1
|
Agarwal S, Bochkova J, Mohamed MK, Schaefer ML, Zhou A, Skinner J, Johns RA. Disruption of Extracellular Signal-Regulated Kinase Partially Mediates Neonatal Isoflurane Anesthesia-Induced Changes in Dendritic Spines and Cognitive Function in Juvenile Mice. Int J Mol Sci 2025; 26:981. [PMID: 39940749 PMCID: PMC11817073 DOI: 10.3390/ijms26030981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
There is a growing concern worldwide about the potential harmful effects of anesthesia on brain development, based on studies in both humans and animals. In infants, repeated anesthesia exposure is linked to learning disabilities and attention disorders. Similarly, laboratory studies in mice show that neonates exposed to general anesthesia experience long-term cognitive and behavioral impairments. Inhaled anesthetics affect the postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domains. The disruption of the synaptic PSD95-PDZ2 domain-mediated protein interactions leads to a loss of spine plasticity and cognitive deficits in juvenile mice. The nitric oxide-mediated protein kinase-G signaling pathway enhances synaptic plasticity also by activating extracellular signal-regulated kinase, which subsequently phosphorylates cAMP-response element binding protein, a crucial transcription factor for memory formation. Exposure to isoflurane or postsynaptic density-95-PDZ2-wildtype peptides results in decreased levels of phosphorylated extracellular signal-regulated kinase (p-ERK) and phosphorylated cAMP-response element binding protein (p-CREB), which are critical for synaptic plasticity and memory formation. Pizotifen treatment after isoflurane or postsynaptic density-95-PDZ2-wildtype peptide exposure in mice prevented decline in p-ERK levels, preserved learning and memory functions at 5 weeks of age, and maintained mushroom spine density at 7 weeks of age. Protein kinase-G activation by components of the nitric oxide signaling pathway leads to the stabilization of dendritic spines and synaptic connections. Concurrently, the ERK/CREB pathway, which is crucial for synaptic plasticity and memory consolidation, is supported and maintained by pizotifen, thereby preventing cognitive deficits caused in response to isoflurane or postsynaptic density-95-PDZ2-wildtype peptide exposure. Activation of ERK signaling cascade by pizotifen helps to prevent cognitive impairment and spine loss in response to postsynaptic density-95-PDZ2 domain disruption.
Collapse
Affiliation(s)
- Swati Agarwal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.A.); (M.L.S.); (J.S.)
| | - Jacqueline Bochkova
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; (J.B.); (M.K.M.); (A.Z.)
| | - Mazen K. Mohamed
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; (J.B.); (M.K.M.); (A.Z.)
| | - Michele L. Schaefer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.A.); (M.L.S.); (J.S.)
| | - Annika Zhou
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; (J.B.); (M.K.M.); (A.Z.)
| | - John Skinner
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.A.); (M.L.S.); (J.S.)
| | - Roger A. Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.A.); (M.L.S.); (J.S.)
| |
Collapse
|
2
|
Baron M, Devor M. Neurosteroids foster sedation by engaging tonic GABA A-Rs within the mesopontine tegmental anesthesia area (MPTA). Neurosci Lett 2024; 843:138030. [PMID: 39490574 DOI: 10.1016/j.neulet.2024.138030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Neurosteroids are endogenous molecules with anxiolytic, anticonvulsant, sleep-promoting and sedative effects. They are biosynthesized de novo within the brain, among other tissues, and are thought to act primarily as positive allosteric modulators of high-affinity extrasynaptic GABAAδ-receptors. The location of action of neurosteroids in the brain, however, remains unknown. We have demonstrated that GABAergic anesthetics act within the brainstem mesopontine tegmental anesthesia area (MPTA) to induce and maintain anesthetic loss-of-consciousness. Here we asked whether endogenous and synthetic neurosteroids might also act in the MPTA to induce their suppressive effects. Direct exposure of the MPTA to the endogenous neurosteroids pregnenolone and progesterone, their metabolites testosterone, allopregnanolone and 3α5α-THDOC, and the synthetic neurosteroids ganaxolone and alphaxalone, was found to be pro-anesthetic. Although we cannot rule out additional sites of action, results of this study suggest that the suppressive effects of neurosteroids are due, at least in part, to actions within the MPTA, presumably by recruitment of dedicated neuronal circuitry. This undermines the usual presumption that neurosteroids, like other sedatives, endogenous somnogens and anesthetics, act by nonspecific global distribution.
Collapse
Affiliation(s)
- Mark Baron
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Marshall Devor
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
3
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
4
|
Franx BAA, van Tilborg GAF, van der Toorn A, van Heijningen CL, Dippel DWJ, van der Schaaf IC, Dijkhuizen RM, on behalf of the CONTRAST consortium. Propofol anesthesia improves stroke outcomes over isoflurane anesthesia-a longitudinal multiparametric MRI study in a rodent model of transient middle cerebral artery occlusion. Front Neurol 2024; 15:1332791. [PMID: 38414549 PMCID: PMC10897009 DOI: 10.3389/fneur.2024.1332791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
General anesthesia is routinely used in endovascular thrombectomy procedures, for which volatile gas and/or intravenous propofol are recommended. Emerging evidence suggests propofol may have superior effects on disability and/or mortality rates, but a mode-of-action underlying these class-specific effects remains unknown. Here, a moderate isoflurane or propofol dosage on experimental stroke outcomes was retrospectively compared using serial multiparametric MRI and behavioral testing. Adult male rats (N = 26) were subjected to 90-min filament-induced transient middle cerebral artery occlusion. Diffusion-, T2- and perfusion-weighted MRI was performed during occlusion, 0.5 h after recanalization, and four days into the subacute phase. Sequels of ischemic damage-blood-brain barrier integrity, cerebrovascular reactivity and sensorimotor functioning-were assessed after four days. While size and severity of ischemia was comparable between groups during occlusion, isoflurane anesthesia was associated with larger lesion sizes and worsened sensorimotor functioning at follow-up. MRI markers indicated that cytotoxic edema persisted locally in the isoflurane group early after recanalization, coinciding with burgeoning vasogenic edema. At follow-up, sequels of ischemia were further aggravated in the post-ischemic lesion, manifesting as increased blood-brain barrier leakage, cerebrovascular paralysis and cerebral hyperperfusion. These findings shed new light on how isoflurane, and possibly similar volatile agents, associate with persisting injurious processes after recanalization that contribute to suboptimal treatment outcome.
Collapse
Affiliation(s)
- Bart A. A. Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Geralda A. F. van Tilborg
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Annette van der Toorn
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Caroline L. van Heijningen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | | | | - Rick M. Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
5
|
Zhou Y, Dong H, Fan J, Zhu M, Liu L, Wang Y, Tang P, Chen X. Cytochrome P450 2B6 and UDP-Glucuronosyltransferase Enzyme-Mediated Clearance of Ciprofol (HSK3486) in Humans: The Role of Hepatic and Extrahepatic Metabolism. Drug Metab Dispos 2024; 52:106-117. [PMID: 38071562 DOI: 10.1124/dmd.123.001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Ciprofol (HSK3486) is a novel intravenous agent for general anesthesia. In humans, HSK3486 mainly undergoes glucuronidation to form M4 [fraction of clearance (fCL): 62.6%], followed by the formation of monohydroxylated metabolites that further undergo glucuronidation and sulfation to produce M5-1, M5-2, M5-3, and M3 (summed fCL: 35.2%). However, the complete metabolic pathways of HSK3486 in humans remain unclear. In this study, by comparison with chemically synthesized reference standards, three monohydroxylated metabolites [M7-1, 4-hydroxylation with an unbound intrinsic clearance (CLint,u) of 2211 μl/min/mg; M7-2, ω-hydroxylation with a CLint,u of 600 μl/min/mg; and M7-3, (ω-1)-hydroxylation with a CLint,u of 78.4 μl/min/mg] were identified in human liver microsomes, and CYP2B6 primarily catalyzed their formation. In humans, M7-1 was shown to undergo glucuronidation at the 4-position and 1-position by multiple UDP-glucuronosyltransferases (UGTs) to produce M5-1 and M5-3, respectively, or was metabolized to M3 by cytosolic sulfotransferases. M7-2 was glucuronidated at the ω position by UGT1A9, 2B4, and 2B7 to form M5-2. UGT1A9 predominantly catalyzed the glucuronidation of HSK3486 (M4). The CLint,u values for M4 formation in human liver and kidney microsomes were 1028 and 3407 μl/min/mg, respectively. In vitro to in vivo extrapolation analysis suggested that renal glucuronidation contributed approximately 31.4% of the combined clearance. In addition to HSK3486 glucuronidation (M4), 4-hydroxylation (M7-1) was identified as another crucial oxidative metabolic pathway (fCL: 34.5%). Further attention should be paid to the impact of CYP2B6- and UGT1A9-mediated drug interactions and gene polymorphisms on the exposure and efficacy of HSK3486. SIGNIFICANCE STATEMENT: This research elucidates the major oxidative metabolic pathways of HSK3486 (the formation of three monohydroxylated metabolites: M7-1, M7-2, M7-3) as well as definitive structures and formation pathways of these monohydroxylated metabolites and their glucuronides or sulfate in humans. This research also identifies major metabolizing enzymes responsible for the glucuronidation (UGT1A9) and oxidation (CYP2B6) of HSK3486 and characterizes the mechanism of extrahepatic metabolism. The above information is helpful in guiding the safe use of HSK3486 in the clinic.
Collapse
Affiliation(s)
- Yufan Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Hongjiao Dong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Jiang Fan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Mingshe Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Lu Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Yongbin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Pingming Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| |
Collapse
|
6
|
Xie Z, Fong R, Fox AP. Towards a potent and rapidly reversible Dexmedetomidine-based general anesthetic. PLoS One 2023; 18:e0291827. [PMID: 37751454 PMCID: PMC10522005 DOI: 10.1371/journal.pone.0291827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
IN CONCLUSION Our results suggest that Dex supplemented with a low dose of a second agent creates a potent anesthetic that is rapidly reversed by atipamezole and caffeine.
Collapse
Affiliation(s)
- Zheng Xie
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States of America
| | - Robert Fong
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States of America
| | - Aaron P. Fox
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
7
|
Jang IS, Nakamura M, Nonaka K, Noda M, Kotani N, Katsurabayashi S, Nagami H, Akaike N. Protein Kinase A Is Responsible for the Presynaptic Inhibition of Glycinergic and Glutamatergic Transmissions by Xenon in Rat Spinal Cord and Hippocampal CA3 Neurons. J Pharmacol Exp Ther 2023; 386:331-343. [PMID: 37391223 DOI: 10.1124/jpet.123.001599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023] Open
Abstract
The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.
