1
|
Salehi M, Jaka S, Lotfi A, Ahmad A, Saeidi M, Gunturu S. Prevalence, Socio-Demographic Characteristics, and Co-Morbidities of Autism Spectrum Disorder in US Children: Insights from the 2020-2021 National Survey of Children's Health. CHILDREN (BASEL, SWITZERLAND) 2025; 12:297. [PMID: 40150580 PMCID: PMC11941283 DOI: 10.3390/children12030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The primary goal of our study is to assess the national US prevalence of autism spectrum disorder (ASD), along with its socio-demographic characteristics, severity, and co-occurring medical and psychiatric disorders, using data from the 2020-2021 National Survey of Children's Health (NSCH). METHODS We analyzed 2020-2021 NSCH data to estimate the prevalence of ever-diagnosed and current ASD among 79,182 children and adolescents (3-17 years). Univariate and multivariate regression models were used to examine associations between medical and psychiatric co-morbidities, socio-demographic factors, and ASD severity. RESULTS Adolescents (11-17 years) and males were more likely to have ASD, with males comprising 78.7% of the ASD group. The mean age of the sample was 10.1 ± 4.6 years, and 3.2% had an ASD diagnosis. Children from lower-income households and those with caregivers who completed only a high school education were more likely to have ASD. Nearly 96.4% of children with ASD had at least one co-morbid condition. The most common neuropsychiatric co-morbidities were developmental delay (64%), behavioral and conduct problems (57.8%), and anxiety disorder (45.7%), while the most common medical conditions were allergies (32.4%), genetic disorders (26.2%), and asthma (12.6%). Gender disparities in ASD presentation were evident that females with ASD were more likely to experience vision problems, cerebral palsy, epilepsy, depression, and intellectual disability but had lower odds of ADHD and anxiety problems. Greater ASD severity was linked to higher odds of intellectual disability (OR: 5.8, p < 0.001), developmental delay (OR: 5.0, p < 0.001), epilepsy, Down syndrome (OR: 3.4, p < 0.001), vision problems (OR: 2.5, p < 0.001), and genetic disorders (OR: 2.3, p < 0.001). CONCLUSIONS This study provides updated prevalence estimates of ASD and highlights the high burden of co-morbidities, emphasizing the need for comprehensive, multidisciplinary approaches in ASD management. Additionally, our findings emphasize gender differences in ASD presentation, which should be considered in future research and clinical practice to ensure more tailored diagnostic and intervention strategies.
Collapse
Affiliation(s)
- Mona Salehi
- Department of Psychiatry, BronxCare Health System, New York, NY 10456, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Sanobar Jaka
- Department of Psychiatry and Behavioral Sciences, Nassau University Medical Center, East Meadow, NY 11554, USA
- Department of Population Health, NYU School of Medicine, New York, NY 10016, USA
| | - Aida Lotfi
- School of Health and Welfare, Jönköping University, 551 11 Jönköping, Sweden;
| | - Arham Ahmad
- Department of Psychiatry, BronxCare Health System, New York, NY 10456, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahdieh Saeidi
- Department of Psychiatry, BronxCare Health System, New York, NY 10456, USA
| | - Sasidhar Gunturu
- Department of Psychiatry, BronxCare Health System, New York, NY 10456, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Kiarashi Y, Lantz J, Reyna MA, Anderson C, Rad AB, Foster J, Villavicencio T, Hamlin T, Clifford GD. Predicting Seizures Episodes and High-Risk Events in Autism Through Adverse Behavioral Patterns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.05.06.24306938. [PMID: 38766049 PMCID: PMC11100855 DOI: 10.1101/2024.05.06.24306938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
To determine whether historical behavior data can predict the occurrence of high-risk behavioral or seizure events in individuals with profound Autism Spectrum Disorder (ASD), thereby facilitating early intervention and improved support. To our knowledge, this is the first work to integrate the prediction of seizures with behavioral data, highlighting the interplay between adverse behaviors and seizure risk. APPROACH We analyzed nine years of behavior and seizure data from 353 individuals with profound ASD. Using a deep learning-based algorithm, we predicted the following day's occurrence of seizure and three high-risk behavioral events (aggression, self-injurious behavior (SIB), and elopement). We employed permutationbased statistical tests to assess the significance of our predictive performance. MAIN RESULTS Our model achieved accuracies 70.5% for seizures, 78.3% for aggression, 80.2% for SIB, and 85.7% for elopement. All results were significant for more than 85% of the population. These findings suggest that high-risk behaviors can serve as early indicators, not only of subsequent challenging behaviors but also of upcoming seizure events. SIGNIFICANCE By demonstrating, for the first time, that behavioral patterns can predict seizures as well as adverse behaviors, this approach expands the clinical utility of predictive modeling in ASD. Early warning systems derived from these predictions can guide timely interventions, enhance inclusion in educational and community settings, and improve quality of life by helping anticipate and mitigate severe behavioral and medical events.
Collapse
Affiliation(s)
- Yashar Kiarashi
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | | | - Matthew A Reyna
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | | | - Ali Bahrami Rad
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Jenny Foster
- The Center for Discovery (TCFD), Harris, NY, USA
| | | | | | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Moreno RJ, Abu Amara R, Ashwood P. Toward a better understanding of T cell dysregulation in autism: An integrative review. Brain Behav Immun 2025; 123:1147-1158. [PMID: 39378971 DOI: 10.1016/j.bbi.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024] Open
Abstract
Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.
Collapse
Affiliation(s)
- R J Moreno
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - R Abu Amara
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - P Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
4
|
Zubarioglu T, Ulgen D, Akca-Yesil S, Akbulut S, Onay H, Uzunyayla-Inci G, Beser OF, Hatemi Aİ, Aktuğlu-Zeybek Ç, Kiykim E. Exploring congenital sucrase-isomaltase deficiency in autism spectrum disorder patients with irritable bowel syndrome symptoms: A prospective SI gene sequencing study. Autism Res 2025; 18:44-55. [PMID: 39676735 DOI: 10.1002/aur.3293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Congenital sucrase-isomaltase deficiency (CSID) is an inherited metabolic disorder causing chronic gastrointestinal symptoms and malnutrition when untreated. Most CSID patients are likely to remain under- or misdiagnosed. This study aimed to investigate prevalence of CSID among patients with autism spectrum disorder (ASD) presenting with irritable bowel syndrome (IBS) symptoms via prospective SI gene sequencing. A prospective cross-sectional study was conducted on 98 ASD patients exhibiting gastrointestinal symptoms consistent with IBS. Participants were assessed according to Rome IV criteria and underwent SI gene sequencing. Demographic, clinical, and dietary data were collected and analyzed. Sucrose content in various fruits and vegetables was evaluated using three-day food record, and gastrointestinal symptoms were rated on Likert scale. Seven patients (7%) were diagnosed with CSID based on SI gene analysis, revealing six different variants, including four novel mutations. One patient was homozygous for one variant, and six patients were heterozygous. Clinical presentations predominantly included diarrhea, abdominal pain, and bloating, with two patients showing growth retardation. One patient was diagnosed in adulthood. Food allergy and lactose intolerance were the misdiagnoses prior to CSID diagnosis in two patients. Real prevalence of CSID is likely underestimated. Clinical heterogeneity and non-specific symptoms contribute to diagnostic challenges. Gastrointestinal symptoms consistent with IBS in ASD patients should include CSID in differential diagnosis. Early genetic screening for SI variants in ASD patients with IBS symptoms can facilitate timely diagnosis and management, improving outcomes. Heterozygous variants of the SI gene should also be considered, as heterozygous patients can exhibit typical CSID symptoms.
Collapse
Affiliation(s)
- Tanyel Zubarioglu
- Cerrahpaşa Medical Faculty, Division of Pediatric Nutrition and Metabolism, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Dilara Ulgen
- Cerrahpaşa Medical Faculty, Department of Pediatrics, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Sedanur Akca-Yesil
- Cerrahpaşa Medical Faculty, Nutrition and Dietetics Unit, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Selin Akbulut
- Cerrahpaşa Medical Faculty, Nutrition and Dietetics Unit, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Huseyin Onay
- Department of Genetics, MULTIGEN Genetic Diseases Evaluation Center, İzmir, Turkey
| | - Gozde Uzunyayla-Inci
- Cerrahpaşa Medical Faculty, Division of Pediatric Nutrition and Metabolism, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Omer Faruk Beser
- Cerrahpaşa Medical Faculty, Division of Pediatric Hepatology and Gastroenterology, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Ali İbrahim Hatemi
- Cerrahpaşa Medical Faculty, Department of Hepatology and Gastroenterology, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Çiğdem Aktuğlu-Zeybek
- Cerrahpaşa Medical Faculty, Division of Pediatric Nutrition and Metabolism, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Ertuğrul Kiykim
- Cerrahpaşa Medical Faculty, Division of Pediatric Nutrition and Metabolism, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| |
Collapse
|
5
|
Moreno RJ, Ashwood P. An Update on Microbial Interventions in Autism Spectrum Disorder with Gastrointestinal Symptoms. Int J Mol Sci 2024; 25:13078. [PMID: 39684788 PMCID: PMC11641496 DOI: 10.3390/ijms252313078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In the United States, autism spectrum disorder (ASD) affects 1 in 33 children and is characterized by atypical social interactions, communication difficulties, and intense, restricted interests. Microbial dysbiosis in the gastrointestinal (GI) tract is frequently observed in individuals with ASD, potentially contributing to behavioral manifestations and correlating with worsening severity. Moreover, dysbiosis may contribute to the increased prevalence of GI comorbidities in the ASD population and exacerbate immune dysregulation, further worsening dysbiosis. Over the past 25 years, research on the impact of microbial manipulation on ASD outcomes has gained substantial interest. Various approaches to microbial manipulation have been preclinically and clinically tested, including antibiotic treatment, dietary modifications, prebiotics, probiotics, and fecal microbiota transplantation. Each method has shown varying degrees of success in reducing the severity of ASD behaviors and/or GI symptoms and varying long-term efficacy. In this review, we discuss these microbiome manipulation methods and their outcomes. We also discuss potential microbiome manipulation early in life, as this is a critical period for neurodevelopment.
Collapse
Affiliation(s)
- Rachel J. Moreno
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, USA
- The M.I.N.D. Institute, University of California, Davis, CA 95817, USA
| |
Collapse
|
6
|
Pérez-Cabral ID, Bernal-Mercado AT, Islas-Rubio AR, Suárez-Jiménez GM, Robles-García MÁ, Puebla-Duarte AL, Del-Toro-Sánchez CL. Exploring Dietary Interventions in Autism Spectrum Disorder. Foods 2024; 13:3010. [PMID: 39335937 PMCID: PMC11431671 DOI: 10.3390/foods13183010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Autism spectrum disorder (ASD) involves social communication difficulties and repetitive behaviors, and it has a growing prevalence worldwide. Symptoms include cognitive impairments, gastrointestinal (GI) issues, feeding difficulties, and psychological problems. A significant concern in ASD is food selectivity, leading to nutrient deficiencies. Common GI issues in ASD, such as constipation and irritable bowel syndrome, stem from abnormal gut flora and immune system dysregulation. Sensory sensitivities and behavioral challenges exacerbate these problems, correlating with neurological symptom severity. Children with ASD also exhibit higher oxidative stress due to low antioxidant levels like glutathione. Therapeutic diets, including ketogenic, high-antioxidant, gluten-free and casein-free, and probiotic-rich diets, show potential in managing ASD symptoms like behavior, communication, GI issues, and oxidative stress, though the evidence is limited. Various studies have focused on different populations, but there is increasing concern about the impact among children. This review aims to highlight the food preferences of the ASD population, analyze the effect of the physicochemical and nutritional properties of foods on the selectivity in its consumption, GI problems, and antioxidant deficiencies in individuals with ASD, and evaluate the effectiveness of therapeutic diets, including diets rich in antioxidants, gluten-free and casein-free, ketogenic and essential fatty acids, and probiotic-rich diets in managing these challenges.
