1
|
Jaakkola K, Koivuniemi E, Hart K, Mazanowska N, Roccaldo R, Censi L, Egan B, Mattila L, Buonocore P, Löyttyniemi E, Raats M, Ruggeri S, Wielgos M, Laitinen K. Fish oil and probiotic food supplements: consumptions and attitudes of pregnant women in four European countries. Eur J Nutr 2025; 64:146. [PMID: 40186649 PMCID: PMC11972203 DOI: 10.1007/s00394-025-03654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/16/2025] [Indexed: 04/07/2025]
Abstract
PURPOSE Fish oil and probiotic supplements may be of benefit during pregnancy, but no information on their use across geographically and socioeconomically diverse countries exists. Our aim was to investigate (1) usage of fish oil and probiotic food supplements by pregnant women, (2) awareness amongst pregnant women of the prevailing recommendations and (3) the characteristics of the users and their beliefs regarding potential health effects of food supplement use, and to compare these variables between women from four European countries. METHODS The survey was carried out by online questionnaires (n = 1780) in Finland (n = 536), Italy (n = 539), Poland (n = 584), and the United Kingdom (UK) (n = 121). Product information of the supplements used was collected from participants (n = 1356). RESULTS Of the participants 49% (n = 670) used fish oil, and 10% (n = 132) used probiotic supplements. The median intake of DHA in the studied countries was 220 (IQR 200-600) mg/d. Users of these supplements were most likely from Finland and primiparous. Recommendations related to fish oil supplement use were most well-known in Poland, where over half knew that fish oil supplements are recommended to be consumed during pregnancy in Poland. Finnish women were most likely to know that there is no recommendation for pregnant women for use of probiotic supplements. CONCLUSION Half of the pregnant women used fish oil supplements, while probiotic use was less frequent. Not all pregnant women were familiar with the prevailing recommendations or potential health effects, which should be considered in the diet counselling provided during future health care visits.
Collapse
Affiliation(s)
- Kristiina Jaakkola
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Ella Koivuniemi
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
- Nutrition and Food Research Center, Faculty of Medicine, University of Turku, Turku, Finland
| | - Kathryn Hart
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Natalia Mazanowska
- Department of Obstetrics and Gynecology, Institute of Mother and Child, Warsaw, Poland
| | - Romana Roccaldo
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Laura Censi
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Bernadette Egan
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lilja Mattila
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Pasquale Buonocore
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Eliisa Löyttyniemi
- Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Monique Raats
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Stefania Ruggeri
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA), Rome, Italy
| | - Miroslaw Wielgos
- Department of Obstetrics and Perinatology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Medical Faculty, Lazarski University, Warsaw, Poland
| | - Kirsi Laitinen
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- Nutrition and Food Research Center, Faculty of Medicine, University of Turku, Turku, Finland.
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
2
|
Nayyar D, Said JM, McCarthy H, Hryciw DH, O'Keefe L, McAinch AJ. Effect of a High Linoleic Acid Diet on Pregnant Women and Their Offspring. Nutrients 2024; 16:3019. [PMID: 39275331 PMCID: PMC11397513 DOI: 10.3390/nu16173019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Nutritional intake during pregnancy can affect gestational length, fetal development, and impact postnatal growth and health in offspring. Perturbations in maternal nutrition with either an excess or deficiency in nutrients during pregnancy may have harmful effects on the offspring's development and increase the risk of developing chronic diseases later in life. In pregnancy, nutrients transfer from the mother to the fetus via the placenta. Essential fatty acids, linoleic acid (LA) and alpha linoleic acid (ALA), can only be obtained in the diet. In Western countries, the ratio of LA and ALA in the diet has increased dramatically in recent decades. Some animal and human studies have found a correlation between maternal intake of LA and birth weight; however, the association varies. In contrast, some human studies have demonstrated inconclusive findings regarding the correlation between cord blood levels of LA and birth outcomes. In addition, high dietary LA intake in animal studies in pregnancy increased the production of inflammatory markers such as prostaglandins, leukotrienes, cytokines, and tumour necrosis factor-alpha. This review aims to highlight the effect of high dietary LA intake during pregnancy on birth outcomes, obesity, maternal inflammatory markers, and the transfer of fatty acids across the placenta.
Collapse
Affiliation(s)
- Deepti Nayyar
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Joanne M Said
- Department of Maternal Fetal Medicine, Joan Kirner Women's & Children's Sunshine Hospital, Western Health, St Albans, VIC 3021, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Helen McCarthy
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Lannie O'Keefe
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| |
Collapse
|
3
|
Origüela V, Ferrer-Aguilar P, Gázquez A, Pérez-Cruz M, Gómez-Roig MD, Gómez-Llorente C, Larqué E. Placental MFSD2A expression in fetal growth restriction and maternal and fetal DHA status. Placenta 2024; 150:31-38. [PMID: 38583303 DOI: 10.1016/j.placenta.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Fetal growth restriction (FGR) may affect placental transfer of key nutrients to the fetus, such as the fatty acid docosahexaenoic acid (DHA). Major facilitator superfamily domain containing 2A (MFSD2A) has been described as a specific DHA carrier in placenta, but its expression has not been studied in FGR. The aim of this study was to evaluate for the first time the placental MFSD2A levels in late-FGR pregnancies and the maternal and cord plasma DHA. METHODS 87 pregnant women from a tertial reference center were classified into late-FGR (N = 18) or control (N = 69). Fatty acid profile was determined in maternal and cord venous plasma, as well as placental levels of MFSD2A and of insulin mediators like phospho-protein kinase B (phospho-AKT) and phospho-extracellular regulated kinase (phospho-ERK). RESULTS Maternal fatty acid profile did not differ between groups. Nevertheless, late-FGR cord vein presented higher content of saturated fatty acids than control, producing a concomitant decrease in the percentage of some unsaturated fatty acids. In the late-FGR group, a lower DHA fetal/maternal ratio was observed when using percentages, but not with concentrations. No alterations were found in the expression of MFSD2A in late-FGR placentas, nor in phospho-AKT or phospho-ERK. DISCUSSION MFSD2A protein expression was not altered in late-FGR placentas, in line with no differences in cord DHA concentration between groups. The increase in the saturated fatty acid content of late-FGR cord might be a compensatory mechanism to ensure fetal energy supply, decreasing other fatty acids percentage. Future studies are warranted to elucidate if altered saturated fatty acid profile in late-FGR fetuses might predispose them to postnatal catch-up and to long-term health consequences.
Collapse
Affiliation(s)
- Valentina Origüela
- Department of Physiology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, Murcia, Spain
| | - Patricia Ferrer-Aguilar
- BCNatal, Barcelona Centre for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, 08950, Barcelona, Spain; Institute of Research Sant Joan de Déu, 08950, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Antonio Gázquez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, Murcia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Miriam Pérez-Cruz
- BCNatal, Barcelona Centre for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, 08950, Barcelona, Spain; Institute of Research Sant Joan de Déu, 08950, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - María Dolores Gómez-Roig
- BCNatal, Barcelona Centre for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, University of Barcelona, 08950, Barcelona, Spain; Institute of Research Sant Joan de Déu, 08950, Barcelona, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Carolina Gómez-Llorente
- Institute of Biosanitary Research ibs.GRANADA, 18012, Granada, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus Universitario de Cartuja, 18071, Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, 18100, Granada, Spain; Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn), CB12/03/30038, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
| | - Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120, Murcia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), RD21/0012/0003, Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
4
|
Chae SA, Du M, Zhu MJ, Son JS. Exercise enhances placental labyrinth trophoblast development by activation of PGC-1α and FNDC5/irisin†. Biol Reprod 2024; 110:355-364. [PMID: 37934783 PMCID: PMC10873274 DOI: 10.1093/biolre/ioad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
Placental chorion/labyrinth trophoblasts are energy demanding which is met by the mitochondrial oxidative phosphorylation. Exercise enhances placental development and mitochondrial biogenesis, but the underlying mechanisms remain poorly understood. To address, female C57BL/6 J mice were randomly assigned into two groups: a control group and an exercise (EX) group. All animals were acclimated to treadmill exercise for 1 week before mating, but only the EX group was subjected to daily exercise during pregnancy from embryonic day (E) 1.5 to E16.5. Placenta were collected at E18.5 for biochemical and histochemical analyses, and primary trophoblast cells were isolated from the E18.5 placenta for further analyses. The data showed that exercise during pregnancy promoted the expression of syncytiotrophoblast cell markers, indicating trophoblast cell differentiation, which was closely associated with elevated mitochondrial biogenesis and oxidative metabolism in the E18.5 placenta. In addition, exercise during pregnancy activated peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α), which was associated with upregulated placental α-ketoglutarate and the expression of isocitrate dehydrogenases and ten-eleven translocations, facilitating DNA demethylation of the Pgc1a promoter. Furthermore, exercise upregulated fibronectin type III domain containing 5 expression and the secretion of its cleaved form, irisin, which is known to activate PGC-1α. These data suggest that exercise-induced activation of PGC-1α, via epigenetic modifications, is responsible for promoting mitochondrial energy metabolism and chorion/labyrinth trophoblast development.
Collapse
Affiliation(s)
- Song Ah Chae
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, USA
| | - Jun Seok Son
- Nutrigenomics and Exercise Biology Laboratory, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Powell TL, Barentsen K, Vaughan O, Uhlson C, Zemski Berry K, Erickson K, Faer K, Chassen SS, Jansson T. Knockdown of Placental Major Facilitator Superfamily Domain Containing 2a in Pregnant Mice Reduces Fetal Brain Growth and Phospholipid Docosahexaenoic Acid Content. Nutrients 2023; 15:4956. [PMID: 38068814 PMCID: PMC10708493 DOI: 10.3390/nu15234956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
INTRODUCTION Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid critical for fetal brain development that is transported to the fetus from the mother by the placenta. The lysophosphatidylcholine (LPC) transporter, Major Facilitator Superfamily Domain Containing 2a (MFSD2a), is localized in the basal plasma membrane of the syncytiotrophoblast of the human placenta, and MFSD2a expression correlates with umbilical cord blood LPC-DHA levels in human pregnancy. We hypothesized that placenta-specific knockdown of MFSD2a in pregnant mice reduces phospholipid DHA accumulation in the fetal brain. METHODS Mouse blastocysts (E3.5) were transduced with an EGFP-expressing lentivirus containing either an shRNA targeting MFSD2a or a non-coding sequence (SCR), then transferred to pseudopregnant females. At E18.5, fetuses were weighed and their placenta, brain, liver and plasma were collected. MFSD2a mRNA expression was determined by qPCR in the brain, liver and placenta and phospholipid DHA was quantified by LC-MS/MS. RESULTS MFSD2a-targeting shRNA reduced placental mRNA MFSD2a expression by 38% at E18.5 (n = 45, p < 0.008) compared with SCR controls. MFSD2a expression in the fetal brain and liver were unchanged. Fetal brain weight was reduced by 13% (p = 0.006). Body weight, placenta and liver weights were unaffected. Fetal brain phosphatidyl choline and phosphatidyl ethanolamine DHA content was lower in fetuses with placenta-specific MFSD2a knockdown. CONCLUSIONS Placenta-specific reduction in expression of the LPC-DHA transporter MFSD2a resulted in reduced fetal brain weight and lower phospholipid DHA content in the fetal brain. These data provide mechanistic evidence that placental MFSD2a mediates maternal-fetal transfer of LPC-DHA, which is critical for brain growth.
Collapse
Affiliation(s)
- Theresa L. Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kenneth Barentsen
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Owen Vaughan
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Heath, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK
| | - Charis Uhlson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Karin Zemski Berry
- Department of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kathryn Erickson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Kelsey Faer
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Stephanie S. Chassen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Wu Z, Hu G, Zhang Y, Ao Z. IGF2 May Enhance Placental Fatty Acid Metabolism by Regulating Expression of Fatty Acid Carriers in the Growth of Fetus and Placenta during Late Pregnancy in Pigs. Genes (Basel) 2023; 14:genes14040872. [PMID: 37107630 PMCID: PMC10137774 DOI: 10.3390/genes14040872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Fatty acids (FAs) are essential substances for the growth and development of the fetus and placenta. The growing fetus and placenta must obtain adequate FAs received from the maternal circulation and facilitated by various placental FA carriers, including FA transport proteins (FATPs), FA translocase (FAT/CD36), and cytoplasmic FA binding proteins (FABPs). Placental nutrition transport was regulated by imprinted genes H19 and insulin-like growth factor 2 (IGF2). Nevertheless, the relationship between the expression patterns of H19/IGF2 and placental fatty acid metabolism throughout pig pregnancy remains poorly studied and unclear. We investigated the placental fatty acid profile, expression patterns of FA carriers, and H19/IGF2 in the placentae on Days 40 (D40), 65 (D65), and 95 (D95) of pregnancy. The results showed that the width of the placental folds and the number of trophoblast cells of D65 placentae were significantly increased than those of D40 placentae. Several important long-chain FAs (LCFAs), including oleic acid, linoleic acid, arachidonatic acid, eicosapentaenoic acid, and docosatetraenoic acid, in the pig placenta showed dramatically increased levels throughout pregnancy. The pig placenta possessed higher expression levels of CD36, FATP4, and FABP5 compared with other FA carriers, and their expression levels had significantly upregulated 2.8-, 5.6-, and 12.0-fold from D40 to D95, respectively. The transcription level of IGF2 was dramatically upregulated and there were corresponding lower DNA methylation levels in the IGF2 DMR2 in D95 placentae relative to D65 placentae. Moreover, in vitro experimentation revealed that the overexpression of IGF2 resulted in a significant increase in fatty acid uptake and expression levels of CD36, FATP4, and FABP5 in PTr2 cells. In conclusion, our results indicate that CD36, FATP4, and FABP5 may be important regulators that enhance the transport of LCFAs in the pig placenta and that IGF2 may be involved in FA metabolism by affecting the FA carriers expression to support the growth of the fetus and placenta during late pregnancy in pigs.
