1
|
Steinert RE, Rehman A, Sadabad MS, Milanese A, Wittwer-Schegg J, Burton JP, Spooren A. Microbial micronutrient sharing, gut redox balance and keystone taxa as a basis for a new perspective to solutions targeting health from the gut. Gut Microbes 2025; 17:2477816. [PMID: 40090884 PMCID: PMC11913388 DOI: 10.1080/19490976.2025.2477816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025] Open
Abstract
In health, the gut microbiome functions as a stable ecosystem maintaining overall balance and ensuring its own survival against environmental stressors through complex microbial interaction. This balance and protection from stressors is maintained through interactions both within the bacterial ecosystem as well as with its host. As a consequence, the gut microbiome plays a critical role in various physiological processes including maintaining the structure and function of the gut barrier, educating the gut immune system, and modulating the gut motor, digestive/absorptive, as well as neuroendocrine system all of which are crucial for human health and disease pathogenesis. Pre- and probiotics, widely available and clinically established, offer various health benefits primarily by beneficially modulating the gut microbiome. However, their clinical outcomes can vary significantly due to differences in host physiology, diets, individual microbiome compositions, and other environmental factors. This perspective paper highlights emerging scientific insights into the importance of microbial micronutrient sharing, gut redox balance, keystone species, and the gut barrier in maintaining a diverse and functional microbial ecosystem, and their relevance to human health. We propose a novel approach that targets microbial ecosystems and keystone taxa performance by supplying microbial micronutrients in the form of colon-delivered vitamins, and precision prebiotics [e.g. human milk oligosaccharides (HMOs) or synthetic glycans] as components of precisely tailored ingredient combinations to optimize human health. Such a strategy may effectively support and stabilize microbial ecosystems, providing a more robust and consistent approach across various individuals and environmental conditions, thus, overcoming the limitations of current single biotic solutions.
Collapse
Affiliation(s)
- Robert E Steinert
- Health, Nutrition & Care (HNC), Dsm-Firmenich, Kaiseraugst, Switzerland
- Department of Surgery and Transplantation, University Hospital Zurich (USZ) and University of Zurich (UZH), Zürich, Switzerland
| | - Ateequr Rehman
- Health, Nutrition & Care (HNC), Dsm-Firmenich, Kaiseraugst, Switzerland
| | | | - Alessio Milanese
- Data Science, Science & Research, Dsm-Firmenich, Delft, Netherlands
| | | | - Jeremy P Burton
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada
| | - Anneleen Spooren
- Health, Nutrition & Care (HNC), Dsm-Firmenich, Kaiseraugst, Switzerland
| |
Collapse
|
2
|
Kamlárová A, Kvaková M, Ambro Ľ, Link R, Bertková I, Hertelyová Z, Janíčko M, Hijová E, Štofilová J. Improvement of the inflammation-damaged intestinal barrier and modulation of the gut microbiota in ulcerative colitis after FMT in the SHIME® model. BMC Complement Med Ther 2025; 25:145. [PMID: 40259351 PMCID: PMC12013018 DOI: 10.1186/s12906-025-04889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/09/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) seems to be a promising approach in ulcerative colitis (UC) management with the aim of repopulating a patient's dysbiotic microbiota with beneficial bacteria and restore its metabolic activity to its healthy characteristics. Metabolites present after FMT may improve the function and integrity of the intestinal barrier, reduce inflammation, and thus induce remission in an UC patient. In this study we evaluated whether the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) model may be a suitable non-invasive alternative for studying and modifying the dysbiotic microbiota in UC by FMT application. METHODS SHIME® model was used to investigate microbial and metabolic changes in the gut microbiota of UC patient induced by FMT application. FMT-modified metabolites from SHIME® were applied to an in vitro model of the intestinal barrier (differentiated Caco-2 and HT-29-MTX-E12 cell lines) compromised by pro-inflammatory cytokines to study the effect of FMT on the intestinal barrier. RESULTS Qualitative and quantitative microbial analyses showed that FMT increased the diversity and variability of the microbiota in UC patient associated with a significant increase in total bacteria, Bacteroidota and Lactobacillus, as well as an increase in butyrate levels. In addition, an increase in the relative abundance of some important species such as Faecalibacterium prausnitzii and Bifidobacterium longum was observed, and there was also an enrichment of the microbiota with new species such as Blautia obeum, Roseburia faecis, Bifidobacterium adolescentis, Fusicatenibacter saccharivorans and Eubacterium rectale. Furthermore, microbial metabolites modulated by FMT from the SHIME® model prevented intestinal barrier damage and inhibited interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) secretion when cell barriers were pretreated with FMT medium for 24 h. In summary, this study confirmed that a single dose of FMT beneficially modulated the composition and metabolic activity of the UC microbiota in the SHIME® model. CONCLUSIONS FMT favorably modulates the gut microbiota of UC patient cultured in the SHIME® model. FMT-modulated SHIME-derived microbial metabolites improve intact and inflamed intestinal barrier properties in vitro. Repeated applications are necessary to maintain the beneficial effect of FMT in SHIME® model.
Collapse
Affiliation(s)
- Anna Kamlárová
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Monika Kvaková
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ľuboš Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University, Jesenna 5, Košice, 040 01, Slovakia
| | - René Link
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Izabela Bertková
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Martin Janíčko
- 2nd Department of Internal Medicine, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Emília Hijová
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Jana Štofilová
- Center of Clinical and Preclinical Research - MediPark, Faculty of Medicine, P. J. Šafárik University, Trieda SNP 1, Košice, 040 11, Slovakia.
| |
Collapse
|
3
|
Zhang X, Yin H, Yang X, Kang J, Sui N. Therapeutic Mechanism of Zhuyang Tongbian Decoction in Treating Functional Constipation: Insights from a Pilot Study Utilizing 16S rRNA Sequencing, Metagenomics, and Metabolomics. Int J Gen Med 2025; 18:1007-1022. [PMID: 40026814 PMCID: PMC11871934 DOI: 10.2147/ijgm.s509592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose To explore the mechanism of Zhuyang Tongbian Decoction (ZTD) in treating functional constipation (FC) by observing its effects on intestinal flora composition, the metabolic function of gut microbiota, fecal short-chain fatty acid (SCFA) levels, and serum concentrations of TLR4, NF-κB, TNF-α, and IL-6 in patients with FC. Patients and Methods 40 patients with FC were randomly divided into the control group and the treatment group, 20 cases in each group. And 20 healthy volunteers were recruited during the same period. The control group was administered lactulose, while the treatment group was treated with ZTD. 16s RNA sequencing technology was used to compare the changes in the structure and diversity of the intestinal flora of patients before and after treatment. Changes in the levels of SCFAs in faeces and the levels of TLR4, NF-κB, TNF-α and IL-6 in serum were analysed. Metagenomics sequencing assessed microbiota metabolic functions. Results The treatment group showed a significant increase in the relative abundance of beneficial bacteria, including Bifidobacterium, Lactobacillus, and Faecalibacterium_prausnitzii (P < 0.05), whereas Desulfobacterota and Ruminococcus were significantly reduced (P < 0.05). Notably, fecal acetic and propionic acid levels were significantly higher in the treatment group (P < 0.05). Serum biomarkers TLR4, NF-κB, TNF-α, and IL-6 decreased significantly (P < 0.05). Metagenomics sequencing showed that Carbohydrate metabolism, Metabolism of cofactors and vitamins, and C5- Branched dibasic acid metabolism were significantly increased in functional abundance (P < 0.05). Conclusion ZTD notably improves intestinal flora composition and gut microbiota metabolic function, regulates SCFA levels, and reduces inflammation markers in FC patients. The strain Faecalibacterium_prausnitzii shows significant potential in regulation of intestinal inflammation and may play a crucial role in the treatment efficacy of ZTD for FC.
Collapse
Affiliation(s)
- Xuan Zhang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, People’s Republic of China
| | - Hang Yin
- Scientific Education Section, The Third Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, People’s Republic of China
| | - Xu Yang
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, People’s Republic of China
| | - Jie Kang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, People’s Republic of China
| | - Nan Sui
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, People’s Republic of China
- Department of Anorectal Diseases, The Third Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, People’s Republic of China
| |
Collapse
|
4
|
Kong X, Dong Z, Hu W, Mi J, Xiao J, Wang Y, Chen W, Pei Z, Hao Z, Liang C, Wang Q, Wang Z. The role of gut microbiota involved in prostate microenvironment and symptoms improvement in chronic prostatitis/chronic pelvic pain syndrome patients treated with low-intensity extracorporeal shock wave. Prostate 2024; 84:1525-1536. [PMID: 39308020 DOI: 10.1002/pros.24794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 11/14/2024]
Abstract
BACKGROUND Low-intensity extracorporeal shockwave therapy (Li-ESWT) is emerging as a promising and safe treatment for Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). In this study, we aimed to investigate the role of the gut microbiota involved in the prostate microenvironment and symptom improvement during the Li-ESWT for CP/CPPS patients. METHODS CP/CPPS patients not taking antibiotics or other treatments were included. NIH-Chronic Prostatitis Symptom Index (NIH-CPSI), International Prostate Symptom Score (IPSS), and International Index of Erectile Function (IIEF-5) were used to evaluate the effectiveness of Li-ESWT at the end of treatment. Visual analogue scale/score was used to evaluate the pain during procedure. Stool and semen samples were collected before and after Li-ESWT. Shotgun metagenomics analyzed gut microbiota, while ELISA and other diagnostic kits detected biochemical changes in seminal plasma. RESULT Of the 60 enrolled patients, 52 completed treatment. Li-ESWT response rate was 78.8% (41/52) at end of treatment. Among responders, the subitems of the NIH-CPSI; IPSS; and IIEF-5 scores improved significantly, and the seminal plasma analysis showed decreased TNF-a and MDA levels and increased SOD and Zn2+ levels posttreatment. Gut microbiome analysis indicated that posttreatment, both α and β diversity increased, and the abundance of certain specific species significantly increased. Fifty-eight pathways significantly enriched posttreatment, notably in branched-chain amino acid synthesis and butyrate synthesis. The abundance of several specific species was found to be significantly higher in non-responders than responders. Among responders, at the species level, some bacteria associated with NIH-CPSI and its subscales, IPSS, IIEF-5, and prostate microenvironment markers (TNF-a, MDA, Zn2+, and SOD) were identified. CONCLUSIONS Our study demonstrates for the first time that Li-ESWT improves the prostate microenvironment and gut microbiota in CP/CPPS patients. Treatment nonresponse may be associated with a high abundance of specific pathogens before treatment. The gut microbiota could have a significant impact on Li-ESWT response and the prostate microenvironment.
