1
|
Khan M, Farooqi S, Mitchell KL, Chowdhury SKR, Cabrera-Ayala M, Huang J, Wallace DC, Weiss SL. Effect of sodium butyrate on kidney and liver mitochondrial dysfunction in a lipopolysaccharide mouse model. FASEB J 2024; 38:e70228. [PMID: 39641547 DOI: 10.1096/fj.202401379rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Sodium butyrate can reduce inflammation, but it is not known if butyrate can improve mitochondrial dysfunction during sepsis. We tested butyrate to prevent or reverse lipopolysaccharide (LPS)-induced mitochondrial dysfunction in murine kidney and liver. C57BL/6 mice were grouped as control (n = 9), intraperitoneal (IP) LPS (n = 8), pretreatment with IP butyrate 600 (n = 3) or 1200 mg/kg (n = 8) followed 2 h later by LPS, posttreatment with IP butyrate 600 (n = 3) or 1200 mg/kg (n = 7) 1 h after LPS, or butyrate 1200 mg/kg only (n = 8). Kidney and liver tissue were collected at 24 h to measure mitochondrial respiration, electron transport system (ETS) complex activity and subunit expression, and content (citrate synthase [CS] activity and mtDNA/nDNA). Kidney mitochondrial respiration was decreased after LPS compared to controls. Pretreatment with butyrate 1200 mg/kg increased kidney OXPHOSCI+II, ETSCI+II, ETSCII, and CIV respiration compared to LPS; posttreatment did not achieve significant increases except for OXPHOSCI. Liver mitochondrial respiration exhibited a similar pattern as in kidney, but differences were not significant. ETS complex and CS activity did not differ between groups, but CI and CII subunit expression trended higher with butyrate in kidney. Changes in mtDNA/nDNA followed a similar pattern as respiration in kidney and liver with a decrease after LPS that was not present with butyrate pretreatment. These data show that butyrate can prevent-but not significantly reverse-the LPS-induced decrease in kidney mitochondrial respiration without a clear effect in liver. Mitochondrial protection was not attributable to changes in ETS complex activity but may reflect maintenance of ETS subunit expression.
Collapse
Affiliation(s)
- Muznah Khan
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Sumera Farooqi
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Katherine L Mitchell
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Subir Kumar Roy Chowdhury
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Marian Cabrera-Ayala
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
| | - Jessica Huang
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott L Weiss
- Critical Care Mitochondrial Unit, Nemours Biomedical Research, Nemours Children's Hospital, Wilmington, Delaware, USA
- Division of Critical Care, Department of Pediatrics, Nemours Children's Hospital, Wilmington, Delaware, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Jing D, Liu J, Qin D, Lin J, Li T, Li Y, Duan M. Obeticholic acid ameliorates sepsis-induced renal mitochondrial damage by inhibiting the NF-κb signaling pathway. Ren Fail 2024; 46:2368090. [PMID: 39108162 PMCID: PMC11308967 DOI: 10.1080/0886022x.2024.2368090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Acute kidney injury (AKI), a common complication of sepsis, might be caused by overactivated inflammation, mitochondrial damage, and oxidative stress. However, the mechanisms underlying sepsis-induced AKI (SAKI) have not been fully elucidated, and there is a lack of effective therapies for AKI. To this end, this study aimed to investigate whether obeticholic acid (OCA) has a renoprotective effect on SAKI and to explore its mechanism of action. Through bioinformatics analysis, our study confirmed that the mitochondria might be a critical target for the treatment of SAKI. Thus, a septic rat model was established by cecal ligation puncture (CLP) surgery. Our results showed an evoked inflammatory response via the NF-κB signaling pathway and NLRP3 inflammasome activation in septic rats, which led to mitochondrial damage and oxidative stress. OCA, an Farnesoid X Receptor (FXR) agonist, has shown anti-inflammatory effects in numerous studies. However, the effects of OCA on SAKI remain unclear. In this study, we revealed that pretreatment with OCA can inhibit the inflammatory response by reducing the synthesis of proinflammatory factors (such as IL-1β and NLRP3) via blocking NF-κB and alleviating mitochondrial damage and oxidative stress in the septic rat model. Overall, this study provides insight into the excessive inflammation-induced SAKI caused by mitochondrial damage and evidence for the potential use of OCA in SAKI treatment.
Collapse
Affiliation(s)
- Danyang Jing
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingfeng Liu
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Da Qin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tian Li
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Li
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Nedel W, Strogulski NR, Kopczynski A, Portela LV. Assessment of mitochondrial function and its prognostic role in sepsis: a literature review. Intensive Care Med Exp 2024; 12:107. [PMID: 39585590 PMCID: PMC11589057 DOI: 10.1186/s40635-024-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Sepsis is characterized by a dysregulated and excessive systemic inflammatory response to infection, associated with vascular and metabolic abnormalities that ultimately lead to organ dysfunction. In immune cells, both non-oxidative and oxidative metabolic rates are closely linked to inflammatory responses. Mitochondria play a central role in supporting these cellular processes by utilizing metabolic substrates and synthesizing ATP through oxygen consumption. To meet fluctuating cellular demands, mitochondria must exhibit adaptive plasticity underlying bioenergetic capacity, biogenesis, fusion, and fission. Given their role as a hub for various cellular functions, mitochondrial alterations induced by sepsis may hold significant pathophysiological implications and impact on clinical outcomes. In patients, mitochondrial DNA concentration, protein expression levels, and bioenergetic profiles can be accessed via tissue biopsies or isolated peripheral blood cells. Clinically, monocytes and lymphocytes serve as promising matrices for evaluating mitochondrial function. These mononuclear cells are highly oxidative, mitochondria-rich, routinely monitored in blood, easy to collect and process, and show a clinical association with immune status. Hence, mitochondrial assessments in immune cells could serve as biomarkers for clinical recovery, immunometabolic status, and responsiveness to oxygen and vasopressor therapies in sepsis. These characteristics underscore mitochondrial parameters in both tissues and immune cells as practical tools for exploring underlying mechanisms and monitoring septic patients in intensive care settings. In this article, we examine pathophysiological aspects, key methods for measuring mitochondrial function, and prominent studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição (GHC), Porto Alegre, Brazil.
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Unidade de Terapia Intensiva, Hospital Nossa Senhora da Conceição, Av Francisco Trein, 596-primeiro andar, Porto Alegre, RS, Brazil.
| | - Nathan Ryzewski Strogulski
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação Em Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
4
|
Smith SR, Becker EJ, Bone NB, Kerby JD, Nowak JI, Tadié JM, Darley-Usmar VM, Pittet JF, Zmijewski JW. METABOLIC AND BIOENERGETIC ALTERATIONS ARE ASSOCIATED WITH INFECTION SUSCEPTIBILITY IN SURVIVORS OF SEVERE TRAUMA: AN EXPLORATORY STUDY. Shock 2024; 62:633-643. [PMID: 39012766 DOI: 10.1097/shk.0000000000002419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ABSTRACT Background : Trauma and blood loss are frequently associated with organ failure, immune dysfunction, and a high risk of secondary bacterial lung infections. We aim to test if plasma metabolomic flux and monocyte bioenergetics are altered in association with trauma and related secondary infections. Methods : Plasma samples were collected from trauma patients at three time points: days 0, 3, and 7 postadmission. Metabolites (140) were measured in plasma from trauma survivors ( n = 24) and healthy control individuals (HC, n = 10). Further analysis within the trauma cohort included subsets of trauma/infection-negative (TIneg, n = 12) and trauma/infection-positive patients (TIpos, n = 12). The bioenergetic profile in monocytes was determined using mitochondrial and glycolytic stress tests. Results : In the trauma cohort, significant alterations were observed in 29 metabolites directly affecting 11 major metabolic pathways, while 34 metabolite alterations affected 8 pathways in 9, versus TIneg patients. The most altered metabolic pathways included protein synthesis, the urea cycle/arginine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, and carnitine compound family. In monocytes from trauma patients, reduced mitochondrial indices and loss of glycolytic plasticity were consistent with an altered profile of plasma metabolites in the tricarboxylic acid cycle and glycolysis. Conclusions : Our study highlights that the metabolic profile is significantly and persistently affected by trauma and related infections. Among trauma survivors, metabolic alterations in plasma were associated with reduced monocyte bioenergetics. These exploratory findings establish a groundwork for future clinical studies aimed at enhancing our understanding of the interplay between metabolic/bioenergetic alterations associated with trauma and secondary bacterial infections.