Collapse
Affiliation(s)
- Il-Sung Jang
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Michiko Nakamura
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Kiku Nonaka
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Mami Noda
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Naoki Kotani
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Shutaro Katsurabayashi
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Hideaki Nagami
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Norio Akaike
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| |
Collapse
|
8
|
Peng SL, Huang SM, Chu LWL, Chiu SC. Anesthetic modulation of water diffusion: Insights from a diffusion tensor imaging study. Med Eng Phys 2023; 118:104015. [PMID: 37536836 DOI: 10.1016/j.medengphy.2023.104015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023]
Abstract
Diffusion tensor imaging (DTI) in animal models are essential for translational neuroscience studies. A critical step in animal studies is the use of anesthetics. Understanding the influence of specific anesthesia regimes on DTI-derived parameters, such as fractional anisotropy (FA) and mean diffusivity (MD), is imperative when comparing results between animal studies using different anesthetics. Here, the quantification of FA and MD under different anesthetic regimes, alpha-chloralose and isoflurane, is discussed. We also used a range of b-values to determine whether the anesthetic effect was b-value dependent. The first group of rats (n = 6) was anesthetized with alpha-chloralose (80 mg/kg), whereas the second group of rats (n = 7) was anesthetized with isoflurane (1.5%). DTI was performed with b-values of 500, 1500, and 1500s/mm2, and the MD and FA were assessed individually. Anesthesia-specific differences in MD were apparent, as manifested by the higher estimated MD under isoflurane anesthesia than that under alpha-chloralose anesthesia (P < 0.001). MD values increased with decreasing b-value in all regions studied, and the degree of increase when rats were anesthetized with isoflurane was more pronounced than that associated with alpha-chloralose (P < 0.05). FA quantitation was also influenced by anesthesia regimens to varying extents, depending on the brain regions and b-values. In conclusion, both scanning parameters and the anesthesia regimens significantly impacted the quantification of DTI indices.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
| | - Sheng-Min Huang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Shao-Chieh Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
9
|
Baron M, Devor M. From molecule to oblivion: dedicated brain circuitry underlies anesthetic loss of consciousness permitting pain-free surgery. Front Mol Neurosci 2023; 16:1197304. [PMID: 37305550 PMCID: PMC10248014 DOI: 10.3389/fnmol.2023.1197304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
The canonical view of how general anesthetics induce loss-of-consciousness (LOC) permitting pain-free surgery posits that anesthetic molecules, distributed throughout the CNS, suppress neural activity globally to levels at which the cerebral cortex can no longer sustain conscious experience. We support an alternative view that LOC, in the context of GABAergic anesthesia at least, results from anesthetic exposure of a small number of neurons in a focal brainstem nucleus, the mesopontine tegmental anesthesia area (MPTA). The various sub-components of anesthesia, in turn, are effected in distant locations, driven by dedicated axonal pathways. This proposal is based on the observations that microinjection of infinitesimal amounts of GABAergic agents into the MPTA, and only there, rapidly induces LOC, and that lesioning the MPTA renders animals relatively insensitive to these agents delivered systemically. Recently, using chemogenetics, we identified a subpopulation of MPTA "effector-neurons" which, when excited (not inhibited), induce anesthesia. These neurons contribute to well-defined ascending and descending axonal pathways each of which accesses a target region associated with a key anesthetic endpoint: atonia, anti-nociception, amnesia and LOC (by electroencephalographic criteria). Interestingly, the effector-neurons do not themselves express GABAA-receptors. Rather, the target receptors reside on a separate sub-population of presumed inhibitory interneurons. These are thought to excite the effectors by disinhibition, thus triggering anesthetic LOC.
Collapse
Affiliation(s)
- Mark Baron
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marshall Devor
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Nourmohammadi A, Swift JR, de Pesters A, Guay CS, Adamo MA, Dalfino JC, Ritaccio AL, Schalk G, Brunner P. Passive functional mapping of receptive language cortex during general anesthesia using electrocorticography. Clin Neurophysiol 2023; 147:31-44. [PMID: 36634533 PMCID: PMC10267852 DOI: 10.1016/j.clinph.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/30/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the feasibility of passive functional mapping in the receptive language cortex during general anesthesia using electrocorticographic (ECoG) signals. METHODS We used subdurally placed ECoG grids to record cortical responses to speech stimuli during awake and anesthesia conditions. We identified the cortical areas with significant responses to the stimuli using the spectro-temporal consistency of the brain signal in the broadband gamma (BBG) frequency band (70-170 Hz). RESULTS We found that ECoG BBG responses during general anesthesia effectively identify cortical regions associated with receptive language function. Our analyses demonstrated that the ability to identify receptive language cortex varies across different states and depths of anesthesia. We confirmed these results by comparing them to receptive language areas identified during the awake condition. Quantification of these results demonstrated an average sensitivity and specificity of passive language mapping during general anesthesia to be 49±7.7% and 100%, respectively. CONCLUSION Our results demonstrate that mapping receptive language cortex in patients during general anesthesia is feasible. SIGNIFICANCE Our proposed protocol could greatly expand the population of patients that can benefit from passive language mapping techniques, and could eliminate the risks associated with electrocortical stimulation during an awake craniotomy.
Collapse
Affiliation(s)
- Amin Nourmohammadi
- National Center for Adaptive Neurotechnologies, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA.
| | - James R Swift
- National Center for Adaptive Neurotechnologies, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA.
| | - Adriana de Pesters
- National Center for Adaptive Neurotechnologies, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA.
| | - Christian S Guay
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Matthew A Adamo
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA.
| | - John C Dalfino
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA.
| | - Anthony L Ritaccio
- Department of Neurology, Albany Medical College, Albany, NY, USA; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| | - Gerwin Schalk
- National Center for Adaptive Neurotechnologies, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; Chen Frontier Lab for Applied Neurotechnology, Tianqiao and Chrissy Chen Institute, Shanghai, P.R. China.
| | - Peter Brunner
- National Center for Adaptive Neurotechnologies, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; Department of Neurology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
11
|
Agarwal S, Schaefer ML, Krall C, Johns RA. Isoflurane Disrupts Postsynaptic Density-95 Protein Interactions Causing Neuronal Synapse Loss and Cognitive Impairment in Juvenile Mice via Canonical NO-mediated Protein Kinase-G Signaling. Anesthesiology 2022; 137:212-231. [PMID: 35504002 PMCID: PMC9332139 DOI: 10.1097/aln.0000000000004264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inhalational anesthetics are known to disrupt PDZ2 domain-mediated protein-protein interactions of the postsynaptic density (PSD)-95 protein. The aim of this study is to investigate the underlying mechanisms in response to early isoflurane exposure on synaptic PSD-95 PDZ2 domain disruption that altered spine densities and cognitive function. The authors hypothesized that activation of protein kinase-G by the components of nitric oxide (NO) signaling pathway constitutes a mechanism that prevents loss of early dendritic spines and synapse in neurons and cognitive impairment in mice in response to disruption of PDZ2 domain of the PSD-95 protein. METHODS Postnatal day 7 mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active PSD-95 wild-type PDZ2 peptide or soluble guanylyl cyclase activator YC-1 along with their respective controls. Primary neurons at 7 days in vitro were exposed to isoflurane or PSD-95 wild-type PDZ2 peptide for 4 h. Coimmunoprecipitation, spine density, synapses, cyclic guanosine monophosphate-dependent protein kinase activity, and novel object recognition memory were assessed. RESULTS Exposure of isoflurane or PSD-95 wild-type PDZ2 peptide relative to controls causes the following. First, there is a decrease in PSD-95 coimmunoprecipitate relative to N-methyl-d-aspartate receptor subunits NR2A and NR2B precipitate (mean ± SD [in percentage of control]: isoflurane, 54.73 ± 16.52, P = 0.001; and PSD-95 wild-type PDZ2 peptide, 51.32 ± 12.93, P = 0.001). Second, there is a loss in spine density (mean ± SD [spine density per 10 µm]: control, 5.28 ± 0.56 vs. isoflurane, 2.23 ± 0.67, P < 0.0001; and PSD-95 mutant PDZ2 peptide, 4.74 ± 0.94 vs. PSD-95 wild-type PDZ2 peptide, 1.47 ± 0.87, P < 0.001) and a decrease in synaptic puncta (mean ± SD [in percentage of control]: isoflurane, 41.1 ± 14.38, P = 0.001; and PSD-95 wild-type PDZ2 peptide, 50.49 ± 14.31, P < 0.001). NO donor or cyclic guanosine monophosphate analog prevents the spines and synapse loss and decline in the cyclic guanosine monophosphate-dependent protein kinase activity, but this prevention was blocked by soluble guanylyl cyclase or protein kinase-G inhibitors in primary neurons. Third, there were deficits in object recognition at 5 weeks (mean ± SD [recognition index]: male, control, 64.08 ± 10.57 vs. isoflurane, 48.49 ± 13.41, P = 0.001, n = 60; and female, control, 67.13 ± 11.17 vs. isoflurane, 53.76 ± 6.64, P = 0.003, n = 58). Isoflurane-induced impairment in recognition memory was preventable by the introduction of YC-1. CONCLUSIONS Activation of soluble guanylyl cyclase or protein kinase-G prevents isoflurane or PSD-95 wild-type PDZ2 peptide-induced loss of dendritic spines and synapse. Prevention of recognition memory with YC-1, a NO-independent activator of guanylyl cyclase, supports a role for the soluble guanylyl cyclase mediated protein kinase-G signaling in countering the effects of isoflurane-induced cognitive impairment. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Swati Agarwal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Michele L Schaefer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Caroline Krall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
12
|
Zhang K, Pan J, Yu Y. Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings. Biomolecules 2022; 12:biom12070898. [PMID: 35883456 PMCID: PMC9312763 DOI: 10.3390/biom12070898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
General anesthesia has been widely utilized since the 1840s, but its underlying neural circuits remain to be completely understood. Since both general anesthesia and sleep are reversible losses of consciousness, studies on the neural-circuit mechanisms affected by general anesthesia have mainly focused on the neural nuclei or the pathways known to regulate sleep. Three advanced technologies commonly used in neuroscience, in vivo calcium imaging, chemogenetics, and optogenetics, are used to record and modulate the activity of specific neurons or neural circuits in the brain areas of interest. Recently, they have successfully been used to study the neural nuclei and pathways of general anesthesia. This article reviews these three techniques and their applications in the brain nuclei or pathways affected by general anesthesia, to serve as a reference for further and more accurate exploration of other neural circuits under general anesthesia and to contribute to other research fields in the future.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; (K.Z.); (J.P.)
- Tianjin Institute of Anesthesiology, Tianjin 300052, China
| | - Jiacheng Pan
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; (K.Z.); (J.P.)
- Tianjin Institute of Anesthesiology, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; (K.Z.); (J.P.)
- Tianjin Institute of Anesthesiology, Tianjin 300052, China
- Correspondence:
| |
Collapse
|
13
|
Müller CP. Serotonin and Consciousness-A Reappraisal. Behav Brain Res 2022; 432:113970. [PMID: 35716774 DOI: 10.1016/j.bbr.2022.113970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/02/2022]
Abstract
The serotonergic system of the brain is a major modulator of behaviour. Here we describe a re-appraisal of its function for consciousness based on anatomical, functional and pharmacological data. For a better understanding, the current model of consciousness is expanded. Two parallel streams of conscious flow are distinguished. A flow of conscious content and an affective consciousness flow. While conscious content flow has its functional equivalent in the activity of higher cortico-cortical and cortico-thalamic networks, affective conscious flow originates in segregated deeper brain structures for single emotions. It is hypothesized that single emotional networks converge on serotonergic and other modulatory transmitter neurons in the brainstem where a bound percept of an affective conscious flow is formed. This is then dispersed to cortical and thalamic networks, where it is time locked with conscious content flow at the level of these networks. Serotonin acts in concert with other modulatory systems of the brain stem with some possible specialization on single emotions. Together, these systems signal a bound percept of affective conscious flow. Dysfunctions in the serotonergic system may not only give rise to behavioural and somatic symptoms, but also essentially affect the coupling of conscious affective flow with conscious content flow, leading to the affect-stained subjective side of mental disorders like anxiety, depression, or schizophrenia. The present model is an attempt to integrate the growing insights into serotonergic system function. However, it is acknowledged, that several key claims are still at a heuristic level that need further empirical support.