Collapse
Affiliation(s)
| | | | - Alma Rosa Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, SO, Mexico
| | | | - Miguel Ángel Robles-García
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, JA, Mexico
| | | | | |
Collapse
|
7
|
Domarecki P, Plata-Nazar K. The Assessment of Comprehensive Care for Autistic Children Provided by Polish Primary Healthcare Physicians in Parental View. Glob Pediatr Health 2024; 11:2333794X241258657. [PMID: 39086597 PMCID: PMC11289814 DOI: 10.1177/2333794x241258657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 08/02/2024] Open
Abstract
Objectives. Important factor in caring for ASD patients is the successful cooperation between the physician and the parent. Methods. The online survey has been conducted. For statistical analysis the t-student test and the U-Mann Whitney test were performed to compare 2 variables, then the Kruskal-Wallis test or ANOVA as well as The Pearson correlation and Sperman's rank correlation were performed. Results. 80.5% of respondent's PHPs did not notice the child's developmental difficulties. 22.02% of respondents can speak to their PHP about a child's difficulties. PHPs take different strategies to make patient contact with the healthcare system easier. We discovered statistically significant differences in the assessment of PHPs' abilities depending on the physicians' specialty, the children's age, the age at ASD diagnosis. Conclusion. The care for autistic patients provided by Polish PHPs is insufficient and the topic needs to be addressed immediately.
Collapse
Affiliation(s)
| | - Katarzyna Plata-Nazar
- Department of Pediatrics, Gastroenterology, Allergology and Nutrition, Medical University of Gdańsk, Poland
| |
Collapse
|
8
|
Ottosson F, Russo F, Abrahamsson A, MacSween N, Courraud J, Skogstrand K, Melander O, Ericson U, Orho-Melander M, Cohen AS, Grove J, Mortensen PB, Hougaard DM, Ernst M. Unraveling the metabolomic architecture of autism in a large Danish population-based cohort. BMC Med 2024; 22:302. [PMID: 39026322 PMCID: PMC11264881 DOI: 10.1186/s12916-024-03516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The prevalence of autism in Denmark has been increasing, reaching 1.65% among 10-year-old children, and similar trends are seen elsewhere. Although there are several factors associated with autism, including genetic, environmental, and prenatal factors, the molecular etiology of autism is largely unknown. Here, we use untargeted metabolomics to characterize the neonatal metabolome from dried blood spots collected shortly after birth. METHODS We analyze the metabolomic profiles of a subset of a large Danish population-based cohort (iPSYCH2015) consisting of over 1400 newborns, who later are diagnosed with autism and matching controls and in two Swedish population-based cohorts comprising over 7000 adult participants. Mass spectrometry analysis was performed by a timsTOF Pro operated in QTOF mode, using data-dependent acquisition. By applying an untargeted metabolomics approach, we could reproducibly measure over 800 metabolite features. RESULTS We detected underlying molecular perturbations across several metabolite classes that precede autism. In particular, the cyclic dipeptide cyclo-leucine-proline (FDR-adjusted p = 0.003) and the carnitine-related 5-aminovaleric acid betaine (5-AVAB) (FDR-adjusted p = 0.03), were associated with an increased probability for autism, independently of known prenatal and genetic risk factors. Analysis of genetic and dietary data in adults revealed that 5-AVAB was associated with increased habitual dietary intake of dairy (FDR-adjusted p < 0.05) and with variants near SLC22A4 and SLC22A5 (p < 5.0e - 8), coding for a transmembrane carnitine transporter protein involved in controlling intracellular carnitine levels. CONCLUSIONS Cyclo-leucine-proline and 5-AVAB are associated with future diagnosis of autism in Danish neonates, both representing novel early biomarkers for autism. 5-AVAB is potentially modifiable and may influence carnitine homeostasis.
Collapse
Affiliation(s)
- Filip Ottosson
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Anna Abrahamsson
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nadia MacSween
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Julie Courraud
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, ZografouAthens, Greece
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528, Athens, Greece
| | - Kristin Skogstrand
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ulrika Ericson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Arieh S Cohen
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Testcenter Denmark, Statens Serum Institut, Copenhagen, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Preben Bo Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
- NCRR - National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- CIRRAU - Centre for Integrated Registerbased Research at Aarhus University, Aarhus, Denmark
| | - David M Hougaard
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.
| |
Collapse
|
9
|
Adams KL, Mandy W, Catmur C, Bird G. Potential mechanisms underlying the association between feeding and eating disorders and autism. Neurosci Biobehav Rev 2024; 162:105717. [PMID: 38754718 DOI: 10.1016/j.neubiorev.2024.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
There is a reliable association between autism and Feeding and Eating Disorders. Concerningly, where these two conditions co-occur, clinical outcomes of Feeding and Eating Disorders are significantly worse, and treatment less effective, than when the Feeding and Eating Disorders occur in neurotypical individuals. Problematically, the reason for the association between autism and Feeding and Eating Disorders is poorly understood, which constrains advances in clinical care. This paper outlines several possible mechanisms that may underlie the observed association and suggests ways in which they may be empirically tested. Mechanisms are split into those producing an artefactual association, and those reflecting a genuine link between conditions. Artefactual associations may be due to conceptual overlap in both diagnostic criteria and measurement, Feeding and Eating Disorders causing transient autistic traits, or the association being non-specific in nature. A genuine association between autism and Feeding and Eating Disorders may be due to common causal factors, autism directly or indirectly causing Feeding and Eating Disorders, and Feeding and Eating Disorders being a female manifestation of autism.
Collapse
Affiliation(s)
- Kiera Louise Adams
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - William Mandy
- Division of Psychology and Language, University College London, London, UK
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
11
|
You SS, Gierlach A, Schmidt P, Selsing G, Moon I, Ishida K, Jenkins J, Madani WAM, Yang SY, Huang HW, Owyang S, Hayward A, Chandrakasan AP, Traverso G. An ingestible device for gastric electrophysiology. NATURE ELECTRONICS 2024; 7:497-508. [DOI: 10.1038/s41928-024-01160-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/26/2024] [Indexed: 01/04/2025]
|
12
|
Lagod PP, Naser SA. The Role of Short-Chain Fatty Acids and Altered Microbiota Composition in Autism Spectrum Disorder: A Comprehensive Literature Review. Int J Mol Sci 2023; 24:17432. [PMID: 38139261 PMCID: PMC10743890 DOI: 10.3390/ijms242417432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in communication and social interactions, restrictive and repetitive behavior, and a wide range of cognitive impediments. The prevalence of ASD tripled in the last 20 years and now affects 1 in 44 children. Although ASD's etiology is not yet elucidated, a growing body of evidence shows that it stems from a complex interplay of genetic and environmental factors. In recent years, there has been increased focus on the role of gut microbiota and their metabolites, as studies show that ASD patients show a significant shift in their gut composition, characterized by an increase in specific bacteria and elevated levels of short-chain fatty acids (SCFAs), especially propionic acid (PPA). This review aims to provide an overview of the role of microbiota and SCFAs in the human body, as well as possible implications of microbiota shift. Also, it highlights current studies aiming to compare the composition of the gut microbiome of ASD-afflicted patients with neurotypical control. Finally, it highlights studies with rodents where ASD-like symptoms or molecular hallmarks of ASD are evoked, via the grafting of microbes obtained from ASD subjects or direct exposure to PPA.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4110 Libra Drive, Orlando, FL 32816, USA;
| |
Collapse
|
13
|
Li H, Liu C, Huang S, Wang X, Cao M, Gu T, Ou X, Pan S, Lin Z, Wang X, Zhu Y, Jing J. Multi-omics analyses demonstrate the modulating role of gut microbiota on the associations of unbalanced dietary intake with gastrointestinal symptoms in children with autism spectrum disorder. Gut Microbes 2023; 15:2281350. [PMID: 38010793 PMCID: PMC10730204 DOI: 10.1080/19490976.2023.2281350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Our previous work revealed that unbalanced dietary intake was an important independent factor associated with constipation and gastrointestinal (GI) symptoms in children with autism spectrum disorder (ASD). Growing evidence has shown the alterations in the gut microbiota and gut microbiota-derived metabolites in ASD. However, how the altered microbiota might affect the associations between unbalanced diets and GI symptoms in ASD remains unknown. We analyzed microbiome and metabolomics data in 90 ASD and 90 typically developing (TD) children based on 16S rRNA and untargeted metabolomics, together with dietary intake and GI symptoms assessment. We found that there existed 11 altered gut microbiota (FDR-corrected P-value <0.05) and 397 altered metabolites (P-value <0.05) in children with ASD compared with TD children. Among the 11 altered microbiota, the Turicibacter, Coprococcus 1, and Lachnospiraceae FCS020 group were positively correlated with constipation (FDR-corrected P-value <0.25). The Eggerthellaceae was positively correlated with total GI symptoms (FDR-corrected P-value <0.25). More importantly, three increased microbiota including Turicibacter, Coprococcus 1, and Eggerthellaceae positively modulated the associations of unbalanced dietary intake with constipation and total GI symptoms, and the decreased Clostridium sp. BR31 negatively modulated their associations in ASD children (P-value <0.05). Together, the altered microbiota strengthens the relationship between unbalanced dietary intake and GI symptoms. Among the altered metabolites, ten metabolites derived from microbiota (Turicibacter, Coprococcus 1, Eggerthellaceae, and Clostridium sp. BR31) were screened out, enriched in eight metabolic pathways, and were identified to correlate with constipation and total GI symptoms in ASD children (FDR-corrected P-value <0.25). These metabolomics findings further support the modulating role of gut microbiota on the associations of unbalanced dietary intake with GI symptoms. Collectively, our research provides insights into the relationship between diet, the gut microbiota, and GI symptoms in children with ASD.