Collapse
Affiliation(s)
- Xiangbin Kong
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zhilong Dong
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Weiwei Hu
- Department of Nephrology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Jun Mi
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Jie Xiao
- The Second Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Yiran Wang
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Wenfang Chen
- The Second Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zixu Pei
- The Second Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qi Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zhiping Wang
- Department of Urology/Research Institute of Urology/Gansu Clinical Medical Research Center for Urological Diseases/Clinical Center of Gansu Province for Urological Diseases, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou City, Gansu Province, China
| |
Collapse
|
5
|
Wang L, Zeng Z, Lin Y, Zheng B, Zhang Y, Pan L. In vitro dynamic digestion properties and fecal fermentation of Dictyophora indusiata polysaccharide: Structural characterization and gut microbiota. Int J Biol Macromol 2024; 282:136713. [PMID: 39427788 DOI: 10.1016/j.ijbiomac.2024.136713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The in vitro dynamic digestive model more realistically simulates the human digestive system compared to static digestive model. In this study, the dynamic in vitro stomach-intestine digestive system and fecal fermentation was used to investigate the dynamic digestion properties and fermentation properties of Dictyophora indusiata polysaccharide. The results showed that there were no significant changes in molecular weight, functional groups and surface morphology after the in vitro dynamic simulated digestion, indicating that D. indusiata polysaccharide maintained a relatively stable structure during the dynamic in vitro salivary-gastrointestinal digestion. In addition, D. indusiata polysaccharide improved the abundance of beneficial bacteria, including Blautia, Coprobacter and Fusicatenibacter. It is remarkable that D. indusiata polysaccharide significantly increased the level of acetic acid and propionic acid. In conclusion, these results suggested that D. indusiata polysaccharide was a potential source of prebiotics, which provides a basis for the development of D. indusiata polysaccharide in the food or medical field.
Collapse
Affiliation(s)
- Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Zhikun Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yaqing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian 350002, China.
| |
Collapse
|
6
|
Lungaro L, Malfa P, Manza F, Costanzini A, Valentini G, Squarzanti DF, Viciani E, Velichevskaya A, Castagnetti A, Barbalinardo M, Gentili D, Cariani A, Ghisellini S, Caputo F, De Giorgio R, Caio G. Clinical Efficacy of Probiotics for Allergic Rhinitis: Results of an Exploratory Randomized Controlled Trial. Nutrients 2024; 16:4173. [PMID: 39683566 PMCID: PMC11644003 DOI: 10.3390/nu16234173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Allergic Rhinitis (AR) is an atopic disease affecting the upper airways of predisposed subjects exposed to aeroallergens. This study evaluates the effects of a mix of specific probiotics (L. acidophilus PBS066, L. rhamnosus LRH020, B. breve BB077, and B. longum subsp. longum BLG240) on symptoms and fecal microbiota modulation in subjects with AR. Methods: Probiotic effects were evaluated at the beginning (T0), at four and eight weeks of treatment (T1 and T2, respectively), and after four weeks of follow-up from the end of treatment (T3) (n = 19) compared to the placebo group (n = 22). AR symptoms and quality of life were evaluated by the mini rhinitis quality of life questionnaire (MiniRQLQ) at each time point. Allergic immune response and fecal microbiota compositions were assessed at T0, T2, and T3. The study was registered on Clinical-Trial.gov (NCT05344352). Results: The probiotic group showed significant improvement in the MiniRQLQ score at T1, T2, and T3 vs. T0 (p < 0.01, p < 0.05, p < 0.01, respectively). At T2, the probiotic group showed an increase in Dorea, which can be negatively associated with allergic diseases, and Fusicatenibacter, an intestinal bacterial genus with anti-inflammatory properties (p-value FDR-corrected = 0.0074 and 0.013, respectively). Conversely, at T3 the placebo group showed an increase in Bacteroides and Ruminococcaceae unassigned, (p-value FDR-corrected = 0.033 and 0.023, respectively) which can be associated with allergies, while the probiotic group showed a significative increase in the Prevotella/Bacteroides ratio (p-value FDR-corrected = 0.023). Conclusions: This probiotic formulation improves symptoms and quality of life in subjects with AR, promoting a shift towards anti-inflammatory and anti-allergic bacterial species in the intestinal microbiota.
Collapse
Affiliation(s)
- Lisa Lungaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (G.V.); (F.C.); (R.D.G.)
| | | | - Francesca Manza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (G.V.); (F.C.); (R.D.G.)
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (G.V.); (F.C.); (R.D.G.)
| | - Guido Valentini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (G.V.); (F.C.); (R.D.G.)
| | | | - Elisa Viciani
- Wellmicro Srl, 40138 Bologna, Italy; (E.V.); (A.V.); (A.C.)
| | | | | | - Marianna Barbalinardo
- Institute for the Study of Nanostructured Materials (CNR-ISMN), National Research Council, 40129 Bologna, Italy; (M.B.); (D.G.)
| | - Denis Gentili
- Institute for the Study of Nanostructured Materials (CNR-ISMN), National Research Council, 40129 Bologna, Italy; (M.B.); (D.G.)
| | - Alessio Cariani
- Analysis Laboratory, St. Anna Hospital, 44121 Ferrara, Italy; (A.C.); (S.G.)
| | - Sara Ghisellini
- Analysis Laboratory, St. Anna Hospital, 44121 Ferrara, Italy; (A.C.); (S.G.)
| | - Fabio Caputo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (G.V.); (F.C.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (G.V.); (F.C.); (R.D.G.)
- Complex Operational Unit of Internal Medicine, S.S. Annunziata Hospital, Cento, 44121 Ferrara, Italy
| | - Giacomo Caio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (A.C.); (G.V.); (F.C.); (R.D.G.)
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital-Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
7
|
Mahayri TM, Atallah E, Fliegerová KO, Mrázek J, Piccolo G, Bovera F, Moniello G. Inclusion of Tenebrio molitor larvae meal in the diet of barbary partridge (Alectoris barbara) improves caecal bacterial diversity and composition. Sci Rep 2024; 14:29600. [PMID: 39609484 PMCID: PMC11604920 DOI: 10.1038/s41598-024-80341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
In this study, we investigated the influence of the inclusion of Tenebrio molitor (TM) larvae meal in the diet on the diversity and structure of the bacterial community in the caecal content of Barbary partridges. A total of 36 partridges, selected randomly for slaughter from 54 animals, were divided equally into three treatment groups, including the control group (C) with a diet containing corn-soybean meal and two experimental groups, in which 25% (TM25) and 50% (TM50) of the soybean meal protein was replaced by the meal from TM larvae. After slaughtering, the bacterial community of the 30 caecal samples (10 samples per each experimental group) was analysed by high-throughput sequencing using the V4-V5 region of the 16 S rRNA gene. Alpha diversity showed a higher diversity richness in the TM50 group. Beta diversity showed statistical dissimilarities among the three groups. Firmicutes was the dominant phylum regardless of the diet, with the predominant families Ruminococcaceae and Lachnospiraceae. Clostridia and Faecalibacterium were decreased in both TM groups, Lachnospiraceae was suppressed in the TM50 group, but still this class, genus and family were abundantly present in all samples. Several potentially beneficial genera, such as Bacillus, Ruminococcaceae UCG-009, Oscillibacter and UC1-2E3 (Lachnospiraceae) were increased in the TM50 group. The results showed a beneficial effect of the T. molitor larvae meal on the caecal microbiota of Barbary partridges, particularly in the TM50 group, which showed an increase in bacterial diversity.
Collapse
Affiliation(s)
- Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, Prague, 14220, Czech Republic
- Department of Veterinary Medicine, University of Sassari, Sassari, 07100, Italy
| | - Elie Atallah
- Department of Veterinary Medicine, University of Sassari, Sassari, 07100, Italy
- Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, Lodi, 26900, Italy
| | - Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, Prague, 14220, Czech Republic.