Collapse
Affiliation(s)
- Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
14
|
Han L, Zhao S, Xu F, Wang Y, Zhou R, Huang S, Ding Y, Deng D, Mao W, Chen X. Sevoflurane Increases Hippocampal Theta Oscillations and Impairs Memory Via TASK-3 Channels. Front Pharmacol 2021; 12:728300. [PMID: 34776954 PMCID: PMC8581481 DOI: 10.3389/fphar.2021.728300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Sevoflurane can induce memory impairment during clinical anesthesia; however, the underlying mechanisms are largely unknown. TASK-3 channels are one of the potential targets of sevoflurane. Accumulating evidence supports a negative role of intracranial theta rhythms (4–12 Hz) in memory formation. Here, we investigated whether TASK-3 channels contribute to sevoflurane-induced memory impairment by regulating hippocampal theta rhythms. In this study, the memory performance of mice was tested by contextual fear conditioning and inhibitory avoidance experiments. The hippocampal local field potentials (LFPs) were recorded from chronically implanted electrodes located in CA3 region. The results showed that sevoflurane concentration-dependently impaired the memory function of mice, as evidenced by the decreased time mice spent on freezing and reduced latencies for mice to enter the shock compartment. Our electrophysiological results revealed that sevoflurane also enhanced the spectral power of hippocampal LFPs (1–30 Hz), particularly in memory-related theta rhythms (4–12 Hz). These effects were mitigated by viral-mediated knockdown of TASK-3 channels in the hippocampal CA3 region. The knockdown of hippocampal TASK-3 channels significantly reduced the enhancing effect of sevoflurane on hippocampal theta rhythms and alleviated sevoflurane-induced memory impairment. Our data indicate that sevoflurane can increase hippocampal theta oscillations and impair memory function via TASK-3 channels.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruihui Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Jing Z, Pecka M, Grothe B. Ketamine-xylazine anesthesia depth affects auditory neuronal responses in the lateral superior olive complex of the gerbil. J Neurophysiol 2021; 126:1660-1669. [PMID: 34644166 DOI: 10.1152/jn.00217.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of in vivo neuronal responses to auditory inputs in the superior olive complex (SOC) are usually done under anesthesia. However, little attention has been paid to the effect of anesthesia itself on response properties. Here, we assessed the effect of anesthesia depth under ketamine-xylazine anesthetics on auditory evoked response properties of lateral SOC neurons. Anesthesia depth was tracked by monitoring EEG spectral peak frequencies. An increase in anesthesia depth led to a decrease of spontaneous discharge activities and an elevated response threshold. The temporal responses to suprathreshold tones were also affected, with adapted responses reduced but peak responses unaffected. Deepening the anesthesia depth also increased first spike latency. However, spike jitter was not affected. Auditory brainstem responses to clicks confirmed that ketamine-xylazine anesthesia depth affects auditory neuronal activities and the effect on spike rate and spike timing persists through the auditory pathway. We concluded from those observations that ketamine-xylazine affects lateral SOC response properties depending on the anesthesia depth.NEW & NOTEWORTHY We studied how the depth of ketamine-xylazine anesthesia altered response properties of lateral superior olive complex neurons, and auditory brainstem evoked responses. Our results provide direct evidence that anesthesia depth affects auditory neuronal responses and reinforce the notion that both the anesthetics and the anesthesia depth should be considered when interpreting/comparing in vivo neuronal recordings.
Collapse
Affiliation(s)
- Zhizi Jing
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Michael Pecka
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University of Munich, Martinsried, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig Maximilian University of Munich, Martinsried, Germany
| |
Collapse
|
16
|
Zhang D, Liu J, Zhu T, Zhou C. Identifying c-fos Expression as a Strategy to Investigate the Actions of General Anesthetics on the Central Nervous System. Curr Neuropharmacol 2021; 20:55-71. [PMID: 34503426 PMCID: PMC9199548 DOI: 10.2174/1570159x19666210909150200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Although general anesthetics have been used in the clinic for more than 170 years, the ways in which they induce amnesia, unconsciousness, analgesia, and immobility remain elusive. Modulations of various neural nuclei and circuits are involved in the actions of general anesthetics. The expression of the immediate-early gene c-fos and its nuclear product, c-fos protein, can be induced by neuronal depolarization; therefore, c-fos staining is commonly used to identify the activated neurons during sleep and/or wakefulness, as well as in various physiological conditions in the central nervous system. Identifying c-fos expression is also a direct and convenient method to explore the effects of general anesthetics on the activity of neural nuclei and circuits. Using c-fos staining, general anesthetics have been found to interact with sleep- and wakefulness-promoting systems throughout the brain, which may explain their ability to induce unconsciousness and emergence from general anesthesia. This review summarizes the actions of general anesthetics on neural nuclei and circuits based on a c-fos expression.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| |
Collapse
|
17
|
Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021; 132:1254-1264. [PMID: 33857967 DOI: 10.1213/ane.0000000000005361] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
General anesthesia is characterized by loss of consciousness, amnesia, analgesia, and immobility. Important molecular targets of general anesthetics have been identified, but the neural circuits underlying the discrete end points of general anesthesia remain incompletely understood. General anesthesia and natural sleep share the common feature of reversible unconsciousness, and recent developments in neuroscience have enabled elegant studies that investigate the brain nuclei and neural circuits underlying this important end point. A common approach to measure cortical activity across the brain is electroencephalogram (EEG), which can reflect local neuronal activity as well as connectivity among brain regions. The EEG oscillations observed during general anesthesia depend greatly on the anesthetic agent as well as dosing, and only some resemble those observed during sleep. For example, the EEG oscillations during dexmedetomidine sedation are similar to those of stage 2 nonrapid eye movement (NREM) sleep, but high doses of propofol and ether anesthetics produce burst suppression, a pattern that is never observed during natural sleep. Sleep is primarily driven by withdrawal of subcortical excitation to the cortex, but anesthetics can directly act at both subcortical and cortical targets. While some anesthetics appear to activate specific sleep-active regions to induce unconsciousness, not all sleep-active regions play a significant role in anesthesia. Anesthetics also inhibit cortical neurons, and it is likely that each class of anesthetic drugs produces a distinct combination of subcortical and cortical effects that lead to unconsciousness. Conversely, arousal circuits that promote wakefulness are involved in anesthetic emergence and activating them can induce emergence and accelerate recovery of consciousness. Modern neuroscience techniques that enable the manipulation of specific neural circuits have led to new insights into the neural circuitry underlying general anesthesia and sleep. In the coming years, we will continue to better understand the mechanisms that generate these distinct states of reversible unconsciousness.
Collapse
Affiliation(s)
- Olivia A Moody
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Edlyn R Zhang
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen F Vincent
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Risako Kato
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Eric D Melonakos
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christa J Nehs
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ken Solt
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Competitive Antagonism of Etomidate Action by Diazepam: In Vitro GABAA Receptor and In Vivo Zebrafish Studies. Anesthesiology 2020; 133:583-594. [PMID: 32541553 DOI: 10.1097/aln.0000000000003403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recent cryo-electron microscopic imaging studies have shown that in addition to binding to the classical extracellular benzodiazepine binding site of the α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor, diazepam also binds to etomidate binding sites located in the transmembrane receptor domain. Because such binding is characterized by low modulatory efficacy, the authors hypothesized that diazepam would act in vitro and in vivo as a competitive etomidate antagonist. METHODS The concentration-dependent actions of diazepam on 20 µM etomidate-activated and 6 µM GABA-activated currents were defined (in the absence and presence of flumazenil) in oocyte-expressed α1β3γ2L GABAA receptors using voltage clamp electrophysiology. The ability of diazepam to inhibit receptor labeling of purified α1β3γ2L GABAA receptors by [H]azietomidate was assessed in photoaffinity labeling protection studies. The impact of diazepam (in the absence and presence of flumazenil) on the anesthetic potencies of etomidate and ketamine was compared in a zebrafish model. RESULTS At nanomolar concentrations, diazepam comparably potentiated etomidate-activated and GABA-activated GABAA receptor peak current amplitudes in a flumazenil-reversible manner. The half-maximal potentiating concentrations were 39 nM (95% CI, 27 to 55 nM) and 26 nM (95% CI, 16 to 41 nM), respectively. However, at micromolar concentrations, diazepam reduced etomidate-activated, but not GABA-activated, GABAA receptor peak current amplitudes in a concentration-dependent manner with a half-maximal inhibitory concentration of 9.6 µM (95% CI, 7.6 to 12 µM). Diazepam (12.5 to 50 µM) also right-shifted the etomidate-concentration response curve for direct activation without reducing the maximal response and inhibited receptor photoaffinity labeling by [H]azietomidate. When administered with flumazenil, 50 µM diazepam shifted the etomidate (but not the ketamine) concentration-response curve for anesthesia rightward, increasing the etomidate EC50 by 18-fold. CONCLUSIONS At micromolar concentrations and in the presence of flumazenil to inhibit allosteric modulation via the classical benzodiazepine binding site of the GABAA receptor, diazepam acts as an in vitro and in vivo competitive etomidate antagonist.
Collapse
|
19
|
Sørensen NB. Subretinal surgery: functional and histological consequences of entry into the subretinal space. Acta Ophthalmol 2019; 97 Suppl A114:1-23. [PMID: 31709751 DOI: 10.1111/aos.14249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Gene-therapy, stem-cell transplantation and surgical robots hold the potential for treatment of currently untreatable retinal degenerative diseases. All of the techniques require entry into the subretinal space, which is a potential space located between the retina and the retinal pigment epithelium (RPE). Knowledge about obstacles and critical steps in relation to subretinal procedures is therefore needed. This thesis explores the functional and histological consequences of separation of the retina from the RPE, extensive RPE damage, a large cut in the retina (retinotomy) and RPE phagocytosis in a porcine model. METHODS Experiments were performed in 106 female domestic pigs of Danish landrace distributed over five studies. Under general anesthesia, different procedures for expansion of the subretinal space were conducted. Outcomes were visual function measured electrophysiologically with multifocal electroretinogram (mfERG) and retinal morphology examined histologically. Study I: The effect of anesthesia on mfERG was examined by repeated recordings for 3 hr in isoflurane or propofol anesthesia. Outcome was mfERG amplitude. Study II: Consequences of a large separation of the photoreceptors from the RPE were examined by injecting a perfluorocarbon-liquid (decalin) into the subretinal space. Two weeks after, in a second surgery, decalin was withdrawn. Outcomes were mfERG and histology 4 weeks after decalin injection. Study III: Extensive RPE damage was examined by expanding the subretinal space with saline and removing large sheets of RPE-cells through a retinotomy. Outcomes were mfERG and histology 2, 4 and 6 weeks after the procedure. Study IV: Consequences of a large retinotomy were examined by similar procedures as in Study III, but in study IV only a few RPE cells were removed. Outcomes were mfERG and histology 2 and 6 weeks after surgery. Study V: Clearance of the subretinal space was examined by injecting fluorescent latex beads of various sizes into the subretinal space. Outcome was histologic location of the beads at different time intervals after the procedure. RESULTS Study I: MfERG amplitudes decreased linearly as a function of time in propofol or isoflurane anesthesia. Duration of mfERG recording could be decreased without compromising quality, and thereby could time in anesthesia be reduced. Study II: MfERG and histology remained normal after reattachment of a large and 2-week long separation of the photoreceptors and RPE. Repeated entry into the subretinal space was well tolerated. Fluid injection into the subretinal space constitutes a risk of RPE-damage. Study III: Removal of large sheets of retinal pigment epithelial cells triggered a widespread rhegmatogenous-like retinal detachment resulting in visual loss. Study IV: A large retinotomy with limited damage of the RPE was well tolerated, and visual function was preserved. Study V: Subretinal latex beads up to 4 μm were phagocytosed by the RPE and passed into the sub-RPE space. Beads up to 2 μm travelled further through the Bruch's membrane and were found in the choroid, sclera and inside blood vessels. CONCLUSION A large expansion of the subretinal space, repeated entry, a large retinotomy and limited RPE damage is well tolerated and retinal function is preserved. Subretinal injection of fluid can damage the RPE and extensive RPE damage can induce a rhegmatogenous-like retinal detachment with loss of visual function. Foreign substances exit the subretinal space and can reach the systemic circulation.