Collapse
Affiliation(s)
- Zhimin Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangling Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Liu X, Chen L, Fei Z, Zhao SK, Zhu Y, Xia T, Dai J, Rahman ML, Wu J, Weir NL, Tsai MY, Zhang C. Physical activity and individual plasma phospholipid SFAs in pregnancy: a longitudinal study in a multiracial/multiethnic cohort in the United States. Am J Clin Nutr 2022; 116:1729-1737. [PMID: 36373403 PMCID: PMC9761740 DOI: 10.1093/ajcn/nqac250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Circulating individual SFAs in pregnant females are critical for maternal and fetal health. However, research on identifying their modifiable factors is limited. OBJECTIVES We aimed to examine the associations of total physical activity (PA) and types of PA with circulating individual SFAs during pregnancy in a multiracial/multiethnic cohort of pregnant females in the United States. METHODS The study included participants in a nested case-control study (n = 321) from the Eunice Kennedy Shriver NICHD Fetal Growth Studies-Singleton Cohort. Sampling weights were applied, so the results represented the entire Fetal Growth Cohort. Plasma phospholipid SFAs were measured at 4 visits [10-14 (visit 1), 15-26 (visit 2), 23-31 (visit 3), and 33-39 (visit 4) weeks of gestation] throughout pregnancy. PA of the previous year at visit 1 and since the previous visit at the subsequent visits was assessed using the validated Pregnancy PA Questionnaire. Time-specific and longitudinal associations were examined using multivariable linear and generalized estimating equation models. RESULTS Total PA (metabolic equivalent of task-h/wk) was positively associated with circulating heptadecanoic acid (17:0) at visit 1 (β × 103: 0.07; 95% CI: 0.02, 0.11) and pentadecanoic acid (15:0) at visit 3 (β × 103: 0.09; 95% CI: 0.03, 0.14) independent of sociodemographic, reproductive, pregnancy, and dietary factors. Across the 4 visits, the positive associations with total PA were consistent for pentadecanoic acid (β × 103: 0.06; 95% CI: 0.02, 0.10) and heptadecanoic acid (β × 103: 0.10; 95% CI: 0.06, 0.14). Out of the 4 PA types (i.e., sports/exercise, household/caregiving, transportation, and occupational PA) considered, the magnitude of positive associations was the largest for sports/exercise PA. CONCLUSIONS Our findings suggest that maternal PA is positively associated with circulating pentadecanoic and heptadecanoic acids. The findings warrant confirmation by future studies.This trial was registered at clinicaltrials.gov as NCT00912132.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Zhe Fei
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Sifang K Zhao
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Tong Xia
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Jin Dai
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Mohammad L Rahman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jing Wu
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Natalie L Weir
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
- Global Center for Asian Women's Health, Bia-Echo Asia Centre for Reproductive Longevity & Equality (ACRLE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
8
|
Anam AK, Cooke KM, Dratver MB, O'Bryan JV, Perley LE, Guller SM, Hwang JJ, Taylor HS, Goedeke L, Kliman HJ, Vatner DF, Flannery CA. Insulin increases placental triglyceride as a potential mechanism for fetal adiposity in maternal obesity. Mol Metab 2022; 64:101574. [PMID: 35970449 PMCID: PMC9440306 DOI: 10.1016/j.molmet.2022.101574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Maternal obesity increases the incidence of excess adiposity in newborns, resulting in lifelong diabetes risk. Elevated intrauterine fetal adiposity has been attributed to maternal hyperglycemia; however, this hypothesis does not account for the increased adiposity seen in newborns of mothers with obesity who have euglycemia. We aimed to explore the placental response to maternal hyperinsulinemia and the effect of insulin-like growth factor 2 (IGF-2) in promoting fetal adiposity by increasing storage and availability of nutrients to the fetus. METHODS We used placental villous explants and isolated trophoblasts from normal weight and obese women to assess the effect of insulin and IGF-2 on triglyceride content and insulin receptor signaling. Stable isotope tracer methods were used ex vivo to determine effect of hormone treatment on de novo lipogenesis (DNL), fatty acid uptake, fatty acid oxidation, and esterification in the placenta. RESULTS Here we show that placentae from euglycemic women with normal weight and obesity both have abundant insulin receptor. Placental depth and triglyceride were greater in women with obesity compared with normal weight women. In syncytialized placental trophoblasts and villous explants, insulin and IGF-2 activate insulin receptor, induce expression of lipogenic transcription factor SREBP-1 (sterol regulatory element-binding protein 1), and stimulate triglyceride accumulation. We demonstrate elevated triglyceride is attributable to increased esterification of fatty acids, without contribution from DNL and without an acceleration of fatty acid uptake. CONCLUSIONS Our work reveals that obesity-driven aberrations in maternal metabolism, such as hyperinsulinemia, alter placental metabolism in euglycemic conditions, and may explain the higher prevalence of excess adiposity in the newborns of obese women.
Collapse
Affiliation(s)
- Anika K Anam
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Katherine M Cooke
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Milana Bochkur Dratver
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Jane V O'Bryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Lauren E Perley
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Seth M Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Janice J Hwang
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Daniel F Vatner
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clare A Flannery
- Section of Endocrinology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Fatty Acids: A Safe Tool for Improving Neurodevelopmental Alterations in Down Syndrome? Nutrients 2022; 14:nu14142880. [PMID: 35889838 PMCID: PMC9323400 DOI: 10.3390/nu14142880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The triplication of chromosome 21 causes Down syndrome (DS), a genetic disorder that is characterized by intellectual disability (ID). The causes of ID start in utero, leading to impairments in neurogenesis, and continue into infancy, leading to impairments in dendritogenesis, spinogenesis, and connectivity. These defects are associated with alterations in mitochondrial and metabolic functions and precocious aging, leading to the early development of Alzheimer’s disease. Intense efforts are currently underway, taking advantage of DS mouse models to discover pharmacotherapies for the neurodevelopmental and cognitive deficits of DS. Many treatments that proved effective in mouse models may raise safety concerns over human use, especially at early life stages. Accumulating evidence shows that fatty acids, which are nutrients present in normal diets, exert numerous positive effects on the brain. Here, we review (i) the knowledge obtained from animal models regarding the effects of fatty acids on the brain, by focusing on alterations that are particularly prominent in DS, and (ii) the progress recently made in a DS mouse model, suggesting that fatty acids may indeed represent a useful treatment for DS. This scenario should prompt the scientific community to further explore the potential benefit of fatty acids for people with DS.
Collapse
|
10
|
Gopalakrishnan K, Mishra JS, Ross JR, Abbott DH, Kumar S. Hyperandrogenism diminishes maternal-fetal fatty acid transport by increasing FABP 4-mediated placental lipid accumulation. Biol Reprod 2022; 107:514-528. [PMID: 35357467 DOI: 10.1093/biolre/ioac059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 03/17/2022] [Indexed: 11/12/2022] Open
Abstract
Long-chain polyunsaturated fatty acids (LCPUFAs) are critical for fetal brain development. Infants born to preeclamptic mothers or those born growth restricted due to placental insufficiency have reduced LCPUFA, and are at higher risk for developing neurodevelopmental disorders. Since plasma levels of testosterone (T) and fatty acid-binding protein 4 (FABP4) are elevated in preeclampsia, we hypothesized that elevated T induces the expression of FABP4 in the placenta leading to compromised transplacental transport of LCPUFAs. Increased maternal T in pregnant rats significantly decreased n-3 and n-6 LCPUFA levels in maternal and fetal circulation, but increased their placental accumulation. Dietary LCPUFAs supplementation in T dams increased LCPUFA levels in the maternal circulation and further augmented placental storage, while failing to increase fetal levels. The placenta in T dams exhibited increased FABP4 mRNA and protein levels. In vitro, T dose-dependently upregulated FABP4 transcription in trophoblasts. T stimulated androgen receptor (AR) recruitment to the androgen response element and trans-activated FABP4 promoter activity, both of which were abolished by AR antagonist. T in pregnant rats and cultured trophoblasts significantly reduced transplacental transport of C14-docosahexaenoic acid (DHA) and increased C14-DHA accumulation in the placenta. Importantly, FABP4-overexpression by itself in pregnant rats and trophoblasts increased transplacental transport of C14-DHA with no significant placental accumulation. T exposure, in contrast, inhibited this FABP4-mediated effect by promoting C14-DHA placental accumulation. In summary, our studies show that maternal hyperandrogenism increases placental FABP4 expression via transcriptional upregulation and preferentially routes LCPUFAs toward cellular storage in the placenta leading to offspring lipid deficiency.
Collapse
Affiliation(s)
- Kathirvel Gopalakrishnan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jordan R Ross
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - David H Abbott
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.,Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.,Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.,Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|
11
|
Burugupalli S, Smith AAT, Oshlensky G, Huynh K, Giles C, Wang T, George A, Paul S, Nguyen A, Duong T, Mellett N, Cinel M, Mir SA, Chen L, Wenk MR, Karnani N, Collier F, Saffery R, Vuillermin P, Ponsonby AL, Burgner D, Meikle P. Ontogeny of circulating lipid metabolism in pregnancy and early childhood: a longitudinal population study. eLife 2022; 11:72779. [PMID: 35234611 PMCID: PMC8942471 DOI: 10.7554/elife.72779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background: There is mounting evidence that in utero and early life exposures may predispose an individual to metabolic disorders in later life; and dysregulation of lipid metabolism is critical in such outcomes. However, there is limited knowledge about lipid metabolism and factors causing lipid dysregulation in early life that could result in adverse health outcomes in later life. We studied the effect of antenatal factors such as gestational age, birth weight and mode of birth on lipid metabolism at birth; changes in the circulating lipidome in the first four years of life and the effect of breastfeeding in the first year of life. From this study, we aim to generate a framework for deeper understanding into factors effecting lipid metabolism in early life, to provide early interventions for those at risk of developing metabolic disorders including cardiovascular diseases. Methods and findings: We performed comprehensive lipid profiling of 1074 mother-child dyads in the Barwon Infant Study (BIS), a population based pre-birth cohort and measured 776 distinct lipid species across 42 lipid classes using ultra high-performance liquid chromatography (UHPLC). We measured lipids in 1032 maternal serum samples at 28 weeks' gestation, 893 cord serum samples at birth, 793, 735, and 511 plasma samples at six, twelve months, and four years, respectively. The lipidome differed between mother and newborn and changed markedly with increasing child's age. Cord serum was enriched with long chain poly-unsaturated fatty acids (LC-PUFAs), and corresponding cholesteryl esters relative to the maternal serum. Alkenylphosphatidylethanolamine species containing LC-PUFAs increased with child's age, whereas the corresponding lysophospholipids and triglycerides decreased. We performed regression analyses to investigate the associations of cord serum lipid species with antenatal factors: gestational age, birth weight, mode of birth and duration of labor. Majority of the cord serum lipids were strongly associated with gestational age and birth weight, with most lipids showing opposing associations. Each mode of birth showed an independent association with cord serum lipids. Breastfeeding had a significant impact on the plasma lipidome in the first year of life, with upto 17-fold increases in a few species of alkyldiaclylglycerols at 6 months of age. Conclusions: This study sheds light on lipid metabolism in infancy and early childhood and provide a framework to define the relationship between lipid metabolism and health outcomes in early childhood. Funding Statement: This work was supported by the A*STAR-NHMRC joint call funding (1711624031).
