1
|
Soleau N, Ganet S, Werlen S, Collignon L, Cointe A, Bonacorsi S, Sergentet D. First Isolation of the Heteropathotype Shiga Toxin-Producing and Extra-Intestinal Pathogenic (STEC-ExPEC) E. coli O80:H2 in French Healthy Cattle: Genomic Characterization and Phylogenetic Position. Int J Mol Sci 2024; 25:5428. [PMID: 38791466 PMCID: PMC11121960 DOI: 10.3390/ijms25105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The emerging heteropathotype shigatoxigenic (STEC) and extra-intestinal pathogenic Escherichia coli (ExPEC) O80:H2 has been the second leading cause of pediatric HUS in France since the mid-2010s. In contrast with other highly pathogenic STEC serotypes, for which ruminants have clearly been identified as the main human infection source, this heteropathotype's reservoir remains unknown. In this context, we describe for the first time the isolation of seven STEC O80:H2 strains from healthy cattle on a single cattle farm in France. This study aimed at (i) characterizing the genome and (ii) investigating the phylogenetic positions of these O80:H2 STEC strains. The virulomes, resistomes, and phylogenetic positions of the seven bovine isolates were investigated using in silico typing tools, antimicrobial susceptibility testing and cgMLST analysis after short-read whole genome sequencing (WGS). One representative isolate (A13P112V1) was also subjected to long-read sequencing. The seven isolates possessed ExPEC-related virulence genes on a pR444_A-like mosaic plasmid, previously described in strain RDEx444 and known to confer multi-drug resistance. All isolates were clonally related and clustered with human clinical strains from France and Switzerland with a range of locus differences of only one to five. In conclusion, our findings suggest that healthy cattle in France could potentially act as a reservoir of the STEC-ExPEC O80:H2 pathotype.
Collapse
Affiliation(s)
- Nathan Soleau
- ‘Bacterial Opportunistic Pathogens and Environment’ (BPOE) Research Team, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France; (N.S.); (S.G.)
| | - Sarah Ganet
- ‘Bacterial Opportunistic Pathogens and Environment’ (BPOE) Research Team, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France; (N.S.); (S.G.)
- Laboratoire d’Étude des Microorganismes Alimentaires Pathogènes–French National Reference Laboratory for Escherichia coli Including STEC (NRL-STEC), VetAgro Sup–Campus Vétérinaire, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France
| | - Stéphanie Werlen
- Laboratoire d’Étude des Microorganismes Alimentaires Pathogènes–French National Reference Laboratory for Escherichia coli Including STEC (NRL-STEC), VetAgro Sup–Campus Vétérinaire, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France
| | - Lia Collignon
- Laboratoire d’Étude des Microorganismes Alimentaires Pathogènes–French National Reference Laboratory for Escherichia coli Including STEC (NRL-STEC), VetAgro Sup–Campus Vétérinaire, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France
| | - Aurélie Cointe
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université Paris-Cité, IAME, UMR 1137, INSERM, 75018 Paris, France; (A.C.); (S.B.)
| | - Stéphane Bonacorsi
- Service de Microbiologie, Centre National de Référence Escherichia coli, AP-HP, Hôpital Robert-Debré, Université Paris-Cité, IAME, UMR 1137, INSERM, 75018 Paris, France; (A.C.); (S.B.)
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ (BPOE) Research Team, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France; (N.S.); (S.G.)
- Laboratoire d’Étude des Microorganismes Alimentaires Pathogènes–French National Reference Laboratory for Escherichia coli Including STEC (NRL-STEC), VetAgro Sup–Campus Vétérinaire, Université de Lyon, Marcy-l’Étoile, 69280 Lyon, France
| |
Collapse
|
2
|
Fernandez-Brando RJ, Sacerdoti F, Amaral MM, Bernal AM, Da Rocha M, Belardo M, Palermo MS, Ibarra CA. Detection of plasma anti-lipopolysaccharide (LPS) antibodies against enterohemorrhagic Escherichia coli (EHEC) in asymptomatic kindergarten teachers from Buenos Aires province. Rev Argent Microbiol 2024; 56:25-32. [PMID: 37704516 DOI: 10.1016/j.ram.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 09/15/2023] Open
Abstract
In Argentina, hemolytic uremic syndrome (HUS) caused by EHEC has the highest incidence in the world. EHEC infection has an endemo-epidemic behavior, causing 20-30% of acute bloody diarrhea syndrome in children under 5 years old. In the period 2016-2020, 272 new cases per year were notified to the National Health Surveillance System. Multiple factors are responsible for HUS incidence in Argentina including person-to-person transmission. In order to detect possible EHEC carriers, we carried out a preliminary study of the frequency of kindergarten teachers with anti-LPS antibodies against the most prevalent EHEC serotypes in Argentina. We analyzed 61 kindergarten teachers from 26 institutions from José C. Paz district, located in the suburban area of Buenos Aires province, Argentina. Fifty-one percent of the plasma samples had antibodies against O157, O145, O121 and O103 LPS: 6.4% of the positive samples had IgM isotype (n=2), 61.3% IgG isotype (n=19) and 32.3% IgM and IgG (n=10). Given that antibodies against LPS antigens are usually short-lived specific IgM detection may indicate a recent infection. In addition, the high percentage of positive samples may indicate a frequent exposure to EHEC strains in the cohort studied, as well as the existence of a large non-symptomatic population of adults carrying pathogenic strains that could contribute to the endemic behavior through person-to-person transmission. The improvement of continuous educational programs in kindergarten institutions could be a mandatory measure to reduce HUS cases not only in Argentina but also globally.
Collapse
Affiliation(s)
- Romina J Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina
| | - María M Amaral
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina
| | - Alan M Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina
| | - Marcelo Da Rocha
- Asociación Lucha contra el Síndrome Urémico Hemolítico (LUSUH), Carlos Pellegrini 781 Piso 8, C1009 CABA, Argentina
| | - Marcela Belardo
- Instituto de Estudios Sociales en Contexto de Desigualdades (IESCODE-CONICET), Universidad Nacional de José C. Paz, Leandro N. Alem 4731, B1665, José C. Paz, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, J.A. Pacheo de Melo 3081, C1425 CABA, Argentina.
| | - Cristina A Ibarra
- Laboratorio de Fisiopatogenia, IFIBIO-Houssay (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121 CABA, Argentina.
| |
Collapse
|
3
|
Jones G, Mariani-Kurkdjian P, Cointe A, Bonacorsi S, Lefèvre S, Weill FX, Le Strat Y. Sporadic Shiga Toxin-Producing Escherichia coli-Associated Pediatric Hemolytic Uremic Syndrome, France, 2012-2021. Emerg Infect Dis 2023; 29:2054-2064. [PMID: 37735746 PMCID: PMC10521606 DOI: 10.3201/eid2910.230382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
Shiga toxin-producing Escherichia coli-associated pediatric hemolytic uremic syndrome (STEC-HUS) remains an important public health risk in France. Cases are primarily sporadic, and geographic heterogeneity has been observed in crude incidence rates. We conducted a retrospective study of 1,255 sporadic pediatric STEC-HUS cases reported during 2012-2021 to describe spatiotemporal dynamics and geographic patterns of higher STEC-HUS risk. Annual case notifications ranged from 109 to 163. Most cases (n = 780 [62%]) were in children <3 years of age. STEC serogroups O26, O80, and O157 accounted for 78% (559/717) of cases with serogroup data. We identified 13 significant space-time clusters and 3 major geographic zones of interest; areas of southeastern France were included in >5 annual space-time clusters. The results of this study have numerous implications for outbreak detection and investigation and research perspectives to improve knowledge of environmental risk factors associated with geographic disparities in STEC-HUS in France.
Collapse
|
4
|
Fiorentino GA, Miliwebsky E, Ramos MV, Zolezzi G, Chinen I, Guzmán G, Nocera R, Fernández-Brando R, Santiago A, Exeni R, Palermo MS. Etiological diagnosis of post-diarrheal hemolytic uremic syndrome (HUS): humoral response contribution. Pediatr Nephrol 2023; 38:739-748. [PMID: 35802271 DOI: 10.1007/s00467-022-05671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. HUS is classified according to its etiology as post-diarrheal or atypical HUS. Differential diagnosis of both entities continues to be a challenge for pediatric physicians. METHODS The aim was to improve the rapid etiological diagnosis of post-diarrheal HUS cases based on the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection by screening of stx1/stx2 and rfbO157 in cultured stools by multiplex PCR, and the additional detection of anti-lipopolysaccharide (anti-LPS) O157, O145, and O121 antibodies by Glyco-iELISA test. In addition, we studied patients' relatives to detect circulating pathogenic strains that could contribute to HUS diagnosis and/or lead to the implementation of measures to prevent dissemination of familial outbreaks. This study describes the diagnosis of 31 HUS patients admitted to Hospital Municipal de Niños Prof Dr Ramón Exeni during the 2017-2020 period. RESULTS Stool PCR confirmed the diagnosis of STEC associated with HUS in 38.7% of patients (12/31), while anti-LPS serology did in 88.9% (24/27). In those patients in which both methods were carried out (n = 27), a strong association between the results obtained was found. We found that 30.4% of HUS patients had at least one relative positive for STEC. CONCLUSIONS We could identify 96.3% (26/27) of HUS cases as secondary to STEC infections when both methods (genotyping and serology) were used. The results demonstrated a high circulation of STEC in HUS families and the prevalence of the STEC O157 serotype (83%) in our pediatric cohort. A higher-resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Gabriela A Fiorentino
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Elizabeth Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - María Victoria Ramos
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gisela Zolezzi
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Isabel Chinen
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Glenda Guzmán
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Rubén Nocera
- Laboratorio del Hospital de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Romina Fernández-Brando
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Adriana Santiago
- Departamento de Nefrología, Hospital Municipal de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Ramón Exeni
- Departamento de Nefrología, Hospital Municipal de Niños "Prof Dr Ramón Exeni", Provincia de Buenos Aires, San Justo, Argentina
| | - Marina S Palermo
- Instituto de Medicina Experimental (IMEX)-CONICET- Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Liu Y, Thaker H, Wang C, Xu Z, Dong M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2022; 15:10. [PMID: 36668830 PMCID: PMC9862836 DOI: 10.3390/toxins15010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in children. In severe cases, neurological complications and even death may occur. Treating STEC-HUS is challenging, as patients often already have organ injuries when they seek medical treatment. Early diagnosis is of great significance for improving prognosis and reducing mortality and sequelae. In this review, we first briefly summarize the diagnostics for STEC-HUS, including history taking, clinical manifestations, fecal and serological detection methods for STEC, and complement activation monitoring. We also summarize preventive and therapeutic strategies for STEC-HUS, such as vaccines, volume expansion, renal replacement therapy (RRT), antibiotics, plasma exchange, antibodies and inhibitors that interfere with receptor binding, and the intracellular trafficking of the Shiga toxin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Gigliucci F, van Hoek AHAM, Chiani P, Knijn A, Minelli F, Scavia G, Franz E, Morabito S, Michelacci V. Genomic Characterization of hlyF-positive Shiga Toxin-Producing Escherichia coli, Italy and the Netherlands, 2000-2019. Emerg Infect Dis 2021; 27:853-861. [PMID: 33622476 PMCID: PMC7920663 DOI: 10.3201/eid2703.203110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin–producing Escherichia coli (STEC) O80:H2 has emerged in Europe as a cause of hemolytic uremic syndrome associated with bacteremia. STEC O80:H2 harbors the mosaic plasmid pR444_A, which combines several virulence genes, including hlyF and antimicrobial resistance genes. pR444_A is found in some extraintestinal pathogenic E. coli (ExPEC) strains. We identified and characterized 53 STEC strains with ExPEC-associated virulence genes isolated in Italy and the Netherlands during 2000–2019. The isolates belong to 2 major populations: 1 belongs to sequence type 301 and harbors diverse stx2 subtypes, the intimin variant eae-ξ, and pO157-like and pR444_A plasmids; 1 consists of strains belonging to various sequence types, some of which lack the pO157 plasmid, the locus of enterocyte effacement, and the antimicrobial resistance–encoding region. Our results showed that STEC strains harboring ExPEC-associated virulence genes can include multiple serotypes and that the pR444_A plasmid can be acquired and mobilized by STEC strains.