Collapse
Affiliation(s)
- Hailin Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Churui Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xin Wang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, China
| | - Muqing Cao
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingfeng Gu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoxuan Ou
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuolin Pan
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zongyu Lin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaotong Wang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Radwan K, Wu G, Banks-Word K, Rosenberger R. An Open-Label Case Series of Glutathione Use for Symptomatic Management in Children with Autism Spectrum Disorder. Med Sci (Basel) 2023; 11:73. [PMID: 37987328 PMCID: PMC10660524 DOI: 10.3390/medsci11040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder that has been diagnosed in an increasing number of children around the world. The existing data suggest that early diagnosis and intervention can improve ASD outcomes. The causes of ASD remain complex and unclear, and there are currently no clinical biomarkers for autism spectrum disorder. There is an increasing recognition that ASD might be associated with oxidative stress through several mechanisms including abnormal metabolism (lipid peroxidation) and the toxic buildup of reactive oxygen species (ROS). Glutathione acts as an antioxidant, a free radical scavenger and a detoxifying agent. This open-label pilot study investigates the tolerability and effectiveness of oral supplementation with OpitacTM gluthathione as a treatment for patients with ASD. The various aspects of glutathione OpitacTM glutathione bioavailability were examined when administered by oral routes. The absorption of glutathione from the gastrointestinal tract has been recently investigated. The results of this case series suggest that oral glutathione supplementation may improve oxidative markers, but this does not necessarily translate to the observed clinical improvement of subjects with ASD. The study reports a good safety profile of glutathione use, with stomach upset reported in four out of six subjects. This article discusses the role of the gut microbiome and redox balance in ASD and notes that a high baseline oxidative burden may make some patients poor responders to glutathione supplementation. In conclusion, an imbalance in redox reactions is only one of the many factors contributing to ASD, and further studies are necessary to investigate other factors, such as impaired neurotransmission, immune dysregulation in the brain, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Karam Radwan
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA (R.R.)
| | - Gary Wu
- Department of Psychiatry & Behavioral Sciences, Rosalind Franklin University, North Chicago, IL 60064, USA;
| | - Kamilah Banks-Word
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA (R.R.)
| | - Ryan Rosenberger
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago Medical Center, Chicago, IL 60637, USA (R.R.)
| |
Collapse
|
15
|
El-Ansary A, Al-Ayadhi L. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study. Nutrients 2023; 15:4564. [PMID: 37960217 PMCID: PMC10647375 DOI: 10.3390/nu15214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Special diets or nutritional supplements are regularly given to treat children with autism spectrum disorder (ASD). The increased consumption of particular foods has been demonstrated in numerous trials to lessen autism-related symptoms and comorbidities. A case study on a boy with moderate autism who significantly improved after three years of following a healthy diet consisting of pumpkin and walnuts was examined in this review in connection to a few different neurophenotypes of ASD. We are able to suggest that a diet high in pumpkin and walnuts was useful in improving the clinical presentation of the ASD case evaluated by reducing oxidative stress, neuroinflammation, glutamate excitotoxicity, mitochondrial dysfunction, and altered gut microbiota, all of which are etiological variables. Using illustrated figures, a full description of the ways by which a diet high in pumpkin and nuts could assist the included case is offered.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi P.O. Box 110281, United Arab Emirates
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
16
|
Davidson EA, Holingue C, Jimenez-Gomez A, Dallman JE, Moshiree B. Gastrointestinal Dysfunction in Genetically Defined Neurodevelopmental Disorders. Semin Neurol 2023; 43:645-660. [PMID: 37586397 PMCID: PMC10895389 DOI: 10.1055/s-0043-1771460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Gastrointestinal symptoms are common in most forms of neurodevelopment disorders (NDDs) such as in autism spectrum disorders (ASD). The current patient-reported outcome measures with validated questionnaires used in the general population of children without NDDS cannot be used in the autistic individuals. We explore here the multifactorial pathophysiology of ASD and the role of genetics and the environment in this disease spectrum and focus instead on possible diagnostics that could provide future objective insight into the connection of the gut-brain-microbiome in this disease entity. We provide our own data from both humans and a zebrafish model of ASD called Phelan-McDermid Syndrome. We hope that this review highlights the gaps in our current knowledge on many of these profound NDDs and that it provides a future framework upon which clinicians and researchers can build and network with other interested multidisciplinary specialties.
Collapse
Affiliation(s)
| | - Calliope Holingue
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andres Jimenez-Gomez
- Neuroscience Center, Joe DiMaggio Children’s Hospital, Hollywood, Florida
- Department of Child Neurology, Florida Atlantic University Stiles - Nicholson Brain Institute, Jupiter, Florida
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, Miami, Florida
| | - Baharak Moshiree
- Atrium Health, Wake Forest Medical University, Charlotte, North Carolina
| |
Collapse
|
17
|
Tataru C, Peras M, Rutherford E, Dunlap K, Yin X, Chrisman BS, DeSantis TZ, Wall DP, Iwai S, David MM. Topic modeling for multi-omic integration in the human gut microbiome and implications for Autism. Sci Rep 2023; 13:11353. [PMID: 37443184 PMCID: PMC10345091 DOI: 10.1038/s41598-023-38228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
While healthy gut microbiomes are critical to human health, pertinent microbial processes remain largely undefined, partially due to differential bias among profiling techniques. By simultaneously integrating multiple profiling methods, multi-omic analysis can define generalizable microbial processes, and is especially useful in understanding complex conditions such as Autism. Challenges with integrating heterogeneous data produced by multiple profiling methods can be overcome using Latent Dirichlet Allocation (LDA), a promising natural language processing technique that identifies topics in heterogeneous documents. In this study, we apply LDA to multi-omic microbial data (16S rRNA amplicon, shotgun metagenomic, shotgun metatranscriptomic, and untargeted metabolomic profiling) from the stool of 81 children with and without Autism. We identify topics, or microbial processes, that summarize complex phenomena occurring within gut microbial communities. We then subset stool samples by topic distribution, and identify metabolites, specifically neurotransmitter precursors and fatty acid derivatives, that differ significantly between children with and without Autism. We identify clusters of topics, deemed "cross-omic topics", which we hypothesize are representative of generalizable microbial processes observable regardless of profiling method. Interpreting topics, we find each represents a particular diet, and we heuristically label each cross-omic topic as: healthy/general function, age-associated function, transcriptional regulation, and opportunistic pathogenesis.
Collapse
Affiliation(s)
- Christine Tataru
- Department of Microbiology, Oregon State University, SW Campus Way, Corvallis, USA.
| | - Marie Peras
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Erica Rutherford
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Kaiti Dunlap
- Department of Bioengineering, Serra Mall, Stanford, USA
| | - Xiaochen Yin
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | | | - Todd Z DeSantis
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Dennis P Wall
- Department of Biomedical Data Science, Serra Mall, Stanford, USA
- Department of Pediatrics (Systems Medicine), Stanford, 1265 Welch Road, Stanford, USA
| | - Shoko Iwai
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Maude M David
- Department of Microbiology, Oregon State University, SW Campus Way, Corvallis, USA.
- School of Pharmacy, Oregon State University, SW Campus Way, Corvallis, USA.
| |
Collapse
|
18
|
Zuffa S, Schimmel P, Gonzalez-Santana A, Belzer C, Knol J, Bölte S, Falck-Ytter T, Forssberg H, Swann J, Diaz Heijtz R. Early-life differences in the gut microbiota composition and functionality of infants at elevated likelihood of developing autism spectrum disorder. Transl Psychiatry 2023; 13:257. [PMID: 37443359 PMCID: PMC10344877 DOI: 10.1038/s41398-023-02556-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Evidence from cross-sectional human studies, and preliminary microbial-based intervention studies, have implicated the microbiota-gut-brain axis in the neurobiology of autism spectrum disorder (ASD). Using a prospective longitudinal study design, we investigated the developmental profile of the fecal microbiota and metabolome in infants with (n = 16) and without (n = 19) a family history of ASD across the first 36 months of life. In addition, the general developmental levels of infants were evaluated using the Mullen Scales of Early Learning (MSEL) test at 5 and 36 months of age, and with ADOS-2 at 36 months of age. At 5 months of age, infants at elevated-likelihood of ASD (EL) harbored less Bifidobacterium and more Clostridium and Klebsiella species compared to the low-likelihood infants (LL). Untargeted metabolic profiling highlighted that LL infants excreted a greater amount of fecal γ-aminobutyric acid (GABA) at 5 months, which progressively declined with age. Similar age-dependent patterns were not observed in the EL group, with GABA being consistently low across all timepoints. Integrated microbiome-metabolome analysis showed a positive correlation between GABA and Bifidobacterium species and negative associations with Clostridium species. In vitro experiments supported these observations demonstrating that bifidobacteria can produce GABA while clostridia can consume it. At the behavioral level, there were no significant differences between the EL and LL groups at 5 months. However, at 36 months of age, the EL group had significantly lower MSEL and ADOS-2 scores compared to the LL group. Taken together, the present results reveal early life alterations in gut microbiota composition and functionality in infants at elevated-likelihood of ASD. These changes occur before any behavioral impairments can be detected, supporting a possible role for the gut microbiota in emerging behavioral variability later in life.
Collapse
Affiliation(s)
- Simone Zuffa
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Patrick Schimmel
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | | | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University, Wageningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| | - Terje Falck-Ytter
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, 751 42, Uppsala, Sweden
| | - Hans Forssberg
- Department of Women's & Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
- School of Human Development and Health, Faculty of Medicine, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | | |
Collapse
|
19
|
Feng P, Zhao S, Zhang Y, Li E. A review of probiotics in the treatment of autism spectrum disorders: Perspectives from the gut–brain axis. Front Microbiol 2023; 14:1123462. [PMID: 37007501 PMCID: PMC10060862 DOI: 10.3389/fmicb.2023.1123462] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Autism spectrum disorders (ASD) are a class of neurodevelopmental conditions with a large societal impact. Despite existing evidence suggesting a link between ASD pathogenesis and gut–brain axis dysregulation, there is no systematic review of the treatment of probiotics on ASD and its associated gastrointestinal abnormalities based on the gut–brain axis. Therefore, we performed an analysis for ASD based on preclinical and clinical research to give a comprehensive synthesis of published evidence of a potential mechanism for ASD. On the one hand, this review aims to elucidate the link between gastrointestinal abnormalities and ASD. Accordingly, we discuss gut microbiota dysbiosis regarding gut–brain axis dysfunction. On the other hand, this review suggests that probiotic administration to regulate the gut–brain axis might improve gastrointestinal symptoms, restore ASD-related behavioral symptoms, restore gut microbiota composition, reduce inflammation, and restore intestinal barrier function in human and animal models. This review suggests that targeting the microbiota through agents such as probiotics may represent an approach for treating subsets of individuals with ASD.