Collapse
Affiliation(s)
- Nina Buus Sørensen
- Department of Ophthalmology Copenhagen University Hospital Rigshospitalet København Denmark
- Department of Neurology Zealand University Hospital Køge Denmark
| |
Collapse
|
20
|
Effects of Branched-Chain Amino Acid Supplementation on Spontaneous Seizures and Neuronal Viability in a Model of Mesial Temporal Lobe Epilepsy. J Neurosurg Anesthesiol 2019; 31:247-256. [PMID: 29620688 DOI: 10.1097/ana.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine have recently emerged as a potential novel treatment for medically refractory epilepsy. Blood-derived BCAAs can readily enter the brain, where they contribute to glutamate biosynthesis and may either suppress or trigger acute seizures. However, the effects of BCAAs on chronic (ie, spontaneous recurrent) seizures and epilepsy-associated neuron loss are incompletely understood. MATERIALS AND METHODS Sixteen rats with mesial temporal lobe epilepsy were randomized into 2 groups that could drink, ad libitum, either a 4% solution of BCAAs in water (n=8) or pure water (n=8). The frequency and relative percent of convulsive and nonconvulsive spontaneous seizures were monitored for a period of 21 days, and the brains were then harvested for immunohistochemical analysis. RESULTS Although the frequency of convulsive and nonconvulsive spontaneous recurrent seizures over a 3-week drinking/monitoring period were not different between the groups, there were differences in the relative percent of convulsive seizures in the first and third week of treatment. Moreover, the BCAA-treated rats had over 25% fewer neurons in the dentate hilus of the hippocampus compared with water-treated controls. CONCLUSIONS Acute BCAA supplementation reduces seizure propagation, whereas chronic oral supplementation with BCAAs worsens seizure propagation and causes neuron loss in rodents with mesial temporal lobe epilepsy. These findings raise the question of whether such supplementation has a similar effect in humans.
Collapse
|
21
|
Peng SL, Chiu H, Wu CY, Huang CW, Chung YH, Shih CT, Shen WC. The effect of caffeine on cerebral metabolism during alpha-chloralose anesthesia differs from isoflurane anesthesia in the rat brain. Psychopharmacology (Berl) 2019; 236:1749-1757. [PMID: 30604185 DOI: 10.1007/s00213-018-5157-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE Caffeine is a widely studied psychostimulant, even though its exact effect on brain activity remains to be elucidated. Positron emission tomography (PET) allows studying mechanisms underlying cerebral metabolic responses to caffeine in caffeine-naïve rats. Rodent studies are typically performed under anesthesia. However, the anesthesia may affect neurotransmitter systems targeted by tested drugs. OBJECTIVES The scope of the present study was to address the impairing or enhancing effect of two common anesthetics, alpha-chloralose and isoflurane, on the kinetics of caffeine. METHODS The first group of rats (n = 15) were anesthetized under 1.5% isoflurane anesthesia. The second group of rats (n = 15) were anesthetized under alpha-chloralose (80 mg/kg). These rats received an intravenous injection of saline (n = 5) or of 2.5 mg/kg (n = 5) or 40 mg/kg (n = 5) caffeine for both groups. RESULTS With 2.5 mg/kg or 40 mg/kg caffeine, whole-brain cerebral metabolism was significantly reduced by 17.2% and 17% (both P < 0.01), respectively, under alpha-chloralose anesthesia. However, the lower dose of caffeine (2.5 mg/kg) had a limited effect on brain metabolism, whereas its higher dose (40 mg/kg) produced enhancements in brain metabolism in the striatum, hippocampus, and thalamus (all P < 0.05) under isoflurane anesthesia. CONCLUSION These findings demonstrate significant differences in brain responses to caffeine on the basic of the anesthesia regimen used, which highlights the importance of attention to the anesthetic used when interpreting findings from animal pharmacological studies because of possible interactions between the anesthetic and the drug under study.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Han Chiu
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Science, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Chiun-Wei Huang
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Hsiu Chung
- Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Ting Shih
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Wu-Chung Shen
- Department of Biomedical Imaging and Radiological Science, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.,Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Wang L, Holland L, Fong R, Khokhar S, Fox AP, Xie Z. A pilot study showing that repeated exposure to stress produces alterations in subsequent responses to anesthetics in rats. PLoS One 2019; 14:e0214093. [PMID: 30908509 PMCID: PMC6433219 DOI: 10.1371/journal.pone.0214093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/06/2019] [Indexed: 12/11/2022] Open
Abstract
The repeated use of a drug frequently leads to alterations in the response to that drug. We undertook this study to determine whether multiple exposures to the general anesthetic produced alterations in subsequent exposures to this anesthetic. For this study, adult male rats were anesthetized with 2.5% isoflurane for one hour. The rats were divided into 4 groups of 8 rats each. Groups 1-3 were transported between their homeroom and the anesthesia testing room and were handled in an identical manner weekly for a period of 12 weeks, but were anesthetized on different schedules. Group 1 was anesthetized weekly for 12 weeks, Group 2 on either a 3 or 4 week schedule and Group 3 was anesthetized a single time, at the end of the 12 week period. To receive anesthesia multiple times, animals were transported from their homeroom to the anesthesia location and handled repeatedly. We took into consideration of the frequency of anesthesia exposure and the stress involved. Rats in groups 2 and 3 were placed in the anesthesia chamber, with O2 but with no anesthetic, every week when they were not scheduled to receive anesthesia. In Group 4, rats were not transported or handled in any way and stayed in the home room for a period of 12 weeks. Rats in this group were anesthetized once, at the very end of the study. Recovery of the rat's righting reflex was used to assess the acceleration of recovery time from general anesthesia. Group 1 rats showed dramatically faster emergence from anesthesia after several rounds of anesthesia. Surprisingly, Groups 2 and 3 rats, treated in an identical manner as Group 1, but which were anesthetized on different schedules, also exhibited more rapid emergence from anesthesia, when compared to Group 4 rats, which were never handled or transported prior to a single anesthesia. These results suggest that the stress of transportation and handling altered responsiveness to anesthesia. Our results show that responsiveness to anesthetic agents can change over time outside of the normal developmental changes taking place in rats as they age.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States of America
- Department of Anesthesia, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, P. R. China
| | - Lindsay Holland
- University of Michigan, College of Medicine, Ann Arbor, Michigan, United States of America
| | - Robert Fong
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States of America
| | - Suhail Khokhar
- University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Aaron P. Fox
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, Illinois, United States of America
| | - Zheng Xie
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
23
|
Schaefer ML, Wang M, Perez PJ, Coca Peralta W, Xu J, Johns RA. Nitric Oxide Donor Prevents Neonatal Isoflurane-induced Impairments in Synaptic Plasticity and Memory. Anesthesiology 2019; 130:247-262. [PMID: 30601214 PMCID: PMC6538043 DOI: 10.1097/aln.0000000000002529] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Some general anesthetics have been shown to have adverse effects on neuronal development that affect neural function and cognitive behavior.Clinically relevant concentrations of inhalational anesthetics inhibit the postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domain-mediated protein-protein interaction between PSD-95 or PSD-93 and N-methyl-D-aspartate receptors or neuronal NO synthase. WHAT THIS ARTICLE TELLS US THAT IS NEW Neonatal PSD-95 PDZ2WT peptide treatment mimics the effects of isoflurane (~1 minimum alveolar concentration) by altering dendritic spine morphology, neural plasticity, and memory without inducing detectable increases in apoptosis or changes in synaptic density.These results indicate that a single dose of isoflurane (~1 minimum alveolar concentration) or PSD-95 PDZ2WT peptide alters dendritic spine architecture and functions important for cognition in the developing brain. This impairment can be prevented by administration of the NO donor molsidomine. BACKGROUND In humans, multiple early exposures to procedures requiring anesthesia constitute a significant risk factor for development of learning disabilities and disorders of attention. In animal studies, newborns exposed to anesthetics develop long-term deficits in cognition. Previously, our laboratory showed that postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domains may serve as a molecular target for inhaled anesthetics. This study investigated a role for PDZ interactions in spine development, plasticity, and memory as a potential mechanism for early anesthetic exposure-produced cognitive impairment. METHODS Postnatal day 7 mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active PSD-95 PDZ2WT peptide. Apoptosis, hippocampal dendritic spine changes, synapse density, long-term potentiation, and cognition functions were evaluated (n = 4 to 18). RESULTS Exposure of postnatal day 7 mice to isoflurane or PSD-95 PDZ2WT peptide causes a reduction in long thin spines (median, interquartile range [IQR]: wild type control [0.54, 0.52 to 0.86] vs. wild type isoflurane [0.31, 0.16 to 0.38], P = 0.034 and PDZ2MUT [0.86, 0.67 to 1.0] vs. PDZ2WT [0.55, 0.53 to 0.59], P = 0.028), impairment in long-term potentiation (median, IQR: wild type control [123, 119 to 147] and wild type isoflurane [101, 96 to 118], P = 0.049 and PDZ2MUT [125, 119 to 131] and PDZ2WT [104, 97 to 107], P = 0.029), and deficits in acute object recognition (median, IQR: wild type control [79, 72 to 88] vs. wild type isoflurane [63, 55 to 72], P = 0.044 and PDZ2MUT [81, 69 to 84] vs. PDZ2WT [67, 57 to 77], P = 0.039) at postnatal day 21 without inducing detectable differences in apoptosis or changes in synaptic density. Impairments in recognition memory and long-term potentiation were preventable by introduction of a NO donor. CONCLUSIONS Early disruption of PDZ domain-mediated protein-protein interactions alters spine morphology, synaptic function, and memory. These results support a role for PDZ interactions in early anesthetic exposure-produced cognitive impairment. Prevention of recognition memory and long-term potentiation deficits with a NO donor supports a role for the N-methyl-D-aspartate receptor/PSD-95/neuronal NO synthase pathway in mediating these aspects of isoflurane-induced cognitive impairment.