Collapse
Affiliation(s)
- Satvika Burugupalli
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Gavriel Oshlensky
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kevin Huynh
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Corey Giles
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourn, Australia
| | - Tingting Wang
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Alexandra George
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Anh Nguyen
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Thy Duong
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Natalie Mellett
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Michelle Cinel
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Sartaj Ahmad Mir
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Li Chen
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore
| | - Markus R Wenk
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore
| | - Fiona Collier
- School of Medicine, Deakin University, Melbourne, Australia
| | | | | | | | - David Burgner
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia
| | - Peter Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
12
|
Prenatal docosahexaenoic acid effect on maternal-infant DHA-equilibrium and fetal neurodevelopment: a randomized clinical trial. Pediatr Res 2022; 92:255-264. [PMID: 34552200 PMCID: PMC8456398 DOI: 10.1038/s41390-021-01742-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/03/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Maternal-infant equilibrium occurs when cord blood docosahexaenoic acid (DHA) is less than or equal to maternal DHA at delivery. Equilibrium may be an indicator of sufficient DHA for optimal fetal and infant neurodevelopment. The purpose of this study was to test the effect of maternal DHA supplementation on equilibrium status and fetal neurodevelopment. METHODS Women enrolled between 12 and 20 weeks gestation and were randomized to 200 or 800 mg DHA/day until delivery. Maternal red blood cell (RBC) phospholipids were measured at enrollment, 32 weeks, delivery, and in cord blood at delivery. Fetal neurodevelopment was measured at 32 and 36 weeks gestation. Intent-to-treat analyses were conducted to test differences in equilibrium status by group. Fetal outcomes were assessed by equilibrium status and group. RESULTS Three hundred women enrolled and 262 maternal-infant dyads provided blood samples at delivery. No maternal-infant dyads with maternal RBC-DHA ≤ 6.96% at delivery achieved equilibrium. The incidence of equilibrium was significantly higher in the 800 mg group. There was no effect of maternal group or equilibrium status on fetal neurodevelopment. CONCLUSION The significance of maternal-infant DHA equilibrium remains unknown. Ongoing research will test the effect of treatment group, equilibrium, and nutrient status on infant behavior and brain function. IMPACT Pregnant women who received a higher dose of docosahexaenoic acid (DHA) were more likely to achieve maternal-infant DHA equilibrium at delivery. Equilibrium status had no effect on fetal neurodevelopment in this sample. While DHA is crucial for early life neurodevelopment, the significance of achieving maternal-infant equilibrium above the lower threshold is uncertain. There is a lower threshold of maternal DHA status where maternal-infant DHA equilibrium never occurs. The lack of equilibrium associated with low maternal DHA status may indicate insufficient maternal status for optimal placental transfer.
Collapse
|
13
|
Demmelmair H, Koletzko B. Perinatal Polyunsaturated Fatty Acid Status and Obesity Risk. Nutrients 2021; 13:3882. [PMID: 34836138 PMCID: PMC8625539 DOI: 10.3390/nu13113882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
High obesity rates in almost all regions of the world prompt an urgent need for effective obesity prevention. Very good scientific evidence from cell culture and rodent studies show that the availability of essential polyunsaturated fatty acids (PUFA) and their long-chain polyunsaturated derivatives, namely, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, influence adipogenesis; for this reason, early life status may influence later obesity risk. The respective PUFA effects could be mediated via their eicosanoid derivatives, their influence on cell membrane properties, the browning of white adipose tissue, changes to the offspring gut microbiome, their influence on developing regulatory circuits, and gene expression during critical periods. Randomized clinical trials and observational studies show divergent findings in humans, with mostly null findings but also the positive and negative effects of an increased n-3 to n-6 PUFA ratio on BMI and fat mass development. Hence, animal study findings cannot be directly extrapolated to humans. Even though the mechanistic data basis for the effects of n-3 PUFA on obesity risk appears promising, no recommendations for humans can be derived at present.
Collapse
Affiliation(s)
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department Pediatrics, Dr. von Hauner Children’s Hospital, University of Munich Medical Centre, LMU—Ludwig-Maximilians-Universität Munich, D-80337 Munich, Germany;
| |
Collapse
|
14
|
Gázquez A, Giménez-Bañón MJ, Prieto-Sánchez MT, Martínez-Graciá C, Suárez C, Santaella-Pascual M, Galdo-Castiñeira L, Ballesteros-Meseguer C, Vioque J, Martínez-Villanueva M, Avilés-Plaza F, Noguera-Velasco JA, Morales E, García-Marcos L, Larqué E. Self-Reported DHA Supplementation during Pregnancy and Its Association with Obesity or Gestational Diabetes in Relation to DHA Concentration in Cord and Maternal Plasma: Results from NELA, a Prospective Mother-Offspring Cohort. Nutrients 2021; 13:843. [PMID: 33806689 PMCID: PMC8000695 DOI: 10.3390/nu13030843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal supplementation of docosahexaenoic acid (DHA) during pregnancy has been recommended due to its role in infant development, but its effect on materno-fetal DHA status is not well established. We evaluated the associations between DHA supplementation in pregnant women with obesity or gestational diabetes mellitus (GDM) and maternal and neonatal DHA status. Serum fatty acids (FA) were analyzed in 641 pregnant women (24 weeks of gestation) and in 345 venous and 166 arterial cord blood samples of participants of the NELA cohort. Obese women (n = 47) presented lower DHA in serum than those lean (n = 397) or overweight (n = 116) before pregnancy. Linoleic acid in arterial cord was elevated in obese women, which indicates lower fetal retention. Maternal DHA supplementation (200 mg/d) during pregnancy was associated with enhanced maternal and fetal DHA levels regardless of pre-pregnancy body mass index (BMI), although higher arterial DHA in overweight women indicated an attenuated response. Maternal DHA supplementation was not associated with cord venous DHA in neonates of mothers with GDM. The cord arteriovenous difference was similar for DHA between GDM and controls. In conclusion, maternal DHA supplementation during pregnancy enhanced fetal DHA status regardless of the pre-pregnancy BMI while GDM may reduce the effect of DHA supplementation in newborns.
Collapse
Affiliation(s)
- Antonio Gázquez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | - María J. Giménez-Bañón
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | - María T. Prieto-Sánchez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Carmen Martínez-Graciá
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Clara Suárez
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Marina Santaella-Pascual
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Food Science and Technology Department, Faculty of Veterinary, University of Murcia, 30100 Murcia, Spain
| | - Lina Galdo-Castiñeira
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Carmen Ballesteros-Meseguer
- Obstetrics & Gynaecology Service, “Virgen de la Arrixaca” University Clinical Hospital, University of Murcia, 30120 Murcia, Spain; (L.G.-C.); (C.B.-M.)
| | - Jesús Vioque
- Health and Biomedical Research Institute of Alicante (ISABIAL-UMH), 46020 Alicante, Spain;
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Miriam Martínez-Villanueva
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - Francisco Avilés-Plaza
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - José A. Noguera-Velasco
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, 30120 Murcia, Spain
| | - Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Public Health Sciences, University of Murcia, 30100 Murcia, Spain
| | - Luís García-Marcos
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Network of Asthma and Adverse and Allergic Reactions (ARADyAL), 28029 Madrid, Spain
| | - Elvira Larqué
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain; (A.G.); (M.J.G.-B.); (M.T.P.-S.); (C.M.-G.); (C.S.); (M.S.-P.); (M.M.-V.); (F.A.-P.); (J.A.N.-V.); (E.M.); (L.G.-M.)
- Department of Physiology, University of Murcia, 30100 Murcia, Spain
| | | |
Collapse
|
15
|
Gázquez A, Larqué E. Towards an Optimized Fetal DHA Accretion: Differences on Maternal DHA Supplementation Using Phospholipids vs. Triglycerides during Pregnancy in Different Models. Nutrients 2021; 13:511. [PMID: 33557158 PMCID: PMC7913957 DOI: 10.3390/nu13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 01/10/2023] Open
Abstract
Docosahexaenoic acid (DHA) supplementation during pregnancy has been recommended by several health organizations due to its role in neural, visual, and cognitive development. There are several fat sources available on the market for the manufacture of these dietary supplements with DHA. These fat sources differ in the lipid structure in which DHA is esterified, mainly phospholipids (PL) and triglycerides (TG) molecules. The supplementation of DHA in the form of PL or TG during pregnancy can lead to controversial results depending on the animal model, physiological status and the fat sources utilized. The intestinal digestion, placental uptake, and fetal accretion of DHA may vary depending on the lipid source of DHA ingested by the mother. The form of DHA used in maternal supplementation that would provide an optimal DHA accretion for fetal brain development, based on the available data obtained most of them from different animal models, indicates no consistent differences in fetal accretion when DHA is provided as TG or PL. Other related lipid species are under evaluation, e.g., lyso-phospholipids, with promising results to improve DHA bioavailability although more studies are needed. In this review, the evidence on DHA bioavailability and accumulation in both maternal and fetal tissues after the administration of DHA supplementation during pregnancy in the form of PL or TG in different models is summarized.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, University of Murcia, 30100 Murcia, Spain;
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
16
|
Hebert JF, Myatt L. Placental mitochondrial dysfunction with metabolic diseases: Therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165967. [PMID: 32920120 PMCID: PMC8043619 DOI: 10.1016/j.bbadis.2020.165967] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022]
Abstract
Both obesity and gestational diabetes mellitus (GDM) lead to poor maternal and fetal outcomes, including pregnancy complications, fetal growth issues, stillbirth, and developmental programming of adult-onset disease in the offspring. Increased placental oxidative/nitrative stress and reduced placental (trophoblast) mitochondrial respiration occur in association with the altered maternal metabolic milieu of obesity and GDM. The effect is particularly evident when the fetus is male, suggesting a sexually dimorphic influence on the placenta. In addition, obesity and GDM are associated with inflexibility in trophoblast, limiting the ability to switch between usage of glucose, fatty acids, and glutamine as substrates for oxidative phosphorylation, again in a sexually dimorphic manner. Here we review mechanisms underlying placental mitochondrial dysfunction: its relationship to maternal and fetal outcomes and the influence of fetal sex. Prevention of placental oxidative stress and mitochondrial dysfunction may improve pregnancy outcomes. We outline pathways to ameliorate deficient mitochondrial respiration, particularly the benefits and pitfalls of mitochondria-targeted antioxidants.
Collapse
Affiliation(s)
- Jessica F Hebert
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, United States of America
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, United States of America.
| |
Collapse
|
17
|
Álvarez D, Muñoz Y, Ortiz M, Maliqueo M, Chouinard-Watkins R, Valenzuela R. Impact of Maternal Obesity on the Metabolism and Bioavailability of Polyunsaturated Fatty Acids during Pregnancy and Breastfeeding. Nutrients 2020; 13:nu13010019. [PMID: 33374585 PMCID: PMC7822469 DOI: 10.3390/nu13010019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Prenatal and postnatal development are closely related to healthy maternal conditions that allow for the provision of all nutritional requirements to the offspring. In this regard, an appropriate supply of fatty acids (FA), mainly n-3 and n-6 long-chain polyunsaturated fatty acids (LCPUFA), is crucial to ensure a normal development, because they are an integral part of cell membranes and participate in the synthesis of bioactive molecules that regulate multiple signaling pathways. On the other hand, maternal obesity and excessive gestational weight gain affect FA supply to the fetus and neonate, altering placental nutrient transfer, as well as the production and composition of breast milk during lactation. In this regard, maternal obesity modifies FA profile, resulting in low n-3 and elevated n-6 PUFA levels in maternal and fetal circulation during pregnancy, as well as in breast milk during lactation. These modifications are associated with a pro-inflammatory state and oxidative stress with short and long-term consequences in different organs of the fetus and neonate, including in the liver, brain, skeletal muscle, and adipose tissue. Altogether, these changes confer to the offspring a higher risk of developing obesity and its complications, as well as neuropsychiatric disorders, asthma, and cancer. Considering the consequences of an abnormal FA supply to offspring induced by maternal obesity, we aimed to review the effects of obesity on the metabolism and bioavailability of FA during pregnancy and breastfeeding, with an emphasis on LCPUFA homeostasis.
Collapse
Affiliation(s)
- Daniela Álvarez
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Yasna Muñoz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Macarena Ortiz
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, West Division, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (D.Á.); (Y.M.); (M.O.); (M.M.)
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence: or ; Tel.: +56-2-9786746
| |
Collapse
|
18
|
Roque-Jimenez JA, Oviedo-Ojeda MF, Whalin M, Lee-Rangel HA, Relling AE. Eicosapentaenoic and docosahexaenoic acid supplementation during early gestation modified relative abundance on placenta and fetal liver tissue mRNA and concentration pattern of fatty acids in fetal liver and fetal central nervous system of sheep. PLoS One 2020; 15:e0235217. [PMID: 32574225 PMCID: PMC7310831 DOI: 10.1371/journal.pone.0235217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
In sheep, polyunsaturated fatty acid (PUFA) supplementations in late gestation increases the growth of offspring; however, there is a lack of evidence on the effect of PUFA supplementation during early gestation. Thus, the objective of this study was to evaluate the effect of dietary supplementation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in early gestation pregnant ewes on fatty acid concentration of fetal liver (FL) and fetal central nervous system (FCNS), and relative abundance of the mRNA for genes associated with transport and metabolism of fatty acids in FL and placenta. A total of 12 ewes, block for stage of gestation were fed a diet containing 1.6% (dry matter basis) monounsaturated fatty acids (MUFA) or EPA+DHA during the first 45 days of gestation. A cesarean section was conducted on day 45 of gestation to collect placenta (caruncle and cotyledon), FL, and FCNS. Relative abundance of mRNA in FL and FCNS and fatty acid concentration were analyzed using a 2x2 factorial arrangement of treatments considering fatty acid supplementation and tissue as the main factors. Concentrations of C18:1 isomers increase (P < 0.05) in FL and FCNS with MUFA supplementation; the FL and FCNS had a greater concentration of C20:3(n-6), C20:3(n-3), C22:1, C22:5 and C22:6 (P < 0.05) with EPA+DHA supplementation. In FL, the relative abundance of LPL mRNA was greater (P = 0.02) as a result of MUFA supplementation. In placenta, there was a FA x tissue interaction for relative abundance of DNMT3b and FFAR-4 mRNA (P < 0.05). Fetus from MUFA-supplemented dams had a greater relative abundance of FABP-4 mRNA (P < 0.05). Results indicate supplementation with EPA+DHA during early gestation increases the total EPA and DHA in FL. For the placenta, EPA+DHA supplementation led to an increase in the relative abundance of lipid mRNA for transport genes.