Collapse
Affiliation(s)
- Pengya Feng
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhao
- College of Bioengineering, Henan University of Technology, Zhengzhou, China
| | - Yangyang Zhang
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Enyao Li
- Department of Children Rehabilitation, Key Laboratory of Rehabilitation Medicine in Henan, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Enyao Li,
| |
Collapse
|
20
|
Yehia L, Heald B, Eng C. Clinical Spectrum and Science Behind the Hamartomatous Polyposis Syndromes. Gastroenterology 2023; 164:800-811. [PMID: 36717037 DOI: 10.1053/j.gastro.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
The hamartomatous polyposis syndromes are a set of clinically distinct disorders characterized by the occurrence of hamartomatous polyps in the gastrointestinal tract. These syndromes include juvenile polyposis syndrome, Peutz-Jeghers syndrome, and PTEN hamartoma tumor syndrome. Although each of the syndromes has distinct phenotypes, the hamartomatous polyps can be challenging to differentiate histologically. Additionally, each of these syndromes is associated with increased lifetime risks of gene-specific and organ-specific cancers, including those outside of the gastrointestinal tract. Germline pathogenic variants can be identified in a subset of individuals with these syndromes, which facilitates molecular diagnosis and subsequent gene-enabled management in the setting of genetic counseling. Although the malignant potential of hamartomatous polyps remains elusive, timely recognition of these syndromes is important and enables presymptomatic cancer surveillance and management before symptom exacerbation. Presently, there are no standard agents to prevent the development of polyps and cancers in the hamartomatous polyposis syndromes.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Center for Personalized Genetic Healthcare, Community Care, Cleveland Clinic, Cleveland, Ohio; Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio; Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
21
|
Johnson KVA, Watson KK, Dunbar RIM, Burnet PWJ. Sociability in a non-captive macaque population is associated with beneficial gut bacteria. Front Microbiol 2022; 13:1032495. [PMID: 36439813 PMCID: PMC9691693 DOI: 10.3389/fmicb.2022.1032495] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The relationship between social behaviour and the microbiome is known to be reciprocal. Research in wild animal populations, particularly in primate social groups, has revealed the role that social interactions play in microbial transmission, whilst studies in laboratory animals have demonstrated that the gut microbiome can affect multiple aspects of behaviour, including social behaviour. Here we explore behavioural variation in a non-captive animal population with respect to the abundance of specific bacterial genera. Social behaviour based on grooming interactions is assessed in a population of rhesus macaques (Macaca mulatta), and combined with gut microbiome data. We focus our analyses on microbiome genera previously linked to sociability and autistic behaviours in rodents and humans. We show in this macaque population that some of these genera are also related to an individual's propensity to engage in social interactions. Interestingly, we find that several of the genera positively related to sociability, such as Faecalibacterium, are well known for their beneficial effects on health and their anti-inflammatory properties. In contrast, the genus Streptococcus, which includes pathogenic species, is more abundant in less sociable macaques. Our results indicate that microorganisms whose abundance varies with individual social behaviour also have functional links to host immune status. Overall, these findings highlight the connections between social behaviour, microbiome composition, and health in an animal population.
Collapse
Affiliation(s)
- Katerina V.-A. Johnson
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom,*Correspondence: Katerina V.-A. Johnson,
| | - Karli K. Watson
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Robin I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
22
|
Esposito P, Ismail N. Linking Puberty and the Gut Microbiome to the Pathogenesis of Neurodegenerative Disorders. Microorganisms 2022; 10:2163. [PMID: 36363755 PMCID: PMC9697368 DOI: 10.3390/microorganisms10112163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/31/2023] Open
Abstract
Puberty is a critical period of development marked by the maturation of the central nervous system, immune system, and hypothalamic-pituitary-adrenal axis. Due to the maturation of these fundamental systems, this is a period of development that is particularly sensitive to stressors, increasing susceptibility to neurodevelopmental and neurodegenerative disorders later in life. The gut microbiome plays a critical role in the regulation of stress and immune responses, and gut dysbiosis has been implicated in the development of neurodevelopmental and neurodegenerative disorders. The purpose of this review is to summarize the current knowledge about puberty, neurodegeneration, and the gut microbiome. We also examine the consequences of pubertal exposure to stress and gut dysbiosis on the development of neurodevelopmental and neurodegenerative disorders. Understanding how alterations to the gut microbiome, particularly during critical periods of development (i.e., puberty), influence the pathogenesis of these disorders may allow for the development of therapeutic strategies to prevent them.
Collapse
Affiliation(s)
- Pasquale Esposito
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
23
|
Boterberg S, Vantroys E, De Paepe B, Van Coster R, Roeyers H. Urine lactate concentration as a non-invasive screener for metabolic abnormalities: Findings in children with autism spectrum disorder and regression. PLoS One 2022; 17:e0274310. [PMID: 36084111 PMCID: PMC9462744 DOI: 10.1371/journal.pone.0274310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
There is increasing evidence that diseases caused by dysfunctional mitochondria (MD) are associated with autism spectrum disorder (ASD). A comprehensive meta-analysis showed that developmental regression was reported in half of the children with ASD and mitochondrial dysfunction which is much higher than in the general population of ASD. The aim of the present exploratory study was to determine lactate concentrations in urine of children with ASD, as a non-invasive large-scale screening method for metabolic abnormalities including mitochondrial dysfunction and its possible association with regression. First, clinical characteristics of MD were examined in 99 children (3–11 years) with ASD. Second, clinical characteristics of MD, severity of ASD and reported regression were compared between children with the 20% lowest lactate concentrations and those with the 20% highest lactate concentrations in urine. Third, clinical characteristics of MD and lactate concentration in urine were compared in children with (n = 37) and without (n = 62) reported regression. An association of urine lactate concentrations with mitochondrial dysfunction and regression could not be demonstrated in our large ASD cohort. However, since ASD children were reported by their parents to show a broad range of phenotypic characteristics of MD (e.g., gastro-intestinal and respiratory impairments), and lactate concentrations in urine are not always increased in individuals with MD, the presence of milder mitochondrial dysfunction cannot be excluded. Development of alternative biomarkers and their implementation in prospective studies following developmental trajectories of infants at elevated likelihood for ASD will be needed in the future to further unravel the association of ASD with mitochondrial dysfunction and eventually improve early detection.
Collapse
Affiliation(s)
- Sofie Boterberg
- Faculty of Psychology and Educational Sciences, Department of Experimental Clinical and Health Psychology, Research in Developmental Disorders Lab, Ghent University, Ghent, Belgium
- * E-mail:
| | - Elise Vantroys
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Boel De Paepe
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Rudy Van Coster
- Faculty of Medicine and Health Sciences, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Herbert Roeyers
- Faculty of Psychology and Educational Sciences, Department of Experimental Clinical and Health Psychology, Research in Developmental Disorders Lab, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Serra D, Henriques JF, Sousa FJ, Laranjo M, Resende R, Ferreira-Marques M, de Freitas V, Silva G, Peça J, Dinis TCP, Almeida LM. Attenuation of Autism-like Behaviors by an Anthocyanin-Rich Extract from Portuguese Blueberries via Microbiota-Gut-Brain Axis Modulation in a Valproic Acid Mouse Model. Int J Mol Sci 2022; 23:9259. [PMID: 36012528 PMCID: PMC9409076 DOI: 10.3390/ijms23169259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental pathologies whose current treatment is neither curative nor effective. Anthocyanins are naturally occurring compounds abundant in blueberries and in other red fruits which have been shown to be successful in the treatment of several neurological diseases, at least in in vitro and in vivo disease models. The aim of the present work was to study the ability of an anthocyanin-rich extract (ARE) obtained from Portuguese blueberries to alleviate autism-like symptoms in a valproic acid (VPA) mouse model of ASD and to get insights into the underlying molecular mechanisms of such benefits. Therefore, pregnant BALB/c females were treated subcutaneously with a single dose of VPA (500 mg/kg) or saline on gestational day 12.5. Male offspring mice were orally treated with the ARE from Portuguese blueberries (30 mg/kg/day) or the vehicle for three weeks, and further subjected to behavioral tests and biochemical analysis. Our data suggested that the ARE treatment alleviated autism-like behaviors in in utero VPA-exposed mice and, at the same time, decreased both neuroinflammation and gut inflammation, modulated the gut microbiota composition, increased serotonin levels in cerebral prefrontal cortex and gut, and reduced the synaptic dysfunction verified in autistic mice. Overall, our work suggests that anthocyanins extracted from Portuguese blueberries could constitute an effective strategy to ameliorate typical autistic behaviors through modulation of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Diana Serra
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- CIVG—Vasco da Gama Research Center, EUVG—Vasco da Gama University School, 3020-210 Coimbra, Portugal
| | - Joana F. Henriques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Fábio J. Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana Laranjo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Rosa Resende
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Marisa Ferreira-Marques
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV—Research Unit, Faculty of Science, Porto University, 4099-002 Porto, Portugal
| | - Gabriela Silva
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - João Peça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Department of Life Science, Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Teresa C. P. Dinis
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Leonor M. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-531 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
25
|
Otaru S, Lawrence DA. Autism: genetics, environmental stressors, maternal immune activation, and the male bias in autism. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022. [DOI: 10.37349/ent.2022.00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/20/2022] [Indexed: 01/05/2025]
Abstract
Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders (NDD) characterized by deficits in three domains: impairments in social interactions, language, and communication, and increased stereotyped restrictive/repetitive behaviors and interests. The exact etiology of ASD remains unknown. Genetics, gestational exposure to inflammation, and environmental stressors, which combine to affect mitochondrial dysfunction and metabolism, are implicated yet poorly understood contributors and incompletely delineated pathways toward the relative risk of ASD. Many studies have shown a clear male bias in the incidence of ASD and other NDD. In other words, being male is a significant yet poorly understood risk factor for the development of NDD. This review discusses the link between these factors by looking at the current body of evidence. Understanding the link between the multiplicity of hits—from genes to environmental stressors and possible sexual determinants, contributing to autism susceptibility is critical to developing targeted interventions to mitigate these risks.
Collapse
Affiliation(s)
- Sarah Otaru
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, New York 12144, USA
| | - David A. Lawrence
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, New York 12144, USA;Clinical and Experimental Immunology, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| |
Collapse
|
26
|
Alamoudi MU, Hosie S, Shindler AE, Wood JL, Franks AE, Hill-Yardin EL. Comparing the Gut Microbiome in Autism and Preclinical Models: A Systematic Review. Front Cell Infect Microbiol 2022; 12:905841. [PMID: 35846755 PMCID: PMC9286068 DOI: 10.3389/fcimb.2022.905841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022] Open
Abstract
Many individuals diagnosed with autism spectrum disorder (ASD) experience gastrointestinal (GI) dysfunction and show microbial dysbiosis. Variation in gut microbial populations is associated with increased risk for GI symptoms such as chronic constipation and diarrhoea, which decrease quality of life. Several preclinical models of autism also demonstrate microbial dysbiosis. Given that much pre-clinical research is conducted in mouse models, it is important to understand the similarities and differences between the gut microbiome in humans and these models in the context of autism. We conducted a systematic review of the literature using PubMed, ProQuest and Scopus databases to compare microbiome profiles of patients with autism and transgenic (NL3R451C, Shank3 KO, 15q dup), phenotype-first (BTBR) and environmental (Poly I:C, Maternal Inflammation Activation (MIA), valproate) mouse models of autism. Overall, we report changes in fecal microbial communities relevant to ASD based on both clinical and preclinical studies. Here, we identify an overlapping cluster of genera that are modified in both fecal samples from individuals with ASD and mouse models of autism. Specifically, we describe an increased abundance of Bilophila, Clostridium, Dorea and Lactobacillus and a decrease in Blautia genera in both humans and rodents relevant to this disorder. Studies in both humans and mice highlighted multidirectional changes in abundance (i.e. in some cases increased abundance whereas other reports showed decreases) for several genera including Akkermansia, Bacteroides, Bifidobacterium, Parabacteroides and Prevotella, suggesting that these genera may be susceptible to modification in autism. Identification of these microbial profiles may assist in characterising underlying biological mechanisms involving host-microbe interactions and provide future therapeutic targets for improving gut health in autism.