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Science, Prague, 14220, Czech Republic
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via F. Delpino, 1, Napoli, 80137, Italy.
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, via F. Delpino, 1, Napoli, 80137, Italy
| | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Sassari, 07100, Italy
| |
Collapse
|
8
|
Liu M, Li M, Jin S, Wang X, Geng J, Liu X. Differential intestinal microbes and metabolites between Behcet's uveitis and Fuchs syndrome. Heliyon 2024; 10:e39393. [PMID: 39492905 PMCID: PMC11530896 DOI: 10.1016/j.heliyon.2024.e39393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
Objective Behcet's uveitis (BU) is a type of uveitis with a high rate of blindness, characterized by anterior segment inflammation, vitreous opacity, and retinal vasculitis. Its pathogenesis is still unclear. Fuchs syndrome (Fuchs) is another common type of uveitis, which clinically presents with anterior segment inflammation and vitreous opacity, but rarely causes blindness. This study aims to compare the gut microbiota and metabolites of two different types of uveitis to clarify whether the differences in clinical manifestations are relevant to the alterations in gut microbiota. Methods Faecal samples were collected from new-onset BU (n = 11) patients without systemic treatment and other diseases. 16S rRNA and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were performed to analyze gut microbes and metabolites. Fuchs (n = 15) was used as the disease control, and healthy controls (n = 18) without autoimmune diseases and systemic medication were included. Results Microbial composition and metabolite profiles differed significantly among the three groups. Compared to controls, Fusicatenibacter and eight metabolites were specifically altered in BU patients, and Pantoea and five metabolites in Fuchs. Pathways involving delta-tocopherol, palmitic acid, and serotonin are significantly disrupted in BU patients. Pathways involving linoleic acid are dysregulated considerably in Fuchs. Microbial markers consisting of 4 genera and 7 metabolites can respectively distinguish BU patients from controls. AUC values of metabolite markers were greater than those of microbial markers. Furthermore, serum zonulin levels were significantly elevated in both types of uveitis, with no difference between them. Correlation analysis revealed correlations between zonulin levels and multiple microbes. Conclusions Patients with BU and Fuchs syndrome showed significant differences in gut microbiota and metabolites. Disruption of the intestinal mucosal barrier was observed in both types of uveitis. However, the mechanism of different intestinal microbiota causing different clinical manifestations needs to be studied in the future.
Collapse
Affiliation(s)
- Mingzhu Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Ziqiang Street 218, Changchun, PR China
| | - Mengyao Li
- Ophthalmologic Center of the Second Hospital, Jilin University, Ziqiang Street 218, Changchun, PR China
| | - Siyan Jin
- Ophthalmologic Center of the Second Hospital, Jilin University, Ziqiang Street 218, Changchun, PR China
| | - Xia Wang
- Ophthalmologic Center of the Second Hospital, Jilin University, Ziqiang Street 218, Changchun, PR China
| | - Jiawei Geng
- Ophthalmologic Center of the Second Hospital, Jilin University, Ziqiang Street 218, Changchun, PR China
| | - Xiaoli Liu
- Ophthalmologic Center of the Second Hospital, Jilin University, Ziqiang Street 218, Changchun, PR China
| |
Collapse
|
9
|
Pihelgas S, Ehala-Aleksejev K, Adamberg S, Kazantseva J, Adamberg K. The gut microbiota of healthy individuals remains resilient in response to the consumption of various dietary fibers. Sci Rep 2024; 14:22208. [PMID: 39333601 PMCID: PMC11436926 DOI: 10.1038/s41598-024-72673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
This study focuses on the resilience of gut microbiota during a five-month multi-interventional nutrition trial. The modulatory effects of beta-glucan, rye bran and two dietary fiber mixtures on the fecal pH and compositional changes of the microbiome of healthy subjects were studied. To analyze the stability of intestinal microbiota, we collected an extensive dataset of sequential fecal samples (23-29 from each participant) during a week of the base, beta-glucan consumption and wash-out periods accompanied by the collection of daily food diary data. Microbiota analyses were also conducted after the end of each fiber intake and wash-out period, along with measurements of fecal organic acids and pH. Based on the dominant bacterial taxa, two prevalent microbiota types were identified. The Prevotella-type microbiota responded more to the tested dietary fibers, while the Bacteroides-type microbiota was the least affected. Three microbiota types could not be clustered and behaved differently. Although we noted individual effects of definite fibers on participants' gut microbiota and metabolic profile, relative abundances of bacteria remained stable in the base period (z-scores - 2.2 to 2.3). In most cases, the bacterial abundances of the final samples remained within the normal fluctuation range stressing out the resilience of healthy microbiota. The pH of all fecal samples varied between 6.1 and 8.3 and was associated with the concentration of organic acids and microbial composition. The effect of dietary fibers on the metabolism of fecal microbiota clearly depended on the individual microbiota type. Combining the analysis of gut microbiota with knowledge of the properties of dietary fibers would provide a powerful strategy for nutrition guidance and disease prevention.
Collapse
Affiliation(s)
- Susan Pihelgas
- AS TFTAK, Mäealuse 2/4B, 12618, Tallinn, Estonia
- School of Natural Sciences and Health, Tallinn University, Narva mnt 25, 10120, Tallinn, Estonia
| | | | - Signe Adamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | | | - Kaarel Adamberg
- AS TFTAK, Mäealuse 2/4B, 12618, Tallinn, Estonia.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
10
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Gryaznova M, Smirnova Y, Burakova I, Syromyatnikov M, Chizhkov P, Popov E, Popov V. Changes in the Human Gut Microbiome Caused by the Short-Term Impact of Lactic Acid Bacteria Consumption in Healthy People. Probiotics Antimicrob Proteins 2024; 16:1240-1250. [PMID: 37365419 DOI: 10.1007/s12602-023-10111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
The gut microbiome is one of the main factors affecting human health. It has been proven that probiotics can regulate the metabolism in the host body. A large number of people use probiotics not as medicines, but as a prophylactic supplement. The aim of our study was to evaluate the effect of lactic acid bacteria on the gut microbiome of healthy people using the V3 region of the 16S rRNA gene. Our study showed changes in the generic composition in the gut of healthy people when taking the supplement. There was an increase in the members responsible for the production of short-chain fatty acids in the gut of the host (Blautia, Fusicatenibacter, Eubacterium hallii group, Ruminococcus), as well as bacteria that improve intestinal homeostasis (Dorea and Barnesiella). There was also a decrease in the abundance of bacteria in the genera Catenibacterium, Hungatella, Escherichia-Shigella, and Pseudomonas, associated with an unhealthy profile of the human gut microbiome. An increase in members of the phylum Actinobacteriota was also observed, which has a positive effect on the host organism. Our results indicate that short-term prophylactic use of lactic acid bacteria-based supplements can be effective, as it contributes to a beneficial effect on the gut microbiome of healthy people.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia.
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia.
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| | - Evgeny Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
| | - Vasily Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036, Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018, Voronezh, Russia
| |
Collapse
|
12
|
Yu S, Chu J, Wu Y, Zhuang J, Qu Z, Song Y, Wu X, Han S. Third-generation PacBio sequencing to explore gut bacteria and gender in colorectal cancer. Microb Pathog 2024; 192:106684. [PMID: 38759934 DOI: 10.1016/j.micpath.2024.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Gut bacteria have an important influence on colorectal cancer (CRC). The differences of gut bacteria between genders have been the hot spots. OBJECTIVE To analyze the relationship between gut bacteria and gender differences in patients with CRC. METHODS A total of 212 patients with CRC and 212 healthy volunteers were recruited. The subjects' fecal samples were obtained, and the fecal microorganisms were analyzed by the third-generation sequencing PacBio. The composition of gut bacteria was analyzed. Linear discriminant analysis Effect Size (LEfSe) was used to analyze the differences in gut bacteria. Pearson coefficient was used to calculate the correlation between differential bacteria. CRC risk prediction models were used to rank the importance of effective differential bacteria. RESULTS Escherichia flexneri and Phocaeicola vulgatus were the most frequent bacteria in both male and female CRC patients. Bacteroides, Verrucomicrobia and Akkermansiaceae were highly enriched in male CRC group, while Bacteroidetes, Phocaeicola and Tissierellales were highly enriched in female CRC group. Peptostreptococcus anaerobius and Phocaeicola vulgatus were important CRC related bacteria in males and females, respectively. Peptostreptococcus anaerobius was the most important characteristic bacterium of males (AUC = 0.951), and the sensitivity and specificity of the discovery set were 78.74 % and 93.98 %, respectively. Blautia stercoris was the most important characteristic bacterium of females (AUC = 0.966), and the sensitivity and specificity of the discovery set were 90.63 % and 90.63 %, respectively. CONCLUSION Gut bacteria varied in different genders. Therefore, gender should be considered when gut bacteria are applied in the diagnose and prevention of CRC.