Collapse
Affiliation(s)
- José Alejandro Roque-Jimenez
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía, Soledad de Graciano Sánchez, San Luis Potosí, México
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States of America
| | - Mario Francisco Oviedo-Ojeda
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía, Soledad de Graciano Sánchez, San Luis Potosí, México
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States of America
| | - Megan Whalin
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States of America
| | - Héctor Aaron Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía, Soledad de Graciano Sánchez, San Luis Potosí, México
| | - Alejandro Enrique Relling
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH, United States of America
- * E-mail:
| |
Collapse
|
19
|
García-Cerro S, Rueda N, Vidal V, Puente A, Campa V, Lantigua S, Narcís O, Velasco A, Bartesaghi R, Martínez-Cué C. Prenatal Administration of Oleic Acid or Linolenic Acid Reduces Neuromorphological and Cognitive Alterations in Ts65dn Down Syndrome Mice. J Nutr 2020; 150:1631-1643. [PMID: 32243527 DOI: 10.1093/jn/nxaa074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/17/2019] [Accepted: 03/02/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cognitive impairments that characterize Down syndrome (DS) have been attributed to brain hypocellularity due to neurogenesis impairment during fetal stages. Thus, enhancing prenatal neurogenesis in DS could prevent or reduce some of the neuromorphological and cognitive defects found in postnatal stages. OBJECTIVES As fatty acids play a fundamental role in morphogenesis and brain development during fetal stages, in this study, we aimed to enhance neurogenesis and the cognitive abilities of the Ts65Dn (TS) mouse model of DS by administering oleic or linolenic acid. METHODS In total, 85 pregnant TS females were subcutaneously treated from Embryonic Day (ED) 10 until Postnatal Day (PD) 2 with oleic acid (400 mg/kg), linolenic acid (500 mg/kg), or vehicle. All analyses were performed on their TS and Control (CO) male and female progeny. At PD2, we evaluated the short-term effects of the treatments on neurogenesis, cellularity, and brain weight, in 40 TS and CO pups. A total of 69 TS and CO mice were used to test the long-term effects of the prenatal treatments on cognition from PD30 to PD45, and on neurogenesis, cellularity, and synaptic markers, at PD45. Data were compared by ANOVAs. RESULTS Prenatal administration of oleic or linolenic acid increased the brain weight (+36.7% and +45%, P < 0.01), the density of BrdU (bromodeoxyuridine)- (+80% and +115%; P < 0.01), and DAPI (4',6-diamidino-2-phenylindole)-positive cells (+64% and +22%, P < 0.05) of PD2 TS mice with respect to the vehicle-treated TS mice. Between PD30 and PD45, TS mice prenatally treated with oleic or linolenic acid showed better cognitive abilities (+28% and +25%, P < 0.01) and a higher density of the postsynaptic marker PSD95 (postsynaptic density protein 95) (+65% and +44%, P < 0.05) than the vehicle-treated TS animals. CONCLUSION The beneficial cognitive and neuromorphological effects induced by oleic or linolenic acid in TS mice suggest that they could be promising pharmacotherapies for DS-associated cognitive deficits.
Collapse
Affiliation(s)
- Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Víctor Campa
- Institute of Molecular Biology and Biomedicine (IBTECC), Santander, Cantabria, Spain
| | - Sara Lantigua
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Oriol Narcís
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| | - Ana Velasco
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences of Castilla and Leon (INCYL), University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Cantabria, Spain
| |
Collapse
|
20
|
Maternal diet high in Omega-3 fatty acids upregulate genes involved in neurotrophin signalling in fetal brain during pregnancy in C57BL/6 mice. Neurochem Int 2020; 138:104778. [PMID: 32474175 DOI: 10.1016/j.neuint.2020.104778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 12/23/2022]
Abstract
Neurotrophins play a critical role in the development, maintenance, and proper function of the brain. We investigated the effects of maternal diet high in omega (n)-3 polyunsaturated fatty acids (PUFA) on fatty acids composition and the gene expression of neurotrophins in fetal brain at different gestation stages. Female C57BL/6 mice (7-weeks old, n = 8/group) were fed a diet containing high, low or very low n-3 PUFA (9, 3 or 1% w/w, respectively), with an n-6:n-3 PUFA of 5:1, 20:1 and 40:1, respectively, for two weeks before mating and throughout pregnancy. Animals were sacrificed during pregnancy at gestation day 12.5 and 18.5 to determine placental and fetal-brain fatty acids composition. The gene expressions of endothelial lipase (EL) and plasma membrane fatty acid-binding protein (FABPpm) were measured in the placenta, while major facilitator superfamily domain-containing 2a (Mfsd2a), brain-derived neurotrophic factor (BDNF), tropomyosin-receptor kinase (TrK)-B, and cAMP response element-binding protein (CREB) were measured in fetal-brain, using qPCR. The protein expression of phosphorylated CREB (pCREB) was determined using ELISA. The high n-3 PUFA diet increased the mRNA expression of EL, FABPpm, and Mfsd2a at both gestation days, compared to other groups. Docosahexaenoic acid (DHA) and total n-3 PUFA were significantly higher in the high n-3 PUFA group, compared to the other groups at both gestation days. The high n-3 PUFA diet also increased the mRNA expressions of BDNF, TrKB and CREB, as well as the protein concentration of pCREB as gestation progressed, compared to the other groups. Our findings show for the first time that maternal diet high in n-3 PUFA increased the mRNA expression of Mfsd2a, which correlated with an increase in DHA accretion in the fetal-brain. A diet high in n-3 PUFA increased neurotrophin signalling in fetal-brain as gestation progressed, demonstrating the importance of n-3 PUFA during brain development.
Collapse
|
21
|
Mishra JS, Zhao H, Hattis S, Kumar S. Elevated Glucose and Insulin Levels Decrease DHA Transfer across Human Trophoblasts via SIRT1-Dependent Mechanism. Nutrients 2020; 12:nu12051271. [PMID: 32365792 PMCID: PMC7284516 DOI: 10.3390/nu12051271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) results in reduced docosahexaenoic acid (DHA) transfer to the fetus, likely due to placental dysfunction. Sirtuin-1 (SIRT1) is a nutrient sensor and regulator of lipid metabolism. This study investigated whether the high glucose and insulin condition of GDM regulates DHA transfer and expression of fatty acid transporters and if this effect is related to SIRT1 expression and function. Syncytialized primary human trophoblasts were treated with and without glucose (25 mmol/L) and insulin (10-7 mol/L) for 72 h to mimic the insulin-resistance conditions of GDM pregnancies. In control conditions, DHA transfer across trophoblasts increased in a time- and dose-dependent manner. Exposure to GDM conditions significantly decreased DHA transfer, but increased triglyceride accumulation and fatty acid transporter expression (CD36, FABP3, and FABP4). GDM conditions significantly suppressed SIRT1 mRNA and protein expression. The SIRT1 inhibitor decreased DHA transfer across control trophoblasts, and recombinant SIRT1 and SIRT1 activators restored the decreased DHA transport induced by GDM conditions. The results demonstrate a novel role of SIRT1 in the regulation of DHA transfer across trophoblasts. The suppressed SIRT1 expression and the resultant decrease in placental DHA transfer caused by high glucose and insulin levels suggest new insights of molecular mechanisms linking GDM to fetal DHA deficiency.
Collapse
Affiliation(s)
- Jay S. Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Hanjie Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Sari Hattis
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; (J.S.M.); (H.Z.); (S.H.)
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA
- Correspondence: ; Tel.: +1-608-265-1046
| |
Collapse
|
22
|
Wilson NA, Mantzioris E, Middleton PF, Muhlhausler BS. Influence of clinical characteristics on maternal DHA and other polyunsaturated fatty acid status in pregnancy: A systematic review. Prostaglandins Leukot Essent Fatty Acids 2020; 154:102063. [PMID: 32058894 DOI: 10.1016/j.plefa.2020.102063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Omega-3 DHA is important for the prevention of preterm birth, however there is limited knowledge of the determinants of omega-3 status during pregnancy. The primary objective of this systematic review was to synthesise data from existing studies assessing relationships between clinical factors and maternal DHA status. MATERIALS AND METHODS The Medline, Embase, Amed, and CINAHL databases were searched for studies reporting measures of maternal omega-3 status and one or more clinical characteristics. RESULTS Eighteen studies were included in the final analyses. Factors associated with a higher BMI (overweight, higher gestational weight gain, gestational diabetes), or lower parity were each associated with higher omega-3 status in the majority of studies, with mixed findings for other comparisons. DISCUSSION Inconsistent findings between studies make it difficult to draw clear conclusions about the relationship between clinical factors and maternal omega-3 DHA status. However, maternal overweight and associated metabolic conditions may increase lipid metabolism.
Collapse
Affiliation(s)
- N A Wilson
- School of Pharmacy and Medical Sciences, University of South Australia, North Terrace & Frome Rd, Adelaide, SA, 5000, Australia
| | - E Mantzioris
- School of Pharmacy and Medical Sciences, University of South Australia, North Terrace & Frome Rd, Adelaide, SA, 5000, Australia
| | - P F Middleton
- South Australian Health and Medical Research Institute SAHMRI Women and Kids, Level 7, 72 King William Rd, North Adelaide, SA, 5006, Australia
| | - B S Muhlhausler
- Food and Nutrition Research Group, Dept of Food and Wine Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Waite Road, Urrbrae, SA, 5064, Australia; Nutrition and Health Program, CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA, 5001, Australia.
| |
Collapse
|
23
|
Shrestha N, Sleep SL, Cuffe JSM, Holland OJ, Perkins AV, Yau SY, McAinch AJ, Hryciw DH. Role of omega-6 and omega-3 fatty acids in fetal programming. Clin Exp Pharmacol Physiol 2020; 47:907-915. [PMID: 31883131 DOI: 10.1111/1440-1681.13244] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Maternal nutrition plays a critical role in fetal development and can influence adult onset of disease. Linoleic acid (LA) and alpha-linolenic acid (ALA) are major omega-6 (n-6) and n-3 polyunsaturated fatty acids (PUFA), respectively, that are essential in our diet. LA and ALA are critical for the development of the fetal neurological and immune systems. However, in recent years, the consumption of n-6 PUFA has increased gradually worldwide, and elevated n-6 PUFA consumption may be harmful to human health. Consumption of diets with high levels of n-6 PUFA before or during pregnancy may have detrimental effects on fetal development and may influence overall health of offspring in adulthood. This review discusses the role of n-6 PUFA in fetal programming, the importance of a balance between n-6 and n-3 PUFAs in the maternal diet, and the need of further animal models and human studies that critically evaluate both n-6 and n-3 PUFA contents in diets.
Collapse
Affiliation(s)
- Nirajan Shrestha
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Simone L Sleep
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - James S M Cuffe
- School of Medical Science, Griffith University, Southport, Qld, Australia.,School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Olivia J Holland
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University, Southport, Qld, Australia
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.,University Research Facility in Behavioural and Systems Neuroscience, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St. Albans, Vic., Australia
| | - Deanne H Hryciw
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,School of Environment and Science, Griffith University, Nathan, Qld, Australia
| |
Collapse
|
24
|
Manta-Vogli PD, Schulpis KH, Dotsikas Y, Loukas YL. The significant role of carnitine and fatty acids during pregnancy, lactation and perinatal period. Nutritional support in specific groups of pregnant women. Clin Nutr 2019; 39:2337-2346. [PMID: 31732292 DOI: 10.1016/j.clnu.2019.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Pregnancy is characterized by a complexity of metabolic processes that may impact fetal health and development. Women's nutrition during pregnancy and lactation is considered important for both mother and infant. This review aims to investigate the significant role of fatty acids and carnitine during pregnancy and lactation in specific groups of pregnant and lactating women. METHODS The literature was reviewed using relevant data bases (e.g. Pubmed, Scopus, Science Direct) and relevant articles were selected to provide information and data for the text and associated Tables. RESULTS Dynamic features especially of plasma carnitine profile during pregnancy and lactation, indicate an extraordinarily active participation of carnitine in the intermediary metabolism both in pregnant woman and in neonate and may also have implications for health and disease later in life. Maternal diets rich in trans and saturated fatty acids can lead to impairments in the metabolism and development of the offspring, whereas the consumption of long chain-polyunsaturated fatty acids during pregnancy plays a beneficial physiologic and metabolic role in the health of offspring. CONCLUSIONS Pregnant women who are underweight, overweight or obese, with gestational diabetes mellitus or diabetes mellitus and those who choose vegan/vegetarian diets or are coming from socially disadvantaged areas, should be nutritionally supported to achieve a higher quality diet during pregnancy and/or lactation.
