disorders, many inhibitors, both at the level of activation or at the level of activity, have been developed and were proven to exhibit a profibrinolytic effect in animal models. Pharmacologically active inhibitors of the TAFI/TAFIa system may open new ways for the prevention of thrombotic diseases or for the establishment of adjunctive treatments during thrombolytic therapy.
Collapse
Affiliation(s)
- P J Declerck
- Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
15
|
Kraft P, Schwarz T, Meijers JCM, Stoll G, Kleinschnitz C. Thrombin-activatable fibrinolysis inhibitor (TAFI) deficient mice are susceptible to intracerebral thrombosis and ischemic stroke. PLoS One 2010; 5:e11658. [PMID: 20657835 PMCID: PMC2906507 DOI: 10.1371/journal.pone.0011658] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/27/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Thrombus formation is a key step in the pathophysiology of acute ischemic stroke and results from the activation of the coagulation cascade. Thrombin plays a central role in this coagulation system and contributes to thrombus stability via activation of thrombin-activatable fibrinolysis inhibitor (TAFIa). TAFIa counteracts endogenous fibrinolysis at different stages and elevated TAFI levels are a risk factor for thrombotic events including ischemic stroke. Although substantial in vitro data on the influence of TAFI on the coagulation-fibrinolysis-system exist, investigations on the consequences of TAFI inhibition in animal models of cerebral ischemia are still lacking. In the present study we analyzed stroke development and post stroke functional outcome in TAFI-/- mice. METHODOLOGY/PRINCIPAL FINDINGS TAFI-/- mice and wild-type controls were subjected to 60 min transient middle cerebral artery occlusion (tMCAO) using the intraluminal filament method. After 24 hours, functional outcome scores were assessed and infarct volumes were measured from 2,3,5-Triphenyltetrazoliumchloride (TTC)-stained brain slices. Hematoxylin and eosin (H&E) staining was used to estimate the extent of neuronal cell damage. Thrombus formation within the infarcted brain areas was analyzed by immunoblot. Infarct volumes and functional outcomes did not significantly differ between TAFI-/- mice and controls (p>0.05). Histology revealed extensive ischemic neuronal damage regularly including the cortex and the basal ganglia in both groups. TAFI deficiency also had no influence on intracerebral fibrin(ogen) formation after tMCAO. CONCLUSION Our study shows that TAFI does not play a major role for thrombus formation and neuronal degeneration after ischemic brain challenge.
Collapse
Affiliation(s)
- Peter Kraft
- Department of Neurology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Buelens K, Hassanzadeh-Ghassabeh G, Muyldermans S, Gils A, Declerck PJ. Generation and characterization of inhibitory nanobodies towards thrombin activatable fibrinolysis inhibitor. J Thromb Haemost 2010; 8:1302-12. [PMID: 20180900 DOI: 10.1111/j.1538-7836.2010.03816.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE As activated thrombin-activatable fibrinolysis inhibitor (TAFIa) is a potent antifibrinolytic enzyme, the development of TAFI inhibitors is a new promising approach in the development of profibrinolytic drugs. We, therefore, aimed to generate nanobodies, camelid-derived single-domain antibodies towards TAFI. METHODS AND RESULTS This study reports the generation and characterization of a panel of 22 inhibitory nanobodies. This panel represents a wide diversity in mechanisms for interference with the functional properties of TAFI as the nanobodies interfere with various modes of TAFI activation, TAFIa activity and/or TAFI zymogen activity. Nanobodies inhibiting TAFIa activity and thrombin/thrombomodulin-mediated TAFI activation revealed profibrinolytic properties in a clot lysis experiment with exogenously added thrombomodulin (TM), whereas nanobodies inhibiting plasmin-mediated TAFI activation only revealed profibrinolytic properties in a clot lysis experiment without TM. The results of in vitro clot lysis experiments provided evidence that inhibitory nanobodies penetrate the clot better compared with inhibitory monoclonal antibodies. CONCLUSIONS These data suggest that the generated nanobodies are potent TAFI inhibitors and are a step forward in the development of a profibrinolytic drug. They might also be an excellent tool to unravel the role of the physiological activators of TAFI in various pathophysiological processes.