Collapse
Affiliation(s)
- Mohammed U. Alamoudi
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
| | - Anya E. Shindler
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Jennifer L. Wood
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Ashley E. Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Bundoora, VIC, Australia
- *Correspondence: Elisa L. Hill-Yardin,
| |
Collapse
|
27
|
Wolpert KH, Kim SJ, Kodish I, Uspal NG. Medical Management of Children With Autism in the Emergency Department. Pediatr Emerg Care 2022; 38:332-336. [PMID: 35766926 DOI: 10.1097/pec.0000000000002751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Autism spectrum disorder (ASD) is an increasingly prevalent diagnosis characterized by impairment of social communication and behavioral regulation. Children with ASD seek care more frequently in the emergency department (ED) than their neurotypical peers and the approach to medical evaluation of this population requires heightened attention to a variety of factors. Communication with caregivers, attention to environmental stimulation, identification of accommodation needs, and understanding frequently associated medical conditions are important considerations in ED encounters. Gastrointestinal problems, seizure disorders, and metabolic disease are common causes for ED presentation in children with ASD. A high index of suspicion for underlying medical issues must be maintained, even when children with ASD present primarily for behavioral concerns. Autism spectrum disorder (ASD) is an increasingly prevalent diagnosis characterized by impairment of social communication and behavioral regulation. Children with ASD seek care more frequently in the emergency department (ED) than their neurotypical peers and the approach to medical evaluation of this population requires heightened attention to a variety of factors. Communication with caregivers, attention to environmental stimulation, identification of accommodation needs, and understanding frequently associated medical conditions are important considerations in ED encounters. Gastrointestinal problems, seizure disorders, and metabolic disease are common causes for ED presentation in children with ASD. A high index of suspicion for underlying medical issues must be maintained, even when children with ASD present primarily for behavioral concerns.
Collapse
Affiliation(s)
- Katherine H Wolpert
- From the Assistant professor, Division of Emergency Medicine, Department of Pediatrics
| | | | | | - Neil G Uspal
- From the Assistant professor, Division of Emergency Medicine, Department of Pediatrics
| |
Collapse
|
28
|
Zuniga-Kennedy M, Davoren M, Shuffrey LC, Luna RA, Savidge T, Prasad V, Anderson GM, Veenstra-VanderWeele J, Williams KC. Intestinal Predictors of Whole Blood Serotonin Levels in Children With or Without Autism. J Autism Dev Disord 2022; 52:3780-3789. [PMID: 35726077 DOI: 10.1007/s10803-022-05597-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
Hyperserotonemia, or elevated levels of whole blood serotonin (WB5-HT), was the first biomarker linked to autism spectrum disorder (ASD). Despite numerous studies investigating the etiology of hyperserotonemia, results have been inconsistent. Recent findings suggest a relationship between the immune system and hyperserotonemia. The current study investigated whether intestinal 5-HT levels, 5-HT gene expression, or intestinal cell types predict WB5-HT. Participants included thirty-one males aged 3-18 who were classified into one of three groups: ASD and functional GI issues, typically developing with GI issues, and typically developing without GI issues. Samples from a lower endoscopy were analyzed to examine the pathways in predicting WB-5HT. Results demonstrated an association between T-Lymphocytes and WB5-HT.
Collapse
Affiliation(s)
- Miranda Zuniga-Kennedy
- Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Mail Unit 78, New York, NY, 10032, USA.,New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Center for Autism and the Developing Brain, New York-Presbyterian Hospital, 21 Bloomingdale Road, White Plains, NY, 10605, USA
| | - Micah Davoren
- Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Mail Unit 78, New York, NY, 10032, USA.,New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Center for Autism and the Developing Brain, New York-Presbyterian Hospital, 21 Bloomingdale Road, White Plains, NY, 10605, USA
| | - Lauren C Shuffrey
- Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Mail Unit 78, New York, NY, 10032, USA.,New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Ruth Ann Luna
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, 1102 Bates Avenue, Suite 955, Houston, TX, 77030, USA
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, 1102 Bates Avenue, Suite 955, Houston, TX, 77030, USA
| | - Vinay Prasad
- Division of Pathology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - George M Anderson
- Departments of Child Psychiatry and Laboratory Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Medical Center, 1051 Riverside Drive, Mail Unit 78, New York, NY, 10032, USA. .,New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA. .,Center for Autism and the Developing Brain, New York-Presbyterian Hospital, 21 Bloomingdale Road, White Plains, NY, 10605, USA. .,, 1051 Riverside Drive, Mail Unit 78, New York, NY, 10025, USA.
| | - Kent C Williams
- Department of Pediatric Gastroenterology, Nationwide Children's Hospital, 555 S 18th Street, Columbus, OH, 43205, USA
| |
Collapse
|
29
|
Coccurello R, Marrone MC, Maccarrone M. The Endocannabinoids-Microbiota Partnership in Gut-Brain Axis Homeostasis: Implications for Autism Spectrum Disorders. Front Pharmacol 2022; 13:869606. [PMID: 35721203 PMCID: PMC9204215 DOI: 10.3389/fphar.2022.869606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The latest years have witnessed a growing interest towards the relationship between neuropsychiatric disease in children with autism spectrum disorders (ASD) and severe alterations in gut microbiota composition. In parallel, an increasing literature has focused the attention towards the association between derangement of the endocannabinoids machinery and some mechanisms and symptoms identified in ASD pathophysiology, such as alteration of neural development, immune system dysfunction, defective social interaction and stereotypic behavior. In this narrative review, we put together the vast ground of endocannabinoids and their partnership with gut microbiota, pursuing the hypothesis that the crosstalk between these two complex homeostatic systems (bioactive lipid mediators, receptors, biosynthetic and hydrolytic enzymes and the entire bacterial gut ecosystem, signaling molecules, metabolites and short chain fatty acids) may disclose new ideas and functional connections for the development of synergic treatments combining “gut-therapy,” nutritional intervention and pharmacological approaches. The two separate domains of the literature have been examined looking for all the plausible (and so far known) overlapping points, describing the mutual changes induced by acting either on the endocannabinoid system or on gut bacteria population and their relevance for the understanding of ASD pathophysiology. Both human pathology and symptoms relief in ASD subjects, as well as multiple ASD-like animal models, have been taken into consideration in order to provide evidence of the relevance of the endocannabinoids-microbiota crosstalk in this major neurodevelopmental disorder.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| | - Maria Cristina Marrone
- Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| |
Collapse
|
30
|
Iyshwarya B, Vajagathali M, Ramakrishnan V. Investigation of Genetic Polymorphism in Autism Spectrum Disorder: a Pathogenesis of the Neurodevelopmental Disorder. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2022; 6:136-146. [DOI: 10.1007/s41252-022-00251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 12/07/2023]
|
31
|
Leader G, Abberton C, Cunningham S, Gilmartin K, Grudzien M, Higgins E, Joshi L, Whelan S, Mannion A. Gastrointestinal Symptoms in Autism Spectrum Disorder: A Systematic Review. Nutrients 2022; 14:1471. [PMID: 35406084 PMCID: PMC9003052 DOI: 10.3390/nu14071471] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/28/2022] Open
Abstract
This systematic review aims to offer an updated understanding of the relationship between gastrointestinal symptoms (GIS) and autism spectrum disorder (ASD) in children and adolescents. The databases PsycINFO, Medline, Cinahl, and ERIC were searched using keywords, and relevant literature was hand-searched. Papers (n = 3319) were systematically screened and deemed eligible if they were empirical studies published in English since 2014 and measured the GIS of individuals with ASD who were under 18 years old. Thirty studies were included in the final review. The study findings were synthesized under eight themes, including the prevalence and nature of GIS and their relationship with developmental regression, language and communication, ASD severity, challenging behavior, comorbid psychopathology, sleep problems, and sensory issues. The review found that GIS were common and that there was contradictory evidence concerning their relationship with co-occurring conditions. It also identified evidence of some causal relationships that support the existence of the gut-immune-brain pathways. Future research needs to use large prospective designs and objective and standardized GIS measurements to provide a nuanced understanding of GIS in the context of ASD.
Collapse
Affiliation(s)
- Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (C.A.); (S.C.); (K.G.); (E.H.); (L.J.); (S.W.); (A.M.)
| | - Cathal Abberton
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (C.A.); (S.C.); (K.G.); (E.H.); (L.J.); (S.W.); (A.M.)
| | - Stephen Cunningham
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (C.A.); (S.C.); (K.G.); (E.H.); (L.J.); (S.W.); (A.M.)
| | - Katie Gilmartin
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (C.A.); (S.C.); (K.G.); (E.H.); (L.J.); (S.W.); (A.M.)
| | - Margo Grudzien
- Healthy Mind Clinic, 61 Old Church Crescent, Clondalkin, D22 VK63 Dublin, Ireland;
| | - Emily Higgins
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (C.A.); (S.C.); (K.G.); (E.H.); (L.J.); (S.W.); (A.M.)
| | - Lokesh Joshi
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (C.A.); (S.C.); (K.G.); (E.H.); (L.J.); (S.W.); (A.M.)
| | - Sally Whelan
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (C.A.); (S.C.); (K.G.); (E.H.); (L.J.); (S.W.); (A.M.)
| | - Arlene Mannion
- Irish Centre for Autism and Neurodevelopmental Research, School of Psychology, National University of Ireland Galway, University Road, H91 TK33 Galway, Ireland; (C.A.); (S.C.); (K.G.); (E.H.); (L.J.); (S.W.); (A.M.)
| |
Collapse
|
32
|
Analysis of Faecal Microbiota and Small ncRNAs in Autism: Detection of miRNAs and piRNAs with Possible Implications in Host-Gut Microbiota Cross-Talk. Nutrients 2022; 14:nu14071340. [PMID: 35405953 PMCID: PMC9000903 DOI: 10.3390/nu14071340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Intestinal microorganisms impact health by maintaining gut homeostasis and shaping the host immunity, while gut dysbiosis associates with many conditions, including autism, a complex neurodevelopmental disorder with multifactorial aetiology. In autism, gut dysbiosis correlates with symptom severity and is characterised by a reduced bacterial variability and a diminished beneficial commensal relationship. Microbiota can influence the expression of host microRNAs that, in turn, regulate the growth of intestinal bacteria by means of bidirectional host-gut microbiota cross-talk. We investigated possible interactions among intestinal microbes and between them and host transcriptional modulators in autism. To this purpose, we analysed, by "omics" technologies, faecal microbiome, mycobiome, and small non-coding-RNAs (particularly miRNAs and piRNAs) of children with autism and neurotypical development. Patients displayed gut dysbiosis related to a reduction of healthy gut micro- and mycobiota as well as up-regulated transcriptional modulators. The targets of dysregulated non-coding-RNAs are involved in intestinal permeability, inflammation, and autism. Furthermore, microbial families, underrepresented in patients, participate in the production of human essential metabolites negatively influencing the health condition. Here, we propose a novel approach to analyse faeces as a whole, and for the first time, we detected miRNAs and piRNAs in faecal samples of patients with autism.