Collapse
|
7
|
Guerra JA, Zhang C, Bard JE, Yergeau D, Halasa N, Gómez-Duarte OG. Comparative genomic analysis of a Shiga toxin-producing Escherichia coli (STEC) O145:H25 associated with a severe pediatric case of hemolytic uremic syndrome in Davidson County, Tennessee, US. BMC Genomics 2020; 21:564. [PMID: 32807093 PMCID: PMC7437938 DOI: 10.1186/s12864-020-06967-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background Shiga toxin-producing E. coli (STECs) are foodborne pathogens associated with bloody diarrhea and hemolytic uremic syndrome (HUS). Although the STEC O157 serogroup accounts for the highest number of infections, HUS-related complications and deaths, the STEC non-O157, as a group, accounts for a larger proportion of STEC infections and lower HUS cases. There is limited information available on how to recognize non-O157 serotypes associated with severe disease. The objectives of this study were to describe a patient with STEC non-O157 infection complicated with HUS and to conduct a comparative whole genome sequence (WGS) analysis among the patient’s STEC clinical isolate and STEC O157 and non-O157 strains. Results The STEC O145:H25 strain EN1I-0044-2 was isolated from a pediatric patient with diarrhea, HUS and severe neurologic and cardiorespiratory complications, who was enrolled in a previously reported case-control study of acute gastroenteritis conducted in Davidson County, Tennessee in 2013. The strain EN1I-0044-2 genome sequence contained a chromosome and three plasmids. Two of the plasmids were similar to those present in O145:H25 strains whereas the third unique plasmid EN1I-0044-2_03 shared no similarity with other STEC plasmids, and it carried 23 genes of unknown function. Strain EN1I-0044-2, compared with O145:H25 and O157 serogroup strains shared chromosome- and plasmid-encoded virulence factors, including Shiga toxin, LEE type III secretion system, LEE effectors, SFP fimbriae, and additional toxins and colonization factors. Conclusions A STEC O145:H25 strain EN1I-0044-2 was isolated from a pediatric patient with severe disease, including HUS, in Davidson County, TN. Phylogenetic and comparison WGS analysis provided evidence that strain EN1I-0044-2 closely resembles O145:H25, and confirmed an independent evolutionary path of STEC O145:H25 and O145:H28 serotypes. The strain EN1I-0044-2 virulence make up was similar to other O145:H25 and O157 serogroups. It carried stx2 and the LEE pathogenicity island, and additional colonization factors and enterotoxin genes. A unique feature of strain EN1I-0044-2 was the presence of plasmid pEN1I-0044-2_03 carrying genes with functions to be determined. Further studies will be necessary to elucidate the role that newly acquired genes by O145:H25 strains play in pathogenesis, and to determine if they may serve as genetic markers of severe disease.
Collapse
Affiliation(s)
- Julio A Guerra
- International Enteric Vaccine Research Program, Division of Infectious Diseases, Department of Pediatrics, University at Buffalo, The State University of New York (SUNY), Jacobs School of Medicine and Biomedical Sciences, 875 Ellicott St. Office 6090, Buffalo, NY, 14203, USA
| | - Chengxian Zhang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jonathan E Bard
- UB Genomics and Bioinformatics Core, Center of Excellence in Bioinformatics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Donald Yergeau
- UB Genomics and Bioinformatics Core, Center of Excellence in Bioinformatics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Natasha Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Oscar G Gómez-Duarte
- International Enteric Vaccine Research Program, Division of Infectious Diseases, Department of Pediatrics, University at Buffalo, The State University of New York (SUNY), Jacobs School of Medicine and Biomedical Sciences, 875 Ellicott St. Office 6090, Buffalo, NY, 14203, USA. .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
8
|
Long J, Xu Y, Ou L, Yang H, Xi Y, Chen S, Duan G. Utilization of Clustered Regularly Interspaced Short Palindromic Repeats to Genotype Escherichia coli Serogroup O80. Front Microbiol 2020; 11:1708. [PMID: 32793166 PMCID: PMC7390953 DOI: 10.3389/fmicb.2020.01708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
The hypervariable nature of clustered regularly interspaced short palindromic repeats (CRISPRs) makes them valuable biomarkers for subtyping and epidemiological investigation of Escherichia coli. Shiga toxin-producing E. coli (STEC) serogroup O80 is one hybrid pathotype that is emerging recently in Europe and is involved in hemolytic uremic syndrome with bacteremia. However, whether STEC O80 strains can be genotyped using CRISPR has not been evaluated. In this study, we aimed to characterize the genetic diversity of 81 E. coli serogroup O80 isolates deposited in the National Center for Biotechnology Information databases using CRISPR typing and to explore the association between virulence potential and CRISPR types (CTs). A total of 21 CTs were identified in 80 O80 strains. CRISRP typing provided discrimination with variants of a single serotype, which suggested a stronger discriminatory power. Based on CRISPR spacer profiles, 70 O80:H2 isolates were further divided into four lineages (lineage LI, LII, LIII, and LIV), which correlated well with whole-genome single nucleotide polymorphisms typing and virulence gene profiles. Moreover, the association between CRISPR lineages and virulence gene profiles hinted that STEC O80:H2 strains may originate from O80:H19 or O80:H26 and that lineage LI may have been evolved from lineage LII. CT2 and CT13 were shared by human and cattle isolates, suggesting that there might be the potential transmission between cattle and human. Collectively, CRISPR typing is one technology that can be used to monitor the transmission of STEC O80 strains and provide new insights into microevolution of serogroup O80.
Collapse
Affiliation(s)
- Jinzhao Long
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yake Xu
- Institute for AIDS/STD Control and Prevention, Henan Province Center for Disease Control and Prevention, Henan, China
| | - Liuyang Ou
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuanlin Xi
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Rastawicki W, Śmietańska K, Rokosz‐Chudziak N, Wołkowicz T. Antibody response to lipopolysaccharides and recombinant proteins of Shiga toxin (STX)‐producing
Escherichia coli
(STEC) in children with haemolytic uraemic syndrome in Poland. Lett Appl Microbiol 2020; 70:440-446. [DOI: 10.1111/lam.13295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022]
Affiliation(s)
- W. Rastawicki
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| | - K. Śmietańska
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| | - N. Rokosz‐Chudziak
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| | - T. Wołkowicz
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| |
Collapse
|
10
|
Gimpel C, Bergmann C, Bockenhauer D, Breysem L, Cadnapaphornchai MA, Cetiner M, Dudley J, Emma F, Konrad M, Harris T, Harris PC, König J, Liebau MC, Marlais M, Mekahli D, Metcalfe AM, Oh J, Perrone RD, Sinha MD, Titieni A, Torra R, Weber S, Winyard PJD, Schaefer F. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol 2019; 15:713-726. [PMID: 31118499 PMCID: PMC7136168 DOI: 10.1038/s41581-019-0155-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
These recommendations were systematically developed on behalf of the Network for Early Onset Cystic Kidney Disease (NEOCYST) by an international group of experts in autosomal dominant polycystic kidney disease (ADPKD) from paediatric and adult nephrology, human genetics, paediatric radiology and ethics specialties together with patient representatives. They have been endorsed by the International Pediatric Nephrology Association (IPNA) and the European Society of Paediatric Nephrology (ESPN). For asymptomatic minors at risk of ADPKD, ongoing surveillance (repeated screening for treatable disease manifestations without diagnostic testing) or immediate diagnostic screening are equally valid clinical approaches. Ultrasonography is the current radiological method of choice for screening. Sonographic detection of one or more cysts in an at-risk child is highly suggestive of ADPKD, but a negative scan cannot rule out ADPKD in childhood. Genetic testing is recommended for infants with very-early-onset symptomatic disease and for children with a negative family history and progressive disease. Children with a positive family history and either confirmed or unknown disease status should be monitored for hypertension (preferably by ambulatory blood pressure monitoring) and albuminuria. Currently, vasopressin antagonists should not be offered routinely but off-label use can be considered in selected children. No consensus was reached on the use of statins, but mTOR inhibitors and somatostatin analogues are not recommended. Children with ADPKD should be strongly encouraged to achieve the low dietary salt intake that is recommended for all children.
Collapse
Affiliation(s)
- Charlotte Gimpel
- Division of Pediatric Nephrology, Department of General Pediatrics, Adolescent Medicine and Neonatology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Human Genetics, Bioscientia, Ingelheim, Germany
| | - Detlef Bockenhauer
- University College London, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Luc Breysem
- Department of Pediatric Radiology, University Hospital of Leuven, Leuven, Belgium
| | - Melissa A Cadnapaphornchai
- Rocky Mountain Pediatric Kidney Center, Rocky Mountain Hospital for Children at Presbyterian St Luke's Medical Center, Denver, CO, USA
| | - Metin Cetiner
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Jan Dudley
- Renal Department, Bristol Royal Hospital for Children, Bristol, UK
| | - Francesco Emma
- Division of Nephrology and Dialysis, Ospedale Pediatrico Bambino Gesù-IRCCS, Rome, Italy
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Tess Harris
- PKD International, Geneva, Switzerland
- PKD Charity, London, UK
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Jens König
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Max C Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Matko Marlais
- University College London, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospital of Leuven, Leuven, Belgium
- PKD Research Group, Laboratory of Pediatrics, Department of Development and Regeneration, GPURE, KU Leuven, Leuven, Belgium
| | - Alison M Metcalfe
- Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald D Perrone
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Manish D Sinha
- Kings College London, Department of Paediatric Nephrology, Evelina London Children's Hospital, London, UK
| | - Andrea Titieni
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Roser Torra
- Department of Nephrology, University of Barcelona, Barcelona, Spain
| | - Stefanie Weber
- Department of Pediatrics, University of Marburg, Marburg, Germany
| | - Paul J D Winyard
- University College London, Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Franz Schaefer
- Division of Pediatric Nephrology, Center for Pediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| |
Collapse
|
11
|
Zheng L, Zhang D, Cao W, Song WC, Zheng XL. Synergistic effects of ADAMTS13 deficiency and complement activation in pathogenesis of thrombotic microangiopathy. Blood 2019; 134:1095-1105. [PMID: 31409673 PMCID: PMC6764266 DOI: 10.1182/blood.2019001040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Severe deficiency of plasma ADAMTS13 activity is the primary cause of thrombotic thrombocytopenic purpura (TTP) whereas overwhelming activation of complement via an alternative pathway results in atypical hemolytic uremic syndrome (aHUS), the prototypes of thrombotic microangiopathy (TMA). However, clinical and pathogenic distinctions between TTP and aHUS are often quite challenging. Clinical reports have suggested that complement activation may play a role in the development of TTP, which is caused by severe deficiency of plasma ADAMTS13 activity. However, the experimental evidence to support this hypothesis is still lacking. Here, we show that mice with either Adamts13 -/- or a heterozygous mutation of complement factor H (cfh) at amino acid residue of 1206 (ie, cfh W/R ) alone remain asymptomatic despite the presence of occasional microvascular thrombi in various organ tissues. However, mice carrying both Adamts13 -/- and cfh W/R exhibit thrombocytopenia, low haptoglobin, increased fragmentation of erythrocytes in peripheral blood smear, increased plasma levels of lactate dehydrogenase activity, blood urea nitrogen, and creatinine, as well as an increased mortality rate, consistent with the development of TMA. Moreover, mice with a homozygous mutation of cfh (ie, cfh R/R ) with or without Adamts13 -/- developed severe TMA. The mortality rate in mice with Adamts13 -/- cfh R/R was significantly higher than that in mice with cfh R/R alone. Histological and immunohistochemical analyses demonstrated the presence of disseminated platelet-rich thrombi in terminal arterioles and capillaries of major organ tissues in these mice that were either euthanized or died. Together, our results support a synergistic effect of severe ADAMTS13 deficiency and complement activation in pathogenesis of TMA in mice.