Collapse
Affiliation(s)
- Sheng Yu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, People's Republic of China; Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang Province, People's Republic of China; Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, People's Republic of China
| | - Jian Chu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, People's Republic of China; Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang Province, People's Republic of China; Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, People's Republic of China
| | - Yinhang Wu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, People's Republic of China; Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang Province, People's Republic of China; Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, People's Republic of China
| | - Jing Zhuang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, People's Republic of China; Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang Province, People's Republic of China; Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, People's Republic of China
| | - Zhanbo Qu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, People's Republic of China; Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang Province, People's Republic of China; Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, People's Republic of China
| | - Yifei Song
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, People's Republic of China; Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang Province, People's Republic of China; Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, People's Republic of China
| | - Xinyue Wu
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, People's Republic of China; Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang Province, People's Republic of China; Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, People's Republic of China
| | - Shuwen Han
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, People's Republic of China; Fifth School of Clinical Medicine of Zhejiang Chinese Medical University (Huzhou Central Hospital), Zhejiang Province, People's Republic of China; Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
13
|
Park Y, Ahn JB, Kim DH, Park IS, Son M, Kim JH, Ma HW, Kim SW, Cheon JH. Integrated Analysis of Microbiome and Metabolome Reveals Disease-Specific Profiles in Inflammatory Bowel Diseases and Intestinal Behçet's Disease. Int J Mol Sci 2024; 25:6697. [PMID: 38928402 PMCID: PMC11203907 DOI: 10.3390/ijms25126697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The gut microbial and metabolic characteristics of intestinal Behçet's disease (BD), a condition sharing many clinical similarities with ulcerative colitis (UC) and Crohn's disease (CD), are largely unexplored. This study investigated the gut microbial and metabolic characteristics of intestinal BD as well as potential biomarkers, comparing them with those in UC, CD, and healthy controls. Colon tissue and stool samples from 100 patients (35 UC, 30 CD, and 35 intestinal BD) and 41 healthy volunteers were analyzed using 16S ribosomal RNA sequencing to assess microbial diversity, taxonomic composition, and functional profiling. Plasma metabolomic analyses were performed using gas chromatography and ultra-performance liquid chromatography-mass spectrometry. Results indicated reduced microbial diversity in CD but not in intestinal BD, with intestinal BD showing fewer changes compared to controls yet distinct taxonomic features from UC, CD, and controls. Common alterations across all diseases included a reduction in beneficial bacteria producing short-chain fatty acids. Intestinal BD-specific changes featured a decreased abundance of Bacteroides fragilis. Metabolomic profiles in intestinal BD were similar to those in CD but distinct from those in UC, displaying significant changes in energy metabolism and genetic information processing. This integrative analysis revealed both shared and unique profiles in intestinal BD compared with UC, CD, and controls, advancing our understanding of the distinctive features of these diseases.
Collapse
Affiliation(s)
- Yehyun Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul 03760, Republic of Korea
| | - Jae Bum Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
| | - Da Hye Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
| | - I Seul Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Mijeong Son
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji Hyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Woo Ma
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Won Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (Y.P.); (J.B.A.); (D.H.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
Huang P, Liu Q, Zhang T, Yang J. Gut microbiota influence acute pancreatitis through inflammatory proteins: a Mendelian randomization analysis. Front Cell Infect Microbiol 2024; 14:1380998. [PMID: 38881734 PMCID: PMC11176513 DOI: 10.3389/fcimb.2024.1380998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Background/Aim We employed Mendelian randomization (MR) analysis to investigate the causal relationship between the gut microbiota, acute pancreatitis, and potential inflammatory proteins. Methods The data for gut microbiota, acute pancreatitis, and inflammatory proteins are sourced from public databases. We conducted a bidirectional MR analysis to explore the causal relationship between gut microbiota and acute pancreatitis, and employed a two-step MR analysis to identify potential mediating inflammatory proteins. IVW is the primary analysis method, heterogeneity, pleiotropy, and sensitivity analyses were also conducted simultaneously. Results We identified five bacterial genera associated with the risk of acute pancreatitis, namely genus.Coprococcus3, genus.Eubacterium fissicatena group, genus.Erysipelotrichaceae UCG-003, genus.Fusicatenibacter, and genus.Ruminiclostridium6. Additionally, we have discovered three inflammatory proteins that are also associated with the occurrence of acute pancreatitis, namely interleukin-15 receptor subunit alpha (IL-15RA), monocyte chemoattractant protein-4 (CCL13), and tumor necrosis factor receptor superfamily member 9 (TNFRSF9). Following a two-step MR analysis, we ultimately identified IL-15RA as a potential intermediate factor, with a mediated effect of 0.018 (95% CI: 0.005 - 0.032). Conclusion Our results support the idea that genus.Coprococcus3 promotes the occurrence of acute pancreatitis through IL-15RA. Furthermore, there is a potential causal relationship between the gut microbiota, inflammatory proteins, and acute pancreatitis. These findings provide new insights for subsequent acute pancreatitis prevention.
Collapse
Affiliation(s)
- Peiyao Huang
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qiang Liu
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianfeng Yang
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
De Caro C, Spagnuolo R, Quirino A, Mazza E, Carrabetta F, Maurotti S, Cosco C, Bennardo F, Roberti R, Russo E, Giudice A, Pujia A, Doldo P, Matera G, Marascio N. Gut Microbiota Profile Changes in Patients with Inflammatory Bowel Disease and Non-Alcoholic Fatty Liver Disease: A Metagenomic Study. Int J Mol Sci 2024; 25:5453. [PMID: 38791490 PMCID: PMC11121796 DOI: 10.3390/ijms25105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Gut microbiota imbalances have a significant role in the pathogenesis of Inflammatory Bowel Disease (IBD) and Non-Alcoholic Fatty Liver Disease (NAFLD). Herein, we compared gut microbial composition in patients diagnosed with either IBD or NAFLD or a combination of both. Seventy-four participants were stratified into four groups: IBD-NAFLD, IBD-only, NAFLD-only patients, and healthy controls (CTRLs). The 16S rRNA was sequenced by Next-Generation Sequencing. Bioinformatics and statistical analysis were performed. Bacterial α-diversity showed a significant lower value when the IBD-only group was compared to the other groups and particularly against the IBD-NAFLD group. β-diversity also showed a significant difference among groups. The higher Bacteroidetes/Firmicutes ratio was found only when comparing IBD groups and CTRLs. Comparing the IBD-only group with the IBD-NAFLD group, a decrease in differential abundance of Subdoligranulum, Parabacteroides, and Fusicatenibacter was found. Comparing the NAFLD-only with the IBD-NAFLD groups, there was a higher abundance of Alistipes, Odoribacter, Sutterella, and Lachnospira. An inverse relationship in the comparison between the IBD-only group and the other groups was shown. For the first time, the singularity of the gut microbial composition in IBD and NAFLD patients has been shown, implying a potential microbial signature mainly influenced by gut inflammation.
Collapse
Affiliation(s)
- Carmen De Caro
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| | - Rocco Spagnuolo
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| | - Angela Quirino
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| | - Elisa Mazza
- Experimental and Clinical Medicine Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (E.M.); (S.M.); (P.D.)
| | - Federico Carrabetta
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| | - Samantha Maurotti
- Experimental and Clinical Medicine Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (E.M.); (S.M.); (P.D.)
| | - Cristina Cosco
- Unit of Gastroenterology and Operative Endoscopy, University Hospital “Renato Dulbecco” of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesco Bennardo
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| | - Roberta Roberti
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| | - Emilio Russo
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| | - Amerigo Giudice
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| | - Arturo Pujia
- Medical and Surgical Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Patrizia Doldo
- Experimental and Clinical Medicine Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (E.M.); (S.M.); (P.D.)
| | - Giovanni Matera
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| | - Nadia Marascio
- Health Sciences Department, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (C.D.C.); (A.Q.); (F.C.); (F.B.); (R.R.); (E.R.); (A.G.); (G.M.); (N.M.)
| |
Collapse
|
16
|
Torma F, Kerepesi C, Jókai M, Babszki G, Koltai E, Ligeti B, Kalcsevszki R, McGreevy KM, Horvath S, Radák Z. Alterations of the gut microbiome are associated with epigenetic age acceleration and physical fitness. Aging Cell 2024; 23:e14101. [PMID: 38414315 PMCID: PMC11019127 DOI: 10.1111/acel.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Epigenetic clocks can measure aging and predict the incidence of diseases and mortality. Higher levels of physical fitness are associated with a slower aging process and a healthier lifespan. Microbiome alterations occur in various diseases and during the aging process, yet their relation to epigenetic clocks is not explored. To fill this gap, we collected metagenomic (from stool), epigenetic (from blood), and exercise-related data from physically active individuals and, by applying epigenetic clocks, we examined the relationship between gut flora, blood-based epigenetic age acceleration, and physical fitness. We revealed that an increased entropy in the gut microbiome of physically active middle-aged/old individuals is associated with accelerated epigenetic aging, decreased fitness, or impaired health status. We also observed that a slower epigenetic aging and higher fitness level can be linked to altered abundance of some bacterial species often linked to anti-inflammatory effects. Overall our data suggest that alterations in the microbiome can be associated with epigenetic age acceleration and physical fitness.