Collapse
Affiliation(s)
- K Buelens
- Laboratory for Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
17
|
Morser J, Gabazza EC, Myles T, Leung LLK. What has been learnt from the thrombin-activatable fibrinolysis inhibitor-deficient mouse? J Thromb Haemost 2010; 8:868-76. [PMID: 20128866 DOI: 10.1111/j.1538-7836.2010.03787.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY Thrombin-activatable fibrinolysis inhibitor (TAFI) is a circulating zymogen that is activated physiologically by the thrombin/thrombomodulin complex to activated TAFI (TAFIa) which is a basic carboxypeptidase. Substrates include fibrin, leading to a reduction in rate of plasmin generation, and several proinflammatory mediators such as bradykinin, thrombin-cleaved osteopontin and complement factor C5a. TAFI-deficient mice have no phenotype without being challenged and TAFIa appears to play a limited role in physiological fibrinolysis in vivo. In several disease models, the TAFI-deficient mice have different outcomes from the wild type (WT), but whether the difference is beneficial or an exacerbation of the disease depends on the model. The consequences of TAFI deficiency include increased plasmin as a result of enhanced incorporation of plasminogen and tissue plasminogen activator into the fibrin clot, but also loss of its ability to degrade other substrates, with the resultant up-regulation of several proinflammatory mediators, including C5a. Criteria are recommended to demonstrate that a substrate is a physiological substrate of TAFIa.
Collapse
Affiliation(s)
- J Morser
- Division of Hematology, Stanford University, School of Medicine, CA 94305, USA.
| | | | | | | |
Collapse
|
18
|
Willemse JL, Heylen E, Nesheim ME, Hendriks DF. Carboxypeptidase U (TAFIa): a new drug target for fibrinolytic therapy? J Thromb Haemost 2009; 7:1962-71. [PMID: 19719827 PMCID: PMC3170991 DOI: 10.1111/j.1538-7836.2009.03596.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Procarboxypeptidase U (TAFI) is a recently discovered plasma procarboxypeptidase that upon activation by thrombin or thrombin-thrombomodulin turns into a potent antifibrinolytic enzyme. Its prominent bridging function between coagulation and fibrinolysis raised the interest of many research groups and of the pharmaceutical industry. The development of carboxypeptidase U (CPU) inhibitors as profibrinolytic agents is an attractive concept and possibilities for rational drug design will become more readily available in the near future as a result of the recently published crystal structure. Numerous studies have been performed and many of them show beneficial effects of CPU inhibitors for the improvement of endogenous fibrinolysis in different animal sepsis and thrombosis models. CPU inhibitors combined with tissue-type plasminogen activator (t-PA) seem to increase the efficiency of pharmacological thrombolysis allowing lower dosing of t-PA and subsequently fewer bleeding complications. This review will focus on recently obtained in vivo data and the benefits/risks of targeting CPU for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Johan L. Willemse
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Evelien Heylen
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Michael. E. Nesheim
- Departments of Biochemistry and Medicine, Queen’s University, Ontario, Canada
| | - Dirk F. Hendriks
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Binding of Thrombin Activatable Fibrinolysis Inhibitor (TAFI) to Plasminogen May Play a Role in the Fibrinolytic Pathway. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.11.2209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Abstract
The plasminogen activator (PA) system, which controls the formation and activity of plasmin, plays a key role in modulating hemostasis, thrombosis, and several other biological processes. While a great deal is known about the function of the PA system, it remains a focus of intensive investigation, and the list of biological pathways and human diseases that are modulated by normal and pathologic function of its components continues to lengthen. Because of remarkable advances in molecular genetics, the laboratory mouse has become the most useful animal system to study the normal and pathologic functions of the PA system. The purpose of this review is to summarize studies that have used genetically modified mice to examine the functions of the PA system in hemostasis and thrombosis, intimal hyperplasia after vascular injury, and atherosclerosis. Particular emphasis is placed on the vascular functions of PA inhibitor-1, a key regulator of the PA system, and the multiple variables that appear to account for the complex role of PA inhibitor-1 in regulating vascular remodeling. Lastly, the strengths and limitations of using mice to model human vascular disease processes are discussed.