Collapse
Affiliation(s)
- Liang Zheng
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL; and
| | - Di Zhang
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL; and
| | - Wenjing Cao
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL; and
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - X Long Zheng
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL; and
| |
Collapse
|
12
|
Jenssen GR, Veneti L, Lange H, Vold L, Naseer U, Brandal LT. Implementation of multiplex PCR diagnostics for gastrointestinal pathogens linked to increase of notified Shiga toxin-producing Escherichia coli cases in Norway, 2007-2017. Eur J Clin Microbiol Infect Dis 2019; 38:801-809. [PMID: 30680573 PMCID: PMC6424946 DOI: 10.1007/s10096-019-03475-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate implementation of multiplex PCR assays (broad screening PCR) on the distribution and characteristics of notified Shiga toxin-producing Escherichia coli (STEC) cases in Norway, 2007-2017. We described STEC cases notified to the Norwegian Surveillance System for Communicable Diseases (MSIS), 2007-2017 and categorised cases as high-virulent, low-virulent or unclassifiable STEC infections based on guidelines for follow-up of STEC cases. We conducted descriptive analysis and time series analysis allowing for trends and seasonality, and calculated adjusted incidence rate ratios (aIRR) using negative binomial regression for laboratories with and without broad screening PCR. A total of 1458 STEC cases were notified to MSIS (2007-2017), median age 21 years, 51% female. Cases were categorised as having 475 (33%) high-virulent, 652 (45%) low-virulent, and 331 (23%) unclassifiable STEC infections. We observed a higher increasing monthly trend in cases (aIRR = 1.020; 95% CI 1.016-1.024) notified from laboratories with broad screening PCR (n = 4) compared to laboratories (n = 17) without (aIRR = 1.011; 95% CI 1.007-1.014). Notification of low-virulent STEC infections increased from laboratories with broad screening PCR. The increase in notified STEC cases was prominent in cases categorised with a low-virulent STEC infection and largely attributable to unselective screening methods. We recommend NIPH to maintain differentiated control measures for STEC cases to avoid follow-up of low-virulent STEC infections. We recommend microbiological laboratories in Norway to consider a more cost-effective broad screening PCR strategy that enables differentiation of high-virulent STEC infections.
Collapse
Affiliation(s)
- Gaute Reier Jenssen
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Oslo University Hospital, Oslo, Norway.
| | - Lamprini Veneti
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Heidi Lange
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Line Vold
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Umaer Naseer
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| |
Collapse
|
13
|
Wijnsma KL, Veissi ST, van Bommel SAM, Heuver R, Volokhina EB, Comerci DJ, Ugalde JE, van de Kar NCAJ, van den Heuvel LPWJ. Glyco-iELISA: a highly sensitive and unambiguous serological method to diagnose STEC-HUS caused by serotype O157. Pediatr Nephrol 2019; 34:631-639. [PMID: 30367236 PMCID: PMC6394669 DOI: 10.1007/s00467-018-4118-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Providing proof of presence of Shiga toxin-producing E. coli (STEC) infection forms the basis for differentiating STEC-hemolytic uremic syndrome (HUS) and atypical HUS. As the gold standard to diagnose STEC-HUS has limitations, using ELISA to detect serum antibodies against STEC lipopolysaccharides (LPS) has proven additional value. Yet, conventional LPS-ELISA has drawbacks, most importantly presence of cross-reactivity due to the conserved lipid A part of LPS. The newly described glyco-iELISA tackles this issue by using modified LPS that eliminates the lipid A part. Here, the incremental value of glyco-iELISA compared to LPS-ELISA is assessed. METHODS A retrospective study was performed including all pediatric patients (n = 51) presenting with a clinical pattern of STEC-HUS between 1990 and 2014 in our hospital. Subsequently, the diagnostic value of glyco-iELISA was evaluated in a retrospective nationwide study (n = 264) of patients with thrombotic microangiopathy (TMA). LPS- and glyco-iELISA were performed to detect IgM against STEC serotype O157. Both serological tests were compared with each other and with fecal diagnostics. RESULTS Glyco-iELISA is highly sensitive and has no cross-reactivity. In the single-center cohort, fecal diagnostics, LPS-ELISA, and glyco-iELISA identified STEC O157 infection in 43%, 65%, and 78% of patients, respectively. Combining glyco-iELISA with fecal diagnostics, STEC infection due to O157 was detected in 89% of patients. In the nationwide cohort, 19 additional patients (8%) were diagnosed with STEC-HUS by glyco-iELISA. CONCLUSION This study shows that using glyco-iELISA to detect IgM against STEC serotype O157 has clear benefit compared to conventional LPS-ELISA, contributing to optimal diagnostics in STEC-HUS.
Collapse
Affiliation(s)
- Kioa L Wijnsma
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Susan T Veissi
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Sheila A M van Bommel
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Rik Heuver
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena B Volokhina
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Diego J Comerci
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Juan E Ugalde
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Nicole C A J van de Kar
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Lambertus P W J van den Heuvel
- Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Department of Pediatric Nephrology, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Development and Regeneration, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Monet-Didailler C, Godron-Dubrasquet A, Madden I, Delmas Y, Llanas B, Harambat J. Long-term outcome of diarrhea-associated hemolytic uremic syndrome is poorly related to markers of kidney injury at 1-year follow-up in a population-based cohort. Pediatr Nephrol 2019; 34:657-662. [PMID: 30368614 DOI: 10.1007/s00467-018-4131-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/07/2018] [Accepted: 10/22/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Hemolytic uremic syndrome due to Shiga toxin-producing E. coli (STEC-HUS) is the main cause of acute kidney injury in young children. Most fully recover kidney function; however, some develop long-term sequelae. We aimed to determine whether kidney injury 1 year after HUS onset is associated with long-term kidney outcome in pediatric STEC-HUS. METHODS A retrospective population-based study of children < 15 years with STEC-HUS between 1992 and 2012 was performed. Mixed effects logistic regression was used to investigate associations between kidney injury at 1 year and long-term kidney outcome. RESULTS Ninety-eight STEC-HUS cases were reported. Of 96 patients who survived acute phase, 84 were evaluated at 1-year follow-up of whom 42 (44% of survivors) showed ≥ 1 signs of kidney injury. Data from 81 patients were collected after median follow-up of 8.7 (IQR 3.5-12.7) years. At last follow-up, 42 (44% of survivors) had ≥ 1 signs of kidney injury including decreased estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73 m2 (n = 30), proteinuria (n = 17), or hypertension (n = 5). Among 42 patients with kidney injuries at 1-year follow-up, only 22 (52%) still had kidney disease at last follow-up. Conversely, of 33 patients without kidney injury at 1-year and available long-term outcome data, 11 (33%) had proteinuria or decreased GFR at last follow-up. There was no statistically significant association between kidney injury at 1 year and long-term kidney outcome. CONCLUSIONS Since kidney sequelae may appear at variable time intervals after acute HUS, all patients need lifelong follow-up to detect early signs of chronic kidney disease and propose measures to slow progression.
Collapse
Affiliation(s)
- Catherine Monet-Didailler
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud-ouest (SoRare), CHU de Bordeaux, Bordeaux, France
| | - Astrid Godron-Dubrasquet
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud-ouest (SoRare), CHU de Bordeaux, Bordeaux, France
| | - Iona Madden
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud-ouest (SoRare), CHU de Bordeaux, Bordeaux, France
| | - Yahsou Delmas
- Service de Néphrologie, Centre de référence Maladies Rénales Rares du Sud-ouest (SoRare), CHU de Bordeaux, Bordeaux, France
| | - Brigitte Llanas
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud-ouest (SoRare), CHU de Bordeaux, Bordeaux, France
| | - Jérôme Harambat
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud-ouest (SoRare), CHU de Bordeaux, Bordeaux, France. .,Inserm, Bordeaux Population Health Research Center, UMR 1219, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
15
|
Rapid and Simple Universal Escherichia coli Genotyping Method Based on Multiple-Locus Variable-Number Tandem-Repeat Analysis Using Single-Tube Multiplex PCR and Standard Gel Electrophoresis. Appl Environ Microbiol 2019; 85:AEM.02812-18. [PMID: 30610078 DOI: 10.1128/aem.02812-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/23/2018] [Indexed: 11/20/2022] Open
Abstract
We developed a multiplex PCR method based on multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) that was designed for the rapid typing of Escherichia coli and Shigella isolates. The method amplifies seven VNTRs and does not require a sequencing capillary or fluorescent dyes. The amplification products are simply loaded on a standard agarose gel for electrophoresis, and the banding patterns are analyzed visually. We evaluated the method on 220 strains belonging to different collections: the E. coli reference (ECOR) collection (n = 72), O1:K1 isolates causing neonatal meningitis (n = 38), extended-spectrum beta-lactamase-producing fecal isolates belonging to the worldwide sequence type 131 (ST131) clone (n = 38), Shiga toxin-producing E. coli (STEC) isolates of serogroups O157:H7 (n = 21) and O26 (n = 16, 8 of which belonged to an outbreak), 27 Shigella isolates (22 Shigella sonnei isolates, including 5 epidemic strains), and 8 reference strains. The performances were compared to those of multilocus sequence typing (MLST), the DiversiLab automated repetitive element palindromic PCR (REP-PCR), pulsed-field gel electrophoresis (PFGE), and whole-genome sequencing (WGS). We found 66 different profiles among the isolates in the ECOR collection. Among the clonal group O1:K1 isolates, 14 different profiles were identified. For the 37 STEC isolates, we found 23 profiles, with 1 corresponding to the 8 epidemic strains. We found 19 profiles among the 27 Shigella isolates, with 1 corresponding to the epidemic strain. The method was able to recognize strains of the ST131 clone and to distinguish the O16 and O25b serogroups and identified 15 different MLVA types among them. This method allows the simple, fast, and inexpensive typing of E. coli/Shigella isolates that can be carried out in any laboratory equipped for molecular biology and has a discriminatory power superior to that of MLST and DiversiLab REP-PCR but slightly lower than that of PFGE.IMPORTANCE Fast typing methods that can easily and accurately distinguish clonal groups and unrelated isolates are of particular interest for microbiologists confronted with outbreaks or performing epidemiological studies. Highly discriminatory universal methods, like PFGE, optical mapping, or WGS, are expensive and/or time-consuming. MLST is useful for phylogeny but is less discriminatory and requires sequencing facilities. PCR methods, which are fast and easy to perform, also have drawbacks. Random PCRs and REP-PCR are universal but lack reproducibility. Other PCR methods may lack the discriminatory power to differentiate isolates during outbreaks. MLVA combines the advantages of PCR methods with a high discriminatory power but in its standard form requires sequencing capillary electrophoresis. The method that we have developed combines the advantages of standard PCR (simple, fast, and inexpensive) with the high discriminatory power of MLVA and permits the typing of all E. coli isolates (either intestinal or extraintestinal pathogenic isolates as well as commensal isolates).