Collapse
Affiliation(s)
- Samuel R Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eugene J Becker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nathaniel B Bone
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey D Kerby
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jean-Marc Tadié
- INSERM, EFS Bretagne, UMR U1236, Université Rennes, Rennes, France
| | | | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jaroslaw W Zmijewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
5
|
Sartori LF, Tsemberis E, Hernandez T, Luchette K, Zhang D, Farooqi S, Bush J, McCann JC, Balamuth F, Weiss SL. Distinct mitochondrial respiration profiles in pediatric patients with febrile illness versus sepsis. Pediatr Res 2024:10.1038/s41390-024-03420-z. [PMID: 39095577 DOI: 10.1038/s41390-024-03420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Mitochondrial dysfunction, linked to sepsis-related organ failure, is unknown in febrile illness. METHODS Prospective study of children in an Emergency Department (ED) with febrile illness or without infection (ED controls); secondary analysis of ICU patients with sepsis or without infection (ICU controls). Mitochondrial oxygen consumption measured in peripheral blood mononuclear cells using respirometry, with primary outcome of spare respiratory capacity (SRC). Mitochondrial content measured as citrate synthase (CS: febrile illness and ED controls) and mitochondrial to nuclear DNA ratio (mtDNA:nDNA: all groups). RESULTS SRC was lower in febrile illness (6.7 ± 3.0 pmol/sec/106 cells) and sepsis (5.7 ± 4.7) than ED/PICU controls (8.5 ± 3.7; both p < 0.05), but not different between febrile illness and sepsis (p = 0.26). Low SRC was driven by increased basal respiration in febrile illness and decreased maximal uncoupled respiration in sepsis. Differences were no longer significant after adjustment for patient demographics. Febrile illness demonstrated lower CS activity than ED controls (p = 0.07) and lower mtDNA:nDNA than both ED/PICU controls and sepsis (both p < 0.05). CONCLUSION Mitochondrial SRC was reduced in both febrile illness and sepsis, but due to distinct mitochondrial profiles and impacted by demographics. Further work is needed to determine if mitochondrial profiles could differentiate febrile illness from early sepsis. IMPACT STATEMENT Mitochondrial dysfunction has been linked to organ failure in sepsis, but whether mitochondrial alterations are evident in febrile illness without sepsis is unknown. In our study, while mitochondrial spare respiratory capacity (SRC), an index of cellular bioenergetic reserve under stress, was reduced in children with both febrile illness and sepsis compared to children without infections, low SRC was driven by increased basal respiration in febrile illness compared with decreased maximal uncoupled respiration in sepsis. Additional research is needed to understand if distinct mitochondrial profiles could be used to differentiate febrile illness from early sepsis in children.
Collapse
Affiliation(s)
- Laura F Sartori
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Elena Tsemberis
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tyne Hernandez
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katherine Luchette
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donglan Zhang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Jenny Bush
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John C McCann
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fran Balamuth
- Department of Emergency Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott L Weiss
- Nemours Children's Health, Wilmington, DE, USA
- Sidney Kimmel Medical College - Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Joosten SC, Wiersinga WJ, Poll TVD. Dysregulation of Host-Pathogen Interactions in Sepsis: Host-Related Factors. Semin Respir Crit Care Med 2024; 45:469-478. [PMID: 38950605 PMCID: PMC11663080 DOI: 10.1055/s-0044-1787554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sepsis stands as a prominent contributor to sickness and death on a global scale. The most current consensus definition characterizes sepsis as a life-threatening organ dysfunction stemming from an imbalanced host response to infection. This definition does not capture the intricate array of immune processes at play in sepsis, marked by simultaneous states of heightened inflammation and immune suppression. This overview delves into the immune-related processes of sepsis, elaborating about mechanisms involved in hyperinflammation and immune suppression. Moreover, we discuss stratification of patients with sepsis based on their immune profiles and how this could impact future sepsis management.
Collapse
Affiliation(s)
- Sebastiaan C.M. Joosten
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Willem J. Wiersinga
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tom van der Poll
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Kraft BD. "Mitolocalization": A Novel Marker of Mitochondrial Quality Control? CHEST CRITICAL CARE 2024; 2:100073. [PMID: 39301036 PMCID: PMC11412265 DOI: 10.1016/j.chstcc.2024.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Affiliation(s)
- Bryan D Kraft
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine
| |
Collapse
|
8
|
Shoraka S, Mohebbi SR, Hosseini SM, Zali MR. Comparison of plasma mitochondrial DNA copy number in asymptomatic and symptomatic COVID-19 patients. Front Microbiol 2023; 14:1256042. [PMID: 37869674 PMCID: PMC10587688 DOI: 10.3389/fmicb.2023.1256042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Since the beginning of the COVID-19 pandemic, a wide clinical spectrum, from asymptomatic infection to mild or severe disease and death, have been reported in COVID-19 patients. Studies have suggested several possible factors, which may affect the clinical outcome of COVID-19. A pro-inflammatory state and impaired antiviral response have been suggested as major contributing factors in severe COVID-19. Considering that mitochondria have an important role in regulating the immune responses to pathogens, pro-inflammatory signaling, and cell death, it has received much attention in SARS-CoV-2 infection. Recent studies have demonstrated that high levels of cell-free mitochondrial DNA (cf-mtDNA) are associated with an increased risk of COVID-19 intensive care unit (ICU) admission and mortality. However, there have been few studies on cf-mtDNA in SARS-CoV-2 infection, mainly focusing on critically ill COVID-19 cases. In the present study, we investigated cf-mtDNA copy number in COVID-19 patients and compared between asymptomatic and symptomatic cases, and assessed the clinical values. We also determined the cf-nuclear DNA (cf-nDNA) copy number and mitochondrial transcription factor A (TFAM) mRNA level in the studied groups. Materials and methods Plasma and buffy coat samples were collected from 37 COVID-19 patients and 33 controls. Briefly, after total DNA extraction, plasma cf-mtDNA, and cf-nDNA copy numbers were measured by absolute qPCR using a standard curve method. Furthermore, after total RNA extraction from buffy coat and cDNA synthesis, TFAM mRNA levels were evaluated by qPCR. Results The results showed that cf-mtDNA levels in asymptomatic COVID-19 patients were statistically significantly higher than in symptomatic cases (p value = 0.01). However, cf-nDNA levels were higher in symptomatic patients than in asymptomatic cases (p value = 0.00). There was no significant difference between TFAM levels in the buffy coat of these two groups (p value > 0.05). Also, cf-mtDNA levels showed good diagnostic potential in COVID-19 subgroups. Conclusion cf-mtDNA is probably important in the outcome of SARS-CoV-2 infection due to its role in inflammation and immune response. It can also be a promising candidate biomarker for the diagnosis of COVID-19 subgroups. Further investigation will help understanding the COVID-19 pathophysiology and effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Kraft BD, Pavlisko EN, Roggli VL, Piantadosi CA, Suliman HB. Alveolar Mitochondrial Quality Control During Acute Respiratory Distress Syndrome. J Transl Med 2023; 103:100197. [PMID: 37307952 PMCID: PMC10257518 DOI: 10.1016/j.labinv.2023.100197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a leading cause of respiratory failure and death in patients in the intensive care unit. Experimentally, acute lung injury resolution depends on the repair of mitochondrial oxidant damage by the mitochondrial quality control (MQC) pathways, mitochondrial biogenesis, and mitophagy, but nothing is known about this in the human lung. In a case-control autopsy study, we compared the lungs of subjects dying of ARDS (n = 8; cases) and age-/gender-matched subjects dying of nonpulmonary causes (n = 7; controls). Slides were examined by light microscopy and immunofluorescence confocal microscopy, randomly probing for co-localization of citrate synthase with markers of oxidant stress, mitochondrial DNA damage, mitophagy, and mitochondrial biogenesis. ARDS lungs showed diffuse alveolar damage with edema, hyaline membranes, and neutrophils. Compared with controls, a high degree of mitochondrial oxidant damage was seen in type 2 epithelial (AT2) cells and alveolar macrophages by 8-hydroxydeoxyguanosine and malondialdehyde co-staining with citrate synthase. In ARDS, antioxidant protein heme oxygenase-1 and DNA repair enzyme N-glycosylase/DNA lyase (Ogg1) were found in alveolar macrophages but not in AT2 cells. Moreover, MAP1 light chain-3 (LC3) and serine/threonine-protein kinase (Pink1) staining were absent in AT2 cells, suggesting a mitophagy failure. Nuclear respiratory factor-1 staining was missing in the alveolar region, suggesting impaired mitochondrial biogenesis. Widespread hyperproliferation of AT2 cells in ARDS could suggest defective differentiation into type 1 cells. ARDS lungs show profuse mitochondrial oxidant DNA damage but little evidence of MQC activity in AT2 epithelium. Because these pathways are important for acute lung injury resolution, our findings support MQC as a novel pharmacologic target for ARDS resolution.