Collapse
Affiliation(s)
- Ferenc Torma
- Research Institute of Sport ScienceHungarian University of Sport ScienceBudapestHungary
- Sports Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Faculty of Health and Sport SciencesUniversity of TsukubaTsukubaIbarakiJapan
| | - Csaba Kerepesi
- Institute for Computer Science and Control (SZTAKI)Hungarian Research Network (HUN‐REN)BudapestHungary
| | - Mátyás Jókai
- Research Institute of Sport ScienceHungarian University of Sport ScienceBudapestHungary
| | - Gergely Babszki
- Research Institute of Sport ScienceHungarian University of Sport ScienceBudapestHungary
| | - Erika Koltai
- Research Institute of Sport ScienceHungarian University of Sport ScienceBudapestHungary
| | - Balázs Ligeti
- Faculty of Information Technology and BionicsPázmány Péter Catholic UniversityBudapestHungary
| | - Regina Kalcsevszki
- Faculty of Information Technology and BionicsPázmány Péter Catholic UniversityBudapestHungary
| | - Kristen M. McGreevy
- Department of Biostatistics, Fielding School of Public HealthUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public HealthUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Altos Labs, Cambridge Institute of ScienceCambridgeUK
| | - Zsolt Radák
- Research Institute of Sport ScienceHungarian University of Sport ScienceBudapestHungary
- Waseda UniversityTokorozawaJapan
| |
Collapse
|
17
|
Björk JR, Bolte LA, Maltez Thomas A, Lee KA, Rossi N, Wind TT, Smit LM, Armanini F, Asnicar F, Blanco-Miguez A, Board R, Calbet-Llopart N, Derosa L, Dhomen N, Brooks K, Harland M, Harries M, Lorigan P, Manghi P, Marais R, Newton-Bishop J, Nezi L, Pinto F, Potrony M, Puig S, Serra-Bellver P, Shaw HM, Tamburini S, Valpione S, Waldron L, Zitvogel L, Zolfo M, de Vries EGE, Nathan P, Fehrmann RSN, Spector TD, Bataille V, Segata N, Hospers GAP, Weersma RK. Longitudinal gut microbiome changes in immune checkpoint blockade-treated advanced melanoma. Nat Med 2024; 30:785-796. [PMID: 38365950 PMCID: PMC10957474 DOI: 10.1038/s41591-024-02803-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/03/2024] [Indexed: 02/18/2024]
Abstract
Multiple clinical trials targeting the gut microbiome are being conducted to optimize treatment outcomes for immune checkpoint blockade (ICB). To improve the success of these interventions, understanding gut microbiome changes during ICB is urgently needed. Here through longitudinal microbiome profiling of 175 patients treated with ICB for advanced melanoma, we show that several microbial species-level genome bins (SGBs) and pathways exhibit distinct patterns from baseline in patients achieving progression-free survival (PFS) of 12 months or longer (PFS ≥12) versus patients with PFS shorter than 12 months (PFS <12). Out of 99 SGBs that could discriminate between these two groups, 20 were differentially abundant only at baseline, while 42 were differentially abundant only after treatment initiation. We identify five and four SGBs that had consistently higher abundances in patients with PFS ≥12 and <12 months, respectively. Constructing a log ratio of these SGBs, we find an association with overall survival. Finally, we find different microbial dynamics in different clinical contexts including the type of ICB regimen, development of immune-related adverse events and concomitant medication use. Insights into the longitudinal dynamics of the gut microbiome in association with host factors and treatment regimens will be critical for guiding rational microbiome-targeted therapies aimed at enhancing ICB efficacy.
Collapse
Affiliation(s)
- Johannes R Björk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| | - Laura A Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Andrew Maltez Thomas
- Department of CellularComputational and Integrative Biology, University of Trento, Trento, Italy
| | - Karla A Lee
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Niccolo Rossi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Thijs T Wind
- Department of Medical Oncology, Groningen University of Groningen and University Medical Center Groningen, Groningent, the Netherlands
| | - Lotte M Smit
- Department of Medical Oncology, Groningen University of Groningen and University Medical Center Groningen, Groningent, the Netherlands
| | - Federica Armanini
- Department of CellularComputational and Integrative Biology, University of Trento, Trento, Italy
| | - Francesco Asnicar
- Department of CellularComputational and Integrative Biology, University of Trento, Trento, Italy
| | - Aitor Blanco-Miguez
- Department of CellularComputational and Integrative Biology, University of Trento, Trento, Italy
| | - Ruth Board
- Department of Oncology, Lancashire Teaching Hospitals NHS Trust, Preston, UK
| | - Neus Calbet-Llopart
- Department of Dermatology, Melanoma Group, Hospital Clínic Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | - Lisa Derosa
- Gustave Roussy Cancer Center, U1015 INSERM and Oncobiome Network, University Paris Saclay, Villejuif-Grand-Paris, France
| | - Nathalie Dhomen
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Kelly Brooks
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Mark Harland
- Division of Haematology and Immunology, Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Mark Harries
- Department of Medical Oncology, Guys Cancer Centre, Guy's and St Thomas' NHS Trust, London, UK
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona and IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Paul Lorigan
- The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Paolo Manghi
- Department of CellularComputational and Integrative Biology, University of Trento, Trento, Italy
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Julia Newton-Bishop
- Division of Haematology and Immunology, Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Luigi Nezi
- European Institute of Oncology (Istituto Europeo di Oncologia), Milan, Italy
| | - Federica Pinto
- Department of CellularComputational and Integrative Biology, University of Trento, Trento, Italy
| | - Miriam Potrony
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona and IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Susana Puig
- Department of Dermatology, Melanoma Group, Hospital Clínic Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain
| | | | - Heather M Shaw
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Herts NHS Trust, Northwood, UK
| | - Sabrina Tamburini
- European Institute of Oncology (Istituto Europeo di Oncologia), Milan, Italy
| | - Sara Valpione
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Levi Waldron
- Department of CellularComputational and Integrative Biology, University of Trento, Trento, Italy
- Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, U1015 INSERM and Oncobiome Network, University Paris Saclay, Villejuif-Grand-Paris, France
| | - Moreno Zolfo
- Department of CellularComputational and Integrative Biology, University of Trento, Trento, Italy
| | - Elisabeth G E de Vries
- Department of Medical Oncology, Groningen University of Groningen and University Medical Center Groningen, Groningent, the Netherlands
| | - Paul Nathan
- Biochemical and Molecular Genetics Department, Hospital Clínic de Barcelona and IDIBAPS, University of Barcelona, Barcelona, Spain
- Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Herts NHS Trust, Northwood, UK
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, Groningen University of Groningen and University Medical Center Groningen, Groningent, the Netherlands
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Véronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Dermatology, Mount Vernon Cancer Centre, Northwood, UK
- Department of Dermatology, Hemel Hempstead Hospital, West Hertfordshire NHS Trust, Hemel Hempstead, UK
| | - Nicola Segata
- Department of CellularComputational and Integrative Biology, University of Trento, Trento, Italy
- European Institute of Oncology (Istituto Europeo di Oncologia), Milan, Italy
| | - Geke A P Hospers
- Department of Medical Oncology, Groningen University of Groningen and University Medical Center Groningen, Groningent, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
18
|
Sato S, Chinda D, Iino C, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. A Cohort Study of the Influence of the 12-Component Modified Japanese Diet Index on Oral and Gut Microbiota in the Japanese General Population. Nutrients 2024; 16:524. [PMID: 38398848 PMCID: PMC10893011 DOI: 10.3390/nu16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The Japanese diet is a healthy dietary pattern, and the oral or gut microbiota have been identified as the main factors underlying the beneficial effects of the Japanese diet. However, epidemiological studies on Japanese dietary patterns calculated from daily eating habits in the general population yielded inconsistent findings. This study aimed to determine the association between the 12-component modified Japanese Diet Index (mJDI12) and the oral and gut microbiota in the general population of a rural area in Japan. After propensity-score matching, 396 participants (198 each in the low and high mJDI12 groups) were picked out. One year after the follow up survey, we reclassified the subjects and compared the low and high mJDI12 groups again. Participants with a high mJDI12 had a higher relative abundance of butyric acid-producing bacteria in their gut microbiota. Moreover, the significantly higher dietary fiber intake in the high mJDI12 group suggested that the high intake of dietary fiber contributed to an increase in butyric acid-producing bacteria in the gut. In contrast, in individuals with a high mJDI12, only Allpprevotella was decreased in the oral microbiota. Thus, the Japanese dietary pattern can have beneficial effects by improving the oral and gut microbiota.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| | - Daisuke Chinda
- Division of Endoscopy, Hirosaki University Hospital, Hirosaki 036-8562, Japan
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| | - Kaori Sawada
- Center of Healthy Aging Innovation, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (K.S.); (T.M.); (S.N.)
| | - Tatsuya Mikami
- Center of Healthy Aging Innovation, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (K.S.); (T.M.); (S.N.)
| | - Shigeyuki Nakaji
- Center of Healthy Aging Innovation, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (K.S.); (T.M.); (S.N.)