Collapse
Affiliation(s)
- Michele L Schaefer
- From the Department Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
24
|
High-throughput Screening in Larval Zebrafish Identifies Novel Potent Sedative-hypnotics. Anesthesiology 2019; 129:459-476. [PMID: 29894316 DOI: 10.1097/aln.0000000000002281] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Many general anesthetics were discovered empirically, but primary screens to find new sedative-hypnotics in drug libraries have not used animals, limiting the types of drugs discovered. The authors hypothesized that a sedative-hypnotic screening approach using zebrafish larvae responses to sensory stimuli would perform comparably to standard assays, and efficiently identify new active compounds. METHODS The authors developed a binary outcome photomotor response assay for zebrafish larvae using a computerized system that tracked individual motions of up to 96 animals simultaneously. The assay was validated against tadpole loss of righting reflexes, using sedative-hypnotics of widely varying potencies that affect various molecular targets. A total of 374 representative compounds from a larger library were screened in zebrafish larvae for hypnotic activity at 10 µM. Molecular mechanisms of hits were explored in anesthetic-sensitive ion channels using electrophysiology, or in zebrafish using a specific reversal agent. RESULTS Zebrafish larvae assays required far less drug, time, and effort than tadpoles. In validation experiments, zebrafish and tadpole screening for hypnotic activity agreed 100% (n = 11; P = 0.002), and potencies were very similar (Pearson correlation, r > 0.999). Two reversible and potent sedative-hypnotics were discovered in the library subset. CMLD003237 (EC50, ~11 µM) weakly modulated γ-aminobutyric acid type A receptors and inhibited neuronal nicotinic receptors. CMLD006025 (EC50, ~13 µM) inhibited both N-methyl-D-aspartate and neuronal nicotinic receptors. CONCLUSIONS Photomotor response assays in zebrafish larvae are a mechanism-independent platform for high-throughput screening to identify novel sedative-hypnotics. The variety of chemotypes producing hypnosis is likely much larger than currently known.
Collapse
|
25
|
Ben-Hamouda N, Poirel VJ, Dispersyn G, Pévet P, Challet E, Pain L. Short-term propofol anaesthesia down-regulates clock genes expression in the master clock. Chronobiol Int 2018; 35:1735-1741. [DOI: 10.1080/07420528.2018.1499107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nawfel Ben-Hamouda
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
- Adult intensive Care Medicine and Burns, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Vincent-Joseph Poirel
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
| | - Garance Dispersyn
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
- Institut de recherche biomedicale des armees, Bretigny-sur-Orge, France
| | - Paul Pévet
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
| | - Etienne Challet
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
| | - Laure Pain
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
- Anesthesiology, Hopitaux universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
26
|
Li Y, Wang S, Pan C, Xue F, Xian J, Huang Y, Wang X, Li T, He H. Comparison of NREM sleep and intravenous sedation through local information processing and whole brain network to explore the mechanism of general anesthesia. PLoS One 2018; 13:e0192358. [PMID: 29486001 PMCID: PMC5828450 DOI: 10.1371/journal.pone.0192358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 01/20/2018] [Indexed: 01/19/2023] Open
Abstract
Background The mechanism of general anesthesia (GA) has been explored for hundreds of years, but unclear. Previous studies indicated a possible correlation between NREM sleep and GA. The purpose of this study is to compare them by in vivo human brain function to probe the neuromechanism of consciousness, so as to find out a clue to GA mechanism. Methods 24 healthy participants were equally assigned to sleep or propofol sedation group by sleeping ability. EEG and Ramsay Sedation Scale were applied to determine sleep stage and sedation depth respectively. Resting-state functional magnetic resonance imaging (RS-fMRI) was acquired at each status. Regional homogeneity (ReHo) and seed-based whole brain functional connectivity maps (WB-FC maps) were compared. Results During sleep, ReHo primarily weakened on frontal lobe (especially preoptic area), but strengthened on brainstem. While during sedation, ReHo changed in various brain areas, including cingulate, precuneus, thalamus and cerebellum. Cingulate, fusiform and insula were concomitance of sleep and sedation. Comparing to sleep, FCs between the cortex and subcortical centers (centralized in cerebellum) were significantly attenuated under sedation. As sedation deepening, cerebellum-based FC maps were diminished, while thalamus- and brainstem-based FC maps were increased. Conclusion There’re huge distinctions in human brain function between sleep and GA. Sleep mainly rely on brainstem and frontal lobe function, while sedation is prone to affect widespread functional network. The most significant differences exist in the precuneus and cingulate, which may play important roles in mechanisms of inducing unconciousness by anesthetics. Trial registration Institutional Review Board (IRB) ChiCTR-IOC-15007454.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shengpei Wang
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Chuxiong Pan
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Fushan Xue
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Beijing, China
| | - Yaqi Huang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Xiaoyi Wang
- Sleep Medical Center, Department of Laryngology, Beijing Tongren Hospital, Beijing, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- * E-mail: (TL); (HH)
| | - Huiguang He
- Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- * E-mail: (TL); (HH)
| |
Collapse
|
27
|
Butler-Struben HM, Brophy SM, Johnson NA, Crook RJ. In Vivo Recording of Neural and Behavioral Correlates of Anesthesia Induction, Reversal, and Euthanasia in Cephalopod Molluscs. Front Physiol 2018. [PMID: 29515454 PMCID: PMC5826266 DOI: 10.3389/fphys.2018.00109] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cephalopod molluscs are among the most behaviorally and neurologically complex invertebrates. As they are now included in research animal welfare regulations in many countries, humane and effective anesthesia is required during invasive procedures. However, currently there is no evidence that agents believed to act as anesthetics produce effects beyond immobility. In this study we demonstrate, for the first time, that two of the most commonly used agents in cephalopod general anesthesia, magnesium chloride and ethanol, are capable of producing strong and reversible blockade of afferent and efferent neural signal; thus they are genuine anesthetics, rather than simply sedating agents that render animals immobile but not insensible. Additionally, we demonstrate that injected magnesium chloride and lidocaine are effective local anesthetic agents. This represents a considerable advance for cephalopod welfare. Using a reversible, minimally invasive recording procedure, we measured activity in the pallial nerve of cuttlefish (Sepia bandensis) and octopus (Abdopus aculeatus, Octopus bocki), during induction and reversal for five putative general anesthetic and two local anesthetic agents. We describe the temporal relationship between loss of behavioral responses (immobility), loss of efferent neural signal (loss of “consciousness”) and loss of afferent neural signal (anesthesia) for general anesthesia, and loss of afferent signal for local anesthesia. Both ethanol and magnesium chloride were effective as bath-applied general anesthetics, causing immobility, complete loss of behavioral responsiveness and complete loss of afferent and efferent neural signal. Cold seawater, diethyl ether, and MS-222 (tricaine) were ineffective. Subcutaneous injection of either lidocaine or magnesium chloride blocked behavioral and neural responses to pinch in the injected area, and we conclude that both are effective local anesthetic agents for cephalopods. Lastly, we demonstrate that a standard euthanasia protocol—immersion in isotonic magnesium chloride followed by surgical decerebration—produced no behavioral response and no neural activity during surgical euthanasia. Based on these data, we conclude that both magnesium chloride and ethanol can function as general anesthetic agents, and lidocaine and magnesium chloride can function as local anesthetic agents for cephalopod molluscs.
Collapse
Affiliation(s)
| | - Samantha M Brophy
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Nasira A Johnson
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
28
|
Bola M, Barrett AB, Pigorini A, Nobili L, Seth AK, Marchewka A. Loss of consciousness is related to hyper-correlated gamma-band activity in anesthetized macaques and sleeping humans. Neuroimage 2017; 167:130-142. [PMID: 29162522 DOI: 10.1016/j.neuroimage.2017.11.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022] Open
Abstract
Loss of consciousness can result from a wide range of causes, including natural sleep and pharmacologically induced anesthesia. Important insights might thus come from identifying neuronal mechanisms of loss and re-emergence of consciousness independent of a specific manipulation. Therefore, to seek neuronal signatures of loss of consciousness common to sleep and anesthesia we analyzed spontaneous electrophysiological activity recorded in two experiments. First, electrocorticography (ECoG) acquired from 4 macaque monkeys anesthetized with different anesthetic agents (ketamine, medetomidine, propofol) and, second, stereo-electroencephalography (sEEG) from 10 epilepsy patients in different wake-sleep stages (wakefulness, NREM, REM). Specifically, we investigated co-activation patterns among brain areas, defined as correlations between local amplitudes of gamma-band activity. We found that resting wakefulness was associated with intermediate levels of gamma-band coupling, indicating neither complete dependence, nor full independence among brain regions. In contrast, loss of consciousness during NREM sleep and propofol anesthesia was associated with excessively correlated brain activity, as indicated by a robust increase of number and strength of positive correlations. However, such excessively correlated brain signals were not observed during REM sleep, and were present only to a limited extent during ketamine anesthesia. This might be related to the fact that, despite suppression of behavioral responsiveness, REM sleep and ketamine anesthesia often involve presence of dream-like conscious experiences. We conclude that hyper-correlated gamma-band activity might be a signature of loss of consciousness common across various manipulations and independent of behavioral responsiveness.
Collapse
Affiliation(s)
- Michał Bola
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| | - Adam B Barrett
- Sackler Centre for Consciousness Science, Department of Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Andrea Pigorini
- Department of Clinical Sciences, University of Milan, Milan 20157, Italy
| | - Lino Nobili
- Centre of Epilepsy Surgery "C. Munari", Niguarda Hospital, Milan, 20162, Italy
| | - Anil K Seth
- Sackler Centre for Consciousness Science, Department of Informatics, University of Sussex, Brighton BN1 9QJ, UK
| | - Artur Marchewka
- Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
29
|
Competitive Antagonism of Anesthetic Action at the γ-Aminobutyric Acid Type A Receptor by a Novel Etomidate Analog with Low Intrinsic Efficacy. Anesthesiology 2017; 127:824-837. [PMID: 28857763 DOI: 10.1097/aln.0000000000001840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The authors characterized the γ-aminobutyric acid type A receptor pharmacology of the novel etomidate analog naphthalene-etomidate, a potential lead compound for the development of anesthetic-selective competitive antagonists. METHODS The positive modulatory potencies and efficacies of etomidate and naphthalene-etomidate were defined in oocyte-expressed α1β3γ2L γ-aminobutyric acid type A receptors using voltage clamp electrophysiology. Using the same technique, the ability of naphthalene-etomidate to reduce currents evoked by γ-aminobutyric acid alone or γ-aminobutyric acid potentiated by etomidate, propofol, pentobarbital, and diazepam was quantified. The binding affinity of naphthalene-etomidate to the transmembrane anesthetic binding sites of the γ-aminobutyric acid type A receptor was determined from its ability to inhibit receptor photoaffinity labeling by the site-selective photolabels [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid. RESULTS In contrast to etomidate, naphthalene-etomidate only weakly potentiated γ-aminobutyric acid-evoked currents and induced little direct activation even at a near-saturating aqueous concentration. It inhibited labeling of γ-aminobutyric acid type A receptors by [H]azi-etomidate and R-[H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid with similar half-maximal inhibitory concentrations of 48 μM (95% CI, 28 to 81 μM) and 33 μM (95% CI, 20 to 54 μM). It also reduced the positive modulatory actions of anesthetics (propofol > etomidate ~ pentobarbital) but not those of γ-aminobutyric acid or diazepam. At 300 μM, naphthalene-etomidate increased the half-maximal potentiating propofol concentration from 6.0 μM (95% CI, 4.4 to 8.0 μM) to 36 μM (95% CI, 17 to 78 μM) without affecting the maximal response obtained at high propofol concentrations. CONCLUSIONS Naphthalene-etomidate is a very low-efficacy etomidate analog that exhibits the pharmacology of an anesthetic competitive antagonist at the γ-aminobutyric acid type A receptor.