Collapse
Affiliation(s)
- Bryan D Kraft
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.
| | - Elizabeth N Pavlisko
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Victor L Roggli
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Claude A Piantadosi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Hagir B Suliman
- Center for Hyperbaric Medicine and Environmental Physiology, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Meservey A, Krishnan G, Green CL, Morrison S, Rackley CR, Kraft BD. U-Shaped Association Between Carboxyhemoglobin and Mortality in Patients With Acute Respiratory Distress Syndrome on Venovenous Extracorporeal Membrane Oxygenation. Crit Care Explor 2023; 5:e0957. [PMID: 37614802 PMCID: PMC10443764 DOI: 10.1097/cce.0000000000000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Background Carbon monoxide (CO) is an endogenous signaling molecule that activates cytoprotective programs implicated in the resolution of acute respiratory distress syndrome (ARDS) and survival of critical illness. Because CO levels can be measured in blood as carboxyhemoglobin, we hypothesized that carboxyhemoglobin percent (COHb%) may associate with mortality. OBJECTIVES To examine the relationship between COHb% and outcomes in patients with ARDS requiring venovenous extracorporeal membrane oxygenation (ECMO), a condition where elevated COHb% is commonly observed. DESIGN Retrospective cohort study. SETTING Academic medical center ICU. PATIENTS Patients were included that had ARDS on venovenous ECMO. MEASUREMENTS AND MAIN RESULTS We examined the association between COHb% and mortality using a Cox proportional hazards model. Secondary outcomes including ECMO duration, ventilator weaning, and hospital and ICU length of stay were examined using both subdistribution and causal-specific hazard models for competing risks. We identified 109 consecutive patients for analysis. Mortality significantly decreased per 1 U increase in COHb% below 3.25% (hazard ratio [HR], 0.35; 95% CI, 0.15-0.80; p = 0.013) and increased per 1 U increase above 3.25% (HR, 4.7; 95% CI, 1.5-14.7; p = 0.007) reflecting a nonlinear association (p = 0.006). Each unit increase in COHb% was associated with reduced likelihood of liberation from ECMO and mechanical ventilation, and increased time to hospital and ICU discharge (all p < 0.05). COHb% was significantly associated with hemolysis but not with initiation of hemodialysis or blood transfusions. CONCLUSIONS In patients with ARDS on venovenous ECMO, COHb% is a novel biomarker for mortality exhibiting a U-shaped pattern. Our findings suggest that too little CO (perhaps due to impaired host signaling) or excess CO (perhaps due to hemolysis) is associated with higher mortality. Patients with low COHb% may exhibit the most benefit from future therapies targeting anti-oxidant and anti-inflammatory pathways such as low-dose inhaled CO gas.
Collapse
Affiliation(s)
- Amber Meservey
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Govind Krishnan
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Cynthia L Green
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC
| | - Samantha Morrison
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC
| | - Craig R Rackley
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Bryan D Kraft
- Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
11
|
Nedel W, Deutschendorf C, Portela LVC. Sepsis-induced mitochondrial dysfunction: A narrative review. World J Crit Care Med 2023; 12:139-152. [PMID: 37397587 PMCID: PMC10308342 DOI: 10.5492/wjccm.v12.i3.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/08/2023] [Accepted: 04/14/2023] [Indexed: 06/08/2023] Open
Abstract
Sepsis represents a deranged and exaggerated systemic inflammatory response to infection and is associated with vascular and metabolic abnormalities that trigger systemic organic dysfunction. Mitochondrial function has been shown to be severely impaired during the early phase of critical illness, with a reduction in biogenesis, increased generation of reactive oxygen species and a decrease in adenosine triphosphate synthesis of up to 50%. Mitochondrial dysfunction can be assessed using mitochondrial DNA concentration and respirometry assays, particularly in peripheral mononuclear cells. Isolation of monocytes and lymphocytes seems to be the most promising strategy for measuring mitochondrial activity in clinical settings because of the ease of collection, sample processing, and clinical relevance of the association between metabolic alterations and deficient immune responses in mononuclear cells. Studies have reported alterations in these variables in patients with sepsis compared with healthy controls and non-septic patients. However, few studies have explored the association between mitochondrial dysfunction in immune mononuclear cells and unfavorable clinical outcomes. An improvement in mitochondrial parameters in sepsis could theoretically serve as a biomarker of clinical recovery and response to oxygen and vasopressor therapies as well as reveal unexplored pathophysiological mechanistic targets. These features highlight the need for further studies on mitochondrial metabolism in immune cells as a feasible tool to evaluate patients in intensive care settings. The evaluation of mitochondrial metabolism is a promising tool for the evaluation and management of critically ill patients, especially those with sepsis. In this article, we explore the pathophysiological aspects, main methods of measurement, and the main studies in this field.
Collapse
Affiliation(s)
- Wagner Nedel
- Intensive Care Unit, Grupo Hospitalar Conceição, Porto Alegre 91350200, Brazil
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Brazilian Research in Intensive Care Network-BRICNet, São Paulo 04039-002, Brazil
| | - Caroline Deutschendorf
- Infection Control Committee, Hospital de Clínicas de Porto Alegre, Porto Alegre 90410-000, Brazil
| | - Luis Valmor Cruz Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
12
|
Melis MJ, Miller M, Peters VBM, Singer M. The role of hormones in sepsis: an integrated overview with a focus on mitochondrial and immune cell dysfunction. Clin Sci (Lond) 2023; 137:707-725. [PMID: 37144447 PMCID: PMC10167421 DOI: 10.1042/cs20220709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Sepsis is a dysregulated host response to infection that results in life-threatening organ dysfunction. Virtually every body system can be affected by this syndrome to greater or lesser extents. Gene transcription and downstream pathways are either up- or downregulated, albeit with considerable fluctuation over the course of the patient's illness. This multi-system complexity contributes to a pathophysiology that remains to be fully elucidated. Consequentially, little progress has been made to date in developing new outcome-improving therapeutics. Endocrine alterations are well characterised in sepsis with variations in circulating blood levels and/or receptor resistance. However, little attention has been paid to an integrated view of how these hormonal changes impact upon the development of organ dysfunction and recovery. Here, we present a narrative review describing the impact of the altered endocrine system on mitochondrial dysfunction and immune suppression, two interlinked and key aspects of sepsis pathophysiology.
Collapse
Affiliation(s)
- Miranda J Melis
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Muska Miller
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Vera B M Peters
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
13
|
Liu W, Liu T, Zheng Y, Xia Z. Metabolic Reprogramming and Its Regulatory Mechanism in Sepsis-Mediated Inflammation. J Inflamm Res 2023; 16:1195-1207. [PMID: 36968575 PMCID: PMC10038208 DOI: 10.2147/jir.s403778] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Sepsis is a systemic inflammatory disease caused by an infection that can lead to multiple organ failure. Sepsis alters energy metabolism, leading to metabolic reprogramming of immune cells, which consequently disrupts innate and adaptive immune responses, triggering hyperinflammation and immunosuppression. This review summarizes metabolic reprogramming and its regulatory mechanism in sepsis-induced hyperinflammation and immunosuppression, highlights the significance and intricacies of immune cell metabolic reprogramming, and emphasizes the pivotal role of mitochondria in metabolic regulation and treatment of sepsis. This review provides an up-to-date overview of the relevant literature to inform future research directions in understanding the regulation of sepsis immunometabolism. Metabolic reprogramming has great promise as a new target for sepsis treatment in the future.