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| |
Collapse
|
19
|
Siu PLK, Choy CT, Chan HHY, Leung RKK, Chan UK, Zhou J, Wong CH, Lee YW, Chan HW, Lo CJY, Tsui JCC, Loo SKF, Tsui SKW. A Novel Multi-Strain E3 Probiotic Formula Improved the Gastrointestinal Symptoms and Quality of Life in Chinese Psoriasis Patients. Microorganisms 2024; 12:208. [PMID: 38276193 PMCID: PMC10820679 DOI: 10.3390/microorganisms12010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Psoriasis is a chronic immune-mediated inflammatory disease affecting the skin and other systems. Gastrointestinal disease was found to be correlated with psoriasis in previous studies and it can significantly affect the quality of life of psoriasis patients. Despite the importance of the gut microbiome in gut and skin health having already been demonstrated in many research studies, the potential effect of probiotics on GI comorbidities in psoriasis patients is unclear. To investigate the effects of probiotics on functional GI comorbidities including irritable bowel syndrome, functional constipation, and functional diarrhea in psoriasis patients, we conducted a targeted 16S rRNA sequencing and comprehensive bioinformatic analysis among southern Chinese patients to compare the gut microbiome profiles of 45 psoriasis patients over an 8-week course of novel oral probiotics. All the participants were stratified into responders and non-responders according to their improvement in GI comorbidities, which were based on their Bristol Stool Form Scale (BSFS) scores after intervention. The Dermatological Life Quality Index (DLQI) score revealed a significant improvement in quality of life within the responder group (DLQI: mean 10.4 at week 0 vs. mean 15.9 at week 8, p = 0.0366). The proportion of psoriasis patients without GI comorbidity manifestation at week 8 was significantly higher than that at week 0 (week 0: Normal 53.33%, Constipation/Diarrhea 46.67%; week 8: Normal 75.56%, Constipation/Diarrhea 24.44%, p = 0.0467). In addition, a significant difference in the gut microbiome composition between the responders and non-responders was observed according to alpha and beta diversities. Differential abundance analysis revealed that the psoriasis patients exhibited (1) an elevated relative abundance of Lactobacillus acidophilus, Parabacteroides distasonis, and Ruminococcus bromii and (2) a reduced relative abundance of Oscillibacter, Bacteroides vulgatus, Escherichia sp., and Biophila wadsworthia after the 8-week intervention. The responders also exhibited a higher relative abundance of Fusicatenibacter saccharivorans when compared to the non-responders. In summary, our study discovers the potential clinical improvement effects of the novel probiotic formula in improving GI comorbidities and quality of life in psoriasis patients. We also revealed the different gut microbiome composition as well as the gut microbial signatures in the patients who responded to probiotics. These findings could provide insight into the use of probiotics in the management of psoriasis symptoms.
Collapse
Affiliation(s)
- Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Helen Hoi Yin Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Ross Ka Kit Leung
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Un Kei Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Claudia Jun Yi Lo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Joseph Chi Ching Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China; (P.L.K.S.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Ishizaka A, Koga M, Mizutani T, Yamayoshi S, Iwatsuki-Horimoto K, Adachi E, Suzuki Y, Kawaoka Y, Yotsuyanagi H. Association of gut microbiota with the pathogenesis of SARS-CoV-2 Infection in people living with HIV. BMC Microbiol 2024; 24:6. [PMID: 38172680 PMCID: PMC10763188 DOI: 10.1186/s12866-023-03157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND People living with HIV (PLWH) with chronic inflammation may have an increasing risk for coronavirus disease 2019 (COVID-19) severity; however, the impact of their gut microbiota on COVID-19 is not fully elucidated. Here, we analyzed the temporal changes in the gut microbiota composition of hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected PLWH (PLWH-CoV) and their correlation with COVID-19 severity. RESULT The 16S rRNA analysis results using stool samples (along the timeline from disease onset) from 12 hospitalized PLWH-CoV, whose median CD4 + T cell count was 671 cells/µl, were compared to those of 19 healthy people and 25 PLWH. Bacterial diversity in PLWH-CoV is not significantly different from that of healthy people and SARS-CoV-2 non-infected PLWH, but a significant difference in the microbiota diversity was observed in the classification according to the disease severity. Immediately after the disease onset, remarkable changes were observed in the gut microbiota of PLWH-CoV, and the changing with a decrease in some short-chain fatty acid-producing bacteria and an increase in colitis-related pathobiont. In the second week after disease onset, relative amounts of specific bacteria distinguished between disease severity. One month after the disease onset, dysbiosis of the gut microbiota persisted, and the number of Enterobacteriaceae, mainly Escherichia-Shigella, which is potentially pathogenic, increased and were enriched in patients who developed post-acute sequelae of COVID-19 (PASC). CONCLUSION The changes in the gut microbiota associated with SARS-CoV-2 infection observed in PLWH in this study indicated a persistent decrease in SCFA-producing bacteria and an intestinal environment with an increase in opportunistic pathogens associated with enteritis. This report demonstrates that the intestinal environment in PLWH tends to show delayed improvement even after COVID-19 recovery, and highlights the importance of the dysbiosis associated with SARS-CoV-2 infection as a potential factor in the COVID-19 severity and the PASC in PLWH.
Collapse
Affiliation(s)
- Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, 6-2-3 Kashiwanoha, 277-0882, Kashiwa-shi, Chiba, Japan.
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Pandemic Preparedness, Infection and Advanced Research Center, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan.
| |
Collapse
|
21
|
Kilburn-Kappeler LR, Doerksen T, Lu A, Palinski RM, Lu N, Aldrich CG. Evaluation of corn fermented protein on the fecal microbiome of cats. J Anim Sci 2024; 102:skae268. [PMID: 39276154 PMCID: PMC11537796 DOI: 10.1093/jas/skae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/13/2024] [Indexed: 09/16/2024] Open
Abstract
Co-products from the ethanol industry, such as distillers dried grains with solubles (DDGS), can provide alternative protein sources for pet food. Corn fermented protein (CFP) is produced using postfermentation technology to split the protein and yeast from fiber prior to drying. This results in a higher protein ingredient compared to DDGS, increasing its appeal for pet food. In addition, the substantial yeast component, at approximately 20% to 25%, may promote gut health through modulation of the microbiome and the production of short-chain fatty acids. Therefore, the objective of this study was to determine the effect of CFP on the fecal microbiome of cats. The 4 experimental diets included a control with no yeast (T1) and diets containing either 3.5% brewer's dried yeast (T2), 2.5% brewer's dried yeast plus 17.5% DDGS (T3), or 17.5% CFP (T4). All diets except T1 were formulated to contain 3.5% yeast. Diets were fed to adult cats (n = 11) in an incomplete 4 × 4 replicated Latin square design. Cats were adapted to diet for 9 d followed by a 5-d total fecal collection. During each collection period, fresh fecal samples from each cat were collected and stored at -80 °C until analysis. Fresh fecal samples (n = 44) were analyzed by 16S rRNA gene sequencing. Raw sequences were processed through Mothur (v.1.44.1). Community diversity was evaluated in R (v4.0.3). Relative abundance was analyzed within the 50 most abundant operational taxonomic unitsusing a mixed model of SAS (v9.4, SAS Institute, Inc., Cary, NC). Diet was the fixed effect and cat and period were random effects. Results were considered significant at P < 0.05. Alpha-diversity indices (Observed, Chao1, Shannon, Simpson) and beta-diversity metric (principal coordinate analysis) were similar for all treatments. Predominant phyla were Firmicutes (66%), Bacteroidetes (25%), Actinobacteria (8%), Proteobacteria (0.64%), and Desulfobacteria (0.54%). The relative abundance of Firmicutes and Actinobacteria was lower (P < 0.05) for T3 compared to T4 and T2, respectively. On a more specific phylogenic level, 17 genera resulted in differences (P < 0.05) among dietary treatments. Overall, this data indicates that compared to traditional yeast and distillers dried grains, CFP did not alter the overall diversity of the fecal microbiome of healthy adult cats over a 14-d period.
Collapse
Affiliation(s)
| | - Tyler Doerksen
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M Palinski
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA
| | - Charles G Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
22
|
Zhao R, Zhang Q, Huang T, Tian Y, Guan G, Lin Y. Effect of the Combination of Clostridium butyricum and Mycelium of Phellinus igniarius on Intestinal Microbiota and Serum Metabolites in DSS-Induced Colitis. Nutrients 2024; 16:153. [PMID: 38201981 PMCID: PMC10780906 DOI: 10.3390/nu16010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/26/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Clostridium butyricum (CB) and Phellinus igniarius (PI) have anti-inflammatory, immune regulation, anti-tumor, and other functions. This study aimed to explore the therapeutic effect of CB and mycelium of PI (MPI) alone and in combination on colitis mice induced by dextran sodium sulfate (DSS). Mice were randomly assigned to five groups: (1) control (CTRL), (2) DSS, (3) CB, (4) MPI, and (5) CB + MPI (CON). The weight of the mice was recorded daily during the experiment, and the length of the colon was measured on the last day of the experiment. The colons were collected for hematoxylin and eosin staining, colon contents were collected for intestinal flora analysis, and serum was collected for metabolite analysis. The results showed that compared with the DSS group, CB, MPI, and CON treatments inhibited the weight loss and colon length shortening caused by DSS, significantly increased the concentrations of interleukin (IL)-4, IL-10, and superoxide dismutase, and significantly decreased the concentrations of IL-6, tumor necrosis factor-α, and myeloperoxidase. Gene sequence analysis of 16S rRNA showed that CB, MPI, and CON treatments changed the composition and structure of intestinal microorganisms. Metabolome results showed that CB, MPI, and CON treatments changed serum metabolites in DSS-treated mice, including dodecenoylcarnitine, L-urobilinogen, and citric acid. In conclusion, CB, MPI, and CON treatments alleviated DSS-induced colitis in mice by regulating intestinal flora and metabolites, with the CON group having the best effect.