Collapse
Affiliation(s)
- Penelope D Manta-Vogli
- Department of Clinical Nutrition & Dietetics Agia Sofia Children's Hospital, Athens, Greece.
| | | | - Yannis Dotsikas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece.
| | - Yannis L Loukas
- Laboratory of Pharm. Analysis, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, GR-157 71, Athens, Greece.
| |
Collapse
|
25
|
Xing Y, Zhang W, Zhao H, Shen Z, Liang W, Zhou J, Shi L, Chen J, Zhong X, Tang S. Multi‑organ assessment via a 9.4‑Tesla MRS evaluation of metabolites during the embryonic development of cleft palate induced by dexamethasone. Mol Med Rep 2019; 20:3326-3336. [PMID: 31432193 PMCID: PMC6755240 DOI: 10.3892/mmr.2019.10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/19/2019] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to determine the association between maternal metabolism and development of the fetal palate, and to suggest a potential non‑invasive prenatal diagnostic method for fetal cleft palate (CP). Dexamethasone (DXM) was used to create a CP mouse model. A 9.4‑Tesla (T) magnetic resonance spectroscopy (MRS) imager was used to measure an array of metabolites in the maternal serum, placental tissue, amniotic fluid and fetal palates. Multivariate statistical analysis was performed using SIMCA‑P 14.1 software. Following DXM treatment, variations were detected in multiple metabolites in the female mice and their fetuses based on 9.4T MRS. It was indicated that in the experimental group during CP formation, leucine, valine, creatine, acetate and citrate levels in the palatal tissue were lower, whereas lactate, alanine, proline/inositol and glutamate‑containing metabolite levels were higher, compared with the levels in the control group. In placental tissue and amniotic fluid, succinate and choline levels were lower in the experimental group. The relative concentrations of cholesterol and lipids in palatal tissues from mice treated with DXM were higher compared with the concentrations in tissues from mice in the control group, with the exception of (CH2)n lipids. In the placental tissue, the alteration in cholesterol level exhibited the opposite trend. Lipid levels for the different lipid forms varied and most of them were unsaturated lipids.
Collapse
Affiliation(s)
- Yue Xing
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Wancong Zhang
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Hanxing Zhao
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Weijie Liang
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan 410013, P.R. China
| | - Lungang Shi
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jiasheng Chen
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiaoping Zhong
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Shijie Tang, Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia Road, Shantou, Guangdong 515041, P.R. China, E-mail: ;
| |
Collapse
|
26
|
Marchioro L, Geraghty AA, Uhl O, Shokry E, O'Brien EC, Koletzko B, McAuliffe FM. Effect of a low glycaemic index diet during pregnancy on maternal and cord blood metabolomic profiles: results from the ROLO randomized controlled trial. Nutr Metab (Lond) 2019; 16:59. [PMID: 31467584 PMCID: PMC6712779 DOI: 10.1186/s12986-019-0378-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 11/10/2022] Open
Abstract
Background Elevated post-prandial blood glucose during pregnancy has been associated with adverse pregnancy and offspring outcomes, such as maternal gestational diabetes and excessive foetal growth. The ROLO Study is a randomized controlled trial (RCT) investigating the effect of a low glycaemic index (GI) diet in pregnancy to prevent foetal macrosomia (birth weight > 4000 g). We described the impact of a low-GI diet on the maternal and feto-placental unit metabolism by studying how the ROLO intervention affected maternal and cord blood metabolomes. Methods Fasting maternal plasma samples pre- and post-intervention of 51 pregnant women and 132 cord blood samples were measured with a targeted metabolomics approach using liquid-chromatography coupled to tandem mass spectrometry. The differences between RCT groups were explored via multivariate models with covariates correction. Significance was set at Bonferroni-corrected level of 0.05. Results A total of 262 metabolites species, sums and ratios were investigated. While no metabolite reached statistical significance after Bonferroni correction, many maternal phospholipids and acylcarnitines were elevated in the intervention group at uncorrected 0.05 alpha level. Most species contained saturated and monounsaturated fatty acid chains with 16 or 18 carbon atoms. In cord blood, no differences were identified between RCT groups. Conclusions A low-GI diet in pregnancy was associated with a trend to modest but consistent changes in maternal lipid and fatty acid metabolism. The intervention seemed not to affect foetal metabolism. Our exploratory findings may be used to direct further investigations about low GI diets before and during pregnancy, to improve patient care for pre-conceptional and pregnant women with lipid dysregulations and potentially modulate the offspring's risk for future metabolic diseases. Trial registration Current Controlled Trials ISRCTN54392969.
Collapse
Affiliation(s)
- Linda Marchioro
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, University hospital, LMU Munich, Lindwurmstraße 4, D-80337 Munich, Germany
| | - Aisling A Geraghty
- 2UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Olaf Uhl
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, University hospital, LMU Munich, Lindwurmstraße 4, D-80337 Munich, Germany
| | - Engy Shokry
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, University hospital, LMU Munich, Lindwurmstraße 4, D-80337 Munich, Germany
| | - Eileen C O'Brien
- 2UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department of Paediatrics, Dr. von Hauner Children's Hospital, University hospital, LMU Munich, Lindwurmstraße 4, D-80337 Munich, Germany
| | - Fionnuala M McAuliffe
- 2UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| |
Collapse
|
27
|
Gázquez A, Prieto-Sánchez MT, Blanco-Carnero JE, van Harskamp D, Perazzolo S, Oosterink JE, Demmelmair H, Schierbeek H, Sengers BG, Lewis RM, van Goudoever JB, Koletzko B, Larqué E. In vivo kinetic study of materno-fetal fatty acid transfer in obese and normal weight pregnant women. J Physiol 2019; 597:4959-4973. [PMID: 31287560 DOI: 10.1113/jp278146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Placental structure and function can be modified as a result of maternal obesity affecting materno-fetal fatty acids (FA) transport. We report for the first time, in humans and in vivo, the kinetics of placental FA transfer in normo-weight and in normolipemic obese pregnant women using stable isotopes. The administration of different tracer FA with similar behaviour to the mother at different time points allows the collection of kinetic information on materno-fetal transfer of FA despite only one sample of placenta and cord can be collected per subject. Computational modelling showed a good fit to the data when considering all maternal plasma lipid classes but not when based only on non-esterified FA. The novel approach using multiple tracer FA administration combined with computational modelling shows a consistent time course of placental tracer FA and predicted total FA accumulation. ABSTRACT We analyse for the first time the in vivo materno-fetal kinetic transfer of fatty acids (FA) labelled with stable isotopes in control and obese (OB) pregnant women. Labelled FA with a similar metabolism (stearic acid: 13 C-SA; palmitic acid: 13 C-PA; oleic acid: 13 C-OA) were orally administered at -4 h, -8 h and -12 h, respectively prior to elective caesarean section to 10 pregnant women with a body mass index >30 (OB) and 10 with a body mass index in the range 20-25 (NW). Placenta, venous and arterial cord blood were collected obtaining a wide range of FA enrichments. A combined experimental and computational modelling analysis was applied. FA fractional synthesis rate (FSR) in placenta was 11-12% h-1 . No differences were observed between NW and normo-lipidemic OB. It was not possible to estimate FA FSR in cord blood with this oral bolus dose approach. Computational modelling demonstrated a good fit to the data when all maternal plasma lipid classes were included but not with modelling based only on the non-esterified FA fraction. The estimated materno-fetal 13 C-FA transfer was ∼1%. In conclusion, our approach using multiple 13 C-FA tracers allowed us to estimated FSR in placental/maternal plasma but not in fetal/maternal compartments. Computational modelling showed a consistent time course of placental 13 C-FA transfer and predicted total fetal FA accumulation during the experiment. We conclude that, in addition to non-esterified FA fraction in the maternal circulation, maternal plasma very low-density lipoprotein and other lipoproteins are important contributors to placental FA transfer to the fetus.
Collapse
Affiliation(s)
- Antonio Gázquez
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, Murcia, Spain.,LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - María T Prieto-Sánchez
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, Murcia, Spain
| | - José E Blanco-Carnero
- Obstetrics and Gynecology Service, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, Murcia, Spain
| | - Dewi van Harskamp
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Simone Perazzolo
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - J Efraim Oosterink
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Hans Demmelmair
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Henk Schierbeek
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Bram G Sengers
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rohan M Lewis
- Institute for Life Sciences, University of Southampton, Southampton, UK.,University of Southampton, Faculty of Medicine, Southampton, UK
| | - Johannes B van Goudoever
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands.,Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK.,University of Southampton, Faculty of Medicine, Southampton, UK.,Department of Paediatrics, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Berthold Koletzko
- LMU - Ludwig-Maximilians-Universität Munich, Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Germany
| | - Elvira Larqué
- Department of Physiology, School of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de la Arrixaca', University of Murcia, Murcia, Spain
| |
Collapse
|
28
|
Maternal Omega-3 Nutrition, Placental Transfer and Fetal Brain Development in Gestational Diabetes and Preeclampsia. Nutrients 2019; 11:nu11051107. [PMID: 31109059 PMCID: PMC6567027 DOI: 10.3390/nu11051107] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Omega-3 fatty acids, particularly docosahexaenoic fatty acid (DHA), are widely recognized to impact fetal and infant neurodevelopment. The impact of DHA on brain development, and its inefficient synthesis from the essential alpha-linolenic acid (ALA), has led to recommended DHA intakes of 250-375 mg eicosapentaenoic acid + DHA/day for pregnant and lactating women by the Dietary Guidelines for Americans. Despite these recommendations, the intake of omega-3s in women of child-bearing age in the US remains very low. The low maternal status of DHA prior to pregnancy could impair fetal neurodevelopment. This review focuses on maternal omega-3 status in conditions of gestational diabetes mellitus (GDM) and preeclampsia, and the subsequent impact on placental transfer and cord blood concentration of omega-3s. Both GDM and preeclampsia are associated with altered maternal omega-3 status, altered placental omega-3 metabolism, reduced cord blood omega-3 levels and have an impact on neurodevelopment in the infant and on brain health later in life. These findings indicate lower DHA exposure of the developing baby may be driven by lower placental transfer in both conditions. Thus, determining approaches which facilitate increased delivery of DHA during pregnancy and early development might positively impact brain development in infants born to mothers with these diseases.
Collapse
|
29
|
Placental secretion of apolipoprotein A1 and E: the anti-atherogenic impact of the placenta. Sci Rep 2019; 9:6225. [PMID: 30996342 PMCID: PMC6470155 DOI: 10.1038/s41598-019-42522-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
High levels of atherogenic lipids in pregnancy are associated with health complications for the mother, the fetus and the newborn. As endocrine secretory tissue, the human placenta releases apolipoproteins (apos), particularly apoA1 and apoE. However, the magnitude and the directionality of the apo secretions remain unknown. We aimed to 1) determine the amount and orientation (apical-maternal versus basal-fetal) of placentally secreted apoA1 and apoE using human perfused placenta and primary trophoblast cell (PTC) culture, 2) compare apoA1 and apoE secretions of PTC with that of hepatocytes and 3) associate the obtained results with human blood levels by determining apoA1 and apoE concentrations in maternal and fetal serum samples. In perfused placenta and serum samples, apoA1 and apoE concentrations were significantly higher at the maternal compared to the fetal side. For apoE a similar trend was found in PTC. For apoA1, the secretion to the apical side declined over time while release to the basal side was stable resulting in significantly different apoA1 concentrations between both sides. Unexpectedly, PTC secreted significantly higher amounts of apoA1 and apoE compared to hepatocytes. Our data indicate that the placenta may play an important role in maternal and fetal cholesterol homeostasis via secretion of anti-atherogenic apos.
Collapse
|
30
|
Elshani B, Kotori V, Daci A. Role of omega-3 polyunsaturated fatty acids in gestational diabetes, maternal and fetal insights: current use and future directions. J Matern Fetal Neonatal Med 2019; 34:124-136. [PMID: 30857450 DOI: 10.1080/14767058.2019.1593361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ω-3-Polyunsaturated fatty acids (ω-3 PUFAs) are widely used during pregnancy and gestational diabetes mellitus (GDM). ω-3 PUFAs are beneficial in the regulation of maternal and fetal metabolic function, inflammation, immunity, macrosomia (MAC), oxidative stress, preeclampsia, intrauterine growth, preterm birth, offspring metabolic function, and neurodevelopment. Dietary counseling is vital for improving therapeutic outcomes in patients with GDM. In maternal circulation, ω-3 PUFAs are transported via transporters, synthesis enzymes, and intracellular proteins, which activate nuclear receptors and play central roles in the cellular metabolic processes of placental trophoblasts. In patients with GDM, this process is compromised due to abnormal functioning of the placenta, which disrupts the normal mother to fetus transport. This results in reduced fetal levels of ω-3 PUFAs, which contributes negatively to fetal growth, metabolic function, and development. Dietary counseling and nutritional assessment remain challenging in the prevention and alleviation of GDM. Therefore, personalized approaches, including measurement of the ω-3 index, pharmacogenetic implementation strategies, and appropriate supplementation with ω-3 PUFAs are used to achieve sufficient distribution in the maternal and fetal fluids during the entire pregnancy period. Developing new dosing guidelines and personalized approaches, determining the mechanisms of ω-3 PUFAs in the placenta, and examining the pharmacodynamic and pharmacokinetics interactions involving ω-3 PUFAs will lead to better management and increase the quality of life of patients with GDM and their offspring. Moreover, different strategies for supplementing with ω-3 PUFAs, improving their placental transport, and pharmacological exploration of the maternal-fetal interactions will help to further elucidate the role of ω-3 PUFAs in women with GDM. In this review, we summarize the current information on the potential therapeutic benefits and clinical applicability of ω-3 PUFAs in patients with GDM and their offspring, highlighting recent progress and future perspectives in this field. Studies investigating the mechanisms of ω-3 PUFA transport to targeted tissues have spurred an interest in personalized treatment strategies for patients with GDM and their offspring. To implement such therapies, we need to clarify the index/ratio of ω-3 PUFAs in maternal and fetal fluids, delineate the ω-3 PUFA transport pathways, and establish the guidelines for FA profiling prepregnancy and during pregnancy-associated weight gain. Such therapies also need to take into account the gender of the fetus, and whether the patient is obese.