Collapse
Affiliation(s)
- Wenzhang Liu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Tianyi Liu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Correspondence: Yongjun Zheng; Zhaofan Xia, Email ;
| | - Zhaofan Xia
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Research Unit of Key Techniques for Treatment of burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
14
|
Suzuki Y, Kami D, Taya T, Sano A, Ogata T, Matoba S, Gojo S. ZLN005 improves the survival of polymicrobial sepsis by increasing the bacterial killing via inducing lysosomal acidification and biogenesis in phagocytes. Front Immunol 2023; 14:1089905. [PMID: 36820088 PMCID: PMC9938763 DOI: 10.3389/fimmu.2023.1089905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Polymicrobial sepsis still has a high mortality rate despite the development of antimicrobial agents, elaborate strategies to protect major organs, and the investment of numerous medical resources. Mitochondrial dysfunction, which acts as the center of energy metabolism, is clearly the basis of pathogenesis. Drugs that act on PGC1α, the master regulator of mitochondrial biosynthesis, have shown useful effects in the treatment of sepsis; therefore, we investigated the efficacy of ZLN005, a PGC1α agonist, and found significant improvement in overall survival in an animal model. The mode of action of this effect was examined, and it was shown that the respiratory capacity of mitochondria was enhanced immediately after administration and that the function of TFEB, a transcriptional regulator that promotes lysosome biosynthesis and mutually enhances PGC1α, was enhanced, as was the physical contact between mitochondria and lysosomes. ZLN005 strongly supported immune defense in early sepsis by increasing lysosome volume and acidity and enhancing cargo degradation, resulting in a significant reduction in bacterial load. ZLN005 rapidly acted on two organelles, mitochondria and lysosomes, against sepsis and interactively linked the two to improve the pathogenesis. This is the first demonstration that acidification of lysosomes by a small molecule is a mechanism of action in the therapeutic strategy for sepsis, which will have a significant impact on future drug discovery.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Arata Sano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Dominguini D, Michels M, Wessler LB, Streck EL, Barichello T, Dal-Pizzol F. Mitochondrial protective effects caused by the administration of mefenamic acid in sepsis. J Neuroinflammation 2022; 19:268. [PMID: 36333747 PMCID: PMC9636698 DOI: 10.1186/s12974-022-02616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
The pathophysiology of sepsis may involve the activation of the NOD-type receptor containing the pyrin-3 domain (NLPR-3), mitochondrial and oxidative damages. One of the primary essential oxidation products is 8-oxoguanine (8-oxoG), and its accumulation in mitochondrial DNA (mtDNA) induces cell dysfunction and death, leading to the hypothesis that mtDNA integrity is crucial for maintaining neuronal function during sepsis. In sepsis, the modulation of NLRP-3 activation is critical, and mefenamic acid (MFA) is a potent drug that can reduce inflammasome activity, attenuating the acute cerebral inflammatory process. Thus, this study aimed to evaluate the administration of MFA and its implications for the reduction of inflammatory parameters and mitochondrial damage in animals submitted to polymicrobial sepsis. To test our hypothesis, adult male Wistar rats were submitted to the cecal ligation and perforation (CLP) model for sepsis induction and after receiving an injection of MFA (doses of 10, 30, and 50 mg/kg) or sterile saline (1 mL/kg). At 24 h after sepsis induction, the frontal cortex and hippocampus were dissected to analyze the levels of TNF-α, IL-1β, and IL-18; oxidative damage (thiobarbituric acid reactive substances (TBARS), carbonyl, and DCF-DA (oxidative parameters); protein expression (mitochondrial transcription factor A (TFAM), NLRP-3, 8-oxoG; Bax, Bcl-2 and (ionized calcium-binding adaptor molecule 1 (IBA-1)); and the activity of mitochondrial respiratory chain complexes. It was observed that the septic group in both structures studied showed an increase in proinflammatory cytokines mediated by increased activity in NLRP-3, with more significant oxidative damage and higher production of reactive oxygen species (ROS) by mitochondria. Damage to mtDNA it was also observed with an increase in 8-oxoG levels and lower levels of TFAM and NGF-1. In addition, this group had an increase in pro-apoptotic proteins and IBA-1 positive cells. However, MFA at doses of 30 and 50 mg/kg decreased inflammasome activity, reduced levels of cytokines and oxidative damage, increased bioenergetic efficacy and reduced production of ROS and 8-oxoG, and increased levels of TFAM, NGF-1, Bcl-2, reducing microglial activation. As a result, it is suggested that MFA induces protection in the central nervous system early after the onset of sepsis.
Collapse
Affiliation(s)
- Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Leticia B Wessler
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Emilio L Streck
- Laboratory of Bioenergetics, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| |
Collapse
|
16
|
Cros C, Margier M, Cannelle H, Charmetant J, Hulo N, Laganier L, Grozio A, Canault M. Nicotinamide Mononucleotide Administration Triggers Macrophages Reprogramming and Alleviates Inflammation During Sepsis Induced by Experimental Peritonitis. Front Mol Biosci 2022; 9:895028. [PMID: 35832733 PMCID: PMC9271973 DOI: 10.3389/fmolb.2022.895028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
Peritonitis and subsequent sepsis lead to high morbidity and mortality in response to uncontrolled systemic inflammation primarily mediated by macrophages. Nicotinamide adenine dinucleotide (NAD+) is an important regulator of oxidative stress and immunoinflammatory responses. However, the effects of NAD+ replenishment during inflammatory activation are still poorly defined. Hence, we investigated whether the administration of β-nicotinamide mononucleotide (β-NMN), a natural biosynthetic precursor of NAD+, could modulate the macrophage phenotype and thereby ameliorate the dysregulated inflammatory response during sepsis. For this purpose, C57BL6 mice were subjected to the cecal ligation and puncture (CLP) model to provoke sepsis or were injected with thioglycolate to induce sterile peritonitis with recruitment and differentiation of macrophages into the inflamed peritoneal cavity. β-NMN was administered for 4 days after CLP and for 3 days post thioglycolate treatment where peritoneal macrophages were subsequently analyzed. In the CLP model, administration of β-NMN decreased bacterial load in blood and reduced clinical signs of distress and mortality during sepsis. These results were supported by transcriptomic analysis of hearts and lungs 24 h post CLP-induction, which revealed that β-NMN downregulated genes controlling the immuno-inflammatory response and upregulated genes involved in bioenergetic metabolism, mitochondria, and autophagy. In the thioglycolate model, a significant increase in the proportion of CD206 macrophages, marker of anti-inflammatory M2 phenotype, was detected on peritoneal exudate macrophages from β-NMN-administered mice. Transcriptomic signature of these macrophages after bacterial stimulation confirmed that β-NMN administration limited the pro-inflammatory M1 phenotype and induced the expression of specific markers of M2 type macrophages. Furthermore, our data show that β-NMN treatment significantly impacts NAD + metabolism. This shift in the macrophage phenotype and metabolism was accompanied by a reduction in phagolysosome acidification and secretion of inflammatory mediators in macrophages from β-NMN-treated mice suggesting a reduced pro-inflammatory activation. In conclusion, administration of β-NMN prevented clinical deterioration and improved survival during sepsis. These effects relied on shifts in the metabolism of organs that face up an increased energy requirement caused by bacterial infection and in innate immunity response, including reprogramming of macrophages from a highly inflammatory phenotype to an anti-inflammatory/pro-resolving profile.
Collapse
|
17
|
Chen Z, Wang H, Hu B, Chen X, Zheng M, Liang L, Lyu J, Zeng Q. Transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) ameliorates sepsis-associated acute kidney injury by maintaining mitochondrial homeostasis and improving the mitochondrial function. Eur J Histochem 2022; 66:3412. [PMID: 35726572 PMCID: PMC9251609 DOI: 10.4081/ejh.2022.3412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction has a role in sepsis-associated acute kidney injury (S-AKI), so the restoration of normal mitochondrial homeostasis may be an effective treatment strategy. Transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) is a main regulator of cell-redox homeostasis, and recent studies reported that NRF2 activation helped to preserve mitochondrial morphology and function under conditions of stress. However, the role of NRF2 in the process of S-AKI is still not well understood. The present study investigated whether NRF2 regulates mitochondrial homeostasis and influences mitochondrial function in S-AKI. We demonstrated activation of NRF2 in an in vitro model: lipopolysaccharide (LPS) challenge of ductal epithelial cells of rat renal tubules (NRK-52e cells), and an in vivo model: cecal ligation and puncture (CLP) of rats. Over-expression of NRF2 attenuated oxidative stress, apoptosis, and the inflammatory response; enhanced mitophagy and mitochondrial biogenesis; and mitigated mitochondrial damage in the in vitro model. In vivo experiments showed that rats treated with an NRF2 agonist had higher adenosine triphosphate (ATP) levels, lower blood urea nitrogen and creatinine levels, fewer renal histopathological changes, and higher expression of mitophagy-related proteins [PTEN-induced putative kinase 1 (PINK1), parkin RBR E3 ubiquitin protein ligase (PRKN), microtubule-associated protein 1 light chain 3 II (LC3 II)] and mitochondrial biogenesis-related proteins [peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1α) and mitochondrial transcription factor A (TFAM)]. Electron microscopy of kidney tissues showed that mitochondrial damage was alleviated by treatment with an NRF2 agonist, and the opposite response occurred upon treatment with an NRF2 antagonist. Overall, our findings suggest that mitochondria have an important role in the pathogenesis of S-AKI, and that NRF2 activation restored mitochondrial homeostasis and function in the presence of this disease. This mitochondrial pathway has the potential to be a novel therapeutic target for the treatment of S-AKI.
Collapse
Affiliation(s)
- Zhijiang Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Huili Wang
- Department of Laboratory, Guangdong Women and Children Hospital, Guangzhou, Guangdong.
| | - Bin Hu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Xinxin Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Meiyu Zheng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Lili Liang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| | - Juanjuan Lyu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan.
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong.
| |
Collapse
|
18
|
Minimized Extracorporeal Circulation Is Associated with Reduced Plasma Levels of Free-Circulating Mitochondrial DNA Compared to Conventional Cardiopulmonary Bypass: A Secondary Analysis of an Exploratory, Prospective, Interventional Study. J Clin Med 2022; 11:jcm11112994. [PMID: 35683383 PMCID: PMC9181034 DOI: 10.3390/jcm11112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 01/25/2023] Open
Abstract
The use of minimized extracorporeal circulation (MiECC) during cardiac surgery is associated with a reduced inflammatory reaction compared to conventional cardiopulmonary bypass (cCPB). Since it is unknown if MiECC also reduces the amount of free-circulating mitochondrial DNA (mtDNA), this study aims to compare MiECC-induced mtDNA release to that of cCPB as well as to identify potential relations between the plasma levels of mtDNA and an adverse outcome. Overall, 45 patients undergoing cardiac surgery with either cCPB or MiECC were included in the study. MtDNA encoding for NADH dehydrogenase 1 was quantified with quantitative polymerase chain reaction. The plasma amount of mtDNA was significantly lower in patients undergoing cardiac surgery with MiECC compared to cCPB (MiECC: 161.8 (65.5−501.9); cCPB 190.8 (82−705.7); p < 0.001). Plasma levels of mtDNA showed comparable kinetics independently of the study group and peaked during CPB (MiECC preoperative: 68.2 (26.5−104.9); MiECC 60 min after start of CPB: 536.5 (215.7−919.6); cCPB preoperative: 152.5 (80.9−207.6); cCPB 60 min after start of CPB: 1818.0 (844.2−3932.2); all p < 0.001). Patients offering an mtDNA blood concentration of >650 copies/µL after the commencement of CPB had a 5-fold higher risk for postoperative atrial fibrillation independently of the type of cardiopulmonary bypass. An amount of mtDNA being higher than 650 copies/µL showed moderate predictive power (AUROC 0.71 (0.53−071)) for the identification of postoperative atrial fibrillation. In conclusion, plasma levels of mtDNA were lower in patients undergoing cardiac surgery with MiECC compared to cCPB. The amount of mtDNA at the beginning of the CPB was associated with postoperative atrial fibrillation independent of the type of cardiopulmonary bypass.