Collapse
Affiliation(s)
- William P Fay
- Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
21
|
Mutch NJ, Thomas L, Moore NR, Lisiak KM, Booth NA. TAFIa, PAI-1 and alpha-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots. J Thromb Haemost 2007; 5:812-7. [PMID: 17388801 DOI: 10.1111/j.1538-7836.2007.02430.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PAI-1 and alpha(2)-antiplasmin (alpha(2)AP) are the principal direct inhibitors of fibrinolytic proteases. Thrombin activatable fibrinolysis inhibitor (TAFI), a plasma procarboxypeptidase activated by thrombin-thrombomodulin to form TAFIa, also regulates fibrinolysis by modulating fibrin. In this study, the relative contributions of PAI-1, alpha(2)AP and TAFIa to inhibition of lysis were assessed. In platelet-poor plasma clots, alpha(2)AP, TAFIa and PAI-1 all inhibited lysis, as shown by the addition of neutralizing antibodies to alpha(2)AP and PAI-1 +/- CPI, a potato carboxypeptidase inhibitor. alpha(2)AP played the largest role in regulating plasma clot lysis, but neutralization of inhibitors in combinations was more effective in shortening lysis times, with a maximal effect when all three inhibitors were neutralized. In platelet-rich clots, a larger contribution of PAI-1 was evident. Tissue plasminogen activator induced lysis of model thrombi, made from whole blood, was approximately doubled on incorporation of CPI, illustrating a substantial contribution of TAFIa to inhibition of thrombus lysis. Similar increases in thrombus lysis were observed on inclusion of neutralizing antibodies to PAI-1 and alpha(2)AP, with alpha(2)AP playing the dominant role. Maximal thrombus lysis occurred upon neutralization of all three inhibitors. These observations suggest that, despite the differences in concentrations and activities of inhibitors, and the different modes of action, the roles of the three are complementary in both plasma clot lysis and thrombus lysis.
Collapse
Affiliation(s)
- N J Mutch
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | | | |
Collapse
|
22
|
Wang X, Smith PL, Hsu MY, Tamasi JA, Bird E, Schumacher WA. Deficiency in thrombin-activatable fibrinolysis inhibitor (TAFI) protected mice from ferric chloride-induced vena cava thrombosis. J Thromb Thrombolysis 2007; 23:41-9. [PMID: 17111204 DOI: 10.1007/s11239-006-9009-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a plasma carboxypeptidase that renders a fibrin-containing thrombus less sensitive to lysis. Since the role of TAFI in thrombus formation is still controversial in mice, our present study was designed to evaluate mice deficient in TAFI (TAFI(-/-)) on FeCl(3)-induced vena cava and carotid artery thrombosis. Parallel studies were carried out in wild-type mice using a potato carboxypeptidase inhibitor (PCI), a selective inhibitor of activated TAFI (TAFIa). Significant reduction in thrombus formation was observed in TAFI(-/-) mice (n = 8, P < 0.05 compared to wild-type littermates) but not in heterozygous (TAFI(+/-)) mice in 3.5% FeCl(3)-induced vena cava thrombosis. A similar effect was observed following treatment with 5 mg/kg bolus plus 5 mg/kg/h PCI in the same venous thrombosis model in C57BL/6 mice (n = 8, P < 0.01 compared to vehicle). No compositional difference was observed for the venous thrombi in TAFI(-/-) and wild-type littermates with or without PCI treatment using histological assessment. In contrast, neither TAFI deficiency nor treatment with PCI showed antithrombotic efficacy in the 3.5% FeCl(3)-induced carotid artery thrombosis model. In a tail transection bleeding time model, both TAFI deficiency and PCI treatment increased bleeding time up to 4.5 and 3.5 times, respectively, over controls (P < 0.05, n = 8). Similar ex vivo fibrinolytic activities were demonstrated for both TAFI deficiency and PCI treatment as enhanced lysis of thrombin-induced plasma clots and lysis of whole blood clot in a thrombelastograph. These data provide direct evidence for the role of TAFIa in vena cava thrombosis without the addition of exogenous thrombolytic in mice. The strong ex vivo fibrinolytic activity of TAFI deficiency or TAFIa inhibition by PCI provides a biomarker of TAFIa inhibition that tracks in vivo antithrombotic efficacy.