Collapse
|
33
|
Gregory AC, Gerhardt K, Zhong ZP, Bolduc B, Temperton B, Konstantinidis KT, Sullivan MB. MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations. MICROBIOME 2022; 10:49. [PMID: 35287721 PMCID: PMC8922842 DOI: 10.1186/s40168-022-01231-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/29/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Microbes and their viruses are hidden engines driving Earth's ecosystems from the oceans and soils to humans and bioreactors. Though gene marker approaches can now be complemented by genome-resolved studies of inter-(macrodiversity) and intra-(microdiversity) population variation, analytical tools to do so remain scattered or under-developed. RESULTS Here, we introduce MetaPop, an open-source bioinformatic pipeline that provides a single interface to analyze and visualize microbial and viral community metagenomes at both the macro- and microdiversity levels. Macrodiversity estimates include population abundances and α- and β-diversity. Microdiversity calculations include identification of single nucleotide polymorphisms, novel codon-constrained linkage of SNPs, nucleotide diversity (π and θ), and selective pressures (pN/pS and Tajima's D) within and fixation indices (FST) between populations. MetaPop will also identify genes with distinct codon usage. Following rigorous validation, we applied MetaPop to the gut viromes of autistic children that underwent fecal microbiota transfers and their neurotypical peers. The macrodiversity results confirmed our prior findings for viral populations (microbial shotgun metagenomes were not available) that diversity did not significantly differ between autistic and neurotypical children. However, by also quantifying microdiversity, MetaPop revealed lower average viral nucleotide diversity (π) in autistic children. Analysis of the percentage of genomes detected under positive selection was also lower among autistic children, suggesting that higher viral π in neurotypical children may be beneficial because it allows populations to better "bet hedge" in changing environments. Further, comparisons of microdiversity pre- and post-FMT in autistic children revealed that the delivery FMT method (oral versus rectal) may influence viral activity and engraftment of microdiverse viral populations, with children who received their FMT rectally having higher microdiversity post-FMT. Overall, these results show that analyses at the macro level alone can miss important biological differences. CONCLUSIONS These findings suggest that standardized population and genetic variation analyses will be invaluable for maximizing biological inference, and MetaPop provides a convenient tool package to explore the dual impact of macro- and microdiversity across microbial communities. Video abstract.
Collapse
Affiliation(s)
- Ann C Gregory
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Present Address: Department of Microbiology and Immunology, Rega Institute for Medical Research, VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Kenji Gerhardt
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zhi-Ping Zhong
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK
| | - Konstantinos T Konstantinidis
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA.
- Center of Microbiome Science, Ohio State University, Columbus, OH, 43210, USA.
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
34
|
Alsufiani HM, Alkhanbashi AS, Laswad NAB, Bakhadher KK, Alghamdi SA, Tayeb HO, Tarazi FI. Zinc deficiency and supplementation in autism spectrum disorder and Phelan-McDermid syndrome. J Neurosci Res 2022; 100:970-978. [PMID: 35114017 DOI: 10.1002/jnr.25019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/02/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023]
Abstract
Approximately 1 in 36 children are diagnosed with autism spectrum disorder (ASD). The disorder is four times more common in males than in females. Zinc deficiency and mutations in SHANK2 and SHANK3 (members of a family of excitatory postsynaptic scaffolding proteins) are all risk factors that may contribute to the pathophysiology of the disease. The presence of shankopathies (loss of one copy of the SHANK3 gene) can lead to the development of Phelan-McDermid syndrome (PMDS)-a rare genetic disorder characterized by developmental delay, intellectual disability, poor motor tone, and ASD-like symptoms. We reviewed the relationship between zinc, ASD, and PMDS as well as the effect of zinc supplementation in improving symptoms of ASD and PMDS based on 22 studies published within 6 years (2015-2020). Zinc deficiency (assessed by either dietary intake, blood, hair, or tooth matrix) was shown to be highly prevalent in ASD and PMDS patients as well as in preclinical models of ASD and PMDS. Zinc supplements improved the behavioral deficits in animal models of ASD and PMDS. Clinical trials are still needed to validate the beneficial therapeutic effects of zinc supplements in ASD and PMDS patients.
Collapse
Affiliation(s)
- Hadeil M Alsufiani
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa S Alkhanbashi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah A Bin Laswad
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khulood K Bakhadher
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shareefa A Alghamdi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- Division of Neurology, Department of Internal Medicine, The Neuroscience Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Frank I Tarazi
- Department of Psychiatry and Neuroscience, Harvard Medical School and McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
35
|
Kim E, Paik D, Ramirez RN, Biggs DG, Park Y, Kwon HK, Choi GB, Huh JR. Maternal gut bacteria drive intestinal inflammation in offspring with neurodevelopmental disorders by altering the chromatin landscape of CD4 + T cells. Immunity 2022; 55:145-158.e7. [PMID: 34879222 PMCID: PMC8755621 DOI: 10.1016/j.immuni.2021.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo N Ramirez
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Delaney G Biggs
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Youngjun Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ho-Keun Kwon
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Zengeler KE, Lukens JR. Maternal inflammation is hard for offspring to stomach. Immunity 2022; 55:6-8. [PMID: 35021058 DOI: 10.1016/j.immuni.2021.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Individuals with neurodevelopmental disorders often experience comorbid gastrointestinal distress and dysregulated immune responses, yet the underlying mechanisms remain unclear. In this issue of Immunity, Kim et al. utilize a murine maternal immune activation model of autism and find that inflammation can alter the microbiota of mothers, which postnatally primes offspring CD4+ T cells and increases susceptibility to intestinal inflammation.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Cell and Molecular Biology Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
37
|
Sauer AK, Malijauskaite S, Meleady P, Boeckers TM, McGourty K, Grabrucker AM. Zinc is a key regulator of gastrointestinal development, microbiota composition and inflammation with relevance for autism spectrum disorders. Cell Mol Life Sci 2021; 79:46. [PMID: 34936034 PMCID: PMC11072240 DOI: 10.1007/s00018-021-04052-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Gastrointestinal (GI) problems and microbiota alterations have been frequently reported in autism spectrum disorders (ASD). In addition, abnormal perinatal trace metal levels have been found in ASD. Accordingly, mice exposed to prenatal zinc deficiency display features of ASD-like behavior. Here, we model GI development using 3D intestinal organoids grown under zinc-restricted conditions. We found significant morphological alterations. Using proteomic approaches, we identified biological processes affected by zinc deficiency that regulate barrier permeability and pro-inflammatory pathways. We confirmed our results in vivo through proteomics studies and investigating GI development in zinc-deficient mice. These show altered GI physiology and pro-inflammatory signaling, resulting in chronic systemic and neuroinflammation, and gut microbiota composition similar to that reported in human ASD cases. Thus, low zinc status during development is sufficient to compromise intestinal barrier integrity and activate pro-inflammatory signaling, resulting in changes in microbiota composition that may aggravate inflammation, altogether mimicking the co-morbidities frequently observed in ASD.
Collapse
Affiliation(s)
- Ann Katrin Sauer
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Bernal Institute, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Paula Meleady
- School of Biotechnology and National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Unit, Ulm, Germany
| | - Kieran McGourty
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Bernal Institute, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland.
- Bernal Institute, University of Limerick, Limerick, Ireland.
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
38
|
Tataru C, Martin A, Dunlap K, Peras M, Chrisman BS, Rutherford E, Deitzler GE, Phillips A, Yin X, Sabino K, Hannibal RL, Hartono W, Lin M, Raack E, Wu Y, DeSantis TZ, Iwai S, Wall DP, David MM. Longitudinal study of stool-associated microbial taxa in sibling pairs with and without autism spectrum disorder. ISME COMMUNICATIONS 2021; 1:80. [PMID: 37938270 PMCID: PMC9723651 DOI: 10.1038/s43705-021-00080-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 11/18/2021] [Indexed: 05/01/2023]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder influenced by both genetic and environmental factors. Recently, gut dysbiosis has emerged as a powerful contributor to ASD symptoms. In this study, we recruited over 100 age-matched sibling pairs (between 2 and 8 years old) where one had an Autism ASD diagnosis and the other was developing typically (TD) (432 samples total). We collected stool samples over four weeks, tracked over 100 lifestyle and dietary variables, and surveyed behavior measures related to ASD symptoms. We identified 117 amplicon sequencing variants (ASVs) that were significantly different in abundance between sibling pairs across all three timepoints, 11 of which were supported by at least two contrast methods. We additionally identified dietary and lifestyle variables that differ significantly between cohorts, and further linked those variables to the ASVs they statistically relate to. Overall, dietary and lifestyle features were explanatory of ASD phenotype using logistic regression, however, global compositional microbiome features were not. Leveraging our longitudinal behavior questionnaires, we additionally identified 11 ASVs associated with changes in reported anxiety over time within and across all individuals. Lastly, we find that overall microbiome composition (beta-diversity) is associated with specific ASD-related behavioral characteristics.
Collapse
Affiliation(s)
- Christine Tataru
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| | - Austin Martin
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Kaitlyn Dunlap
- Departments of Pediatrics (Systems Medicine), Biomedical Data Science, and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Brianna S Chrisman
- Departments of Pediatrics (Systems Medicine), Biomedical Data Science, and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Grace E Deitzler
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | | | | | | | | | | | | - Dennis P Wall
- Departments of Pediatrics (Systems Medicine), Biomedical Data Science, and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Maude M David
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
39
|
Ding H, Yi X, Zhang X, Wang H, Liu H, Mou WW. Imbalance in the Gut Microbiota of Children With Autism Spectrum Disorders. Front Cell Infect Microbiol 2021; 11:572752. [PMID: 34790583 PMCID: PMC8591234 DOI: 10.3389/fcimb.2021.572752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
Background Autism spectrum disorder (ASD) are complex behavioral changes manifesting early in childhood, which impacts how an individual perceives and socializes with others. The study aims to assess the disparities in gut microbiota (GM) amongst healthy controls and children with ASD. Methods The study was performed on 25 children with ASD and 20 healthy children. Autistic symptoms were diagnosed and assessed with the Diagnostic and Statistical Manual for Mental Disorders and the Autism Treatment Evaluation Checklist (ATEC). Gastrointestinal (GI) symptoms were assessed with a GI Severity Index (GSI) questionnaire. The fecal bacteria composition was investigated by the high−throughput sequencing of the V3–V4 region of the 16S rRNA gene. The alpha diversity was estimated using the Shannon, Chao, and ACE indexes. The unweighted UniFrac analysis and the PCA plots were used to represent the beta diversity. LDA and LEfSe were used to assess the effect sizes of each abundant differential taxon. Results Children with high GSI scores had much higher ATEC Total scores than those with lower GSI-scores. GI symptoms were strongly associated with symptoms of ASD. There was no difference in Chao, ACE, and Shannon indexes between ASD patients and healthy controls. Both groups showed a significant microbiota structure clustering in the plotted PCAs and significant differences in its composition at the family, order, genus, and phyla levels. There were also noteworthy overall relative differences in Actinobacteria and Firmicutes between both groups. Conclusions This study shows the relationship between the clinical manifestations of Autistic symptoms and GI symptoms. ASD patients have dysbiosis of gut microbiota, which may be related to the onset of ASD. These findings may be beneficial for developing ASD symptoms by changing gut microbiota.