Collapse
|
19
|
Weiss SL, Henrickson SE, Lindell RB, Sartori LF, Zhang D, Bush J, Farooqi S, Starr J, Deutschman CS, McGowan FX, Becker L, Tuluc F, Wherry EJ, Picard M, Wallace DC. Influence of Immune Cell Subtypes on Mitochondrial Measurements in Peripheral Blood Mononuclear Cells From Children with Sepsis. Shock 2022; 57:630-638. [PMID: 34966070 PMCID: PMC9117409 DOI: 10.1097/shk.0000000000001903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Peripheral blood mononuclear cells (PBMCs) are commonly used to compare mitochondrial function in patients with versus without sepsis, but how these measurements in this mixed cell population vary by composition of immune cell subtypes is not known, especially in children. We determined the effect of changing immune cell composition on PBMC mitochondrial respiration and content in children with and without sepsis. METHODS PBMC mitochondrial respiration and citrate synthase (CS) activity, a marker of mitochondrial content, were measured in 167 children with sepsis at three timepoints (day 1-2, 3-5, and 8-14) and once in 19 nonseptic controls. The proportion of lymphocytes and monocytes and T, B, and NK cells was measured using flow cytometry. More specific CD4+ and CD8+ T cell subsets were measured from 13 sepsis patients and 6 controls. Spearman's correlation and simple and mixed effects linear regression were used to determine the association of PBMC mitochondrial measures with proportion of immune cell subtypes. RESULTS PBMC mitochondrial respiration and CS activity were correlated with proportion of monocytes, lymphocytes, T B, and NK cells in controls, but not in sepsis patients. PBMC mitochondrial respiration was correlated with CD4+ and CD8+ T cell subsets in both groups. After controlling for differences in immune cell composition between groups using linear regression models, PBMC respiration and CS activity remained lower in sepsis patients than controls. CONCLUSIONS Mitochondrial measurements from PBMCs varied with changes in immune cell composition in children with and without sepsis. However, differences in PBMC mitochondrial measurements between sepsis patients and controls were at least partially attributable to the effects of sepsis rather than solely an epiphenomena of variable immune cell composition.
Collapse
Affiliation(s)
- Scott L. Weiss
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pediatric Sepsis Program at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E. Henrickson
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Robert B. Lindell
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pediatric Sepsis Program at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Laura F. Sartori
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donglan Zhang
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jenny Bush
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sumera Farooqi
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan Starr
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Clifford S. Deutschman
- Feinstein Institute for Medical Research at Hofstra-Northwell School of Medicine, NY, USA
| | - Francis X. McGowan
- Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance Becker
- Department of Emergency Medicine at Hofstra-Northwell School of Medicine, NY, USA
| | - Florin Tuluc
- Flow Cytometry Research Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - E. John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Martin Picard
- Departments of Psychiatry and Neurology, Division of Behavioral Medicine and Merritt Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine at the Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
20
|
Zhang IW, Curto A, López-Vicario C, Casulleras M, Duran-Güell M, Flores-Costa R, Colsch B, Aguilar F, Aransay AM, Lozano JJ, Hernández-Tejero M, Toapanta D, Fernández J, Arroyo V, Clària J. Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure. J Hepatol 2022; 76:93-106. [PMID: 34450236 DOI: 10.1016/j.jhep.2021.08.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Patients with acute-on-chronic liver failure (ACLF) present a systemic hyperinflammatory response associated with increased circulating levels of small-molecule metabolites. To investigate whether these alterations reflect inadequate cell energy output, we assessed mitochondrial morphology and central metabolic pathways with emphasis on the tricarboxylic acid (TCA) cycle in peripheral leukocytes from patients with acutely decompensated (AD) cirrhosis, with and without ACLF. METHODS The study included samples from patients with AD cirrhosis (108 without and 128 with ACLF) and 41 healthy individuals. Leukocyte mitochondrial ultrastructure was visualized by transmission electron microscopy and cytosolic and mitochondrial metabolic fluxes were determined by assessing NADH/FADH2 production from various substrates. Plasma GDF15 and FGF21 were determined by Luminex and acylcarnitines by LC-MS/MS. Gene expression was analyzed by RNA-sequencing and PCR-based glucose metabolism profiler array. RESULTS Mitochondrial ultrastructure in patients with advanced cirrhosis was distinguished by cristae rarefication and swelling. The number of mitochondria per leukocyte was higher in patients, accompanied by a reduction in their size. Increased FGF21 and C6:0- and C8:0-carnitine predicted mortality whereas GDF15 strongly correlated with a gene set signature related to leukocyte activation. Metabolic flux analyses revealed increased energy production in mononuclear leukocytes from patients with preferential involvement of extra-mitochondrial pathways, supported by upregulated expression of genes encoding enzymes of the glycolytic and pentose phosphate pathways. In patients with ACLF, mitochondrial function analysis uncovered break-points in the TCA cycle at the isocitrate dehydrogenase and succinate dehydrogenase level, which were bridged by anaplerotic reactions involving glutaminolysis and nucleoside metabolism. CONCLUSIONS Our findings provide evidence at the cellular, organelle and biochemical levels that severe mitochondrial dysfunction governs immunometabolism in leukocytes from patients with AD cirrhosis and ACLF. LAY SUMMARY Patients at advanced stages of liver disease have dismal prognosis due to vital organ failures and the lack of treatment options. In this study, we report that the functioning of mitochondria, which are known as the cell powerhouse, is severely impaired in leukocytes of these patients, probably as a consequence of intense inflammation. Mitochondrial dysfunction is therefore a hallmark of advanced liver disease.
Collapse
Affiliation(s)
- Ingrid W Zhang
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Anna Curto
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Mireia Casulleras
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Benoit Colsch
- Laboratoire d'Etude du Metabolisme des Medicaments, CEA, INRA, Universite Paris Saclay, MetaboHUB, F-91191 Gif-sur-Yvette, France
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Ana M Aransay
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain; CIBERehd, Barcelona, Spain
| | | | | | - David Toapanta
- Liver ICU, Liver Unit, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Javier Fernández
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; CIBERehd, Barcelona, Spain; Liver ICU, Liver Unit, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain
| | - Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF Clif) and Grifols Chair, Barcelona, Spain; CIBERehd, Barcelona, Spain; Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Liu N, Jiang C, Cai P, Shen Z, Sun W, Xu H, Fang M, Yao X, Zhu L, Gao X, Fang J, Lin J, Guo C, Qu K. Single-cell analysis of COVID-19, sepsis, and HIV infection reveals hyperinflammatory and immunosuppressive signatures in monocytes. Cell Rep 2021; 37:109793. [PMID: 34587478 PMCID: PMC8445774 DOI: 10.1016/j.celrep.2021.109793] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The mortality risk of coronavirus disease 2019 (COVID-19) patients has been linked to the cytokine storm caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the inflammatory responses shared between COVID-19 and other infectious diseases that feature cytokine storms may therefore help in developing improved therapeutic strategies. Here, we use integrative analysis of single-cell transcriptomes to characterize the inflammatory signatures of peripheral blood mononuclear cells from patients with COVID-19, sepsis, and HIV infection. We identify ten hyperinflammatory cell subtypes in which monocytes are the main contributors to the transcriptional differences in these infections. Monocytes from COVID-19 patients share hyperinflammatory signatures with HIV infection and immunosuppressive signatures with sepsis. Finally, we construct a "three-stage" model of heterogeneity among COVID-19 patients, related to the hyperinflammatory and immunosuppressive signatures in monocytes. Our study thus reveals cellular and molecular insights about inflammatory responses to SARS-CoV-2 infection and provides therapeutic guidance to improve treatments for subsets of COVID-19 patients.