Collapse
|
30
|
Elsaidi SK, Ongari D, Xu W, Mohamed MH, Haranczyk M, Thallapally PK. Xenon Recovery at Room Temperature using Metal-Organic Frameworks. Chemistry 2017; 23:10758-10762. [PMID: 28612499 DOI: 10.1002/chem.201702668] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Indexed: 11/10/2022]
Abstract
Xenon is known to be a very efficient anesthetic gas, but its cost prohibits the wider use in medical industry and other potential applications. It has been shown that Xe recovery and recycling from anesthetic gas mixtures can significantly reduce its cost as anesthetic. The current technology uses series of adsorbent columns followed by low-temperature distillation to recover Xe; this method is expensive to use in medical facilities. Herein, we propose a much simpler and more efficient system to recover and recycle Xe from exhaled anesthetic gas mixtures at room temperature using metal-organic frameworks (MOFs). Among the MOFs tested, PCN-12 exhibits unprecedented performance with high Xe capacity and Xe/O2 , Xe/N2 and Xe/CO2 selectivity at room temperature. The in situ synchrotron measurements suggest that Xe is occupies the small pockets of PCN-12 compared to unsaturated metal centers (UMCs). Computational modeling of adsorption further supports our experimental observation of Xe binding sites in PCN-12.
Collapse
Affiliation(s)
- Sameh K Elsaidi
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.,Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia, Alexandria, 21321, Egypt
| | - Daniele Ongari
- Laboratory of Molecular Simulation, Institut des Sciences et Ingeénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951, Sion, Valais, Switzerland
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Mona H Mohamed
- Chemistry Department, Faculty of Science, Alexandria University, P. O. Box 426 Ibrahimia, Alexandria, 21321, Egypt
| | - Maciej Haranczyk
- IMDEA Materials Institute, c/Eric Kandel 2, 28906, Getafe, Madrid, Spain
| | - Praveen K Thallapally
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
31
|
Sørensen NB, Christiansen AT, Kjær TW, Klemp K, la Cour M, Kiilgaard JF. Time-Dependent Decline in Multifocal Electroretinogram Requires Faster Recording Procedures in Anesthetized Pigs. Transl Vis Sci Technol 2017; 6:6. [PMID: 28377845 PMCID: PMC5374880 DOI: 10.1167/tvst.6.2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/11/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose The time-dependent effect of anesthetics on the retinal function is debated. We hypothesize that in anesthetized animals there is a time-dependent decline that requires optimized multifocal electroretinogram (mfERG) recording procedures. Methods Conventional and four-frame global-flash mfERG recordings were obtained approximately 15, 60, and 150 minutes after the induction of propofol anesthesia (20 pigs) and isoflurane anesthesia (nine pigs). In six of the propofol-anesthetized pigs, the mfERG recordings were split in 3-minute segments. Two to 4 weeks after initial recordings, an intraocular injection of tetrodotoxin (TTX) was given and the mfERG was rerecorded as described above. Data were analyzed using mixed models in SAS statistical software. Results Propofol significantly decreases the conventional and global-flash amplitudes over time. The only significant effect of isoflurane is a decrease in the global-flash amplitudes. At 15 minutes after TTX injection several of the mfERG amplitudes are significantly decreased. There is a linear correlation between the conventional P1 and the global-flash DR mfERG-amplitude (R2 = 0.82, slope = 0.72, P < 0.0001). There is no significant difference between the 3-minute and the prolonged mfERG recordings for conventional amplitudes and the global-flash direct response. The global flash–induced component significantly decreases with prolonged mfERG recordings. Conclusions A 3-minute mfERG recording and a single stimulation protocol is sufficient in anesthetized pigs. Recordings should be obtained immediately after the induction of anesthesia. The effect of TTX is significant 15 minutes after injection, but is contaminated by the effect of anesthesia 90 minutes after injection. Therefore, the quality of mfERG recordings can be further improved by determining the necessary time-of-delay from intraocular injection of a drug to full effect. Translational Relevance General anesthesia is a possible source of error in mfERG recordings. Therefore, it is important to investigate the translational relevance of the results to mfERG recordings in children in general anesthesia.
Collapse
Affiliation(s)
- Nina Buus Sørensen
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Kristian Klemp
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Morten la Cour
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens Folke Kiilgaard
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
32
|
Tian D, Tian M, Ma Z, Zhang L, Cui Y, Li J. Voluntary exercise rescues sevoflurane-induced memory impairment in aged male mice. Exp Brain Res 2016; 234:3613-3624. [PMID: 27540727 DOI: 10.1007/s00221-016-4756-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Postoperative cognitive impairment is especially common in older patients following major surgery. Although exposure to sevoflurane is known to cause memory deficits, few studies have examined the putative approaches to reduce such impairments. This study tested the hypotheses that sevoflurane exposure can decrease NR2B subunit-containing NMDA receptor activity in hippocampus of aged mice, and voluntary exercise may counteract the declining hippocampal functions. We found that long exposure (3 h/day for 3 days), but not short exposure (1 h/day for 3 days), to 3 % sevoflurane produced a long-lasting spatial memory deficits up to 3 weeks in aged mice, and such an effect was not due to the neuronal loss in the hippocampus, but was correlated with a long-term decrease in Fyn kinase expression and NR2B subunit phosphorylation in the hippocampus. Furthermore, voluntary exercise rescued sevoflurane-induced spatial memory deficits in aged mice and restored Fyn kinase expression and NR2B subunit phosphorylation in the hippocampus to a level comparable to control animals. Generally, our results suggested that Fyn-mediated NR2B subunit phosphorylation may play a critical role in sevoflurane-induced impairment in cognitive functions in aged animals, and voluntary exercise might be an important non-pharmacological approach to treatment of inhaled anesthetics-induced postoperative cognitive impairment in clinical settings.
Collapse
Affiliation(s)
- Dan Tian
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhiming Ma
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China
| | - Leilei Zhang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Yunfeng Cui
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Jinlong Li
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
33
|
Bichler EK, Elder CC, García PS. Clarithromycin increases neuronal excitability in CA3 pyramidal neurons through a reduction in GABAergic signaling. J Neurophysiol 2016; 117:93-103. [PMID: 27733592 DOI: 10.1152/jn.00134.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/07/2016] [Indexed: 01/24/2023] Open
Abstract
Antibiotics are used in the treatment and prevention of bacterial infections, but effects on neuron excitability have been documented. A recent study demonstrated that clarithromycin alleviates daytime sleepiness in hypersomnia patients (Trotti LM, Saini P, Freeman AA, Bliwise DL, García PS, Jenkins A, Rye DB. J Psychopharmacol 28: 697-702, 2014). To explore the potential application of clarithromycin as a stimulant, we performed whole cell patch-clamp recordings in rat pyramidal cells from the CA3 region of hippocampus. In the presence of the antibiotic, rheobase current was reduced by 50%, F-I relationship (number of action potentials as a function of injected current) was shifted to the left, and the resting membrane potential was more depolarized. Clarithromycin-induced hyperexcitability was dose dependent; doses of 30 and 300 μM clarithromycin significantly increased the firing frequency and membrane potential compared with controls (P = 0.003, P < 0.0001). We hypothesized that clarithromycin enhanced excitability by reducing GABAA receptor activation. Clarithromycin at 30 μM significantly reduced (P = 0.001) the amplitude of spontaneous miniature inhibitory GABAergic currents and at 300 μM had a minor effect on action potential width. Additionally, we tested the effect of clarithromycin in an ex vivo seizure model by evaluating its effect on spontaneous local field potentials. Bath application of 300 μM clarithromycin enhanced burst frequency twofold compared with controls (P = 0.0006). Taken together, these results suggest that blocking GABAergic signaling with clarithromycin increases cellular excitability and potentially serves as a stimulant, facilitating emergence from anesthesia or normalizing vigilance in hypersomnia and narcolepsy. However, the administration of clarithromycin should be carefully considered in patients with seizure disorders. NEW & NOTEWORTHY Clinical administration of the macrolide antibiotic clarithromycin has been associated with side effects such as mania, agitation, and delirium. Here, we investigated the adverse effects of this antibiotic on CA3 pyramidal cell excitability. Clarithromycin induces hyperexcitability in single neurons and is related to a reduction in GABAergic signaling. Our results support a potentially new application of clarithromycin as a stimulant to facilitate emergence from anesthesia or to normalize vigilance.
Collapse
Affiliation(s)
- Edyta K Bichler
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia; .,Anesthesiology and Research Divisions, Atlanta VA Medical Center, Decatur, Georgia; and
| | | | - Paul S García
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia.,Anesthesiology and Research Divisions, Atlanta VA Medical Center, Decatur, Georgia; and
| |
Collapse
|
34
|
Lissek T, Obenhaus HA, Ditzel DAW, Nagai T, Miyawaki A, Sprengel R, Hasan MT. General Anesthetic Conditions Induce Network Synchrony and Disrupt Sensory Processing in the Cortex. Front Cell Neurosci 2016; 10:64. [PMID: 27147963 PMCID: PMC4830828 DOI: 10.3389/fncel.2016.00064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/29/2016] [Indexed: 12/19/2022] Open
Abstract
General anesthetics are commonly used in animal models to study how sensory signals are represented in the brain. Here, we used two-photon (2P) calcium activity imaging with cellular resolution to investigate how neuronal activity in layer 2/3 of the mouse barrel cortex is modified under the influence of different concentrations of chemically distinct general anesthetics. Our results show that a high isoflurane dose induces synchrony in local neuronal networks and these cortical activity patterns closely resemble those observed in EEG recordings under deep anesthesia. Moreover, ketamine and urethane also induced similar activity patterns. While investigating the effects of deep isoflurane anesthesia on whisker and auditory evoked responses in the barrel cortex, we found that dedicated spatial regions for sensory signal processing become disrupted. We propose that our isoflurane-2P imaging paradigm can serve as an attractive model system to dissect cellular and molecular mechanisms that induce the anesthetic state, and it might also provide important insight into sleep-like brain states and consciousness.