Collapse
|
16
|
Bruyand M, Mariani-Kurkdjian P, Le Hello S, King LA, Van Cauteren D, Lefevre S, Gouali M, Jourdan-da Silva N, Mailles A, Donguy MP, Loukiadis E, Sergentet-Thevenot D, Loirat C, Bonacorsi S, Weill FX, De Valk H. Paediatric haemolytic uraemic syndrome related to Shiga toxin-producing Escherichia coli, an overview of 10 years of surveillance in France, 2007 to 2016. Euro Surveill 2019; 24:1800068. [PMID: 30808442 PMCID: PMC6446949 DOI: 10.2807/1560-7917.es.2019.24.8.1800068] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022] Open
Abstract
IntroductionHaemolytic uraemic syndrome (HUS) related to Shiga toxin-producing Escherichia coli (STEC) is the leading cause of acute renal failure in young children. In France, HUS surveillance in children aged < 15 years was implemented starting from 1996.AimWe present the results of this surveillance between 2007 and 2016.MethodsA voluntary nationwide network of 32 paediatric departments notifies cases. Two national reference centres perform microbiological STEC confirmation.ResultsOver the study period, the paediatric HUS incidence rate (IR) was 1.0 per 100,000 children-years, with a median of 116 cases/year. In 2011, IR peaked at 1.3 per 100,000 children-years, and decreased to 1.0 per 100,000 children-years in 2016. STEC O157 associated HUS peaked at 37 cases in 2011 and decreased to seven cases in 2016. Cases of STEC O26-associated HUS have increased since 2010 and STEC O80 associated HUS has emerged since 2012, with 28 and 18 cases respectively reported in 2016. Four STEC-HUS food-borne outbreaks were detected (three STEC O157 linked to ground beef and raw-milk cheese and one STEC O104 linked to fenugreek sprouts). In addition, two outbreaks related to person-to-person transmission occurred in distinct kindergartens (STEC O111 and O26).ConclusionsNo major changes in HUS IRs were observed over the study period of 10 years. However, changes in the STEC serogroups over time and the outbreaks detected argue for continuing epidemiological and microbiological surveillance.
Collapse
Affiliation(s)
| | | | - Simon Le Hello
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des E. coli, Shigella et Salmonella, Paris, France
| | | | | | - Sophie Lefevre
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des E. coli, Shigella et Salmonella, Paris, France
| | - Malika Gouali
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des E. coli, Shigella et Salmonella, Paris, France
| | | | | | | | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, Laboratoire National de Référence pour les Escherichia coli, Marcy l'Etoile, France
- Université de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, VetAgro Sup, Laboratoire d'Ecologie Microbienne, Villeurbanne, France
| | - Delphine Sergentet-Thevenot
- Université de Lyon, VetAgro Sup, Laboratoire National de Référence pour les Escherichia coli, Marcy l'Etoile, France
- Université de Lyon, CNRS, INRA, Université Claude Bernard Lyon 1, VetAgro Sup, Laboratoire d'Ecologie Microbienne, Villeurbanne, France
| | - Chantal Loirat
- Pediatric Nephrology Department, University Hospital Robert Debré, Paris, France
| | | | - François-Xavier Weill
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des E. coli, Shigella et Salmonella, Paris, France
| | | |
Collapse
|
17
|
Balgradean M, Croitoru A, Leibovitz E. An outbreak of hemolytic uremic syndrome in southern Romania during 2015-2016: Epidemiologic, clinical, laboratory, microbiologic, therapeutic and outcome characteristics. Pediatr Neonatol 2019; 60:87-94. [PMID: 29807724 DOI: 10.1016/j.pedneo.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/16/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND AND AIMS To describe the epidemiologic, clinical, microbiological, therapeutic and outcome characteristics of a HUS outbreak occurring in southern Romania from 2015 to 2016. METHODS We retrospectively collected data from the medical records of all HUS cases hospitalized at the pediatric nephrology department of Marie Curie Children's Hospital of Bucharest, Romania. RESULTS There were 32 HUS cases (19 girls/13 boys, 87.6% <2 years), all associated with diarrhea (bloody in 13, 40.6%). Thirteen (40.6%) and 4 (12.5%) patients had oliguria and anuria at admission. Extreme pallor, generalized edema, vomiting, dehydration, fever and seizures were found in 100%, 56.3%, 31.3%, 31.3%, 25% and 9.4% of patients, respectively. E. coli and STEC were identified in the stools of 6 and 8 patients, respectively; E. coli O26 and O157 infection were documented serologically in 10 and 3 children, respectively. There were 15/32 (46.9%) patients with confirmed HUS. Eighteen (56.3%) patients were hypertensive; other complications included infections, left ventricular hypertrophy, cardiopulmonary arrest, seizures and encephalopathy in 62.5%, 37.5%, 28.3%, 18.8% and 12.5%, respectively. Peritoneal dialysis and hemodialysis were performed in 23 (72%) and 2 patients, respectively. Three patients (9.4%) died early during hospitalization. A 6-12-month follow-up of 26 patients revealed that 65.4% had post-HUS sequelae (persistent hypertension and chronic renal failure in 34.6% and 30.8%, respectively). CONCLUSIONS The principal STEC serotype involved was O26:H11 and the number of confirmed HUS cases reached half of the patients. Compared with the medical literature, this outbreak had a higher rate of complications and renal sequelae and was associated with a high fatality rate.
Collapse
Affiliation(s)
- Mihaela Balgradean
- Nephrology & Dialysis Department, Children's Emergency Hospital " M. S. Curie", "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Croitoru
- Nephrology & Dialysis Department, Children's Emergency Hospital " M. S. Curie", "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Eugene Leibovitz
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
18
|
Ingelbeen B, Bruyand M, Mariani-Kurkjian P, Le Hello S, Danis K, Sommen C, Bonacorsi S, de Valk H. Emerging Shiga-toxin-producing Escherichia coli serogroup O80 associated hemolytic and uremic syndrome in France, 2013-2016: Differences with other serogroups. PLoS One 2018; 13:e0207492. [PMID: 30419067 PMCID: PMC6231688 DOI: 10.1371/journal.pone.0207492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/30/2018] [Indexed: 01/21/2023] Open
Abstract
To generate hypotheses on possible sources of Shiga toxin-producing Escherichia coli (STEC) serogroup O80 associated hemolytic-uremic syndrome (HUS), we explored differences in factors associated with STEC O80 associated HUS, compared with STEC O157 or STEC of other serogroups, in France during 2013–16. STEC was isolated from 153/521 (30%) reported HUS cases: 45 serogroup O80, 46 O157 and 62 other serogroups. Median ages were 1.1 years, 4.0 years and 1.8 years, respectively. O80 infected patients were less likely to report ground beef consumption (aOR [adjusted Odds Ratio] 0.14 95% CI [Confidence Interval] 0.02–0.80) or previous contact with a person with diarrhea or HUS (aOR 0.13 95%CI 0.02–0.78) than patients infected with STEC O157. They were also less likely to report previous contact with a person presenting with diarrhea/HUS than patients infected with other serogroups (aOR 0.13 95%CI 0.02–0.78). STEC O80 spread all over France among young children less exposed to known risk factors of O157 or other STEC infections, suggesting the existence of different reservoirs and transmission patterns.
Collapse
Affiliation(s)
- Brecht Ingelbeen
- Santé Publique France, Saint-Maurice, France
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- * E-mail:
| | | | - Patricia Mariani-Kurkjian
- Service de Microbiologie, Centre National de Référence associé, Centre Hospitalo-Universitaire Robert-Debré, AP-HP, Paris, France
- IAME, UMR 1137, INSERM, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | | | - Kostas Danis
- Santé Publique France, Saint-Maurice, France
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | - Stéphane Bonacorsi
- Service de Microbiologie, Centre National de Référence associé, Centre Hospitalo-Universitaire Robert-Debré, AP-HP, Paris, France
- IAME, UMR 1137, INSERM, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
19
|
Karnisova L, Marejkova M, Hrbackova H, Mellmann A, Karch H, Fruth A, Drevinek P, Blahova K, Bielaszewska M, Nunvar J. Attack of the clones: whole genome-based characterization of two closely related enterohemorrhagic Escherichia coli O26 epidemic lineages. BMC Genomics 2018; 19:647. [PMID: 30170539 PMCID: PMC6119250 DOI: 10.1186/s12864-018-5045-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O26:H11/H-, the most common non-O157 serotype causing hemolytic uremic syndrome worldwide, are evolutionarily highly dynamic with new pathogenic clones emerging rapidly. Here, we investigated the population structure of EHEC O26 isolated from patients in several European countries using whole genome sequencing, with emphasis on a detailed analysis of strains of the highly virulent new European clone (nEC) which has spread since 1990s. RESULTS Genome-wide single nucleotide polymorphism (SNP)-based analysis of 32 EHEC O26 isolated in the Czech Republic, Germany, Austria and Italy demonstrated a split of the nEC (ST29C2 clonal group) into two distinct lineages, which we termed, based on their temporal emergence, as "early" nEC and "late" nEC. The evolutionary divergence of the early nEC and late nEC is marked by the presence of 59 and 70 lineage-specific SNPs (synapomorphic mutations) in the genomes of the respective lineages. In silico analyses of publicly available E. coli O26 genomic sequences identified the late nEC lineage worldwide. Using a PCR designed to target the late nEC synapomorphic mutation in the sen/ent gene, we identified the early nEC decline accompanied by the late nEC rise in Germany and the Czech Republic since 2004 and 2013, respectively. Most of the late nEC strains harbor one of two major types of Shiga toxin 2a (Stx2a)-encoding prophages. The type I stx2a-phage is virtually identical to stx2a-phage of EHEC O104:H4 outbreak strain, whereas the type II stx2a-phage is a hybrid of EHEC O104:H4 and EHEC O157:H7 stx2a-phages and carries a novel mutation in Stx2a. Strains harboring these two phage types do not differ by the amounts and biological activities of Stx2a produced. CONCLUSIONS Using SNP-level analyses, we provide the evidence of the evolutionary split of EHEC O26:H11/H- nEC into two distinct lineages, and a recent replacement of the early nEC by the late nEC in Germany and the Czech Republic. PCR targeting the late nEC synapomorphic mutation in ent/sen enables the discrimination of early nEC strains and late nEC strains in clinical and environmental samples, thereby facilitating further investigations of their geographic distribution, prevalence, clinical significance and epidemiology.
Collapse
Affiliation(s)
- Lucia Karnisova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Monika Marejkova
- National Reference Laboratory for E. coli and Shigella, National Institute of Public Health, Prague, Czech Republic
| | - Hana Hrbackova
- Laboratory for Tissue Cultures, National Institute of Public Health, Prague, Czech Republic
| | - Alexander Mellmann
- Institute for Hygiene and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University of Münster, Münster, Germany
| | - Helge Karch
- Institute for Hygiene and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University of Münster, Münster, Germany
| | - Angelika Fruth
- National Reference Center for Salmonella and Other Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kveta Blahova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martina Bielaszewska
- National Reference Laboratory for E. coli and Shigella, National Institute of Public Health, Prague, Czech Republic
| | - Jaroslav Nunvar
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
20
|
Jacquinet S, De Rauw K, Pierard D, Godefroid N, Collard L, Van Hoeck K, Sabbe M. Haemolytic uremic syndrome surveillance in children less than 15 years in Belgium, 2009-2015. ACTA ACUST UNITED AC 2018; 76:41. [PMID: 30128150 PMCID: PMC6091157 DOI: 10.1186/s13690-018-0289-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/18/2018] [Indexed: 01/20/2023]
Abstract
Background The Haemolytic Uremic Syndrome (HUS) is the most severe manifestation of infection with Shiga toxin-producing Escherichia coli (STEC). In Belgium, the surveillance of paediatric HUS cases is conducted by a sentinel surveillance network of paediatricians called Pedisurv. In this article, we present the main findings of this surveillance from 2009 to 2015 and we describe an annual incidence of HUS. Methods For each case of HUS < 15 years notified by the paediatricians, clinical, microbiological and epidemiological data were collected by a questionnaire. National hospital discharge data with ICD-9 code 283.11 were used to calculate the incidence of HUS in children < 15 years. Results From 2009 to 2015, 110 cases were notified to the Pedisurv network with a mean annual notification rate of 0.8/100,000 in children < 15 years. Death occurred in 2.5% of all patients and the median number of days of hospitalization was 10 days. One third (35.4%) of the HUS cases were confirmed positive STEC, with a majority of STEC O157. The mean annual incidence based on the hospital discharge data was 3.2/100,000 in children < 15 years and 4.5/100,000 in children < 5 years. Conclusion The incidence of paediatric HUS in Belgium is high compared to other European countries. Its surveillance in Belgium is quite comprehensive and, although less effective than monitoring all STEC infections to detect the emergence of outbreaks, is important to better monitor circulation of the most pathogenic STEC strains. In this context, efforts are still needed to send samples and STEC strains from HUS cases to the National Reference Centre.