Collapse
Affiliation(s)
- Nianping Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Zhuoqiao Shen
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; School of Data Science, University of Science and Technology of China, 230026 Hefei, Anhui, China
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Hao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Minghao Fang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; School of Life Science and Technology, University of Electronic Science and Technology of China, 610054 Chengdu, Sichuan, China
| | - Xinfeng Yao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; Institute for Advanced Study, Nanchang University, 330031 Nanchang, Jiangxi, China
| | - Lin Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Xuyuan Gao
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China
| | - Jingwen Fang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; HanGene Biotech, Xiaoshan Innovation Polis, 31200 Hangzhou, Zhejiang, China
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230021 Hefei, Anhui, China; CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027 Hefei, Anhui, China; School of Data Science, University of Science and Technology of China, 230026 Hefei, Anhui, China.
| |
Collapse
|
22
|
Nedel WL, Kopczynski A, Rodolphi MS, Strogulski NR, De Bastiani M, Montes THM, Abruzzi J, Galina A, Horvath TL, Portela LV. Mortality of septic shock patients is associated with impaired mitochondrial oxidative coupling efficiency in lymphocytes: a prospective cohort study. Intensive Care Med Exp 2021; 9:39. [PMID: 34304333 PMCID: PMC8310546 DOI: 10.1186/s40635-021-00404-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Septic shock is a life-threatening condition that challenges immune cells to reprogram their mitochondrial metabolism towards to increase ATP synthesis for building an appropriate immunity. This could print metabolic signatures in mitochondria whose association with disease progression and clinical outcomes remain elusive. METHOD This is a single-center prospective cohort study performed in the ICU of one tertiary referral hospital in Brazil. Between November 2017 and July 2018, 90 consecutive patients, aged 18 years or older, admitted to the ICU with septic shock were enrolled. Seventy-five patients had Simplified Acute Physiology Score (SAPS 3) assessed at admission, and Sequential Organ Failure Assessment (SOFA) assessed on the first (D1) and third (D3) days after admission. Mitochondrial respiration linked to complexes I, II, V, and biochemical coupling efficiency (BCE) were assessed at D1 and D3 and Δ (D3-D1) in isolated lymphocytes. Clinical and mitochondrial endpoints were used to dichotomize the survival and death outcomes. Our primary outcome was 6-month mortality, and secondary outcomes were ICU and hospital ward mortality. RESULTS The mean SAPS 3 and SOFA scores at septic shock diagnosis were 75.8 (± 12.9) and 8 (± 3) points, respectively. The cumulative ICU, hospital ward, and 6-month mortality were 32 (45%), 43 (57%), and 50 (66%), respectively. At the ICU, non-surviving patients presented elevated arterial lactate (2.8 mmol/L, IQR, 2-4), C-reactive protein (220 mg/L, IQR, 119-284), and capillary refill time (5.5 s, IQR, 3-8). Respiratory rates linked to CII at D1 and D3, and ΔCII were decreased in non-surviving patients. Also, the BCE at D1 and D3 and the ΔBCE discriminated patients who would evolve to death in the ICU, hospital ward, and 6 months after admission. After adjusting for possible confounders, the ΔBCE value but not SOFA scores was independently associated with 6-month mortality (RR 0.38, CI 95% 0.18-0.78; P = 0.009). At a cut-off of - 0.002, ΔBCE displayed 100% sensitivity and 73% specificity for predicting 6-month mortality CONCLUSIONS: The ΔBCE signature in lymphocytes provided an earlier recognition of septic shock patients in the ICU at risk of long-term deterioration of health status.
Collapse
Affiliation(s)
- Wagner Luis Nedel
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
| | - Marcelo Salimen Rodolphi
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
| | - Nathan Ryzewski Strogulski
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil
| | - Marco De Bastiani
- Zimmer Lab, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Hermes Maeso Montes
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Jose Abruzzi
- Intensive Care Unit, Hospital Nossa Senhora da Conceição, Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Luis Valmor Portela
- Laboratory of Neurotrauma and Biomarkers, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, anexo, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Preau S, Vodovar D, Jung B, Lancel S, Zafrani L, Flatres A, Oualha M, Voiriot G, Jouan Y, Joffre J, Huel F, De Prost N, Silva S, Azabou E, Radermacher P. Energetic dysfunction in sepsis: a narrative review. Ann Intensive Care 2021; 11:104. [PMID: 34216304 PMCID: PMC8254847 DOI: 10.1186/s13613-021-00893-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Growing evidence associates organ dysfunction(s) with impaired metabolism in sepsis. Recent research has increased our understanding of the role of substrate utilization and mitochondrial dysfunction in the pathophysiology of sepsis-related organ dysfunction. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions. Main text Sepsis is characterized by systemic and organ-specific changes in metabolism. Alterations of oxygen consumption, increased levels of circulating substrates, impaired glucose and lipid oxidation, and mitochondrial dysfunction are all associated with organ dysfunction and poor outcomes in both animal models and patients. The pathophysiological relevance of bioenergetics and metabolism in the specific examples of sepsis-related immunodeficiency, cerebral dysfunction, cardiomyopathy, acute kidney injury and diaphragmatic failure is also described. Conclusions Recent understandings in substrate utilization and mitochondrial dysfunction may pave the way for new diagnostic and therapeutic approaches. These findings could help physicians to identify distinct subgroups of sepsis and to develop personalized treatment strategies. Implications for their use as bioenergetic targets to identify metabolism- and mitochondria-targeted treatments need to be evaluated in future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00893-7.
Collapse
Affiliation(s)
- Sebastien Preau
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France.
| | - Dominique Vodovar
- Centre AntiPoison de Paris, Hôpital Fernand Widal, APHP, 75010, Paris, France.,Faculté de pharmacie, UMRS 1144, 75006, Paris, France.,Université de Paris, UFR de Médecine, 75010, Paris, France
| | - Boris Jung
- Medical Intensive Care Unit, Lapeyronie Teaching Hospital, Montpellier University Hospital and PhyMedExp, University of Montpellier, Montpellier, France
| | - Steve Lancel
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Lara Zafrani
- Médecine Intensive Réanimation, Hôpital Saint-Louis, AP-HP, Université de Paris, Paris, France.,INSERM UMR 976, Hôpital Saint Louis, Université de Paris, Paris, France
| | | | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre - Paris University, Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France.,Faculté de Médecine de Tours, INSERM U1100 Centre d'Etudes des Pathologies Respiratoires, Tours, France
| | - Jeremie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, 94143, USA
| | - Fabrice Huel
- Réanimation médico-chirurgicale, Université de Paris, Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Paris, France
| | - Nicolas De Prost
- Service de Réanimation Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France
| | - Stein Silva
- Réanimation URM CHU Purpan, Cedex 31300, Toulouse, France.,Toulouse NeuroImaging Center INSERM1214, Cedex 31300, Toulouse, France
| | - Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, AP-HP, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles (UVSQ), Paris-Saclay University, Paris, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
24
|
Chen L, Kraft BD, Roggli VL, Healy ZR, Woods CW, Tsalik EL, Ginsburg GS, Murdoch DM, Suliman HB, Piantadosi CA, Welty-Wolf KE. Heparin-based blood purification attenuates organ injury in baboons with Streptococcus pneumoniae pneumonia. Am J Physiol Lung Cell Mol Physiol 2021; 321:L321-L335. [PMID: 34105359 DOI: 10.1152/ajplung.00337.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bacterial pneumonia is a major cause of morbidity and mortality worldwide despite the use of antibiotics, and novel therapies are urgently needed. Building on previous work, we aimed to 1) develop a baboon model of severe pneumococcal pneumonia and sepsis with organ dysfunction and 2) test the safety and efficacy of a novel extracorporeal blood filter to remove proinflammatory molecules and improve organ function. After a dose-finding pilot study, 12 animals were inoculated with Streptococcus pneumoniae [5 × 109 colony-forming units (CFU)], given ceftriaxone at 24 h after inoculation, and randomized to extracorporeal blood purification using a filter coated with surface-immobilized heparin sulfate (n = 6) or sham treatment (n = 6) for 4 h at 30 h after inoculation. For safety analysis, four uninfected animals also underwent purification. At 48 h, necropsy was performed. Inoculated animals developed severe pneumonia and septic shock. Compared with sham-treated animals, septic animals treated with purification displayed significantly less kidney injury, metabolic acidosis, hypoglycemia, and shock (P < 0.05). Purification blocked the rise in peripheral blood S. pneumoniae DNA, attenuated bronchoalveolar lavage (BAL) CCL4, CCL2, and IL-18 levels, and reduced renal oxidative injury and classical NLRP3 inflammasome activation. Purification was safe in both uninfected and infected animals and produced no adverse effects. We demonstrate that heparin-based blood purification significantly attenuates levels of circulating S. pneumoniae DNA and BAL cytokines and is renal protective in baboons with severe pneumococcal pneumonia and septic shock. Purification was associated with less severe acute kidney injury, metabolic derangements, and shock. These results support future clinical studies in critically ill septic patients.