Collapse
Affiliation(s)
- Thomas Lissek
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of HeidelbergHeidelberg, Germany
| | - Horst A Obenhaus
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Désirée A W Ditzel
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| | - Takeharu Nagai
- Laboratory for Nanosystems Physiology, Hokkaido University Hokkaido, Japan
| | - Atsushi Miyawaki
- RIKEN-Brain Science Institute, Laboratory for Cell Function Dynamics Saitama, Japan
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelberg, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical ResearchHeidelberg, Germany; Molecular Neurobiology, Neurocure Cluster of Excellence, Charite-UniversitätsmedizinBerlin, Germany
| |
Collapse
|
35
|
Ma R, Wang X, Peng P, Xiong J, Dong H, Wang L, Ding Z. α-Lipoic acid inhibits sevoflurane-induced neuronal apoptosis through PI3K/Akt signalling pathway. Cell Biochem Funct 2016; 34:42-7. [PMID: 26781804 DOI: 10.1002/cbf.3163] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Rong Ma
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Xiang Wang
- Nanjing First Hospital; Nanjing Medical University; Nanjing 210006 China
| | - Peipei Peng
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Jingwei Xiong
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Hongquan Dong
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Lixia Wang
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| | - Zhengnian Ding
- Department of Anesthesiology; The First Affiliated Hospital, Nanjing Medical University (Jiangsu Province Hospital); Nanjing 210029 China
| |
Collapse
|
36
|
EEG Radiotelemetry in Small Laboratory Rodents: A Powerful State-of-the Art Approach in Neuropsychiatric, Neurodegenerative, and Epilepsy Research. Neural Plast 2015; 2016:8213878. [PMID: 26819775 PMCID: PMC4706962 DOI: 10.1155/2016/8213878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/27/2015] [Indexed: 02/04/2023] Open
Abstract
EEG radiotelemetry plays an important role in the neurological characterization of transgenic mouse models of neuropsychiatric and neurodegenerative diseases as well as epilepsies providing valuable insights into underlying pathophysiological mechanisms and thereby facilitating the development of new translational approaches. We elaborate on the major advantages of nonrestraining EEG radiotelemetry in contrast to restraining procedures such as tethered systems or jacket systems containing recorders. Whereas a main disadvantage of the latter is their unphysiological, restraining character, telemetric EEG recording overcomes these disadvantages. It allows precise and highly sensitive measurement under various physiological and pathophysiological conditions. Here we present a detailed description of a straightforward successful, quick, and efficient technique for intraperitoneal as well as subcutaneous pouch implantation of a standard radiofrequency transmitter in mice and rats. We further present computerized 3D-stereotaxic placement of both epidural and deep intracerebral electrodes. Preoperative preparation of mice and rats, suitable anaesthesia, and postoperative treatment and pain management are described in detail. A special focus is on fields of application, technical and experimental pitfalls, and technical connections of commercially available radiotelemetry systems with other electrophysiological setups.
Collapse
|
37
|
Use T, Nakahara H, Kimoto A, Beppu Y, Yoshimura M, Kojima T, Fukano T. Barbiturate Induction for the Prevention of Emergence Agitation after Pediatric Sevoflurane Anesthesia. J Pediatr Pharmacol Ther 2015; 20:385-92. [PMID: 26472953 DOI: 10.5863/1551-6776-20.5.385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Emergence agitation (EA) is a common and troublesome problem in pediatric patients recovering from general anesthesia. The incidence of EA is reportedly higher after general anesthesia maintained with sevoflurane, a popular inhalational anesthetic agent for pediatric patients. We conducted this prospective, randomized, double-blind study to test the effect of an intravenous ultra-short-acting barbiturate, thiamylal, administered during induction of general anesthesia on the incidence and severity of EA in pediatric patients recovering from Sevoflurane anesthesia. METHODS Fifty-four pediatric patients (1 to 6 years of age) undergoing subumbilical surgeries were randomized into 2 groups. Patients received either intravenous thiamylal 5mg/kg (Group T) or inhalational Sevoflurane 5% (Group S) as an anesthetic induction agent. Following induction, general anesthesia was maintained with Sevoflurane and nitrous oxide (N2O) in both groups. To control the intra- and post-operative pain, caudal block or ilioinguinal/iliohypogastric block was performed. The incidence and severity of EA were evaluated by using the Modified Objective Pain Scale (MOPS: 0 to 6) at 15 and 30 min after arrival in the post-anesthesia care unit (PACU). RESULTS Fifteen minutes after arrival in the PACU, the incidence of EA in Group T (28%) was significantly lower than in Group S (64%; p = 0.023) and the MOPS in Group T (median 0, range 0 to 6) was significantly lower than in Group S (median 4, range 0 to 6; p = 0.005). The interval from discontinuation of Sevoflurane to emergence from anesthesia was not significantly different between the 2 groups. CONCLUSIONS Thiamylal induction reduced the incidence and severity of EA in pediatric patients immediately after Sevoflurane anesthesia.
Collapse
Affiliation(s)
- Tadasuke Use
- Department of Anesthesiology, Sasebo Kyosai Hospital, Sasebo, Japan
| | - Haruna Nakahara
- Department of Anesthesiology, Sasebo Kyosai Hospital, Sasebo, Japan
| | - Ayako Kimoto
- Department of Anesthesiology, Sasebo Kyosai Hospital, Sasebo, Japan
| | - Yuki Beppu
- Department of Anesthesiology, Sasebo Kyosai Hospital, Sasebo, Japan
| | - Maki Yoshimura
- Department of Anesthesiology, Sasebo Kyosai Hospital, Sasebo, Japan
| | | | - Taku Fukano
- Department of Anesthesiology, Sasebo Kyosai Hospital, Sasebo, Japan
| |
Collapse
|
38
|
Isoflurane inhibits synaptic vesicle exocytosis through reduced Ca2+ influx, not Ca2+-exocytosis coupling. Proc Natl Acad Sci U S A 2015; 112:11959-64. [PMID: 26351670 DOI: 10.1073/pnas.1500525112] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying presynaptic mechanisms of general anesthetics is critical to understanding their effects on synaptic transmission. We show that the volatile anesthetic isoflurane inhibits synaptic vesicle (SV) exocytosis at nerve terminals in dissociated rat hippocampal neurons through inhibition of presynaptic Ca(2+) influx without significantly altering the Ca(2+) sensitivity of SV exocytosis. A clinically relevant concentration of isoflurane (0.7 mM) inhibited changes in [Ca(2+)]i driven by single action potentials (APs) by 25 ± 3%, which in turn led to 62 ± 3% inhibition of single AP-triggered exocytosis at 4 mM extracellular Ca(2+) ([Ca(2+)]e). Lowering external Ca(2+) to match the isoflurane-induced reduction in Ca(2+) entry led to an equivalent reduction in exocytosis. These data thus indicate that anesthetic inhibition of neurotransmitter release from small SVs occurs primarily through reduced axon terminal Ca(2+) entry without significant direct effects on Ca(2+)-exocytosis coupling or on the SV fusion machinery. Isoflurane inhibition of exocytosis and Ca(2+) influx was greater in glutamatergic compared with GABAergic nerve terminals, consistent with selective inhibition of excitatory synaptic transmission. Such alteration in the balance of excitatory to inhibitory transmission could mediate reduced neuronal interactions and network-selective effects observed in the anesthetized central nervous system.
Collapse
|
39
|
Liu J, Zhang X, Zhang W, Gu G, Wang P. Effects of Sevoflurane on Young Male Adult C57BL/6 Mice Spatial Cognition. PLoS One 2015; 10:e0134217. [PMID: 26285216 PMCID: PMC4540577 DOI: 10.1371/journal.pone.0134217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/07/2015] [Indexed: 11/18/2022] Open
Abstract
Inhalation anesthetics are reported to affect cognition in both animals and humans. The influence of inhalation anesthetics in learning and memory are contradictory. We therefore investigated the effects of sevoflurane anesthesia with different durations on cognitive performance and the levels of NMDA receptor subunit NR2B, phosphorylated ERK1/2 (p-ERK1/2) and activated caspase3 in mouse hippocampus. We anaesthetized eight-week old male C57BL/6 mice with 2.5% sevoflurane for durations ranging from one to four hours. Non-anaesthetized mice served as controls. Mice exposed to sevoflurane for one to three hours showed improved performance, whereas mice with exposure up to four hours displayed similar behavioral performance as control group. NR2B was increased both at 24h and at two weeks post sevoflurane exposure in all groups. The p-ERK1/2: total ERK1/2 ratio increased at 24h in all anesthesia groups. The ratio remained elevated at two weeks in groups with two- to four-hour exposure. Activated caspase3 was detected elevated at 24h in groups with two- to four-hour exposure. The elevated trend of activated caspase3 was still detectable at two weeks in groups with three- to four-hour exposure. At two weeks post anesthesia, the typical morphology associated with apoptotic cells was observed in the hippocampus of mice exposed to four hours of sevoflurane. Our results indicate that 2.5% sevoflurane exposure for one to three hours improved spatial cognitive performance in young adult mice. The cognitive improvement might be related to the increase of NR2B, the p-ERK1/2: total ERK1/2 ratio in hippocampus. However, exposure to sevoflurane for four hours caused neurotoxicity due to caspase3 activation and apoptosis.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Anesthesiology, Tongji Hospital affiliated Tongji University, Shanghai, China
| | - Xiaoqing Zhang
- Department of Anesthesiology, Tongji Hospital affiliated Tongji University, Shanghai, China
| | - Wei Zhang
- Department of medical image, Tongji Hospital affiliated Tongji University, Shanghai, China
| | - Guojun Gu
- Department of medical image, Tongji Hospital affiliated Tongji University, Shanghai, China
| | - Peijun Wang
- Department of medical image, Tongji Hospital affiliated Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|
40
|
Li P, Bracamontes JR, Manion BD, Mennerick S, Steinbach JH, Evers AS, Akk G. The neurosteroid 5β-pregnan-3α-ol-20-one enhances actions of etomidate as a positive allosteric modulator of α1β2γ2L GABAA receptors. Br J Pharmacol 2015; 171:5446-57. [PMID: 25117207 DOI: 10.1111/bph.12861] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/11/2014] [Accepted: 07/20/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Neurosteroids potentiate responses of the GABAA receptor to the endogenous agonist GABA. Here, we examined the ability of neurosteroids to potentiate responses to the allosteric activators etomidate, pentobarbital and propofol. EXPERIMENTAL APPROACH Electrophysiological assays were conducted on rat α1β2γ2L GABAA receptors expressed in HEK 293 cells. The sedative activity of etomidate was studied in Xenopus tadpoles and mice. Effects of neurosteroids on etomidate-elicited inhibition of cortisol synthesis were determined in human adrenocortical cells. KEY RESULTS The neurosteroid 5β-pregnan-3α-ol-20-one (3α5βP) potentiated activation of GABAA receptors by GABA and allosteric activators. Co-application of 1 μM 3α5βP induced a leftward shift (almost 100-fold) of the whole-cell macroscopic concentration-response relationship for gating by etomidate. Co-application of 100 nM 3α5βP reduced the EC50 for potentiation by etomidate of currents elicited by 0.5 μM GABA by about three-fold. In vivo, 3α5βP (1mg kg(-1) ) reduced the dose of etomidate required to produce loss of righting in mice (ED50 ) by almost 10-fold. In tadpoles, the presence of 50 or 100 nM 3α5βP shifted the EC50 for loss of righting about three- or ten-fold respectively. Exposure to 3α5βP did not influence inhibition of cortisol synthesis by etomidate. CONCLUSIONS AND IMPLICATIONS Potentiating neurosteroids act similarly on orthosterically and allosterically activated GABAA receptors. Co-application of neurosteroids with etomidate can significantly reduce dosage requirements for the anaesthetic, and is a potentially beneficial combination to reduce undesired side effects.