Collapse
Affiliation(s)
- Xinkang Wang
- Department of Thrombosis Biology, Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Pennington, NJ 08534, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Boffa MB, Koschinsky ML. Curiouser and curiouser: recent advances in measurement of thrombin-activatable fibrinolysis inhibitor (TAFI) and in understanding its molecular genetics, gene regulation, and biological roles. Clin Biochem 2006; 40:431-42. [PMID: 17331488 DOI: 10.1016/j.clinbiochem.2006.10.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 10/29/2006] [Indexed: 10/23/2022]
Abstract
The thrombin-activatable fibrinolysis inhibitor (TAFI) pathway defines a novel molecular connection between blood coagulation and both fibrinolysis and inflammation. TAFI is a plasma zymogen that can be activated by thrombin, the thrombin-thrombomodulin complex, or plasmin. The activated form of TAFI (TAFIa) attenuates fibrinolysis by removing the carboxyl-terminal lysine residues from partially degraded fibrin that mediate positive feedback in the fibrinolytic cascade. A role for TAFIa in modulating inflammation is suggested by the ability of this enzyme to down-regulate pericellular plasminogen activation and to inactivate the inflammatory peptides bradykinin and the anaphylatoxins C3a and C5a. The focus of this review is on recent advances in the clinical measurement of the TAFI pathway in human subjects and what this has revealed in terms of the molecular genetics of TAFI, the biological variation in plasma TAFI antigen levels, potential regulators of expression of the gene encoding TAFI, and the TAFI pathway as a risk factor for the development of vascular diseases. Although this field is in its infancy, much recent progress has been made and the available data suggest that the TAFI pathway is an intriguing new player in a variety of physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Michael B Boffa
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | |
Collapse
|
24
|
Mosnier LO, Bouma BN. Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis. Arterioscler Thromb Vasc Biol 2006; 26:2445-53. [PMID: 16960106 DOI: 10.1161/01.atv.0000244680.14653.9a] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coagulation and fibrinolytic systems safeguard the patency of the vasculature and surrounding tissue. Cross regulation of coagulation and fibrinolysis plays an important role in preserving a balanced hemostatic process. Identification of Thrombin Activatable Fibrinolysis Inhibitor (TAFI) as an inhibitor of fibrinolysis and one of the main intermediates between coagulation and fibrinolysis, greatly improved our understanding of cross regulation of coagulation and fibrinolysis. As TAFI is an enzyme that is activated by thrombin generated by the coagulation system, its activation is sensitive to the dynamics of the coagulation system. Defects in coagulation, such as in thrombosis or hemophilia, resonate in TAFI-mediated regulation of fibrinolysis and imply that clinical symptoms of coagulation defects are amplified by unbalanced fibrinolysis. Thrombomodulin promotes the generation of both antithrombotic activated protein C (APC) and prothrombotic (antifibrinolytic) activated TAFI, illustrating the paradoxical effects of thrombomodulin on the regulation of coagulation and fibrinolysis. This review will discuss the role of TAFI in the regulation of fibrinolysis and detail its regulation of activation and its potential therapeutic applications in thrombotic disease and bleeding disorders.
Collapse
Affiliation(s)
- Laurent O Mosnier
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|