Collapse
Affiliation(s)
- Lingye Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina
| | - Bryan D Kraft
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina.,Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - Victor L Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Zachary R Healy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina
| | - Christopher W Woods
- Durham Department of Veterans Affairs Medical Center, Durham, North Carolina.,Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - Ephraim L Tsalik
- Durham Department of Veterans Affairs Medical Center, Durham, North Carolina.,Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - Geoffrey S Ginsburg
- Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - David M Murdoch
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina
| | - Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Claude A Piantadosi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Center for Applied Genomics & Precision Medicine, Duke University Medical Center, Durham, North Carolina
| | - Karen E Welty-Wolf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina.,Durham Department of Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
25
|
Decreased Intestinal Microbiome Diversity in Pediatric Sepsis: A Conceptual Framework for Intestinal Dysbiosis to Influence Immunometabolic Function. Crit Care Explor 2021; 3:e0360. [PMID: 33786436 PMCID: PMC7994045 DOI: 10.1097/cce.0000000000000360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Supplemental Digital Content is available in the text. Objectives: The intestinal microbiome can modulate immune function through production of microbial-derived short-chain fatty acids. We explored whether intestinal dysbiosis in children with sepsis leads to changes in microbial-derived short-chain fatty acids in plasma and stool that are associated with immunometabolic dysfunction in peripheral blood mononuclear cells. Design: Prospective observational pilot study. Setting: Single academic PICU. Patients: Forty-three children with sepsis/septic shock and 44 healthy controls. Measurements and Main Results: Stool and plasma samples were serially collected for sepsis patients; stool was collected once for controls. The intestinal microbiome was assessed using 16S ribosomal RNA sequencing and alpha- and beta-diversity were determined. We measured short-chain fatty acids using liquid chromatography, peripheral blood mononuclear cell mitochondrial respiration using high-resolution respirometry, and immune function using ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor-α. Sepsis patients exhibited reduced microbial diversity compared with healthy controls, with lower alpha- and beta-diversity. Reduced microbial diversity among sepsis patients (mainly from lower abundance of commensal obligate anaerobes) was associated with increased acetic and propionic acid and decreased butyric, isobutyric, and caproic acid. Decreased levels of plasma butyric acid were further associated with lower peripheral blood mononuclear cell mitochondrial respiration, which in turn, was associated with lower lipopolysaccharide-stimulated tumor necrosis factor-α. However, neither intestinal dysbiosis nor specific patterns of short-chain fatty acids were associated with lipopolysaccharide-stimulated tumor necrosis factor-α. Conclusions: Intestinal dysbiosis was associated with altered short-chain fatty acid metabolites in children with sepsis, but these findings were not linked directly to mitochondrial or immunologic changes. More detailed mechanistic studies are needed to test the role of microbial-derived short-chain fatty acids in the progression of sepsis.
Collapse
|
26
|
Ferver A, Greene E, Wideman R, Dridi S. Evidence of Mitochondrial Dysfunction in Bacterial Chondronecrosis With Osteomyelitis-Affected Broilers. Front Vet Sci 2021; 8:640901. [PMID: 33634182 PMCID: PMC7902039 DOI: 10.3389/fvets.2021.640901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
A leading cause of lameness in modern broilers is bacterial chondronecrosis with osteomyelitis (BCO). While it is known that the components of BCO are bacterial infection, necrosis, and inflammation, the mechanism behind BCO etiology is not yet fully understood. In numerous species, including chicken, mitochondrial dysfunction has been shown to have a role in the pathogenicity of numerous diseases. The mitochondria is a known target for intracellular bacterial infections, similar to that of common causative agents in BCO, as well as a known regulator of cellular metabolism, stress response, and certain types of cell death. This study aimed to determine the expression profile of genes involved in mitochondrial biogenesis, dynamics, and function. RNA was isolated form the tibias from BCO-affected and healthy broilers and used to measure target gene expression via real-time qPCR. Mitochondrial biogenesis factors PGC-1α and PGC-1β were both significantly upregulated in BCO along with mitochondrial fission factors OMA1, MTFR1, MTFP1, and MFF1 as well as cellular respiration-related genes FOXO3, FOXO4, and av-UCP. Conversely, genes involved in mitochondrial function, ANT, COXIV, and COX5A showed decreased mRNA levels in BCO-affected tibia. This study is the first to provide evidence of potential mitochondrial dysfunction in BCO bone and warrants further mechanistic investigation into how this dysfunction contributes to BCO etiology.
Collapse
Affiliation(s)
- Alison Ferver
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Robert Wideman
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
27
|
McCann MR, George De la Rosa MV, Rosania GR, Stringer KA. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites 2021; 11:51. [PMID: 33466750 PMCID: PMC7829830 DOI: 10.3390/metabo11010051] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and implementation are at the forefront of the precision medicine movement. Modern advances in the field of metabolomics afford the opportunity to readily identify new metabolite biomarkers across a wide array of disciplines. Many of the metabolites are derived from or directly reflective of mitochondrial metabolism. L-carnitine and acylcarnitines are established mitochondrial biomarkers used to screen neonates for a series of genetic disorders affecting fatty acid oxidation, known as the inborn errors of metabolism. However, L-carnitine and acylcarnitines are not routinely measured beyond this screening, despite the growing evidence that shows their clinical utility outside of these disorders. Measurements of the carnitine pool have been used to identify the disease and prognosticate mortality among disorders such as diabetes, sepsis, cancer, and heart failure, as well as identify subjects experiencing adverse drug reactions from various medications like valproic acid, clofazimine, zidovudine, cisplatin, propofol, and cyclosporine. The aim of this review is to collect and interpret the literature evidence supporting the clinical biomarker application of L-carnitine and acylcarnitines. Further study of these metabolites could ultimately provide mechanistic insights that guide therapeutic decisions and elucidate new pharmacologic targets.
Collapse
Affiliation(s)
- Marc R. McCann
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Kathleen A. Stringer
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
28
|
Rahmel T, Marko B, Nowak H, Bergmann L, Thon P, Rump K, Kreimendahl S, Rassow J, Peters J, Singer M, Adamzik M, Koos B. Mitochondrial dysfunction in sepsis is associated with diminished intramitochondrial TFAM despite its increased cellular expression. Sci Rep 2020; 10:21029. [PMID: 33273525 PMCID: PMC7713186 DOI: 10.1038/s41598-020-78195-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Sepsis is characterized by a dysregulated immune response, metabolic derangements and bioenergetic failure. These alterations are closely associated with a profound and persisting mitochondrial dysfunction. This however occurs despite increased expression of the nuclear-encoded transcription factor A (TFAM) that normally supports mitochondrial biogenesis and functional recovery. Since this paradox may relate to an altered intracellular distribution of TFAM in sepsis, we tested the hypothesis that enhanced extramitochondrial TFAM expression does not translate into increased intramitochondrial TFAM abundance. Accordingly, we prospectively analyzed PBMCs both from septic patients (n = 10) and lipopolysaccharide stimulated PBMCs from healthy volunteers (n = 20). Extramitochondrial TFAM protein expression in sepsis patients was 1.8-fold greater compared to controls (p = 0.001), whereas intramitochondrial TFAM abundance was approximate 80% less (p < 0.001). This was accompanied by lower mitochondrial DNA copy numbers (p < 0.001), mtND1 expression (p < 0.001) and cellular ATP content (p < 0.001) in sepsis patients. These findings were mirrored in lipopolysaccharide stimulated PBMCs taken from healthy volunteers. Furthermore, TFAM-TFB2M protein interaction within the human mitochondrial core transcription initiation complex, was 74% lower in septic patients (p < 0.001). In conclusion, our findings, which demonstrate a diminished mitochondrial TFAM abundance in sepsis and endotoxemia, may help to explain the paradox of lacking bioenergetic recovery despite enhanced TFAM expression.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Sebastian Kreimendahl
- Institut für Biochemie und Pathobiochemie, Abteilung für Zellbiochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Joachim Rassow
- Institut für Biochemie und Pathobiochemie, Abteilung für Zellbiochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, Essen, Germany
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany
| |
Collapse
|
29
|
Blood Levels of Free-Circulating Mitochondrial DNA in Septic Shock and Postsurgical Systemic Inflammation and Its Influence on Coagulation: A Secondary Analysis of a Prospective Observational Study. J Clin Med 2020; 9:jcm9072056. [PMID: 32629885 PMCID: PMC7408641 DOI: 10.3390/jcm9072056] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Major surgery is regularly associated with clinical signs of systemic inflammation, which potentially affects the rapid identification of sepsis. Therefore, this secondary analysis of an observational study aims to determine whether NADH dehydrogenase 1 (ND1) mitochondrial DNA (mtDNA) could be used as a potential biomarker for the discrimination between septic shock and postsurgical systemic inflammation. Overall, 80 patients were included (septic shock (n = 20), cardiac artery bypass grafting (CABG, n = 20), major abdominal surgery (MAS, n = 20), and matched controls (CTRL, n = 20)). Quantitative PCR was performed to measure ND1 mtDNA. Thromboelastography was used to analyze the coagulatory system. Free-circulating ND1 mtDNA levels were significantly higher in septic shock patients compared to patients suffering from post-surgical inflammation ({copies/µL}: CTRL: 1208 (668-2685); septic shock: 3823 (2170-7318); CABG: 1272 (417-2720); and MAS: 1356 (694-2845); CTRL vs. septic shock: p < 0.001; septic shock vs. CABG: p < 0.001; septic shock vs. MAS: p = 0.006; CABG vs. MAS: p = 0.01). ND1 mtDNA levels in CABG patients showed a strong positive correlation with fibrinogen (correlation coefficient [r]= 0.57, p < 0.001) and fibrinogen-dependent thromboelastographic assays (maximum clot firmness, EXTEM: r = 0.35, p = 0.01; INTEM: r = 0.31, p = 0.02; FIBTEM: r = 0.46, p < 0.001). In conclusion, plasma levels of free-circulating ND1 mtDNA were increased in septic shock patients and were discriminative between sepsis and surgery-induced inflammation. Furthermore, this study showed an association between ND1 mtDNA and a fibrinogen-dependent pro-coagulatory shift in cardiac surgical patients.