Collapse
Affiliation(s)
- Rou Zhao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Qiaoyi Zhang
- Agricultural Bioengineering Institute, Changsha 410128, China; (Q.Z.); (T.H.); (Y.T.); (G.G.)
| | - Ting Huang
- Agricultural Bioengineering Institute, Changsha 410128, China; (Q.Z.); (T.H.); (Y.T.); (G.G.)
| | - Yun Tian
- Agricultural Bioengineering Institute, Changsha 410128, China; (Q.Z.); (T.H.); (Y.T.); (G.G.)
| | - Guiping Guan
- Agricultural Bioengineering Institute, Changsha 410128, China; (Q.Z.); (T.H.); (Y.T.); (G.G.)
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
23
|
Shibata R, Itoh N, Nakanishi Y, Kato T, Suda W, Nagao M, Iwata T, Yoshida H, Hattori M, Fujisawa T, Shimojo N, Ohno H. Gut microbiota and fecal metabolites in sustained unresponsiveness by oral immunotherapy in school-age children with cow's milk allergy. Allergol Int 2024; 73:126-136. [PMID: 38182280 DOI: 10.1016/j.alit.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/28/2023] [Accepted: 09/21/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Oral immunotherapy (OIT) can ameliorate cow's milk allergy (CMA); however, the achievement of sustained unresponsiveness (SU) is challenging. Regarding the pathogenesis of CMA, recent studies have shown the importance of gut microbiota (Mb) and fecal water-soluble metabolites (WSMs), which prompted us to determine the change in clinical and gut environmental factors important for acquiring SU after OIT for CMA. METHODS We conducted an ancillary cohort study of a multicenter randomized, parallel-group, delayed-start design study on 32 school-age children with IgE-mediated CMA who underwent OIT for 13 months. We defined SU as the ability to consume cow's milk exceeding the target dose in a double-blind placebo-controlled food challenge after OIT followed by a 2-week-avoidance. We longitudinally collected 175 fecal specimens and clustered the microbiome and metabolome data into 29 Mb- and 12 WSM-modules. RESULTS During OIT, immunological factors improved in all participants. However, of the 32 participants, 4 withdrew because of adverse events, and only 7 were judged SU. Gut environmental factors shifted during OIT, but only in the beginning, and returned to the baseline at the end. Of these factors, milk- and casein-specific IgE and the Bifidobacterium-dominant module were associated with SU (milk- and casein-specific IgE; OR for 10 kUA/L increments, 0.67 and 0.66; 95%CI, 0.41-0.93 and 0.42-0.90; Bifidobacterium-dominant module; OR for 0.01 increments, 1.40; 95%CI, 1.10-2.03), and these associations were observed until the end of OIT. CONCLUSIONS In this study, we identified the clinical and gut environmental factors associated with SU acquisition in CM-OIT.
Collapse
Affiliation(s)
- Ryohei Shibata
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoka Itoh
- Department of Pediatrics, National Hospital Organization Kanagawa National Hospital, Kanagawa, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mizuho Nagao
- Allergy Center, National Hospital Organization Mie National Hospital, Mie, Japan
| | - Tsutomu Iwata
- The Graduate School of Tokyo Kasei University, Saitama, Japan
| | - Hideo Yoshida
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takao Fujisawa
- Allergy Center, National Hospital Organization Mie National Hospital, Mie, Japan
| | - Naoki Shimojo
- Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| |
Collapse
|
24
|
Essex M, Rios Rodriguez V, Rademacher J, Proft F, Löber U, Markó L, Pleyer U, Strowig T, Marchand J, Kirwan JA, Siegmund B, Forslund SK, Poddubnyy D. Shared and Distinct Gut Microbiota in Spondyloarthritis, Acute Anterior Uveitis, and Crohn's Disease. Arthritis Rheumatol 2024; 76:48-58. [PMID: 37471465 DOI: 10.1002/art.42658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE Spondyloarthritis (SpA) is a group of immune-mediated diseases highly concomitant with nonmusculoskeletal inflammatory disorders, such as acute anterior uveitis (AAU) and Crohn's disease (CD). The gut microbiome represents a promising avenue to elucidate shared and distinct underlying pathophysiology. METHODS We performed 16S ribosomal RNA sequencing on stool samples of 277 patients (72 CD, 103 AAU, and 102 SpA) included in the German Spondyloarthritis Inception Cohort and 62 back pain controls without any inflammatory disorder. Discriminatory statistical methods were used to disentangle microbial disease signals from one another and a wide range of potential confounders. Patients were naive to or had not received treatment with biological disease-modifying antirheumatic drugs (DMARDs) for >3 months before enrollment, providing a better approximation of a true baseline disease signal. RESULTS We identified a shared, immune-mediated disease signal represented by low abundances of Lachnospiraceae taxa relative to controls, most notably Fusicatenibacter, which was most abundant in controls receiving nonsteroidal antiinflammatory drug monotherapy and implied to partially mediate higher serum C-reactive protein. Patients with SpA showed an enrichment of Collinsella, whereas human leukocyte antigen (HLA)-B27+ individuals displayed enriched Faecalibacterium. CD patients had higher abundances of a Ruminococcus taxon, and previous conventional/synthetic DMARD therapy was associated with increased Akkermansia. CONCLUSION Our work supports the existence of a common gut dysbiosis in SpA and related inflammatory pathologies. We reveal shared and disease-specific microbial associations and suggest potential mediators of disease activity. Validation studies are needed to clarify the role of Fusicatenibacter in gut-joint inflammation, and metagenomic resolution is needed to understand the relationship between Faecalibacterium commensals and HLA-B27.
Collapse
Affiliation(s)
- Morgan Essex
- Experimental and Clinical Research Center (ECRC; a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Charité-Universitätsmedizin Berlin (a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin), Berlin, Germany
| | - Valeria Rios Rodriguez
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Rademacher
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabian Proft
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Löber
- ECRC, MDC, Charité-Universitätsmedizin Berlin and German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Lajos Markó
- ECRC, MDC, Charité-Universitätsmedizin Berlin and German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Uwe Pleyer
- Department of Ophthalmology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, Braunschweig, Germany, and Cluster of Excellence RESIST (EXC 2155), Hannover Medical School and Center for Individualized Infection Medicine (CiiM; a joint venture between the Helmholtz Center for Infection Research and the Hannover Medical School), Hannover, Germany
| | - Jérémy Marchand
- MDC and BIH Metabolomics Platform at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer A Kirwan
- MDC and BIH Metabolomics Platform at Charité-Universitätsmedizin Berlin, Berlin, Germany, and University of Nottingham School of Veterinary Medicine and Science, Loughborough, UK
| | - Britta Siegmund
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia K Forslund
- ECRC, MDC, Charité-Universitätsmedizin Berlin, and DZHK, Berlin, and Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Denis Poddubnyy
- Department of Gastroentergology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin and German Rheumatism Research Center (DRFZ), Berlin, Germany
| |
Collapse
|
25
|
Dehau T, Cherlet M, Croubels S, Van De Vliet M, Goossens E, Van Immerseel F. Berberine-microbiota interplay: orchestrating gut health through modulation of the gut microbiota and metabolic transformation into bioactive metabolites. Front Pharmacol 2023; 14:1281090. [PMID: 38130410 PMCID: PMC10733463 DOI: 10.3389/fphar.2023.1281090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Berberine is an isoquinoline alkaloid found in plants. It presents a wide range of pharmacological activities, including anti-inflammatory and antioxidant properties, despite a low oral bioavailability. Growing evidence suggests that the gut microbiota is the target of berberine, and that the microbiota metabolizes berberine to active metabolites, although little evidence exists in the specific species involved in its therapeutic effects. This study was performed to detail the bidirectional interactions of berberine with the broiler chicken gut microbiota, including the regulation of gut microbiota composition and metabolism by berberine and metabolization of berberine by the gut microbiota, and how they contribute to berberine-mediated effects on gut health. As previous evidence showed that high concentrations of berberine may induce dysbiosis, low (0.1 g/kg feed), middle (0.5 g/kg feed) and high (1 g/kg feed) doses were here investigated. Low and middle doses of in-feed berberine stimulated potent beneficial bacteria from the Lachnospiraceae family in the large intestine of chickens, while middle and high doses tended to increase villus length in the small intestine. Plasma levels of the berberine-derived metabolites berberrubine, thalifendine and demethyleneberberine were positively correlated with the villus length of chickens. Berberrubine and thalifendine were the main metabolites of berberine in the caecum, and they were produced in vitro by the caecal microbiota, confirming their microbial origin. We show that members of the genus Blautia could demethylate berberine into mainly thalifendine, and that this reaction may stimulate the production of short-chain fatty acids (SCFAs) acetate and butyrate, via acetogenesis and cross-feeding respectively. We hypothesize that acetogens such as Blautia spp. are key bacteria in the metabolization of berberine, and that berberrubine, thalifendine and SCFAs play a significant role in the biological effect of berberine.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Marc Cherlet
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michiel Van De Vliet
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| |
Collapse
|
26
|
Li X, Wang X, Wang Z, Guan J. Baizhu-Baishao herb pair ameliorates functional constipation and intestinal microflora disorder in rats. Animal Model Exp Med 2023; 6:598-608. [PMID: 37859536 PMCID: PMC10757208 DOI: 10.1002/ame2.12351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND In China, Rhizoma atractylodis macrocephalae-Paeonia lactiflora Pall (Biazhu-Baishao, BZBS) is a classic herb pair used to treat intestinal stress syndrome, ulcerative colitis and other diseases. However, the mechanism of BZBS in the treatment of functional constipation (FC) has been little studied and remains unclear. In this study, a behavioral investigation, colon tissue morphology, enzyme-linked immunosorbent assay (Elisa) and intestinal microflora analysis have been used to illuminate the potential mechanism of the effects of BZBS on FC in a rat model. METHODS A FC rat model was constructed and BZBS was given as treatment. Observations and recordings were made of the fecal moisture content, the defecation time of the first black stool, and the rate of intestinal propulsion. Elisa was used to detect the expression levels of substance P (SP), vasoactive intestinal peptide (VIP), 5-hydroxytryptamine (5-HT) in the colon. To ascertain the composition of the microbial community, a high throughput 16S ribosomal RNA (16S rRNA) gene sequencing technique was employed. RESULTS Oral administration of BZBS significantly ameliorated several key excretion parameters, including the time to first black stool defecation, stool water content, and the propulsion rate in the small intestine in FC rats. It increased the expression of SP, VIP and 5-HT in the colon. 16S rRNA gene sequencing results showed that BZBS changed the microbial community structure, decreased the Bacteroidetes/Firmicutes ratio, increased the relative abundance of Blautia and Fusicatenibacter, and decreased the relative abundance of Ruminococcus and Roseburia. CONCLUSIONS BZBS effectively alleviates FC and improves dysbacteriosis.