Collapse
Affiliation(s)
- Brikene Elshani
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Vjosa Kotori
- Department of Endocrinology, Pediatric Clinic, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|
31
|
Gotardo AT, Mattos MIDS, Hueza IM, Górniak SL. The effect of Cynara scolymus (artichoke) on maternal reproductive outcomes and fetal development in rats. Regul Toxicol Pharmacol 2019; 102:74-78. [PMID: 30611817 DOI: 10.1016/j.yrtph.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 11/18/2022]
Abstract
Cynara scolymus (C.scolymus) is a plant employed worldwide as an herbal medicine. However, there is a paucity of data related to the evaluation of its toxicity in commercial preparations; thus, the aim of this study was to evaluate the possible teratogenic effect of the dry extract of C.scolymus leaves in Wistar rats. Females were treated, from gestation day (GD) 6 until GD19, with 0.0, 1.0, 2.0 or 4.0 g/kg body weight of C.scolymus extract. At GD20, a cesarean section was performed for evaluation of maternal and fetal parameters. C.scolymus did not induce changes in food consumption, preimplantation or postimplantation losses, placental weight or biochemical profile. An increase in water consumption was observed in pregnant females treated with the higher doses of C.scolymus. Experimental groups showed lower body weight gain during pregnancy and lower gravid uterus weight. Maternal body weight minus the gravid uterus weight did not result in significant differences. Reductions in fetal weight and length were observed in experimental groups. The number of live pups per litter was lower in the highest dose group. No fetal skeletal or visceral malformations were detected. The results showed that the consumption of artichoke during pregnancy clearly has a negative impact on fetuses.
Collapse
Affiliation(s)
- André Tadeu Gotardo
- Research Centre for Veterinary Toxicology (CEPTOX) - Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 05508-270, SP, Brazil
| | - Maria Izabel da Silva Mattos
- Research Centre for Veterinary Toxicology (CEPTOX) - Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 05508-270, SP, Brazil
| | - Isis Machado Hueza
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Campus Diadema, Diadema, Brazil
| | - Silvana Lima Górniak
- Research Centre for Veterinary Toxicology (CEPTOX) - Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 05508-270, SP, Brazil.
| |
Collapse
|
32
|
Bildirici I, Schaiff WT, Chen B, Morizane M, Oh SY, O’Brien M, Sonnenberg-Hirche C, Chu T, Barak Y, Nelson DM, Sadovsky Y. PLIN2 Is Essential for Trophoblastic Lipid Droplet Accumulation and Cell Survival During Hypoxia. Endocrinology 2018; 159:3937-3949. [PMID: 30351430 PMCID: PMC6240902 DOI: 10.1210/en.2018-00752] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Trophoblast hypoxia and injury, key components of placental dysfunction, are associated with fetal growth restriction and other complications of pregnancy. Accumulation of lipid droplets has been found in hypoxic nonplacental cells. Unique to pregnancy, lipid accumulation in the placenta might perturb lipid transport to the fetus. We tested the hypothesis that hypoxia leads to accumulation of lipid droplets in human trophoblasts and that trophoblastic PLIN proteins play a key role in this process. We found that hypoxia promotes the accumulation of lipid droplets in primary human trophoblasts. A similar accretion of lipid droplets was found in placental villi in vivo from pregnancies complicated by fetal growth restriction. In both situations, these changes were associated with an increased level of cellular triglycerides. Exposure of trophoblasts to hypoxia led to reduced fatty acid efflux and oxidation with no change in fatty acid uptake or synthesis. We further found that hypoxia markedly stimulated PLIN2 mRNA synthesis and protein expression, which colocalized to lipid droplets. Knockdown of PLIN2, but not PLIN3, enhanced trophoblast apoptotic death, and overexpression of PLIN2 promoted cell viability. Collectively, our data indicate that hypoxia enhances trophoblastic lipid retention in the form of lipid droplets and that PLIN2 plays a key role in this process and in trophoblast defense against apoptotic death. These findings also imply that this protective mechanism may lead to diminished trafficking of lipids to the developing fetus.
Collapse
Affiliation(s)
- Ibrahim Bildirici
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri
| | - W Timothy Schaiff
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri
| | - Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri
| | - Mayumi Morizane
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Soo-Young Oh
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew O’Brien
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Tianjiao Chu
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yaacov Barak
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - D Michael Nelson
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence: Yoel Sadovsky, MD, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, Pennsylvania 15213. E-mail:
| |
Collapse
|
33
|
Tyurina YY, Shrivastava I, Tyurin VA, Mao G, Dar HH, Watkins S, Epperly M, Bahar I, Shvedova AA, Pitt B, Wenzel SE, Mallampalli RK, Sadovsky Y, Gabrilovich D, Greenberger JS, Bayır H, Kagan VE. "Only a Life Lived for Others Is Worth Living": Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxid Redox Signal 2018; 29:1333-1358. [PMID: 28835115 PMCID: PMC6157439 DOI: 10.1089/ars.2017.7124] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Oxygenated polyunsaturated lipids are known to play multi-functional roles as essential signals coordinating metabolism and physiology. Among them are well-studied eicosanoids and docosanoids that are generated via phospholipase A2 hydrolysis of membrane phospholipids and subsequent oxygenation of free polyunsaturated fatty acids (PUFA) by cyclooxygenases and lipoxygenases. Recent Advances: There is an emerging understanding that oxygenated PUFA-phospholipids also represent a rich signaling language with yet-to-be-deciphered details of the execution machinery-oxygenating enzymes, regulators, and receptors. Both free and esterified oxygenated PUFA signals are generated in cells, and their cross-talk and inter-conversion through the de-acylation/re-acylation reactions is not sufficiently explored. CRITICAL ISSUES Here, we review recent data related to oxygenated phospholipids as important damage signals that trigger programmed cell death pathways to eliminate irreparably injured cells and preserve the health of multicellular environments. We discuss the mechanisms underlying the trans-membrane redistribution and generation of oxygenated cardiolipins in mitochondria by cytochrome c as pro-apoptotic signals. We also consider the role of oxygenated phosphatidylethanolamines as proximate pro-ferroptotic signals. FUTURE DIRECTIONS We highlight the importance of sequential processes of phospholipid oxygenation and signaling in disease contexts as opportunities to use their regulatory mechanisms for the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Yulia Y. Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Indira Shrivastava
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gaowei Mao
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haider H. Dar
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon Watkins
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Epperly
- Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anna A. Shvedova
- Exposure Assessment Branch/NIOSH/CDC, West Virginia University, Morgantown, West Virginia
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Bruce Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sally E. Wenzel
- Department of Medicine, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Asthma Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rama K. Mallampalli
- Department of Medicine, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoel Sadovsky
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Wadhwani N, Patil V, Joshi S. Maternal long chain polyunsaturated fatty acid status and pregnancy complications. Prostaglandins Leukot Essent Fatty Acids 2018; 136:143-152. [PMID: 28888333 DOI: 10.1016/j.plefa.2017.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022]
Abstract
Maternal nutrition plays a crucial role in influencing fetal growth and birth outcome. Any nutritional insult starting several weeks before pregnancy and during critical periods of gestation is known to influence fetal development and increase the risk for diseases during later life. Literature suggests that chronic adult diseases may have their origin during early life - a concept referred to as Developmental Origins of Health and Disease (DOHaD) which states that adverse exposures early in life "program" risks for later chronic disorders. Long chain polyunsaturated fatty acids (LCPUFA), mainly omega-6 and omega-3 fatty acids are known to have an effect on fetal programming. The placental supply of optimal levels of LCPUFA to the fetus during early life is extremely important for the normal growth and development of both placenta and fetus. Any alteration in placental development will result in adverse pregnancy outcome such as gestational diabetes mellitus (GDM), preeclampsia, and intrauterine growth restriction (IUGR). A disturbed materno-fetal LCPUFA supply is known to be linked with each of these pathologies. Further, a disturbed LCPUFA metabolism is reported to be associated with a number of metabolic disorders. It is likely that LCPUFA supplementation during early pregnancy may be beneficial in improving the health of the mother, improving birth outcome and thereby reducing the risk of diseases in later life.
Collapse
Affiliation(s)
- Nisha Wadhwani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune Satara Road, Pune 411043, India
| | - Vidya Patil
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune Satara Road, Pune 411043, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|
35
|
Bernard JY, Pan H, Aris IM, Moreno-Betancur M, Soh SE, Yap F, Tan KH, Shek LP, Chong YS, Gluckman PD, Calder PC, Godfrey KM, Chong MFF, Kramer MS, Karnani N, Lee YS. Long-chain polyunsaturated fatty acids, gestation duration, and birth size: a Mendelian randomization study using fatty acid desaturase variants. Am J Clin Nutr 2018; 108:92-100. [PMID: 29878044 PMCID: PMC6038907 DOI: 10.1093/ajcn/nqy079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/23/2018] [Indexed: 11/12/2022] Open
Abstract
Background In randomized trials, supplementation of n-3 (ω-3) long-chain polyunsaturated fatty acids (LC-PUFAs) during pregnancy has resulted in increased size at birth, which is attributable to longer gestation. Objective We examined this finding by using a Mendelian randomization approach utilizing fatty acid desaturase (FADS) gene variants affecting LC-PUFA metabolism. Design As part of a tri-ethnic mother-offspring cohort in Singapore, 35 genetic variants in FADS1, FADS2, and FADS3 were genotyped in 898 mothers and 1103 offspring. Maternal plasma n-3 and n-6 PUFA concentrations at 26-28 wk of gestation were measured. Gestation duration was derived from an ultrasound dating scan in early pregnancy and from birth date. Birth length and weight were measured. Eight FADS variants were selected through a tagging-SNP approach and examined in association with PUFA concentrations, gestation duration among spontaneous labors, and birth size with the use of ethnicity-adjusted linear regressions and survival models that accounted for the competing risks of induced labor and prelabor cesarean delivery. Results Maternal FADS1 variant rs174546, tagging for 8 other variants located on FADS1 and FADS2, was strongly related to plasma n-6 but not n-3 LC-PUFA concentrations. Offspring and maternal FADS3 variants were associated with gestation duration among women who had spontaneous labor: each copy of rs174450 minor allele C was associated with a shorter gestation by 2.2 d (95% CI: 0.9, 3.4 d) and 1.9 d (0.7, 3.0 d) for maternal and offspring variants, respectively. In survival models, rs174450 minor allele homozygotes had reduced time to delivery after spontaneous labor compared with major allele homozygotes [HR (95% CI): 1.51 (1.18, 1.95) and 1.51 (1.20, 1.89) for mothers and offspring, respectively]. Conclusions With the use of a Mendelian randomization approach, we observed associations between FADS variants and gestation duration. This suggests a potential role of LC-PUFAs in gestation duration. This trial was registered at http://www.clinicaltrials.gov as NCT01174875.