Collapse
|
30
|
McBride MA, Owen AM, Stothers CL, Hernandez A, Luan L, Burelbach KR, Patil TK, Bohannon JK, Sherwood ER, Patil NK. The Metabolic Basis of Immune Dysfunction Following Sepsis and Trauma. Front Immunol 2020; 11:1043. [PMID: 32547553 PMCID: PMC7273750 DOI: 10.3389/fimmu.2020.01043] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or β-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or β-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.
Collapse
Affiliation(s)
- Margaret A. McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cody L. Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine R. Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
31
|
Piantadosi CA. Mitochondrial DNA, oxidants, and innate immunity. Free Radic Biol Med 2020; 152:455-461. [PMID: 31958498 DOI: 10.1016/j.freeradbiomed.2020.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial oxidant damage, including damage to mitochondrial DNA (mtDNA) is a feature of both severe microbial infections and inflammation arising from sterile (non-infectious) sources such as tissue trauma. Damaged mitochondria release intact or oxidized fragments of mtDNA into the cytoplasm, which represent oxidant injury, and the fragments promote a spontaneous innate immune response, exemplifying a modern frontier of immunological research. MtDNA and mitochondrial-derived oxidants are central factors in activating at least three innate immune pathways involving the TLR9 (Toll-like receptor 9), the NLRP3 (NACHT, LRR and PYD domains-containing protein-3) inflammasome, and the cGAS (cyclic AMP-GMP synthase) pathway. The events that allow mtDNA to escape from damaged mitochondria and from damaged cells are incompletely known, but the presence of cytoplasmic mtDNA and cell-free mtDNA as immune regulators are important for understanding the cell's capacity for protecting mitochondrial quality control (MQC) and cell viability during inflammatory states.
Collapse
|
32
|
New Insights into the Implication of Mitochondrial Dysfunction in Tissue, Peripheral Blood Mononuclear Cells, and Platelets during Lung Diseases. J Clin Med 2020; 9:jcm9051253. [PMID: 32357474 PMCID: PMC7287602 DOI: 10.3390/jcm9051253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Lung diseases such as chronic obstructive pulmonary disease, asthma, pulmonary arterial hypertension, or idiopathic pulmonary fibrosis are major causes of morbidity and mortality. Complex, their physiopathology is multifactorial and includes lung mitochondrial dysfunction and enhanced reactive oxygen species (ROS) release, which deserves increased attention. Further, and importantly, circulating blood cells (peripheral blood mononuclear cells-(PBMCs) and platelets) likely participate in these systemic diseases. This review presents the data published so far and shows that circulating blood cells mitochondrial oxidative capacity are likely to be reduced in chronic obstructive pulmonary disease (COPD), but enhanced in asthma and pulmonary arterial hypertension in a context of increased oxidative stress. Besides such PBMCs or platelets bioenergetics modifications, mitochondrial DNA (mtDNA) changes have also been observed in patients. These new insights open exciting challenges to determine their role as biomarkers or potential guide to a new therapeutic approach in lung diseases.
Collapse
|
33
|
Meduri GU, Chrousos GP. General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections. Front Endocrinol (Lausanne) 2020; 11:161. [PMID: 32390938 PMCID: PMC7189617 DOI: 10.3389/fendo.2020.00161] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
In critical illness, homeostatic corrections representing the culmination of hundreds of millions of years of evolution, are modulated by the activated glucocorticoid receptor alpha (GRα) and are associated with an enormous bioenergetic and metabolic cost. Appreciation of how homeostatic corrections work and how they evolved provides a conceptual framework to understand the complex pathobiology of critical illness. Emerging literature place the activated GRα at the center of all phases of disease development and resolution, including activation and re-enforcement of innate immunity, downregulation of pro-inflammatory transcription factors, and restoration of anatomy and function. By the time critically ill patients necessitate vital organ support for survival, they have reached near exhaustion or exhaustion of neuroendocrine homeostatic compensation, cell bio-energetic and adaptation functions, and reserves of vital micronutrients. We review how critical illness-related corticosteroid insufficiency, mitochondrial dysfunction/damage, and hypovitaminosis collectively interact to accelerate an anti-homeostatic active process of natural selection. Importantly, the allostatic overload imposed by these homeostatic corrections impacts negatively on both acute and long-term morbidity and mortality. Since the bioenergetic and metabolic reserves to support homeostatic corrections are time-limited, early interventions should be directed at increasing GRα and mitochondria number and function. Present understanding of the activated GC-GRα's role in immunomodulation and disease resolution should be taken into account when re-evaluating how to administer glucocorticoid treatment and co-interventions to improve cellular responsiveness. The activated GRα interdependence with functional mitochondria and three vitamin reserves (B1, C, and D) provides a rationale for co-interventions that include prolonged glucocorticoid treatment in association with rapid correction of hypovitaminosis.
Collapse
Affiliation(s)
- Gianfranco Umberto Meduri
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| | - George P. Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
34
|
Weiss SL, Zhang D, Bush J, Graham K, Starr J, Tuluc F, Henrickson S, Kilbaugh T, Deutschman CS, Murdock D, McGowan FX, Becker L, Wallace DC. Persistent Mitochondrial Dysfunction Linked to Prolonged Organ Dysfunction in Pediatric Sepsis. Crit Care Med 2019; 47:1433-1441. [PMID: 31385882 PMCID: PMC7341116 DOI: 10.1097/ccm.0000000000003931] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Limited data exist about the timing and significance of mitochondrial alterations in children with sepsis. We therefore sought to determine if alterations in mitochondrial respiration and content within circulating peripheral blood mononuclear cells were associated with organ dysfunction in pediatric sepsis. DESIGN Prospective observational study SETTING:: Single academic PICU. PATIENTS One-hundred sixty-seven children with sepsis/septic shock and 19 PICU controls without sepsis, infection, or organ dysfunction. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Mitochondrial respiration and content were measured in peripheral blood mononuclear cells on days 1-2, 3-5, and 8-14 after sepsis recognition or once for controls. Severity and duration of organ dysfunction were determined using the Pediatric Logistic Organ Dysfunction score and organ failure-free days through day 28. Day 1-2 maximal uncoupled respiration (9.7 ± 7.7 vs 13.7 ± 4.1 pmol O2/s/10 cells; p = 0.02) and spare respiratory capacity (an index of bioenergetic reserve: 6.2 ± 4.3 vs 9.6 ± 3.1; p = 0.005) were lower in sepsis than controls. Mitochondrial content, measured by mitochondrial DNA/nuclear DNA, was higher in sepsis on day 1-2 than controls (p = 0.04) and increased in sepsis patients who had improving spare respiratory capacity over time (p = 0.005). Mitochondrial respiration and content were not associated with day 1-2 Pediatric Logistic Organ Dysfunction score, but low spare respiratory capacity was associated with higher Pediatric Logistic Organ Dysfunction score on day 3-5. Persistently low spare respiratory capacity was predictive of residual organ dysfunction on day 14 (area under the receiver operating characteristic, 0.72; 95% CI, 0.61-0.84) and trended toward fewer organ failure-free days although day 28 (β coefficient, -0.64; 95% CI, -1.35 to 0.06; p = 0.08). CONCLUSIONS Mitochondrial respiration was acutely decreased in peripheral blood mononuclear cells in pediatric sepsis despite an increase in mitochondrial content. Over time, a rise in mitochondrial DNA tracked with improved respiration. Although initial mitochondrial alterations in peripheral blood mononuclear cells were unrelated to organ dysfunction, persistently low respiration was associated with slower recovery from organ dysfunction.
Collapse
Affiliation(s)
| | - Donglan Zhang
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jenny Bush
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jonathan Starr
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA
| | - Florin Tuluc
- Flow Cytometry Research Core, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sarah Henrickson
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Todd Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA
| | - Clifford S Deutschman
- Feinstein Institute for Medical Research at Hofstra-Northwell School of Medicine, Hempstead, NY
| | - Deborah Murdock
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA
| | - Francis X McGowan
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lance Becker
- Department of Emergency Medicine at Hofstra-Northwell School of Medicine, Hempstead, NY
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine at the Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|