Collapse
Affiliation(s)
- S Jacquinet
- Service of Epidemiology of Infectious Diseases, Department of Public Health and Surveillance, Sciensano, Brussels, Belgium
| | - K De Rauw
- 2Vrije Universiteit Brussel (VUB), Department of Microbiology and Infection Control, National Reference Centre for STEC, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - D Pierard
- 2Vrije Universiteit Brussel (VUB), Department of Microbiology and Infection Control, National Reference Centre for STEC, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - N Godefroid
- 3Service de néphrologie pédiatrique, Cliniques Universitaires Saint Luc, UCL, Brussels, Belgium
| | - L Collard
- 4Centre Hospitalier Chrétien, Liège et Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - K Van Hoeck
- 5Department Paediatrics Faculty Medicine and Health Science, Universiteit Antwerpen, Antwerpen, Belgium
| | - M Sabbe
- Service of Epidemiology of Infectious Diseases, Department of Public Health and Surveillance, Sciensano, Brussels, Belgium
| |
Collapse
|
21
|
Kim SH, Kim HY, Kim SY. Atypical hemolytic uremic syndrome and eculizumab therapy in children. KOREAN JOURNAL OF PEDIATRICS 2018; 61:37-42. [PMID: 29563942 PMCID: PMC5854840 DOI: 10.3345/kjp.2018.61.2.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Accepted: 01/25/2018] [Indexed: 01/30/2023]
Abstract
Hemolytic uremic syndrome (HUS) is often encountered in children with acute kidney injury. Besides the well-known shiga toxin-producing Escherichia coli-associated HUS, atypical HUS (aHUS) caused by genetic complement dysregulation has been studied recently. aHUS is a rare, chronic, and devastating disorder that progressively damages systemic organs, resulting in stroke, end-stage renal disease, and death. The traditional treatment for aHUS is mainly plasmapheresis or plasma infusion; however, many children with aHUS will progress to chronic kidney disease despite plasma therapy. Eculizumab is a newly developed biologic that blocks the terminal complement pathway and has been successfully used in the treatment of aHUS. Currently, several guidelines for aHUS, including the Korean guideline, recommend eculizumab as the first-line therapy in children with aHUS. Moreover, life-long eculizumab therapy is generally recommended. Further studies on discontinuation of eculizumab are needed.
Collapse
Affiliation(s)
- Seong Heon Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Hye Young Kim
- Department of Pediatrics, Pusan National University Hospital, Busan, Korea
| | - Su Young Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| |
Collapse
|
22
|
Soysal N, Mariani-Kurkdjian P, Smail Y, Liguori S, Gouali M, Loukiadis E, Fach P, Bruyand M, Blanco J, Bidet P, Bonacorsi S. Enterohemorrhagic Escherichia coli Hybrid Pathotype O80:H2 as a New Therapeutic Challenge. Emerg Infect Dis 2018; 22:1604-12. [PMID: 27533474 PMCID: PMC4994344 DOI: 10.3201/eid2209.160304] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This emerging clonal group harbors the extraintestinal virulence–associated
plasmid pS88 and can induce invasive infections and death. We describe the epidemiology, clinical features, and molecular characterization of
enterohemorrhagic Escherichia coli (EHEC) infections caused by
the singular hybrid pathotype O80:H2, and we examine the influence of antibiotics on
Shiga toxin production. In France, during 2005–2014, a total of 54 patients
were infected with EHEC O80:H2; 91% had hemolytic uremic syndrome. Two patients had
invasive infections, and 2 died. All strains carried stx2 (variants
stx2a, 2c, or 2d); the rare intimin gene
(eae-ξ); and at least 4 genes characteristic of pS88, a
plasmid associated with extraintestinal virulence. Similar strains were found in
Spain. All isolates belonged to the same clonal group. At subinhibitory
concentrations, azithromycin decreased Shiga toxin production significantly,
ciprofloxacin increased it substantially, and ceftriaxone had no major effect.
Antibiotic combinations that included azithromycin also were tested. EHEC O80:H2,
which can induce hemolytic uremic syndrome complicated by bacteremia, is emerging in
France. However, azithromycin might effectively combat these infections.
Collapse
|
23
|
Oderiz S, Leotta GA, Galli L. [Detection and characterization of Shiga toxin-producing Escherichia coli in children treated at an inter-zonal pediatric hospital in the city of La Plata]. Rev Argent Microbiol 2018; 50:341-350. [PMID: 29336911 DOI: 10.1016/j.ram.2017.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/08/2017] [Accepted: 08/03/2017] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that can cause watery diarrhea, bloody diarrhea (BD), and hemolytic uremic syndrome (HUS). The objective of this study was to determine the phenotypic and genotypic profiles of STEC strains isolated from children with BD and HUS treated at a pediatric hospital in the city of La Plata in the period 2006-2012, and to establish the clonal relationship of O157:H7 isolates by pulsed field electrophoresis. The percentage of positive samples was 4.9% and 39.2% in patients with BD and HUS, respectively. Seventy-seven STEC strains from 10 different serotypes were isolated, with 100% colony recovery, O157:H7 being the most frequent (71.4%) serotype, followed by O145:NM (15.6%). An average of 98.2% of O157:H7 isolates belonged to biotype C and were sensitive to all the antibiotics tested. All of them (100%) carried genotype stx2, eae, fliCH7, ehxA, iha, efa, toxB, lpfA1-3 and lpfA2-2. When the clonal relationship of the O157:H7 strains was studied, a total of 42 patterns with at least 88% similarity were identified, and 6 clusters with identical profiles were established. The eae-negative isolates belonged to serotypes O59:H19, O102:H6, O174:NM and O174:H21. The strains O59:H19 and O174:H21 were positive for the aggR gene. This study shows that STEC of different serotypes and genotypes circulate in the city of La Plata and surroundings. Despite the genetic diversity observed between the O157:H7 isolates, some were indistinguishable by the subtyping techniques used.
Collapse
Affiliation(s)
- Sebastián Oderiz
- Sala de Microbiología, Hospital Interzonal de Agudos Especializado en Pediatría Superiora Sor María Ludovica, La Plata, Buenos Aires, Argentina.
| | - Gerardo A Leotta
- Instituto de Genética Veterinaria Ing. Fernando N. Dulout (IGEVET) (UNLP-CONICET, La Plata), Facultad de Ciencias Veterinarias, La Plata, Buenos Aires, Argentina
| | - Lucía Galli
- Instituto de Genética Veterinaria Ing. Fernando N. Dulout (IGEVET) (UNLP-CONICET, La Plata), Facultad de Ciencias Veterinarias, La Plata, Buenos Aires, Argentina
| |
Collapse
|
24
|
Wijnsma KL, Schijvens AM, Rossen JWA, Kooistra-Smid AMDM, Schreuder MF, van de Kar NCAJ. Unusual severe case of hemolytic uremic syndrome due to Shiga toxin 2d-producing E. coli O80:H2. Pediatr Nephrol 2017; 32:1263-1268. [PMID: 28343354 PMCID: PMC5440534 DOI: 10.1007/s00467-017-3642-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/06/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is one of the most common causes of acute renal failure in children, with the majority of cases caused by an infection with Shiga toxin-producing Escherichia coli (STEC). Whereas O157 is still the predominant STEC serotype, non-O157 serotypes are increasingly associated with STEC-HUS. However, little is known about this emerging and highly diverse group of non-O157 serotypes. With supportive therapy, STEC-HUS is often self-limiting, with occurrence of chronic sequelae in just a small proportion of patients. CASE DIAGNOSIS/TREATMENT In this case report, we describe a 16-month-old boy with a highly severe and atypical presentation of STEC-HUS. Despite the presentation with multi-organ failure and extensive involvement of central nervous system due to extensive thrombotic microangiopathy (suggestive of atypical HUS), fecal diagnostics revealed an infection with the rare serotype: shiga toxin 2d-producing STEC O80:H2. CONCLUSIONS This report underlines the importance of STEC diagnostic tests in all children with HUS, including those with an atypical presentation, and emphasizes the importance of molecular and serotyping assays to estimate the virulence of an STEC strain.
Collapse
Affiliation(s)
- Kioa L Wijnsma
- Department of Paediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Anne M Schijvens
- Department of Paediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - A M D Mirjam Kooistra-Smid
- Department of Medical Microbiology, Certe Laboratory for Infectious Diseases, PO Box 909, 9700 AX, Groningen, The Netherlands
| | - Michiel F Schreuder
- Department of Paediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Nicole C A J van de Kar
- Department of Paediatric Nephrology, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Germinario C, Caprioli A, Giordano M, Chironna M, Gallone MS, Tafuri S, Minelli F, Maugliani A, Michelacci V, Santangelo L, Mongelli O, Montagna C, Scavia G. Community-wide outbreak of haemolytic uraemic syndrome associated with Shiga toxin 2-producing Escherichia coli O26:H11 in southern Italy, summer 2013. Euro Surveill 2016; 21:30343. [PMID: 27684204 PMCID: PMC5073196 DOI: 10.2807/1560-7917.es.2016.21.38.30343] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/18/2015] [Indexed: 11/20/2022] Open
Abstract
In summer 2013, an excess of paediatric cases of haemolytic uraemic syndrome (HUS) in a southern region of Italy prompted the investigation of a community-wide outbreak of Shiga toxin 2-producing Escherichia coli (STEC) O26:H11 infections. Case finding was based on testing patients with HUS or bloody diarrhoea for STEC infection by microbiological and serological methods. A case-control study was conducted to identify the source of the outbreak. STEC O26 infection was identified in 20 children (median age 17 months) with HUS, two of whom reported severe neurological sequelae. No cases in adults were detected. Molecular typing showed that two distinct STEC O26:H11 strains were involved. The case-control study showed an association between STEC O26 infection and consumption of dairy products from two local plants, but not with specific ready-to-eat products. E.coli O26:H11 strains lacking the stx genes were isolated from bulk milk and curd samples, but their PFGE profiles did not match those of the outbreak isolates. This outbreak supports the view that infections with Stx2-producing E. coli O26 in children have a high probability of progressing to HUS and represent an emerging public health problem in Europe.