Collapse
Affiliation(s)
- Jonathan Y. Bernard
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL)
| | - Hong Pan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL)
| | - Izzuddin M. Aris
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL)
| | - Margarita Moreno-Betancur
- Clinical Epidemiology and Biostatistics Unit, Murdoch Childrens Research Institute, Melbourne, Australia (MMB),Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia (MMB)
| | - Shu-E Soh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL),Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (SES, LPS, YSL)
| | - Fabian Yap
- Department of Paediatric Endocrinology, KK Women's and Children's Hospital, Singapore (FY)
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore (KHT),Duke-NUS Medical School, Singapore (KHT)
| | - Lynette P. Shek
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL),Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (SES, LPS, YSL),Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore (LPS, YSL)
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL),Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (YSC, MSK)
| | - Peter D. Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL),Liggins Institute, University of Auckland, Auckland, New Zealand (PDG)
| | - Philip C. Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom (PCC, KMG),NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (PCC, KMG)
| | - Keith M. Godfrey
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom (PCC, KMG),NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom (PCC, KMG),Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom (KMG)
| | - Mary Foong-Fong Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL),Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences, Centre for Translational Medicine, Singapore (MFFC),Saw Swee Hock School of Public Health, National University of Singapore, Singapore (MFFC)
| | - Michael S. Kramer
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (YSC, MSK),Departments of Pediatrics and of Epidemiology, Biostatistics and Occupational Health, McGill University Faculty of Medicine, Montreal, Quebec, Canada (MSK)
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL),Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (NK)
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore (JYB, HP, IMA, SES, LPS, YSC, PDG, MFFC, NK, YSL),Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (SES, LPS, YSL),Khoo Teck Puat - National University Children’s Medical Institute, National University Health System, Singapore (LPS, YSL)
| |
Collapse
|
36
|
Barrera C, Valenzuela R, Chamorro R, Bascuñán K, Sandoval J, Sabag N, Valenzuela F, Valencia MP, Puigrredon C, Valenzuela A. The Impact of Maternal Diet during Pregnancy and Lactation on the Fatty Acid Composition of Erythrocytes and Breast Milk of Chilean Women. Nutrients 2018; 10:nu10070839. [PMID: 29958393 PMCID: PMC6073898 DOI: 10.3390/nu10070839] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022] Open
Abstract
Maternal diet during pregnancy is relevant for fatty acid supply during fetal life and lactation. Arachidonic (AA) and docosahexaenoic (DHA) acids are also relevant for the normal growth and development of brain and visual system. AA and DHA provided by the mother to the fetus and infant are directly associated with maternal dietary intake and body stores. Our aim was to evaluate the impact of maternal diet, specially referring to the quality of fatty acid intake, in a sample of Chilean women during last stage of pregnancy and across the lactation period. Fifty healthy pregnant women (age range 20–33 years) were studied from the 6th month of pregnancy and followed until 6th month of lactation period. Diet characteristics were evaluated through food frequency questionnaires. Fatty acids composition of erythrocyte phospholipids and breast milk samples was assessed by gas-liquid chromatography. Overall, women had high saturated fatty acids intake with sufficient intake of mono- and polyunsaturated fatty acids (PUFA). Diet was high in n-6 PUFA and low in n-3 PUFA (mainly DHA), with imbalanced n-6/n-3 PUFA ratio. Erythrocytes and breast milk DHA concentration was significantly reduced during lactation compared to pregnancy, a pattern not observed for AA. We concluded that is necessary to increase the intake of n-3 PUFA during pregnancy and lactation by improving the quality of consumed foods with particular emphasis on its DHA content.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Casilla 70000, Santiago 8380453, Chile.
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Casilla 70000, Santiago 8380453, Chile.
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano 5524, Macul, Santiago 8380453, Chile.
| | - Rodrigo Chamorro
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Casilla 70000, Santiago 8380453, Chile.
| | - Karla Bascuñán
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Casilla 70000, Santiago 8380453, Chile.
| | - Jorge Sandoval
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano 5524, Macul, Santiago 8380453, Chile.
- Obstetrics and Gynecology Department, Clinical Hospital of the University of Chile, Av. Santos Dumont 999, Independencia, Santiago 8380453, Chile.
| | - Natalia Sabag
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Casilla 70000, Santiago 8380453, Chile.
| | - Francesca Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Casilla 70000, Santiago 8380453, Chile.
| | - María-Paz Valencia
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Casilla 70000, Santiago 8380453, Chile.
| | - Claudia Puigrredon
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano 5524, Macul, Santiago 8380453, Chile.
- Obstetrics and Gynecology Department, Clinical Hospital of the University of Chile, Av. Santos Dumont 999, Independencia, Santiago 8380453, Chile.
| | - Alfonso Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Av. El Líbano 5524, Macul, Santiago 8380453, Chile.
| |
Collapse
|
37
|
Abstract
Once based mainly in paediatrics, inborn errors of metabolism (IEM), or inherited metabolic disorders (IMD) represent a growing adult medicine specialty. Individually rare these conditions have currently, a collective estimated prevalence of >1:800. Diagnosis has improved through expanded newborn screening programs, identification of potentially affected family members and greater awareness of symptomatic presentations in adolescence and in adulthood. Better survival and reduced mortality from previously lethal and debilitating conditions means greater numbers transition to adulthood. Pregnancy, once contraindicated for many, may represent a challenging but successful outcome. Successful pregnancies are now reported in a wide range of IEM. Significant challenges remain, given the biological stresses of pregnancy, parturition and the puerperium. Known diagnoses allow preventive and pre-emptive management. Unrecognized metabolic disorders especially, remain a preventable cause of maternal and neonatal mortality and morbidity. Increased awareness of these conditions amongst all clinicians is essential to expedite diagnosis and manage appropriately. This review aims to describe normal adaptations to pregnancy and discuss how various types of IEM may be affected. Relevant translational research and clinical experience will be reviewed with practical management aspects cited. Based on current literature, the impact of maternal IEM on mother and/or foetus, as well as how foetal IEM may affect the mother, will be considered. Insights gained from these rare disorders to more common conditions will be explored. Gaps in the literature, unanswered questions and steps to enhance further knowledge and systematically capture experience, such as establishment of an IEM-pregnancy registry, will be summarized.
Collapse
Affiliation(s)
- Gisela Wilcox
- School of Medical Sciences, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK.
- The Mark Holland Metabolic Unit, Salford Royal Foundation NHS Trust, Salford, Greater Manchester, M6 8HD, UK.
| |
Collapse
|
38
|
Abstract
The human placenta is responsible for the adequate supply of nutrients essential for proper embryonic and fetal development such as glucose, amino acids, and lipids. Processes involved in the placental transport of these nutrients are complex and tightly regulated and involve many transporters, receptors, and regulators. In this chapter, we describe the current methods to study the impact of maternal metabolic disorders on key players of human placental transfer of nutrients.
Collapse
Affiliation(s)
- Evemie Dubé
- Laboratoire de Physiologie Marterno-Fœtale, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, QC, Canada, H3C3P8
| | - Guillaume Desparois
- Laboratoire de Physiologie Marterno-Fœtale, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, QC, Canada, H3C3P8
| | - Julie Lafond
- Laboratoire de Physiologie Marterno-Fœtale, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, QC, Canada, H3C3P8.
| |
Collapse
|
39
|
DHA supplementation during pregnancy as phospholipids or TAG produces different placental uptake but similar fetal brain accretion in neonatal piglets. Br J Nutr 2017; 118:981-988. [DOI: 10.1017/s0007114517002951] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThe great variety of n-3 long-chain PUFA sources raises the question of the most adequate for using as a DHA supplement during pregnancy. Placental and fetal availability of different DHA sources remains unclear. We investigated DHA availability in maternal lipoproteins, placenta and fetal tissues in pregnant sows fed DHA as phospholipid (PL) or TAG to identify the best DHA source during this period. Pregnant Iberian sows were fed diets containing 0·8 % DHA of total fatty acids as PL from egg yolk or TAG from algae oil during the last third of gestation (40 d). Maternal tissues, placentas and fetal tissues were obtained at delivery and DHA quantified by GC. Major Facilitator Superfamily Domain Containing 2a (MFSD2a) carrier expression was analysed in both placenta and fetal brain by Western blotting. Sows fed the DHA–PL diet showed higher DHA incorporation in plasma LDL but not in plasma total lipids. No differences were found in DHA content between groups in maternal liver, adipose tissue or brain. Placental tissue incorporated more DHA in both total lipids and PL fraction in sows fed DHA–PL. However, this did not lead to an enhanced DHA accretion either in fetal plasma, fetal liver or fetal brain. MFSD2a expression was similar between both experimental groups. Maternal DHA supplementation during pregnancy in sow either as PL or TAG produces similar DHA accretion in fetal tissues but not in placenta. Both fat sources are equally available for fetal brain.
Collapse
|
40
|
Assumpção RP, Mucci DB, Fonseca FCP, Marcondes H, Sardinha FLC, Citelli M, Tavares do Carmo MG. Fatty acid profile of maternal and fetal erythrocytes and placental expression of fatty acid transport proteins in normal and intrauterine growth restriction pregnancies. Prostaglandins Leukot Essent Fatty Acids 2017; 125:24-31. [PMID: 28987718 DOI: 10.1016/j.plefa.2017.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/19/2017] [Accepted: 08/21/2017] [Indexed: 02/02/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFA), mainly docosahexaenoic (DHA) and arachidonic acids (AA), are critical for adequate fetal growth and development. We investigated mRNA expression of proteins involved in hydrolysis, uptake and/or transport of fatty acids in placenta of fifteen full term normal pregnancies and eleven pregnancies complicated by intrauterine growth restriction (IUGR) with normal umbilical blood flows. The mRNA expression of LPL, FATPs (-1, -2 and -4) and FABPs (-1 and -3) was increased in IUGR placentas, however, tissue profile of LC-PUFA was not different between groups. Erythrocytes from both mothers and fetuses of the IUGR group showed lower concentrations of AA and DHA and inferior DHA/ALA ratio compared to normal pregnancies (P < 0.05). We hypothesize that reduced circulating levels of AA and DHA could up-regulate mRNA expression of placental fatty acids transporters, as a compensatory mechanism, however this failed to sustain normal LC-PUFA supply to the fetus in IUGR.
Collapse
Affiliation(s)
- Renata P Assumpção
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniela B Mucci
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda C P Fonseca
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Henrique Marcondes
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fátima L C Sardinha
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marta Citelli
- Departamento de Nutrição Básica e Experimental, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria G Tavares do Carmo
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
41
|
Benaim C, Freitas-Vilela AA, Pinto TDJP, Lepsch J, Farias DR, Dos Santos Vaz J, El-Bacha T, Kac G. Early pregnancy body mass index modifies the association of pre-pregnancy dietary patterns with serum polyunsaturated fatty acid concentrations throughout pregnancy in Brazilian women. MATERNAL AND CHILD NUTRITION 2017. [PMID: 28635163 DOI: 10.1111/mcn.12480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dietary patterns (DPs) have been described as an important factor that may influence polyunsaturated fatty acid (PUFA) concentrations and body mass index (BMI) during pregnancy. We aim to evaluate the association between pre-pregnancy DPs and serum PUFA percentages throughout pregnancy considering early pregnancy BMI as a possible effect modifier. A prospective cohort of 154 pregnant women was followed (5th-13th, 20th-26th, and 30th-36th gestational weeks). Serum PUFA concentrations (total n-3 and total n-6, eicosapentaenoic + docosahexaenoic acids) were measured in each trimester and expressed as percentages. The n-6/n-3 ratio was calculated. Longitudinal linear mixed-effects models including interaction terms between DPs and early pregnancy BMI were employed. Serum PUFA percentages declined, whereas the n-6/n-3 ratio, monounsaturated, and saturated percentages increased throughout pregnancy for all BMI categories. Three pre-pregnancy DPs were identified by principal component analysis (common Brazilian, healthy, and processed). Overweight women with higher adherence to the common-Brazilian and to the healthy DPs presented reduced n-3 PUFA percentage and increased n-6 percentages and n-6/n-3 ratio compared to under or normal weight women. Obese women with higher adherence to the processed DP presented a more pronounced decrease of total n-3 percentage compared to under or normal weight women. Early pregnancy BMI modified the effect of pre-pregnancy DPs on PUFA profile throughout gestation. Higher adherence to the healthy pattern was associated with increased n-3 percentage, except for overweight women. Only for processed DP was the behaviour of PUFA the same for all BMI categories, showing a worse evolution profile, that is, increased n-6 and reduced n-3 fractions.
Collapse
Affiliation(s)
- Camila Benaim
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,Post-Graduate Program in Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Ana Amélia Freitas-Vilela
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | | | - Jaqueline Lepsch
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,Post-Graduate Program in Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Dayana Rodrigues Farias
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.,Post-Graduate Program in Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | | | - Tatiana El-Bacha
- Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Gilberto Kac
- Nutritional Epidemiology Observatory, Department of Social and Applied Nutrition, Institute of Nutrition Josué de Castro, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Gallo L, Barrett H, Dekker Nitert M. Review: Placental transport and metabolism of energy substrates in maternal obesity and diabetes. Placenta 2017; 54:59-67. [DOI: 10.1016/j.placenta.2016.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 11/29/2022]
|
43
|
Abstract
INTRODUCTION Fetal macrosomia in gestational diabetes mellitus is contributed to by compensatory fetal mechanisms responding to alterations in maternal metabolism. OBJECTIVES To compare FFA and blood glucose concentrations of newborns derived from healthy and hyperglycemic mothers. METHODS Prospective study included two equal groups of term newborns (50) from GDM and healthy mothers. Blood was derived from umbilical and cubital vein of mothers immediately after birth. RESULTS The mean FFA concentration of mothers did not differ whereas in infants of GDM mothers FFA were significantly lower. A significant correlation was found between FFA levels of healthy mothers and their newborns (p < 0.05). No such correlation was found in GDM group (p > 0.05). A significant correlation was found between mother's and newborn's glycemia (p < 0.05) in both groups. CONCLUSION Suppression of FFA acids in newborn blood of mothers with GDM may represent the lipogenic and antilipolytic activity of the fetus.