Collapse
Affiliation(s)
- Hongfang Ding
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| | - Xinhao Yi
- Department of Central Laboratory, Shengli Oil Field Central Hospital, Dongying, China
| | - Xiaohua Zhang
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| | - Hui Wang
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| | - Hui Liu
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| | - Wei-Wei Mou
- Department of Pediatrics, Shengli Oil Field Central Hospital, Dongying, China
| |
Collapse
|
40
|
Anashkina AA, Erlykina EI. Molecular Mechanisms of Aberrant Neuroplasticity in Autism Spectrum Disorders (Review). Sovrem Tekhnologii Med 2021; 13:78-91. [PMID: 34513070 PMCID: PMC8353687 DOI: 10.17691/stm2021.13.1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 01/03/2023] Open
Abstract
This review presents the analysis and systematization of modern data on the molecular mechanisms of autism spectrum disorders (ASD) development. Polyetiology and the multifactorial nature of ASD have been proved. The attempt has been made to jointly review and systematize current hypotheses of ASD pathogenesis at the molecular level from the standpoint of aberrant brain plasticity. The mechanism of glutamate excitotoxicity formation, the effect of imbalance of neuroactive amino acids and their derivatives, neurotransmitters, and hormones on the ASD formation have been considered in detail. The strengths and weaknesses of the proposed hypotheses have been analyzed from the standpoint of evidence-based medicine. The conclusion has been drawn on the leading role of glutamate excitotoxicity as a biochemical mechanism of aberrant neuroplasticity accompanied by oxidative stress and mitochondrial dysfunction. The mechanism of aberrant neuroplasticity has also been traced at the critical moments of the nervous system development taking into account the influence of various factors of the internal and external environment. New approaches to searching for ASD molecular markers have been considered.
Collapse
Affiliation(s)
- A A Anashkina
- Senior Teacher, Department of Biochemistry named after G.Y. Gorodisskaya; Senior Researcher, Central Scientific Research Laboratory, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E I Erlykina
- Professor, Head of the Department of Biochemistry named after G.Y. Gorodisskaya, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
41
|
Al-Ayadhi L, Zayed N, Bhat RS, Moubayed NMS, Al-Muammar MN, El-Ansary A. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: a systematic review. Gut Pathog 2021; 13:54. [PMID: 34517895 PMCID: PMC8439029 DOI: 10.1186/s13099-021-00448-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
Background Innovative research highlighted the probable connection between autism spectrum disorder (ASD) and gut microbiota as many autistic individuals have gastrointestinal problems as co-morbidities. This review emphasizes the role of altered gut microbiota observed frequently in autistic patients, and the mechanisms through which such alterations may trigger leaky gut. Main body Different bacterial metabolite levels in the blood and urine of autistic children, such as short-chain fatty acids, lipopolysaccharides, beta-cresol, and bacterial toxins, were reviewed. Moreover, the importance of selected proteins, among which are calprotectin, zonulin, and lysozyme, were discussed as biomarkers for the early detection of leaky gut as an etiological mechanism of ASD through the less integrative gut–blood–brain barriers. Disrupted gut–blood–brain barriers can explain the leakage of bacterial metabolites in these patients. Conclusion Although the cause-to-effect relationship between ASD and altered gut microbiota is not yet well understood, this review shows that with the consumption of specific diets, definite probiotics may represent a noninvasive tool to reestablish healthy gut microbiota and stimulate gut health. The diagnostic and therapeutic value of intestinal proteins and bacterial-derived compounds as new possible biomarkers, as well as potential therapeutic targets, are discussed. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00448-y.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia
| | - Naima Zayed
- Therapuetic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nadine M S Moubayed
- Botany and Microbiology Department, College of Science, Female Campus, King Saud University, Riyadh, Saudi Arabia
| | - May N Al-Muammar
- Department of Community Health, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, P.O box 22452, Zip code 11495, Riyadh, Saudi Arabia.
| |
Collapse
|
42
|
Popow C, Ohmann S, Plener P. Practitioner's review: medication for children and adolescents with autism spectrum disorder (ASD) and comorbid conditions. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2021; 35:113-134. [PMID: 34160787 PMCID: PMC8429404 DOI: 10.1007/s40211-021-00395-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/15/2021] [Indexed: 11/14/2022]
Abstract
Alleviating the multiple problems of children with autism spectrum disorder (ASD) and its comorbid conditions presents major challenges for the affected children, parents, and therapists. Because of a complex psychopathology, structured therapy and parent training are not always sufficient, especially for those patients with intellectual disability (ID) and multiple comorbidities. Moreover, structured therapy is not available for a large number of patients, and pharmacological support is often needed, especially in those children with additional attention deficit/hyperactivity and oppositional defiant, conduct, and sleep disorders.
Collapse
Affiliation(s)
- Christian Popow
- Dept. Child and Adolescent Psychiatry, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Susanne Ohmann
- Dept. Child and Adolescent Psychiatry, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| | - Paul Plener
- Dept. Child and Adolescent Psychiatry, Medical University of Vienna, Waehringer Guertel 18–20, 1090 Vienna, Austria
| |
Collapse
|
43
|
The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172:105840. [PMID: 34450312 DOI: 10.1016/j.phrs.2021.105840] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that the gut microbiota play a crucial role in the bidirectional communication between the gut and the brain suggesting that the gut microbes may shape neural development, modulate neurotransmission and affect behavior, and thereby contribute to the pathogenesis and/or progression of many neurodevelopmental, neuropsychiatric, and neurological conditions. This review summarizes recent data on the role of microbiota-gut-brain axis in the pathophysiology of neuropsychiatric and neurological disorders including depression, anxiety, schizophrenia, autism spectrum disorders, Parkinson's disease, migraine, and epilepsy. Also, the involvement of microbiota in gut disorders co-existing with neuropsychiatric conditions is highlighted. We discuss data from both in vivo preclinical experiments and clinical reports including: (1) studies in germ-free animals, (2) studies exploring the gut microbiota composition in animal models of diseases or in humans, (3) studies evaluating the effects of probiotic, prebiotic or antibiotic treatment as well as (4) the effects of fecal microbiota transplantation.
Collapse
|
44
|
Wong OWH, Lam AMW, Lai KYC, Ma SL, Hung SF, Chan S, Wong S, Leung PWL. An elevated anxiety level among prepubertal autistic boys with non-treatment-seeking functional gastrointestinal disorders: A case-control study. Autism Res 2021; 14:2131-2142. [PMID: 34114351 DOI: 10.1002/aur.2555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022]
Abstract
Children with autism commonly suffer from comorbid functional gastrointestinal disorders (FGID) and anxiety. The raised prevalence of both conditions in autism suggests complex reciprocal relationships, which are seldom explored in non-treatment-seeking FGID. The relationships between subtypes of FGID and anxiety are also unclear. This study recruited boys with autism and age-matched typically developing (TD) boys, aged 4-11 years, who were not actively seeking help for gastrointestinal problems. Their parents completed the Rome IV Diagnostic Questionnaires for Pediatric FGID. Four groups of children with and without autism/FGID were identified and compared on their anxiety level using the Spence children's anxiety scale. In 69 boys with autism and 69 age-matched TD boys, FGID were identified in 22 and 16 boys, respectively. ANCOVA demonstrated a significant interaction effect of autism and FGID on anxiety (F[1, 129] = 5.43, p = 0.021), while conditional logistic regression identified an interaction effect of autism and anxiety on the odds of FGID (OR 1.038, 95% CI 1.002-1.075, p = 0.038). Explorative post hoc analysis showed higher anxiety in functional nausea and vomiting disorder (p = 0.033) and functional abdominal pain disorder (p = 0.029) among boys with autism than TD boys with the same respective subtypes of FGID. In summary, among prepubertal boys with autism, the presence of FGID that are non-treatment-seeking in nature, has a significantly stronger association with higher levels of anxiety than TD boys. The strength of association may be more prominent in subtypes of FGID. Possible pathomechanisms including the underlying microbiota spectra and inflammatory paths should be explored in future studies. LAY SUMMARY: Anxiety and gastrointestinal problems are common symptoms in autism. Given that gut health could be linked to emotions, their association in young boys with autism was studied. The presence of nausea vomiting, or abdominal pain were associated with raised anxiety among boys with autism, yet this was not observed in typically developing boys. This suggests that anxiety among autistic children could be partly explained by the presence of FGID.
Collapse
Affiliation(s)
- Oscar W H Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR
| | - Angela M W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kelly Y C Lai
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR
| | - Suk Ling Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR
| | - Se Fong Hung
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR
| | - Sunny Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick W L Leung
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
45
|
Ye F, Gao X, Wang Z, Cao S, Liang G, He D, Lv Z, Wang L, Xu P, Zhang Q. Comparison of gut microbiota in autism spectrum disorders and neurotypical boys in China: A case-control study. Synth Syst Biotechnol 2021; 6:120-126. [PMID: 34095558 PMCID: PMC8163862 DOI: 10.1016/j.synbio.2021.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Autism spectrum disorders (ASDs) are a set of complex neurobiological disorders. Growing evidence has shown that the microbiota that resides in the gut can modulate brain development via the gut-brain axis. However, direct clinical evidence of the role of the microbiota-gut-brain axis in ASD is relatively limited. METHODS A case-control study of 71 boys with ASD and 18 neurotypical controls was conducted at China-Japan Friendship Hospital. Demographic information and fecal samples were collected, and the gut microbiome was evaluated and compared by 16S ribosomal RNA gene sequencing and metagenomic sequencing. RESULTS A higher abundance of operational taxonomic units (OTUs) based on fecal bacterial profiling was observed in the ASD group. Significantly different microbiome profiles were observed between the two groups. At the genus level, we observed a decrease in the relative abundance of Escherichia, Shigella, Veillonella, Akkermansia, Provindencia, Dialister, Bifidobacterium, Streptococcus, Ruminococcaceae UCG_002, Megasphaera, Eubacterium_coprostanol, Citrobacter, Ruminiclostridium_5, and Ruminiclostridium_6 in the ASD cohort, while Eisenbergiella, Klebsiella, Faecalibacterium, and Blautia were significantly increased. Ten bacterial strains were selected for clinical discrimination between those with ASD and the neurotypical controls. The highest AUC value of the model was 0.947. CONCLUSION Significant differences were observed in the composition of the gut microbiome between boys with ASD and neurotypical controls. These findings contribute to the knowledge of the alteration of the gut microbiome in ASD patients, which opens the possibility for early identification of this disease.