Collapse
Affiliation(s)
- P Li
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Inhalational anesthetics disrupt postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 domain protein interactions critical to action of several excitatory receptor channels related to anesthesia. Anesthesiology 2015; 122:776-86. [PMID: 25654436 DOI: 10.1097/aln.0000000000000609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The authors have shown previously that inhaled anesthetics disrupt the interaction between the second postsynaptic density protein-95, Drosophila disc large tumor suppressor, and zonula occludens-1 (PDZ) domain of postsynaptic density protein-95 (PSD-95) and the C-terminus of N-methyl-D-aspartate receptor subunits NR2A and NR2B. The study data indicate that PDZ domains may serve as a molecular target for inhaled anesthetics. However, the underlying molecular mechanisms remain to be illustrated. METHODS Glutathione S-transferase pull-down assay, coimmunoprecipitation, and yeast two-hybrid analysis were used to assess PDZ domain-mediated protein-protein interactions in different conditions. Nuclear magnetic resonance spectroscopy was used to investigate isoflurane-induced chemical shift changes in the PDZ1-3 domains of PSD-95. A surface plasmon resonance-based BIAcore (Sweden) assay was used to examine the ability of isoflurane to inhibit the PDZ domain-mediated protein-protein interactions in real time. RESULTS Halothane and isoflurane dose-dependently inhibited PDZ domain-mediated interactions between PSD-95 and Shaker-type potassium channel Kv1.4 and between α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA2 and its interacting proteins-glutamate receptor-interacting protein or protein interacting with c kinase 1. However, halothane and isoflurane had no effect on PDZ domain-mediated interactions between γ-aminobutyric acid type B receptor and its interacting proteins. The inhaled anesthetic isoflurane mostly affected the residues close to or in the peptide-binding groove of PSD-95 PDZ1 and PDZ2 (especially PDZ2), while barely affecting the peptide-binding groove of PSD-95 PDZ3. CONCLUSION These results suggest that inhaled anesthetics interfere with PDZ domain-mediated protein-protein interactions at several receptors important to neuronal excitation, anesthesia, and pain processing.
Collapse
|
42
|
Noble Path to Oblivion. Anesthesiology 2015; 122:971-3. [DOI: 10.1097/aln.0000000000000636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Abstract
BACKGROUND Recent studies of anesthetic-induced unconsciousness in humans have focused predominantly on the intravenous drug propofol and have identified anterior dominance of alpha rhythms and frontal phase-amplitude coupling patterns as neurophysiological markers. However, it is unclear whether the correlates of propofol-induced unconsciousness are generalizable to inhaled anesthetics, which have distinct molecular targets and which are used more commonly in clinical practice. METHODS The authors recorded 64-channel electroencephalograms in healthy human participants during consciousness, sevoflurane-induced unconsciousness, and recovery (n = 10; n = 7 suitable for analysis). Spectrograms and scalp distributions of low-frequency (1 Hz) and alpha (10 Hz) power were analyzed, and phase-amplitude modulation between these two frequencies was calculated in frontal and parietal regions. Phase lag index was used to assess phase relationships across the cortex. RESULTS At concentrations sufficient for unconsciousness, sevoflurane did not result in a consistent anteriorization of alpha power; the relationship between low-frequency phase and alpha amplitude in the frontal cortex did not undergo characteristic transitions. By contrast, there was significant cross-frequency coupling in the parietal region during consciousness that was not observed after loss of consciousness. Furthermore, a reversible disruption of anterior-posterior phase relationships in the alpha bandwidth was identified as a correlate of sevoflurane-induced unconsciousness. CONCLUSION In humans, sevoflurane-induced unconsciousness is not correlated with anteriorization of alpha and related cross-frequency patterns, but rather by a disruption of phase-amplitude coupling in the parietal region and phase-phase relationships across the cortex.
Collapse
|
44
|
Kenny JD, Westover MB, Ching S, Brown EN, Solt K. Propofol and sevoflurane induce distinct burst suppression patterns in rats. Front Syst Neurosci 2014; 8:237. [PMID: 25565990 PMCID: PMC4270179 DOI: 10.3389/fnsys.2014.00237] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/27/2014] [Indexed: 12/30/2022] Open
Abstract
Burst suppression is an EEG pattern characterized by alternating periods of high-amplitude activity (bursts) and relatively low amplitude activity (suppressions). Burst suppression can arise from several different pathological conditions, as well as from general anesthesia. Here we review current algorithms that are used to quantify burst suppression, its various etiologies, and possible underlying mechanisms. We then review clinical applications of anesthetic-induced burst suppression. Finally, we report the results of our new study showing clear electrophysiological differences in burst suppression patterns induced by two common general anesthetics, sevoflurane and propofol. Our data suggest that the circuit mechanisms that generate burst suppression activity may differ among general anesthetics.
Collapse
Affiliation(s)
- Jonathan D Kenny
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Harvard Medical School Boston, MA, USA ; Department of Neurology, Massachusetts General Hospital Boston, MA, USA
| | - ShiNung Ching
- Department of Electrical and Systems Engineering, Washington University in St. Louis St. Louis, Missouri, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Boston, MA, USA ; Department of Anaesthesia, Harvard Medical School Boston, MA, USA ; Institute for Medical Engineering and Science, Massachusetts Institute of Technology Cambridge, MA, USA ; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Boston, MA, USA ; Department of Anaesthesia, Harvard Medical School Boston, MA, USA
| |
Collapse
|
45
|
De Vasconcellos K. Nitrous oxide in 2010: who will have the last laugh? (Part 1). SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2014. [DOI: 10.1080/22201173.2010.10872662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Xu X, Tian Y, Wang G, Tian X. Inhibition of propofol on single neuron and neuronal ensemble activity in prefrontal cortex of rats during working memory task. Behav Brain Res 2014; 270:270-6. [DOI: 10.1016/j.bbr.2014.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 01/16/2023]
|
47
|
Wang Q, Fong R, Mason P, Fox AP, Xie Z. Caffeine accelerates recovery from general anesthesia. J Neurophysiol 2014; 111:1331-40. [PMID: 24375022 PMCID: PMC3949308 DOI: 10.1152/jn.00792.2013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/26/2013] [Indexed: 11/22/2022] Open
Abstract
General anesthetics inhibit neurotransmitter release from both neurons and secretory cells. If inhibition of neurotransmitter release is part of an anesthetic mechanism of action, then drugs that facilitate neurotransmitter release may aid in reversing general anesthesia. Drugs that elevate intracellular cAMP levels are known to facilitate neurotransmitter release. Three cAMP elevating drugs (forskolin, theophylline, and caffeine) were tested; all three drugs reversed the inhibition of neurotransmitter release produced by isoflurane in PC12 cells in vitro. The drugs were tested in isoflurane-anesthetized rats. Animals were injected with either saline or saline containing drug. All three drugs dramatically accelerated recovery from isoflurane anesthesia, but caffeine was most effective. None of the drugs, at the concentrations tested, had significant effects on breathing rates, O2 saturation, heart rate, or blood pressure in anesthetized animals. Caffeine alone was tested on propofol-anesthetized rats where it dramatically accelerated recovery from anesthesia. The ability of caffeine to accelerate recovery from anesthesia for different chemical classes of anesthetics, isoflurane and propofol, opens the possibility that it will do so for all commonly used general anesthetics, although additional studies will be required to determine whether this is in fact the case. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in human patients.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois
| | | | | | | | | |
Collapse
|
48
|
Di Perri C, Stender J, Laureys S, Gosseries O. Functional neuroanatomy of disorders of consciousness. Epilepsy Behav 2014; 30:28-32. [PMID: 24100252 DOI: 10.1016/j.yebeh.2013.09.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
Our understanding of the mechanisms of loss and recovery of consciousness, following severe brain injury or during anesthesia, is changing rapidly. Recent neuroimaging studies have shown that patients with chronic disorders of consciousness and subjects undergoing general anesthesia present a complex dysfunctionality in the architecture of brain connectivity. At present, the global hallmark of impaired consciousness appears to be a multifaceted dysfunctional connectivity pattern with both within-network loss of connectivity in a widespread frontoparietal network and between-network hyperconnectivity involving other regions such as the insula and ventral tegmental area. Despite ongoing efforts, the mechanisms underlying the emergence of consciousness after severe brain injury are not thoroughly understood. Important questions remain unanswered: What triggers the connectivity impairment leading to disorders of consciousness? Why do some patients recover from coma, while others with apparently similar brain injuries do not? Understanding these mechanisms could lead to a better comprehension of brain function and, hopefully, lead to new therapeutic strategies in this challenging patient population.
Collapse
Affiliation(s)
- Carol Di Perri
- Coma Science Group, Cyclotron Research Centre & Neurology Department, University and University Hospital of Liege, Liege, Belgium; Department of Neuroradiology, National Neurological Institute C. Mondino, Pavia, Italy
| | | | | | | |
Collapse
|
49
|
|
50
|
Lioudyno MI, Birch AM, Tanaka BS, Sokolov Y, Goldin AL, Chandy KG, Hall JE, Alkire MT. Shaker-related potassium channels in the central medial nucleus of the thalamus are important molecular targets for arousal suppression by volatile general anesthetics. J Neurosci 2013; 33:16310-22. [PMID: 24107962 PMCID: PMC3792466 DOI: 10.1523/jneurosci.0344-13.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 12/23/2022] Open
Abstract
The molecular targets and neural circuits that underlie general anesthesia are not fully elucidated. Here, we directly demonstrate that Kv1-family (Shaker-related) delayed rectifier K(+) channels in the central medial thalamic nucleus (CMT) are important targets for volatile anesthetics. The modulation of Kv1 channels by volatiles is network specific as microinfusion of ShK, a potent inhibitor of Kv1.1, Kv1.3, and Kv1.6 channels, into the CMT awakened sevoflurane-anesthetized rodents. In heterologous expression systems, sevoflurane, isoflurane, and desflurane at subsurgical concentrations potentiated delayed rectifier Kv1 channels at low depolarizing potentials. In mouse thalamic brain slices, sevoflurane inhibited firing frequency and delayed the onset of action potentials in CMT neurons, and ShK-186, a Kv1.3-selective inhibitor, prevented these effects. Our findings demonstrate the exquisite sensitivity of delayed rectifier Kv1 channels to modulation by volatile anesthetics and highlight an arousal suppressing role of Kv1 channels in CMT neurons during the process of anesthesia.
Collapse
Affiliation(s)
- Maria I. Lioudyno
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697-4561
| | - Alexandra M. Birch
- Center for the Neurobiology of Learning and Memory and Department of Anesthesiology and Perioperative Care, University of California, Irvine, Orange, California 92868, and
| | - Brian S. Tanaka
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697-4025
| | - Yuri Sokolov
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697-4561
| | - Alan L. Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California 92697-4025
| | - K. George Chandy
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697-4561
| | - James E. Hall
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697-4561
| | - Michael T. Alkire
- Center for the Neurobiology of Learning and Memory and Department of Anesthesiology and Perioperative Care, University of California, Irvine, Orange, California 92868, and
| |
Collapse
|