Collapse
Affiliation(s)
- Miljana Z Jovandaric
- a Clinic for Gynecology and Obstetrics, Department of Neonatology , Clinical Center of Serbia , Belgrade , Serbia
| | - Petar I Ivanovski
- b Department of Hematology , School of Medicine, University Children's Hospital, University of Belgrade , Belgrade , Serbia
| |
Collapse
|
44
|
Ferchaud-Roucher V, Rudolph MC, Jansson T, Powell TL. Fatty acid and lipid profiles in primary human trophoblast over 90h in culture. Prostaglandins Leukot Essent Fatty Acids 2017; 121:14-20. [PMID: 28651693 DOI: 10.1016/j.plefa.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
Abstract
Little is known about the mechanisms underlying the preferential transport of long chain polyunsaturated fatty acids (LCPUFA) to the fetus by the syncytiotrophoblast and the role of cytotrophoblasts in placental lipid metabolism and transport. We studied primary human trophoblast (PHT) cells cultured for 90h to determine the fatty acid and lipid composition of cytotrophoblast (18h culture) and syncytiotrophoblast (90h culture) cells. In cultured PHT total lipid fatty acids were significantly (P < 0.05) reduced at 90h compared to 18h in culture including lower levels of palmitic acid (PA, 16:0, -37%), palmitoleic acid (POA, 16:1n-7, -30%), oleic acid (OA, 18:1n-9, -31%), LCPUFA arachidonic acid (AA, 20:4n-6, -28%) and α-linolenic acid (ALA, 18:3n-3, -55%). In major lipid classes, OA and most of the n-3 and n-6 LCPUFA were markedly lower at 90h in TG (-57 to -76%; p < 0.05). In the cellular NEFA, n-6 LCPUFA, dihomo-γ-linolenic acid (DGLA, 20:3n-6) and AA were both reduced by -51% and DHA was -55% lower (p < 0.05) at 90h. In contrast, phospholipid FA content did not change between cytotrophoblasts and syncytiotrophoblast except for OA, which decreased by -62% (p < 0.05). Decreasing PHT TG and NEFA lipid content at 90h in culture is likely due to processes related to differentiation such as alterations in lipase activity that occur as cytotrophoblast cells differentiate. We speculate that syncytiotrophoblast prioritizes PL containing AA and DHA for transfer to the fetus by mobilizing FA from storage lipids.
Collapse
Affiliation(s)
- Véronique Ferchaud-Roucher
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Michael C Rudolph
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa L Powell
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
45
|
Bernard JY, Tint MT, Aris IM, Chen LW, Quah PL, Tan KH, Yeo GSH, Fortier MV, Yap F, Shek L, Chong YS, Gluckman PD, Godfrey KM, Calder PC, Chong MFF, Kramer MS, Botton J, Lee YS. Maternal plasma phosphatidylcholine polyunsaturated fatty acids during pregnancy and offspring growth and adiposity. Prostaglandins Leukot Essent Fatty Acids 2017; 121:21-29. [PMID: 28651694 PMCID: PMC5501311 DOI: 10.1016/j.plefa.2017.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFA) are essential for offspring development, but it is less clear whether pregnancy PUFA status affects growth and adiposity. METHODS In 985 mother-offspring pairs from the ongoing Singaporean GUSTO cohort, we analyzed the associations between offspring growth and adiposity outcomes until age 5 years and five PUFAs of interest, measured in maternal plasma at 26-28 weeks' gestation: linoleic acid (LA), arachidonic acid, α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid (DHA). We measured fetal growth by ultrasound (n=924), neonatal body composition (air displacement plethysmography (n=252 at birth, and n=317 at age 10 days), and abdominal magnetic resonance imaging (n=317)), postnatal growth (n=979) and skinfold thicknesses (n=981). Results were presented as regression coefficients for a 5% increase in PUFA levels. RESULTS LA levels were positively associated with birthweight (β (95% CI): 0.04 (0.01, 0.08) kg), body mass index (0.13 (0.02, 0.25) kg/m2), head circumference (0.11 (0.03, 0.19) cm), and neonatal abdominal adipose tissue volume (4.6 (1.3, 7.8) mL for superficial subcutanous tissue, and 1.2 (0.1, 2.4) mL for internal tissue), but not with later outcomes. DHA levels, although not associated with birth outcomes, were related to higher postnatal length/height: 0.63 (0.09, 1.16) cm at 12 months and 1.29 (0.34, 2.24) cm at 5 years. CONCLUSIONS LA was positively associated with neonatal body size, and DHA with child height. Maternal PUFA status during pregnancy may influence fetal and child growth and adiposity.
Collapse
Affiliation(s)
- Jonathan Y Bernard
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A⁎STAR), Singapore.
| | - Mya-Thway Tint
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Izzuddin M Aris
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A⁎STAR), Singapore
| | - Ling-Wei Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Phaik Ling Quah
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A⁎STAR), Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - George Seow-Heong Yeo
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore
| | - Fabian Yap
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore
| | - Lynette Shek
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A⁎STAR), Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Paediatric Allergy, Immunology & Rheumatology, Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A⁎STAR), Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A⁎STAR), Singapore; Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit; Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Philip C Calder
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mary F F Chong
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A⁎STAR), Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences, Centre for Translational Medicine, Singapore
| | - Michael S Kramer
- Department of Pediatrics and of Epidemiology and Biostatistics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Jérémie Botton
- U1153 Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France; Univ Paris Descartes, Villejuif, France; Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A⁎STAR), Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Paediatric Endocrinology and Diabetes, Khoo Teck Puat, National University Children's Medical Institute, National University Health System, Singapore
| |
Collapse
|
46
|
Herrera E, Desoye G. Maternal and fetal lipid metabolism under normal and gestational diabetic conditions. Horm Mol Biol Clin Investig 2017; 26:109-27. [PMID: 26351960 DOI: 10.1515/hmbci-2015-0025] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022]
Abstract
Maternal lipids are strong determinants of fetal fat mass. Here we review the overall lipid metabolism in normal and gestational diabetes mellitus (GDM) pregnancies. During early pregnancy, the increase in maternal fat depots is facilitated by insulin, followed by increased adipose tissue breakdown and subsequent hypertriglyceridemia, mainly as a result of insulin resistance (IR) and estrogen effects. The response to diabetes is variable as a result of greater IR but decreased estrogen levels. The vast majority of fatty acids (FAs) in the maternal circulation are esterified and associated with lipoproteins. These are taken up by the placenta and hydrolyzed by lipases. The released FAs enter various metabolic routes and are released into fetal circulation. Although these determinants are modified in maternal GDM, the fetus does not seem to receive more FAs than in non-GDM pregnancies. Long-chain polyunsaturated FAs are essential for fetal development and are obtained from the mother. Mitochondrial FA oxidation occurs in fetal tissue and in placenta and contributes to energy production. Fetal fat accretion during the last weeks of gestation occurs very rapidly and is sustained not only by FAs crossing the placenta, but also by fetal lipogenesis. Fetal hyperinsulinemia in GDM mothers promotes excess accretion of adipose tissue, which gives rise to altered adipocytokine profiles. Fetal lipoproteins are low at birth, but the GDM effects are unclear. The increase in body fat in neonates of GDM women is a risk factor for obesity in early childhood and later life.
Collapse
|
47
|
Ruiz-Palacios M, Ruiz-Alcaraz AJ, Sanchez-Campillo M, Larqué E. Role of Insulin in Placental Transport of Nutrients in Gestational Diabetes Mellitus. ANNALS OF NUTRITION AND METABOLISM 2017; 70:16-25. [PMID: 28110332 DOI: 10.1159/000455904] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is associated with increased fetal adiposity, which may increase the risk of obesity in adulthood. The placenta has insulin receptors and maternal insulin can activate its signaling pathways, affecting the transport of nutrients to the fetus. However, the effects of diet or insulin treatment on the placental pathophysiology of GDM are unknown. SUMMARY There are very few studies on possible defects in the insulin signaling pathway in the GDM placenta. Such defects could influence the placental transport of nutrients to the fetus. In this review we discuss the state of insulin signaling pathways in placentas of women with GDM, as well as the role of exogenous insulin in placental nutrient transport to the fetus, and fetal adiposity. Key Messages: Maternal insulin in the third trimester is correlated with fetal abdominal circumference at that time, suggesting the important role of insulin in this process. Since treatment with insulin at the end of pregnancy may activate placental nutrient transport to the fetus and promote placental fatty acid transfer, it would be interesting to improve maternal hyperlipidemia control in GDM subjects treated with this hormone. More research in this area with high number of subjects is necessary.
Collapse
Affiliation(s)
- María Ruiz-Palacios
- Department of Physiology, Molecular Biology B and Immunology, Murcia Biohealth Research Institute-University of Murcia (IMIB-UMU), Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain
| | | | | | | |
Collapse
|
48
|
Maternal obesity modulates intracellular lipid turnover in the human term placenta. Int J Obes (Lond) 2016; 41:317-323. [PMID: 27780978 PMCID: PMC5309341 DOI: 10.1038/ijo.2016.188] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Obesity before pregnancy is associated with impaired metabolic status of the mother and the offspring later in life. These adverse effects have been attributed to epigenetic changes in utero, but little is known about the role of placental metabolism and its contribution to fetal development. OBJECTIVES We examined the impact of maternal pre-pregnancy obesity on the expression of genes involved in placental lipid metabolism in lean and obese women. SUBJECTS/METHODS Seventy-three lean and obese women with healthy pregnancy were recruited at term elective cesarean delivery. Metabolic parameters were measured on maternal venous blood samples. Expression of 88 genes involved in lipid metabolism was measured in whole placenta tissue. Proteins of genes differently expressed in response to maternal obesity were quantified, correlated with maternal parameters and immunolocalized in placenta sections. Isolated primary trophoblasts were used for in vitro assays. RESULTS Triglyceride (TG) content was increased in placental tissue of obese (1.10, CI 1.04-1.24 mg g-1, P<0.05) vs lean (0.84, CI 0.72-1.02 mg g-1) women. Among target genes examined, six showed positive correlation (P<0.05) with maternal pre-pregnancy BMI, namely ATGL (PNPLA2), FATP1 (SLC27A1), FATP3 (SLC27A3), PLIN2, PPARG and CGI-58 (ABHD5). CGI-58 protein abundance was twofold higher (P<0.001) in placentas of obese vs lean women. CGI-58 protein levels correlated positively with maternal insulin levels and pre-pregnancy body mass index (R=0.63, P<0.001 and R=0.64, P<0.001, respectively). CGI-58 and PLIN2 were primarily located in the syncytiotrophoblast and, were upregulated (1.38- and 500-fold, respectively) upon oleic acid and insulin treatment of cultured trophoblast cells. CONCLUSION Pre-gravid obesity significantly modifies the expression of placental genes related to transport and storage of neutral lipids. We propose that the upregulation of CGI-58, a master regulator of TG hydrolysis, contributes to the turnover of intracellular lipids in placenta of obese women, and is tightly regulated by metabolic factors of the mother.
Collapse
|
49
|
Kolahi K, Louey S, Varlamov O, Thornburg K. Real-Time Tracking of BODIPY-C12 Long-Chain Fatty Acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells. PLoS One 2016; 11:e0153522. [PMID: 27124483 PMCID: PMC4849650 DOI: 10.1371/journal.pone.0153522] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/30/2016] [Indexed: 01/10/2023] Open
Abstract
While the human placenta must provide selected long-chain fatty acids to support the developing fetal brain, little is known about the mechanisms underlying the transport process. We tracked the movement of the fluorescently labeled long-chain fatty acid analogue, BODIPY-C12, across the cell layers of living explants of human term placenta. Although all layers took up the fatty acid, rapid esterification of long-chain fatty acids and incorporation into lipid droplets was exclusive to the inner layer cytotrophoblast cells rather than the expected outer syncytiotrophoblast layer. Cytotrophoblast is a progenitor cell layer previously relegated to a repair role. As isolated cytotrophoblasts differentiated into syncytialized cells in culture, they weakened their lipid processing capacity. Syncytializing cells suppress previously active genes that regulate fatty-acid uptake (SLC27A2/FATP2, FABP4, ACSL5) and lipid metabolism (GPAT3, LPCAT3). We speculate that cytotrophoblast performs a previously unrecognized role in regulating placental fatty acid uptake and metabolism.
Collapse
Affiliation(s)
- Kevin Kolahi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Samantha Louey
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Oleg Varlamov
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| | - Kent Thornburg
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon, United States of America
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
50
|
Nüsken E, Gellhaus A, Kühnel E, Swoboda I, Wohlfarth M, Vohlen C, Schneider H, Dötsch J, Nüsken KD. Increased Rat Placental Fatty Acid, but Decreased Amino Acid and Glucose Transporters Potentially Modify Intrauterine Programming. J Cell Biochem 2015; 117:1594-603. [DOI: 10.1002/jcb.25450] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/19/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Eva Nüsken
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
- Department of Pediatrics; University of Erlangen-Nuremberg; Erlangen Germany
| | - Alexandra Gellhaus
- Institute of Molecular Biology; University of Duisburg-Essen; Essen Germany
- Department of Gynecology and Obstetrics; University Hospital Essen; Essen Germany
| | - Elisabeth Kühnel
- Institute of Molecular Biology; University of Duisburg-Essen; Essen Germany
- Department of Gynecology and Obstetrics; University Hospital Essen; Essen Germany
| | - Isabelle Swoboda
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
| | - Maria Wohlfarth
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
| | - Christina Vohlen
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
| | - Holm Schneider
- Department of Pediatrics; University of Erlangen-Nuremberg; Erlangen Germany
| | - Jörg Dötsch
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
- Department of Pediatrics; University of Erlangen-Nuremberg; Erlangen Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics, Medical Faculty; University of Cologne; Cologne Germany
- Department of Pediatrics; University of Erlangen-Nuremberg; Erlangen Germany
| |
Collapse
|