Collapse
Affiliation(s)
- Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Xinying Gao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Zhiyi Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuman Cao
- College of Life Sciences, Institute of Life Science and Green Development, Key Lab of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China
| | - Guangcai Liang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Danni He
- Clinical Research Institute, China-Japan Friendship Hospital, Beijing, China
| | - Zhitang Lv
- College of Life Sciences, Institute of Life Science and Green Development, Key Lab of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China
| | - Liming Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengfei Xu
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Qi Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
46
|
Systems Biology Reveals S-Nitrosylation-Dependent Regulation of Mitochondrial Functions in Mice with Shank3 Mutation Associated with Autism Spectrum Disorder. Brain Sci 2021; 11:brainsci11060677. [PMID: 34064215 PMCID: PMC8224296 DOI: 10.3390/brainsci11060677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/20/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder manifested in repetitive behavior, abnormalities in social interactions, and communication. The pathogenesis of this disorder is not clear, and no effective treatment is currently available. Protein S-nitrosylation (SNO), the nitric oxide (NO)-mediated posttranslational modification, targets key proteins implicated in synaptic and neuronal functions. Previously, we have shown that NO and SNO are involved in the ASD mouse model based on the Shank3 mutation. The energy supply to the brain mostly relies on oxidative phosphorylation in the mitochondria. Recent studies show that mitochondrial dysfunction and oxidative stress are involved in ASD pathology. In this work, we performed SNO proteomics analysis of cortical tissues of the Shank3 mouse model of ASD with the focus on mitochondrial proteins and processes. The study was based on the SNOTRAP technology followed by systems biology analysis. This work revealed that 63 mitochondrial proteins were S-nitrosylated and that several mitochondria-related processes, including those associated with oxidative phosphorylation, oxidative stress, and apoptosis, were enriched. This study implies that aberrant SNO signaling induced by the Shank3 mutation can target a wide range of mitochondria-related proteins and processes that may contribute to the ASD pathology. It is the first study to investigate the role of NO-dependent mitochondrial functions in ASD.
Collapse
|
47
|
Upadhyay J, Patra J, Tiwari N, Salankar N, Ansari MN, Ahmad W. Dysregulation of Multiple Signaling Neurodevelopmental Pathways during Embryogenesis: A Possible Cause of Autism Spectrum Disorder. Cells 2021; 10:958. [PMID: 33924211 PMCID: PMC8074600 DOI: 10.3390/cells10040958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding the autistic brain and the involvement of genetic, non-genetic, and numerous signaling pathways in the etiology and pathophysiology of autism spectrum disorder (ASD) is complex, as is evident from various studies. Apart from multiple developmental disorders of the brain, autistic subjects show a few characteristics like impairment in social communications related to repetitive, restricted, or stereotypical behavior, which suggests alterations in neuronal circuits caused by defects in various signaling pathways during embryogenesis. Most of the research studies on ASD subjects and genetic models revealed the involvement of mutated genes with alterations of numerous signaling pathways like Wnt, hedgehog, and Retinoic Acid (RA). Despite significant improvement in understanding the pathogenesis and etiology of ASD, there is an increasing awareness related to it as well as a need for more in-depth research because no effective therapy has been developed to address ASD symptoms. Therefore, identifying better therapeutic interventions like "novel drugs for ASD" and biomarkers for early detection and disease condition determination are required. This review article investigated various etiological factors as well as the signaling mechanisms and their alterations to understand ASD pathophysiology. It summarizes the mechanism of signaling pathways, their significance, and implications for ASD.
Collapse
Affiliation(s)
- Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India; (J.U.); (J.P.)
| | - Jeevan Patra
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India; (J.U.); (J.P.)
| | - Nidhi Tiwari
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India;
| | - Nilima Salankar
- School of Computer Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India;
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| |
Collapse
|
48
|
James DM, Davidson EA, Yanes J, Moshiree B, Dallman JE. The Gut-Brain-Microbiome Axis and Its Link to Autism: Emerging Insights and the Potential of Zebrafish Models. Front Cell Dev Biol 2021; 9:662916. [PMID: 33937265 PMCID: PMC8081961 DOI: 10.3389/fcell.2021.662916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Research involving autism spectrum disorder (ASD) most frequently focuses on its key diagnostic criteria: restricted interests and repetitive behaviors, altered sensory perception, and communication impairments. These core criteria, however, are often accompanied by numerous comorbidities, many of which result in severe negative impacts on quality of life, including seizures, epilepsy, sleep disturbance, hypotonia, and GI distress. While ASD is a clinically heterogeneous disorder, gastrointestinal (GI) distress is among the most prevalent co-occurring symptom complex, manifesting in upward of 70% of all individuals with ASD. Consistent with this high prevalence, over a dozen family foundations that represent genetically distinct, molecularly defined forms of ASD have identified GI symptoms as an understudied area with significant negative impacts on quality of life for both individuals and their caregivers. Moreover, GI symptoms are also correlated with more pronounced irritability, social withdrawal, stereotypy, hyperactivity, and sleep disturbances, suggesting that they may exacerbate the defining behavioral symptoms of ASD. Despite these facts (and to the detriment of the community), GI distress remains largely unaddressed by ASD research and is frequently regarded as a symptomatic outcome rather than a potential contributory factor to the behavioral symptoms. Allowing for examination of both ASD's impact on the central nervous system (CNS) as well as its impact on the GI tract and the associated microbiome, the zebrafish has recently emerged as a powerful tool to study ASD. This is in no small part due to the advantages zebrafish present as a model system: their precocious development, their small transparent larval form, and their parallels with humans in genetics and physiology. While ASD research centered on the CNS has leveraged these advantages, there has been a critical lack of GI-centric ASD research in zebrafish models, making a holistic view of the gut-brain-microbiome axis incomplete. Similarly, high-throughput ASD drug screens have recently been developed but primarily focus on CNS and behavioral impacts while potential GI impacts have not been investigated. In this review, we aim to explore the great promise of the zebrafish model for elucidating the roles of the gut-brain-microbiome axis in ASD.
Collapse
Affiliation(s)
- David M. James
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | | | - Julio Yanes
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Baharak Moshiree
- Department of Gastroenterology and Hepatology, Atrium Health, Charlotte, NC, United States
| | - Julia E. Dallman
- Department of Biology, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
49
|
El-Ansary A, Chirumbolo S, Bhat RS, Dadar M, Ibrahim EM, Bjørklund G. The Role of Lipidomics in Autism Spectrum Disorder. Mol Diagn Ther 2021; 24:31-48. [PMID: 31691195 DOI: 10.1007/s40291-019-00430-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental syndrome commonly diagnosed in early childhood; it is usually characterized by impairment in reciprocal communication and speech, repetitive behaviors, and social withdrawal with loss in communication skills. Its development may be affected by a variety of environmental and genetic factors. Trained physicians diagnose and evaluate the severity of ASD based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. Several important issues and concerns exist regarding the diagnostic competence of the many abnormal plasma metabolites produced in the different biochemical pathways evaluated in individuals with ASD. The search for high-performing bio-analytes to diagnose and follow-up ASD development is still a major target in medicine. Dysregulation in the oxidative stress response and proinflammatory processes are major etiological causes of ASD pathogenesis. Furthermore, dicarboxylic acid metabolites, cholesterol-related metabolites, phospholipid-related metabolites, and lipid transporters and mediators are impaired in different pathological conditions that have a role in the ASD etiology. A mechanism may exist by which pro-oxidant environmental stressors and abnormal metabolites regulate clinical manifestations and development of ASD.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia.,CONEM Saudi Autism Research Group, King Saud University, Riyadh, Saudi Arabia.,Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CONEM Scientific Secretary, Verona, Italy
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Eiman M Ibrahim
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
50
|
Panisi C, Guerini FR, Abruzzo PM, Balzola F, Biava PM, Bolotta A, Brunero M, Burgio E, Chiara A, Clerici M, Croce L, Ferreri C, Giovannini N, Ghezzo A, Grossi E, Keller R, Manzotti A, Marini M, Migliore L, Moderato L, Moscone D, Mussap M, Parmeggiani A, Pasin V, Perotti M, Piras C, Saresella M, Stoccoro A, Toso T, Vacca RA, Vagni D, Vendemmia S, Villa L, Politi P, Fanos V. Autism Spectrum Disorder from the Womb to Adulthood: Suggestions for a Paradigm Shift. J Pers Med 2021; 11:70. [PMID: 33504019 PMCID: PMC7912683 DOI: 10.3390/jpm11020070] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
The wide spectrum of unique needs and strengths of Autism Spectrum Disorders (ASD) is a challenge for the worldwide healthcare system. With the plethora of information from research, a common thread is required to conceptualize an exhaustive pathogenetic paradigm. The epidemiological and clinical findings in ASD cannot be explained by the traditional linear genetic model, hence the need to move towards a more fluid conception, integrating genetics, environment, and epigenetics as a whole. The embryo-fetal period and the first two years of life (the so-called 'First 1000 Days') are the crucial time window for neurodevelopment. In particular, the interplay and the vicious loop between immune activation, gut dysbiosis, and mitochondrial impairment/oxidative stress significantly affects neurodevelopment during pregnancy and undermines the health of ASD people throughout life. Consequently, the most effective intervention in ASD is expected by primary prevention aimed at pregnancy and at early control of the main effector molecular pathways. We will reason here on a comprehensive and exhaustive pathogenetic paradigm in ASD, viewed not just as a theoretical issue, but as a tool to provide suggestions for effective preventive strategies and personalized, dynamic (from womb to adulthood), systemic, and interdisciplinary healthcare approach.
Collapse
Affiliation(s)
- Cristina Panisi
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | | | - Federico Balzola
- Division of Gastroenterology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Turin, 10126 Turin, Italy;
| | - Pier Mario Biava
- Scientific Institute of Research and Care Multimedica, 20138 Milan, Italy;
| | - Alessandra Bolotta
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Marco Brunero
- Department of Pediatric Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Ernesto Burgio
- ECERI—European Cancer and Environment Research Institute, Square de Meeus 38-40, 1000 Bruxelles, Belgium;
| | - Alberto Chiara
- Dipartimento Materno Infantile ASST, 27100 Pavia, Italy;
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Luigi Croce
- Centro Domino per l’Autismo, Universita’ Cattolica Brescia, 20139 Milan, Italy;
| | - Carla Ferreri
- National Research Council of Italy, Institute of Organic Synthesis and Photoreactivity (ISOF), 40129 Bologna, Italy;
| | - Niccolò Giovannini
- Department of Obstetrics and Gynecology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Alessandro Ghezzo
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy;
| | - Roberto Keller
- Adult Autism Centre DSM ASL Città di Torino, 10138 Turin, Italy;
| | - Andrea Manzotti
- RAISE Lab, Foundation COME Collaboration, 65121 Pescara, Italy;
| | - Marina Marini
- DIMES, School of Medicine, University of Bologna, 40126 Bologna, Italy; (P.M.A.); (A.B.); (A.G.)
| | - Lucia Migliore
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Lucio Moderato
- Fondazione Istituto Sacra Famiglia ONLUS, Cesano Boscone, 20090 Milan, Italy;
| | - Davide Moscone
- Associazione Spazio Asperger ONLUS, Centro Clinico CuoreMenteLab, 00141 Rome, Italy;
| | - Michele Mussap
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
| | - Antonia Parmeggiani
- Child Neurology and Psychiatry Unit, IRCCS ISNB, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Valentina Pasin
- Milan Institute for health Care and Advanced Learning, 20124 Milano, Italy;
| | | | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, ONLUS, 20148 Milan, Italy; (M.C.); (M.S.)
| | - Andrea Stoccoro
- Medical Genetics Laboratories, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (L.M.); (A.S.)
| | - Tiziana Toso
- Unione Italiana Lotta alla Distrofia Muscolare UILDM, 35100 Padova, Italy;
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council of Italy, 70126 Bari, Italy;
| | - David Vagni
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy;
| | | | - Laura Villa
- Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy;
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericulture Institute and Neonatal Section, Azienda Ospedaliera Universitaria, 09100 Cagliari, Italy; (M.M.); (V.F.)
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria, 09042 Cagliari, Italy
| |
Collapse
|