Collapse
Affiliation(s)
- Cinzia Germinario
- Department of Biomedical Science and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sheng L, Olsen S, Hu J, Yue W, Means W, Zhu M. Inhibitory effects of grape seed extract on growth, quorum sensing, and virulence factors of CDC “top-six” non-O157 Shiga toxin producing E. coli. Int J Food Microbiol 2016; 229:24-32. [DOI: 10.1016/j.ijfoodmicro.2016.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/15/2016] [Accepted: 04/01/2016] [Indexed: 10/22/2022]
|
27
|
Jenssen GR, Vold L, Hovland E, Bangstad HJ, Nygård K, Bjerre A. Clinical features, therapeutic interventions and long-term aspects of hemolytic-uremic syndrome in Norwegian children: a nationwide retrospective study from 1999-2008. BMC Infect Dis 2016; 16:285. [PMID: 27297224 PMCID: PMC4906913 DOI: 10.1186/s12879-016-1627-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022] Open
Abstract
Background Hemolytic-uremic syndrome (HUS) is a clinical triad of microangiopathic hemolytic anemia, impaired renal function and thrombocytopenia, primarily affecting pre-school-aged children. HUS can be classified into diarrhea-associated HUS (D+HUS), usually caused by Shiga toxin-producing Escherichia coli (STEC), and non-diarrhea-associated HUS (D−HUS), both with potentially serious acute and long-term complications. Few data exists on the clinical features and long-term outcome of HUS in Norway. The aim of this paper was to describe these aspects of HUS in children over a 10-year period. Methods We retrospectively collected data on clinical features, therapeutic interventions and long-term aspects directly from medical records of all identified HUS cases <16 years of age admitted to Norwegian pediatric departments from 1999 to 2008. Cases of D+HUS and D−HUS are described separately, but no comparative analyses were possible due to small numbers. Descriptive statistics are presented in proportions and median values with ranges, and/or summarized in text. Results Forty seven HUS cases were identified; 38 D+HUS and nine D−HUS. Renal complications were common; in the D+HUS and D−HUS group, 29/38 and 5/9 developed oligoanuria, 22/38 and 3/9 needed dialysis, with hemodialysis used most often in both groups, and plasma infusion(s) were utilized in 6/38 and 4/9 patients, respectively. Of extra-renal complications, neurological complications occurred in 9/38 and 2/9, serious gastrointestinal complications in 6/38 and 1/9, respiratory complications in 10/38 and 2/9, and sepsis in 11/38 and 3/9 cases, respectively. Cardiac complications were seen in two D+HUS cases. In patients where data on follow up ≥1 year after admittance were available, 8/21 and 4/7 had persistent proteinuria and 5/19 and 4/5 had persistent hypertension in the D+HUS and D−HUS group, respectively. Two D+HUS and one D−HUS patient were diagnosed with chronic kidney disease and one D+HUS patient required a renal transplantation. Two D+HUS patients died in the acute phase (death rate; 5 %). Conclusions The HUS cases had a high rate of complications and sequelae, including renal, CNS-related, cardiac, respiratory, serious gastrointestinal complications and sepsis, consistent with other studies. This underlines the importance of attention to extra-renal manifestations in the acute phase and in renal long-term follow-up of HUS patients.
Collapse
Affiliation(s)
- Gaute Reier Jenssen
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health (Nasjonalt Folkehelseinstitutt), Postboks 4404, Nydalen, NO 0403, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Line Vold
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health (Nasjonalt Folkehelseinstitutt), Postboks 4404, Nydalen, NO 0403, Oslo, Norway
| | - Eirik Hovland
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health (Nasjonalt Folkehelseinstitutt), Postboks 4404, Nydalen, NO 0403, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Karin Nygård
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health (Nasjonalt Folkehelseinstitutt), Postboks 4404, Nydalen, NO 0403, Oslo, Norway
| | - Anna Bjerre
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
28
|
|
29
|
Multi‐country outbreak of Shiga toxin‐producing Escherichia coli infection associated with haemolytic uraemic syndrome. ACTA ACUST UNITED AC 2016. [DOI: 10.2903/sp.efsa.2016.en-1017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Epidemiology of haemolytic uremic syndrome in children. Data from the North Italian HUS network. Eur J Pediatr 2016; 175:465-73. [PMID: 26498648 DOI: 10.1007/s00431-015-2642-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Despite the severity of HUS and the fact that it represents a leading cause of acute kidney injury in children, the general epidemiology of HUS is all but well documented. The present study provides updated, population-based, purely epidemiological information on HUS in childhood from a large and densely populated area of northern Italy (9.6 million inhabitants, 1.6 million children). We systematically reviewed the files concerning patients with STEC-HUS and atypical HUS (aHUS) over a 10-year observation period (January 2003-December 2012). We included all incident cases with a documented first episode of HUS before the age of 18 years. We identified 101 cases of HUS during the 10 years. The overall mean annual incidence was 6.3 cases/million children aged <18 years (range 1.9-11.9), and 15.7/million of age-related population (MARP) among subjects aged <5 years; aHUS accounted for 11.9 % of the cases (mean incidence 0.75/MARP). The overall case fatality rate was 4.0 % (3.4 % STEC-HUS, 8.3 % aHUS). CONCLUSION Given the public health impact of HUS, this study provides recent, population-based epidemiological data useful for healthcare planning and particularly for estimating the financial burden that healthcare providers might have to face in treating HUS, whose incidence rate seems to increase in Northern Italy. WHAT IS KNOWN • HUS is a rare disease, but it represents the leading cause of acute kidney injury in children worldwide. • STEC-HUS (also called typical, D + HUS) is more common compared to atypical HUS, but recent, population-based epidemiological data (incidence) are scanty. What is New: • Comprehensive, population-based epidemiological data concerning both typical and atypical HUS based on a long observational period.
Collapse
|
31
|
Wijnsma KL, van Bommel SAM, van der Velden T, Volokhina E, Schreuder MF, van den Heuvel LP, van de Kar NCAJ. Fecal diagnostics in combination with serology: best test to establish STEC-HUS. Pediatr Nephrol 2016; 31:2163-70. [PMID: 27240858 PMCID: PMC5039220 DOI: 10.1007/s00467-016-3420-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the majority of pediatric patients, the hemolytic-uremic syndrome (HUS) is caused by an infection with Shiga toxin-producing Escherichia coli (STEC), mostly serotype O157. It is important to discriminate between HUS caused by STEC and complement-mediated HUS (atypical HUS) due to differences in treatment and outcome. As STEC and its toxins can only be detected in the patient's stool for a short period of time after disease onset, the infectious agent may go undetected using only fecal diagnostic tests. Serum antibodies to lipopolysaccharide (LPS) of STEC persist for several weeks and may therefore be of added value in the diagnosis of STEC. METHODS All patients with clinical STEC-HUS who were treated at Radboud University Medical Center between 1990 and 2014 were included in this retrospective single-center study. Clinical and diagnostic microbiological data were collected. Immunoglobulin M (IgM) antibodies against LPS of STEC serotype O157 were detected by a serological assay (ELISA). RESULTS Data from 65 patients weres available for analysis. Fecal diagnostic testing found evidence of an STEC infection in 34/63 patients (54 %). Serological evidence of STEC O157 was obtained in an additional 16 patients. This is an added value of 23 % (p < 0.0001) when the serological antibody assay is used in addition to standard fecal diagnostic tests to confirm the diagnosis STEC-HUS. This added value becomes especially apparent when the tests are performed more than 7 days after the initial manifestation of the gastrointestinal symptoms. CONCLUSIONS The serological anti-O157 LPS assay clearly makes a positive contribution when used in combination with standard fecal diagnostic tests to diagnose STEC-HUS and should be incorporated in clinical practice.
Collapse
Affiliation(s)
- Kioa L Wijnsma
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands.
| | - Sheila A M van Bommel
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands
| | - Thea van der Velden
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena Volokhina
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pediatrics, University Hospital Leuven, Leuven, Belgium
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands
| |
Collapse
|
32
|
An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol 2016; 31:15-39. [PMID: 25859752 DOI: 10.1007/s00467-015-3076-8] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 01/26/2015] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) emerged during the last decade as a disease largely of complement dysregulation. This advance facilitated the development of novel, rational treatment options targeting terminal complement activation, e.g., using an anti-C5 antibody (eculizumab). We review treatment and patient management issues related to this therapeutic approach. We present consensus clinical practice recommendations generated by HUS International, an international expert group of clinicians and basic scientists with a focused interest in HUS. We aim to address the following questions of high relevance to daily clinical practice: Which complement investigations should be done and when? What is the importance of anti-factor H antibody detection? Who should be treated with eculizumab? Is plasma exchange therapy still needed? When should eculizumab therapy be initiated? How and when should complement blockade be monitored? Can the approved treatment schedule be modified? What approach should be taken to kidney and/or combined liver-kidney transplantation? How should we limit the risk of meningococcal infection under complement blockade therapy? A pressing question today regards the treatment duration. We discuss the need for prospective studies to establish evidence-based criteria for the continuation or cessation of anticomplement therapy in patients with and without identified complement mutations.
Collapse
|
33
|
Davin JC, van de Kar NCAJ. Advances and challenges in the management of complement-mediated thrombotic microangiopathies. Ther Adv Hematol 2015; 6:171-85. [PMID: 26288712 PMCID: PMC4530367 DOI: 10.1177/2040620715577613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Complement activation plays a major role in several renal pathophysiological conditions. The three pathways of complement lead to C3 activation, followed by the formation of the anaphylatoxin C5a and the terminal membrane attack complex (MAC) in blood and at complement activating surfaces, lead to a cascade of events responsible for inflammation and for the induction of cell lysis. In case of ongoing uncontrolled complement activation, endothelial cells activation takes place, leading to events in which at the end thrombotic microangiopathy can occur. Atypical haemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy characterized by excessive complement activation on the surface of the microcirculation. It is a severe, rare disease which leads to end-stage renal failure (ESRF) and/or to death in more than 50% of patients without treatment. In the first decade of the second millennium, huge progress in understanding the aetiology of this disease was made, which paved the way to better treatment. First, protocols of plasma therapy for treatment, prevention of relapses and for renal transplantation in those patients were set up. Secondly, in some severe cases, combined kidney and liver transplantation was reported. Finally, at the end of this decade, the era of complement inhibitors, as anti-C5 monoclonal antibody (anti-C5 mAb) began. The past five years have seen growing evidence of the favourable effect of anti-C5 mAb in aHUS which has made this drug the first-line treatment in this disease. The possible complication of meningococcal infection needs appropriate vaccination before its use. Unfortunately, the worldwide use of anti-C5 mAb is limited by its very high price. In the future, extension of indications for anti-C5 mAb use, the elaboration of generics and of mAbs directed towards other complement factors of the terminal pathway of the complement system might succeed in reducing the cost of this new valuable therapeutic approach and render it available worldwide for patients from all social classes.
Collapse
Affiliation(s)
- Jean-Claude Davin
- Paediatric Nephrology Department, Emma Children's Hospital-Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam Z-O, The Netherlands
| | - Nicole C A J van de Kar
- Department of Paediatric Nephrology, Radboud University Medical Centre, Amalia Children's Hospital, Nijmegen, The Netherlands
| |
Collapse
|
34
|
Protective efficacy and pharmacokinetics of human/mouse chimeric anti-Stx1 and anti-Stx2 antibodies in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:448-55. [PMID: 25716230 DOI: 10.1128/cvi.00022-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the United States, Shiga toxin (Stx)-producing Escherichia coli (STEC) is the most frequent infectious cause of hemorrhagic colitis. Hemolytic uremic syndrome (HUS) is a serious sequela that may develop after STEC infection that can lead to renal failure and death in up to 10% of cases. STEC can produce one or more types of Stx, Stx1 and/or Stx2, and Stx1 and Stx2 are responsible for HUS-mediated kidney damage. We previously generated two monoclonal antibodies (MAbs) that neutralize the toxicity of Stx1 or Stx2. In this study, we evaluated the protective efficacy of human/mouse chimeric versions of those monoclonal antibodies, named cαStx1 and cαStx2. Mice given an otherwise lethal dose of Stx1 were protected from death when injected with cαStx1 either 1 h before or 1 h after toxin injection. Additionally, streptomycin-treated mice fed the mouse-lethal STEC strain B2F1 that produces the Stx2 variant Stx2d were protected when given a dose of 0.1 mg of cαStx2/kg of body weight administered up to 72 h post-oral bacterial challenge. Since many STEC strains produce both Stx1 and Stx2 and since either toxin may lead to the HUS, we also assessed the protective efficacy of the combined MAbs. We found that both antibodies were required to protect mice from the presence of both Stx1 and Stx2. Pharmacokinetic studies indicated that cαStx1 and cαStx2 had serum half-lives (t1/2) of about 50 and 145 h, respectively. We propose that cαStx1 and cαStx2, both of which have been tested for safety in humans, could be used therapeutically for prevention or treatment early in the development of HUS.
Collapse
|
35
|
Investigation of an outbreak of bloody diarrhea complicated with hemolytic uremic syndrome. J Epidemiol Glob Health 2014; 4:249-59. [PMID: 25455642 PMCID: PMC7320338 DOI: 10.1016/j.jegh.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 03/10/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022] Open
Abstract
In July-August 2009, eight patients with bloody diarrhea complicated by hemolytic uremic syndrome (HUS) were admitted to hospitals in Tbilisi, Georgia. We started active surveillance in two regions for bloody diarrhea and post-diarrheal HUS. Of 25 case-patients who developed HUS, including the initial 8 cases, half were ⩾15 years old, 67% were female and seven (28%) died. No common exposures were identified. Among 20 HUS case-patients tested, Shiga toxin was detected in the stools of 2 patients (one with elevated serum IgG titers to several Escherichia coli serogroups, including O111 and O104). Among 56 persons with only bloody diarrhea, we isolated Shiga toxin-producing E. coli (STEC) O104:H4 from 2 and Shigella from 10; 2 had serologic evidence of E. coli O26 infection. These cases may indicate a previously unrecognized burden of HUS in Georgia. We recommend national reporting of HUS and improving STEC detection capacity.
Collapse
|
36
|
Szu SC, Ahmed A. Clinical Studies of Escherichia coli O157:H7 Conjugate Vaccines in Adults and Young Children. Microbiol Spectr 2014; 2. [PMID: 26104443 DOI: 10.1128/microbiolspec.ehec-0016-2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 12/13/2022] Open
Abstract
Pediatric immunization has been the most effective measure to prevent and reduce the burden of infectious diseases in children. The recent inclusion of pneumococcal and meningococcal polysaccharide conjugates in infant immunization further reinforces their importance. Currently there is no human vaccine against enterohemorrhagic Escherichia coli (EHEC) infections. This review focuses on the human EHEC vaccine that has been studied clinically, in particular, the polysaccharide conjugate against E. coli O157. The surface polysaccharide antigen, O-specific polysaccharide, was linked to rEPA, recombinant exotoxin A of Pseudomonas aeruginosa. In adults and children 2 to 5 years old, O157-rEPA conjugates, shown to be safe, induced high levels of antilipopolysaccharide immunoglobulin G with bactericidal activities against E. coli O157, a functional bioassay that mimics the killing of inoculum in vivo. A similar construct using the B subunit of Shiga toxin (Stx) 1 as the carrier protein elicited both bactericidal and toxin-neutralizing antibodies in mice. So far there is no clinical study of Stx-based human vaccine. Passive immunization of Stx-specific antibodies with humanized, chimeric, or human monoclonal antibodies, produced in transgenic mice, showed promising data in animal models and offered high prospects. Demonstrations of their safety and effectiveness in treating hemolytic-uremic syndrome or patients with EHEC infections are under way, and results are much anticipated. For future development, other virulence factors such as the nontoxic Stx B subunit or intimin should be included, either as carrier protein in conjugates or as independent components. The additional antigens from O157 may provide broader coverage to non-O157 Stx-producing E. coli and facilitate both preventive and therapeutic treatment.
Collapse
Affiliation(s)
- Shousun Chen Szu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Amina Ahmed
- Levine Children's Specialty Center-Pediatric Infectious Disease, Carolina Medical Centers, Charlotte, NC 28203
| |
Collapse
|
37
|
King L, Loukiadis E, Mariani-Kurkdjian P, Haeghebaert S, Weill FX, Baliere C, Ganet S, Gouali M, Vaillant V, Pihier N, Callon H, Novo R, Gaillot O, Thevenot-Sergentet D, Bingen E, Chaud P, de Valk H. Foodborne transmission of sorbitol-fermenting Escherichia coli O157:[H7] via ground beef: an outbreak in northern France, 2011. Clin Microbiol Infect 2014; 20:O1136-44. [DOI: 10.1111/1469-0691.12736] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
|
38
|
Shiga Toxin/Verocytotoxin-Producing
Escherichia coli
Infections: Practical Clinical Perspectives. Microbiol Spectr 2014; 2:EHEC-0025-2014. [DOI: 10.1128/microbiolspec.ehec-0025-2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ABSTRACT
Escherichia coli
strains that produce Shiga toxins/verotoxins are rare, but important, causes of human disease. They are responsible for a spectrum of illnesses that range from the asymptomatic to the life-threatening hemolytic-uremic syndrome; diseases caused by
E. coli
belonging to serotype O157:H7 are exceptionally severe. Each illness has a fairly predictable trajectory, and good clinical practice at one phase can be inappropriate at other phases. Early recognition, rapid and definitive microbiology, and strategic selection of tests increase the likelihood of good outcomes. The best management of these infections consists of avoiding antibiotics, antimotility agents, and narcotics and implementing aggressive intravenous volume expansion, especially in the early phases of illness.
Collapse
|
39
|
Shiga toxin-producing Escherichia coli: a single-center, 11-year pediatric experience. J Clin Microbiol 2014; 52:3647-53. [PMID: 25078916 DOI: 10.1128/jcm.01231-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to identify the best practices for the detection of Shiga toxin-producing Escherichia coli (STEC) in children with diarrheal illness treated at a tertiary care center, i.e., sorbitol-MacConkey (SMAC) agar culture, enzyme immunoassay (EIA) for Shiga toxin, or the simultaneous use of both methods. STEC was detected in 100 of 14,997 stool specimens submitted for enteric culture (0.7%), with 65 cases of E. coli O157. Among E. coli O157 isolates, 57 (88%) were identified by both SMAC agar culture and EIA, 6 (9%) by SMAC agar culture alone, and 2 (3%) by EIA alone. Of the 62 individuals with diarrheal hemolytic uremic syndrome (HUS) seen at our institution during the study period, 16 (26%) had STEC isolated from cultures at our institution and 15 (24%) had STEC isolated at other institutions. No STEC was recovered in 31 cases (50%). Of the HUS cases in which STEC was isolated, 28 (90%) were attributable to E. coli O157 and 3 (10%) were attributable to non-O157 STEC. Consistent with previous studies, we have determined that a subset of E. coli O157 infections will not be detected if an agar-based method is excluded from the enteric culture workup; this has both clinical and public health implications. The best practice would be concomitant use of an agar-based method and a Shiga toxin EIA, but a Shiga toxin EIA should not be considered to be an adequate stand-alone test for detection of E. coli O157 in clinical samples.
Collapse
|
40
|
Jenssen GR, Hovland E, Bjerre A, Bangstad HJ, Nygard K, Vold L. Incidence and etiology of hemolytic-uremic syndrome in children in Norway, 1999-2008--a retrospective study of hospital records to assess the sensitivity of surveillance. BMC Infect Dis 2014; 14:265. [PMID: 24884396 PMCID: PMC4041642 DOI: 10.1186/1471-2334-14-265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 04/17/2014] [Indexed: 12/19/2022] Open
Abstract
Background Public awareness of hemolytic-uremic syndrome (HUS), especially related to Shiga toxin-producing Escherichia coli (STEC), has increased in Europe in recent years; accentuated in Norway by a national outbreak in 2006 and in a European context especially by the 2011 outbreak originating in Germany. As STEC surveillance is difficult due to diagnostic challenges in detecting non-O157 infections, surveillance of HUS can be used to indicate the burden of STEC infection. Until 2006, notification of HUS to the Norwegian Communicable Disease Surveillance System (MSIS) was based on microbiologically confirmed infection with enterohemorrhagic Escherichia coli (EHEC), humanpathogenic STEC. In 2006, diarrhea-associated HUS (D+HUS) was made notifiable based on clinical criteria alone. The incidence and etiology of HUS in children in Norway has not previously been described. Methods In order to assess the sensitivity of STEC and D+HUS surveillance and describe the incidence and etiology of HUS in children in Norway, we conducted a nationwide retrospective study collecting data from medical records from pediatric departments for the period 1999–2008 and compared them with data from MSIS. Descriptive statistics are presented as proportions, median, average and mean values with ranges and as incidence rates, calculated using population numbers provided by official registries. Results Forty-seven HUS cases were identified, corresponding to an average annual incidence rate of 0.5 cases per 100,000 children. Diarrhea-associated HUS was identified in 38 (81%) cases, of which the median age was 29 months, 79% were <5 years of age and 68% were girls. From 1999 to 2006, thirteen more diarrhea-associated HUS cases were identified than had been notified to MSIS. From the change in notification criteria to 2008, those identified corresponded to those notified. STEC infection was verified in 23 (49%) of the HUS cases, in which O157 was the most frequently isolated sporadic serogroup. Conclusions Our results show that the incidence of HUS in children in Norway is low and suggest that D+HUS cases may be underreported when notification requires microbiological confirmation. This may also indicate underreporting of STEC infections.
Collapse
Affiliation(s)
- Gaute Reier Jenssen
- Department of Infectious Disease Epidemiology, Norwegian Institute of Public Health (Nasjonalt Folkehelseinstitutt), Postboks 4404 Nydalen, Oslo NO 0403, Norway.
| | | | | | | | | | | |
Collapse
|
41
|
Bletz S, Bielaszewska M, Leopold SR, Köck R, Witten A, Schuldes J, Zhang W, Karch H, Mellmann A. Evolution of enterohemorrhagic escherichia coli O26 based on single-nucleotide polymorphisms. Genome Biol Evol 2014; 5:1807-16. [PMID: 24105689 PMCID: PMC3814194 DOI: 10.1093/gbe/evt136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O26:H11/H− is the predominant non-O157 EHEC serotype among patients with diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS) worldwide. To elucidate their phylogeny and association between their phylogenetic background and clinical outcome of the infection, we investigated 120 EHEC O26:H11/H− strains isolated between 1965 and 2012 from asymptomatic carriers and patients with diarrhea or HUS. Whole-genome shotgun sequencing (WGS) was applied to ten representative EHEC O26 isolates to determine single nucleotide polymorphism (SNP) localizations within a predefined set of core genes. A multiplex SNP assay, comprising a randomly distributed subset of 48 SNPs, was established to detect SNPs in 110 additional EHEC O26 strains. Within approximately 1 Mb of core genes, WGS resulted in 476 high-quality bi-allelic SNP localizations. Forty-eight of these were subsequently investigated in 110 EHEC O26 and four different SNP clonal complexes (SNP-CC) were identified. SNP-CC2 was significantly associated with the development of HUS. Within the subsequently established evolutionary model of EHEC O26, we dated the emergence of human EHEC O26 to approximately 19,700 years ago and demonstrated a recent evolution within humans into the 4 SNP-CCs over the past 1,650 years. WGS and subsequent SNP typing enabled us to gain new insights into the evolution of EHEC O26 suggesting a common theme in this EHEC group with analogies to EHEC O157. In addition, the SNP-CC analysis may help to assess a risk in infected individuals for the progression to HUS and to implement more specific infection control measures.
Collapse
Affiliation(s)
- Stefan Bletz
- Institute of Hygiene, University of Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kawasaki Y, Suyama K, Maeda R, Yugeta E, Takano K, Suzuki S, Sakuma H, Nemoto K, Sato T, Nagasawa K, Hosoya M. Incidence and index of severity of hemolytic uremic syndrome in a 26 year period in Fukushima Prefecture, Japan. Pediatr Int 2014; 56:77-82. [PMID: 23937579 DOI: 10.1111/ped.12193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND There have been a number of reports on large outbreaks of hemolytic uremic syndrome (HUS), but there have been no long-term studies of sporadic HUS in Japan. This study therefore investigated the epidemiology and prognosis of HUS in Fukushima Prefecture over a 26 year period. METHODS The medical records of 26 patients with HUS between 1987 and 2012 were collected. These children were divided into two groups: those with HUS following an episode of gastroenteritis, often with bloody diarrhea (D + HUS; n = 24) and those with HUS not associated with prodromal diarrhea (D-HUS; n = 2). The D + HUS group was further subdivided into group A (11 patients requiring dialysis) and group B (13 patients not requiring dialysis). The epidemiological and clinical data, as well as prognosis, were retrospectively investigated for each group. RESULTS Approximately 90% of HUS patients belonged to the D + HUS group. In this group, the mean number of patients per year from 1987 to 1999, and from 2000 to 2012 was 0.92 ± 0.95, and 1.08 ± 0.86, respectively. On admission, lactate dehydrogenase (LDH), alanine aminotransferase (ALT), blood urea nitrogen (BUN), serum creatinine and serum fibrinogen degradation product (FDP) levels in group A were all higher than in group B. Serum albumin level and estimated glomerular filtration rate (eGFR) in group A were lower than in group B. At 6 months after the onset of HUS in the D + HUS group, renal function was normal. CONCLUSIONS The frequency of HUS was constant from 1987 to 2012 in Fukushima. and serum LDH, ALT, BUN, creatinine, and FDP levels as well as eGFR might be risk factors for dialysis in D + HUS children.
Collapse
Affiliation(s)
- Yukihiko Kawasaki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ardissino G, Possenti I, Tel F, Testa S, Paglialonga F. Time to change the definition of hemolytic uremic syndrome. Eur J Intern Med 2014; 25:e29. [PMID: 24360866 DOI: 10.1016/j.ejim.2013.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Gianluigi Ardissino
- Center for HUS Prevention, Control and Management, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via della Commenda 9, 20122 Milan, Italy.
| | - Ilaria Possenti
- Center for HUS Prevention, Control and Management, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via della Commenda 9, 20122 Milan, Italy
| | - Francesca Tel
- Center for HUS Prevention, Control and Management, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via della Commenda 9, 20122 Milan, Italy
| | - Sara Testa
- Center for HUS Prevention, Control and Management, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via della Commenda 9, 20122 Milan, Italy
| | - Fabio Paglialonga
- Center for HUS Prevention, Control and Management, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via della Commenda 9, 20122 Milan, Italy
| |
Collapse
|
44
|
Marejková M, Bláhová K, Janda J, Fruth A, Petráš P. Enterohemorrhagic Escherichia coli as causes of hemolytic uremic syndrome in the Czech Republic. PLoS One 2013; 8:e73927. [PMID: 24040117 PMCID: PMC3765202 DOI: 10.1371/journal.pone.0073927] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) cause diarrhea-associated hemolytic uremic syndrome (D+ HUS) worldwide, but no systematic study of EHEC as the causative agents of HUS was performed in the Czech Republic. We analyzed stools of all patients with D+ HUS in the Czech Republic between 1998 and 2012 for evidence of EHEC infection. We determined virulence profiles, phenotypes, antimicrobial susceptibilities and phylogeny of the EHEC isolates. METHODOLOGY/PRINCIPAL FINDINGS Virulence loci were identified using PCR, phenotypes and antimicrobial susceptibilities were determined using standard procedures, and phylogeny was assessed using multilocus sequence typing. During the 15-year period, EHEC were isolated from stools of 39 (69.4%) of 56 patients. The strains belonged to serotypes [fliC types] O157:H7/NM[fliC(H7)] (50% of which were sorbitol-fermenting; SF), O26:H11/NM[fliC(H11)], O55:NM[fliC(H7)], O111:NM[fliC(H8)], O145:H28[fliC(H28)], O172:NM[fliC(H25)], and Orough:NM[fliC(H250]. O26:H11/NM[fliC(H11)] was the most common serotype associated with HUS (41% isolates). Five stx genotypes were identified, the most frequent being stx(2a) (71.1% isolates). Most strains contained EHEC-hlyA encoding EHEC hemolysin, and a subset (all SF O157:NM and one O157:H7) harbored cdt-V encoding cytolethal distending toxin. espPα encoding serine protease EspPα was found in EHEC O157:H7, O26:H11/NM, and O145:H28, whereas O172:NM and Orough:NM strains contained espPγ. All isolates contained eae encoding adhesin intimin, which belonged to subtypes β (O26), γ (O55, O145, O157), γ2/θ (O111), and ε (O172, Orough). Loci encoding other adhesins (efa1, lpfA(O26), lpfA(O157OI-141), lpfA(O157OI-154), iha) were usually associated with particular serotypes. Phylogenetic analysis demonstrated nine sequence types (STs) which correlated with serotypes. Of these, two STs (ST660 and ST1595) were not found in HUS-associated EHEC before. CONCLUSIONS/SIGNIFICANCE EHEC strains, including O157:H7 and non-O157:H7, are frequent causes of D+ HUS in the Czech Republic. Identification of unusual EHEC serotypes/STs causing HUS calls for establishment of an European collection of HUS-associated EHEC, enabling to study properties and evolution of these important pathogens.
Collapse
Affiliation(s)
- Monika Marejková
- National Reference Laboratory for E. coli and Shigella, National Institute of Public Health, Prague, Czech Republic
- The 3 Medical Faculty, Charles University Prague, Prague, Czech Republic
- * E-mail:
| | - Květa Bláhová
- Department of Pediatrics, 2 Medical Faculty, Charles University Prague and the University Hospital Motol, Prague, Czech Republic
| | - Jan Janda
- Department of Pediatrics, 2 Medical Faculty, Charles University Prague and the University Hospital Motol, Prague, Czech Republic
| | - Angelika Fruth
- National Reference Center for Salmonella and Other Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Petr Petráš
- National Reference Laboratory for E. coli and Shigella, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Thrombotic thrombocytopenic purpura (TTP) is a rare life-threatening disease in children, due to a severe deficiency of ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 repeats, member 13), inherited in congenital TTP or secondary to anti-ADAMTS13 antibodies in acquired TTP. Rapid techniques for ADAMTS 13 assays, long-term follow-up of patients, phenotype-genotype analysis, improved therapeutic schedules, and new therapies have emerged. RECENT FINDINGS Rapid techniques for ADAMTS13 assays now permit rapid confirmation of diagnosis. In congenital TTP, mutations affecting the N-terminal domains of ADAMTS13 are associated with lower residual ADAMTS13 activity and more severe phenotype. Early initiation of plasma infusion treatment and lifelong prophylactic plasma infusion have decreased mortality and sequels and prevent relapses. In acquired TTP, a disease of adolescents but also of children less than 2, adding rituximab to plasma exchange is beneficial. Recombinant ADAMTS13 ought to be soon available for congenital TTP, while acquired TTP children might benefit from its administration, alone or in association with rituximab, to avoid or limit plasma exchange duration. SUMMARY Progress in the understanding of TTP has boosted physicians' awareness that diagnosis and treatment are medical emergencies. New therapies hopefully will decrease treatment burden and improve prognosis.
Collapse
|
46
|
Antibodies to intimin and Escherichia coli-secreted proteins EspA and EspB in sera of Brazilian children with hemolytic uremic syndrome and healthy controls. Vet Immunol Immunopathol 2013; 152:121-5. [DOI: 10.1016/j.vetimm.2012.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Mahanti A, Samanta I, Bandopaddhay S, Joardar SN, Dutta TK, Batabyal S, Sar TK, Isore DP. Isolation, molecular characterization and antibiotic resistance of Shiga Toxin-Producing Escherichia coli (STEC) from buffalo in India. Lett Appl Microbiol 2013; 56:291-8. [PMID: 23350641 DOI: 10.1111/lam.12048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/23/2012] [Accepted: 01/18/2013] [Indexed: 11/30/2022]
Abstract
In total, 363 Escherichia coli were isolated from 165 faecal samples of healthy buffaloes in West Bengal, India. Twenty-four of these isolates (6·61%) were found to carry at least one gene characteristic for Shiga toxin-producing Escherichia coli (STEC). These STEC strains belonged to 13 different O-serogroups. The stx1 gene was present in 23 (95·8%) of total STEC isolates, whereas 20 (83·3%) STEC isolates carried the gene stx2. Twelve strains of E. coli (50% of total STEC isolates) possessed enterohaemolysin (ehxA) gene in combination with others. Fourteen (58·33%) isolates found to possess saa gene. However, no E. coli was detected harbouring gene for intimin protein (eaeA). Of 23 stx1 -positive isolates, seven (30·43%) were positive for genes of the stx1C subtype. Of the 20 isolates with the stx2 gene, 25% (5/20) possessed stx2C and 10% (2/20) possessed stx2d gene. The phylogenetic analysis after RAPD of STEC strains revealed six major clusters. The isolated STEC strains were resistant most frequently to erythromycin (95·83%), cephalothin (62·5%), amikacin (54·17%), kanamycin (45·83%) and gentamicin (41·67%) group of antibiotics. No ESBL-producing (blaCTXM , blaTEM , blaSHV ) or quinolone resistance gene (qnrA) was detected in the STEC isolates.
Collapse
Affiliation(s)
- A Mahanti
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bielaszewska M, Mellmann A, Bletz S, Zhang W, Köck R, Kossow A, Prager R, Fruth A, Orth-Höller D, Marejková M, Morabito S, Caprioli A, Piérard D, Smith G, Jenkins C, Čurová K, Karch H. Enterohemorrhagic Escherichia coli O26:H11/H−: A New Virulent Clone Emerges in Europe. Clin Infect Dis 2013; 56:1373-81. [DOI: 10.1093/cid/cit055] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Mody RK, Griffin PM. Editorial Commentary: Fecal Shedding of Shiga Toxin-Producing Escherichia coli: What Should Be Done to Prevent Secondary Cases? Clin Infect Dis 2013; 56:1141-4. [DOI: 10.1093/cid/cis1222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
50
|
Miszczycha SD, Perrin F, Ganet S, Jamet E, Tenenhaus-Aziza F, Montel MC, Thevenot-Sergentet D. Behavior of different Shiga toxin-producing Escherichia coli serotypes in various experimentally contaminated raw-milk cheeses. Appl Environ Microbiol 2013; 79:150-8. [PMID: 23087038 PMCID: PMC3536096 DOI: 10.1128/aem.02192-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/08/2012] [Indexed: 02/07/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness. The public health implication of the presence of STEC in dairy products remains unclear. Knowledge of STEC behavior in cheeses would help to evaluate the human health risk. The aim of our study was to observe the growth and survival of experimentally inoculated STEC strains in raw-milk cheeses manufactured and ripened according to five technological schemes: blue-type cheese, uncooked pressed cheese with long ripening and with short ripening steps, cooked cheese, and lactic cheese. Cheeses were contaminated with different STEC serotypes (O157:H7, O26:H11, O103:H2, and O145:H28) at the milk preparation stage. STEC growth and survival were monitored on selective media during the entire manufacturing process. STEC grew (2 to 3 log(10) CFU · g(-1)) in blue-type cheese and the two uncooked pressed cheeses during the first 24 h of cheese making. Then, STEC levels progressively decreased in cheeses that were ripened for more than 6 months. In cooked cheese and in lactic cheese with a long acidic coagulation step (pH < 4.5), STEC did not grow. Their levels decreased after the cooking step in the cooked cheese and after the coagulation step in the lactic cheese, but STEC was still detectable at the end of ripening and storage. A serotype effect was found: in all cheeses studied, serotype O157:H7 grew less strongly and was less persistent than the others serotypes. This study improves knowledge of the behavior of different STEC serotypes in various raw-milk cheeses.
Collapse
Affiliation(s)
- Stéphane D. Miszczycha
- Université de Lyon, CALITYSS-EMSA-VetAgro Sup, Campus Vétérinaire de Lyon, Marcy l'Etoile, France
- Centre National de l'Interprofession et de l'Economie Laitière (CNIEL), Paris, France
| | | | - Sarah Ganet
- Université de Lyon, CALITYSS-EMSA-VetAgro Sup, Campus Vétérinaire de Lyon, Marcy l'Etoile, France
- LMAP-NRL STEC-VetAgro Sup, Campus Vétérinaire de Lyon, Marcy l'Etoile, France
| | | | - Fanny Tenenhaus-Aziza
- Centre National de l'Interprofession et de l'Economie Laitière (CNIEL), Paris, France
| | | | - Delphine Thevenot-Sergentet
- Université de Lyon, CALITYSS-EMSA-VetAgro Sup, Campus Vétérinaire de Lyon, Marcy l'Etoile, France
- LMAP-NRL STEC-VetAgro Sup, Campus Vétérinaire de Lyon, Marcy l'Etoile, France
| |
Collapse
|