Collapse
Affiliation(s)
- Xiaojun Li
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaoting Wang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Ziyan Wang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jiaqi Guan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
27
|
Kahleova H, Holtz DN, Strom N, La Reau A, Kolipaka S, Schmidt N, Hata E, Znayenko-Miller T, Holubkov R, Barnard ND. A dietary intervention for postmenopausal hot flashes: A potential role of gut microbiome. An exploratory analysis. Complement Ther Med 2023; 79:103002. [PMID: 37949415 DOI: 10.1016/j.ctim.2023.103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE This study examined the role of gut microbiome changes in mediating the effects of a dietary intervention on the frequency and severity of postmenopausal vasomotor symptoms METHODS: Postmenopausal women (n = 84) reporting ≥2 moderate-to-severe hot flashes daily were randomly assigned, in 2 successive cohorts, to an intervention including a low-fat, vegan diet and cooked soybeans (½ cup [86 g] daily) or to stay on their usual diet. Over a 12-week period, frequency and severity of hot flashes were recorded with a mobile application. In a subset of 11 women, gut microbiome was analyzed at baseline and after 12 weeks of the dietary intervention (low-fat vegan diet with soybeans), using deep shotgun metagenomic sequencing. Differences in the microbiome between baseline and 12 weeks were assessed by comparing alpha diversity with Wilcoxon signed rank tests, beta diversity with permanovaFL, and taxon abundance with Wilcoxon signed rank tests. Pearson correlations were used to assess the association between changes in hot flashes and gut bacteria. RESULTS In the subset for which microbiome testing was done, total hot flashes decreased by 95 % during the dietary intervention (p = 0.007); severe hot flashes disappeared (from 0.6 to 0.0/day; p = 0.06); and moderate-to-severe hot flashes decreased by 96 % (p = 0.01). Daytime and nighttime hot flashes were reduced by 96 % (p = 0.01) and 94 % (p = 0.004), respectively. Alpha and beta diversity did not significantly differ in the intervention group between baseline and 12 weeks. Two families (Enterobacteriaceae and Veillonellaceae), 5 genera (Erysipelatoclostridium, Fusicatenibacter, Holdemanella, Intestinimonas, and Porphyromonas), and 6 species (Clostridium asparagiforme, Clostridium innocuum, Bacteroides thetaiotaomicron, Fusicatenibacter saccharivorans, Intestinimonas butyriciproducens, Prevotella corporis, and Streptococcus sp.) were differentially abundant, but after correction for multiple comparisons, these differences were no longer significant. Changes in the relative abundance of Porphyromonas and Prevotella corporis were associated with the reduction in severe day hot flashes both unadjusted (r = 0.61; p = 0.047; and r = 0.69; p = 0.02), respectively), and after adjustment for changes in body mass index (r = 0.63; p = 0.049; and r = 0.73; p = 0.02), respectively). Changes in relative abundance of Clostridium asparagiforme were associated with the reduction in total severe hot flashes (r = 0.69; p = 0.019) and severe night hot flashes (r = 0.82; p = 0.002) and the latter association remained significant after adjustment for changes in body mass index (r = 0.75; p = 0.01). CONCLUSIONS This exploratory analysis revealed potential associations between changes in vasomotor symptoms in response to a diet change and changes in the gut microbiome. Larger randomized clinical trials are needed to investigate these findings.
Collapse
Affiliation(s)
- Hana Kahleova
- Physicians Committee for Responsible Medicine, Washington, DC, USA.
| | - Danielle N Holtz
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | | | - Sinjana Kolipaka
- Physicians Committee for Responsible Medicine, Washington, DC, USA; Florida Atlantic University, Charles E. Schmidt College of Medicine, FL, USA
| | - Natalie Schmidt
- Physicians Committee for Responsible Medicine, Washington, DC, USA; Florida Atlantic University, Charles E. Schmidt College of Medicine, FL, USA
| | - Ellen Hata
- Physicians Committee for Responsible Medicine, Washington, DC, USA; George Washington University, Milken Institute School of Public Health, DC, USA
| | | | | | - Neal D Barnard
- Physicians Committee for Responsible Medicine, Washington, DC, USA; Adjunct faculty, George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
28
|
Yi SW, Lee HG, Kim E, Jung YH, Bok EY, Cho A, Do YJ, So KM, Hur TY, Oh SI. Gut microbiota alteration with growth performance, histopathological lesions, and immune responses in Salmonella Typhimurium-infected weaned piglets. Vet Anim Sci 2023; 22:100324. [PMID: 38125715 PMCID: PMC10730377 DOI: 10.1016/j.vas.2023.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Salmonella Typhimurium can cause gastroenteritis in weaned piglets, which are particularly vulnerable to dietary changes and dysfunction of their immature organs. The colonization of S. Typhimurium could disrupt the gut microbiota and increase susceptibility to the bacterium. This study aimed to investigate the alterations of gut microbiota in S. Typhimurium-infected weaned piglets. Ten 49-day-old pigs were divided into two groups: S. Typhimurium-inoculated (ST, n = 6) and negative control (NC, n = 4) groups. The body weight and S. Typhimurium fecal shedding were monitored for 14 days after S. Typhimurium inoculation (dpi). The intestinal tissues were collected at 14 dpi; histopathological lesions and cytokine gene expression were evaluated. The gut microbiome composition and short-chain fatty acid concentrations were analyzed in fecal samples collected at 14 dpi. The average daily gain and gut microbiota alpha diversity in ST group tended to be lower than NC group at 14 dpi. Linear discriminant analysis effect size results showed a significant increase in the abundance of two genera and five species, while a significant decrease was observed in the five genera and nine species within the gut microbiota of ST group. Among the significantly less abundant bacteria in the ST group, Lachnospira eligens and Anaerobium acetethylicum produce acetate and butyrate, and may be considered as key S. Typhimurium infection-preventing bacteria. The overall results provide invaluable information about changes in the gut microbiota of S. Typhimurium-infected weaned piglets, which can be used to develop alternative measures to antibiotics and prevent ST bacterial infection.
Collapse
Affiliation(s)
- Seung-Won Yi
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Han Gyu Lee
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Young-Hun Jung
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Ara Cho
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Kyoung-Min So
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Tai-Young Hur
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Sang-Ik Oh
- Laboratory of Veterinary Pathology and Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, South Korea
| |
Collapse
|
29
|
Long J, Gu J, Yang J, Chen P, Dai Y, Lin Y, Wu M, Wu Y. Exploring the Association between Gut Microbiota and Inflammatory Skin Diseases: A Two-Sample Mendelian Randomization Analysis. Microorganisms 2023; 11:2586. [PMID: 37894244 PMCID: PMC10609507 DOI: 10.3390/microorganisms11102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Emerging research underscores the substantial link between gut flora and various inflammatory skin diseases. We hypothesize that there exists a complex gut-skin axis, possibly affecting the progression of conditions such as eczema, acne, psoriasis, and rosacea. However, the precise nature of the causal connection between gut flora and skin diseases remains unestablished. In this study, we started by compiling summary data from genome-wide association studies (GWAS) featuring 211 unique gut microbiota and four types of skin conditions. We scrutinized these data across different taxonomic strata. Subsequently, we leveraged Mendelian randomization (MR) to ascertain if there is a causal link between gut microbiota and these skin conditions. We also performed a bidirectional MR analysis to identify the causality's direction. By utilizing Mendelian randomization, we identified 26 causal connections between the gut microbiome and four recognized inflammatory skin conditions, including 9 positive and 17 negative causal directions. Additional sensitivity analyses of these results revealed no evidence of pleiotropy or heterogeneity. Our MR analysis suggests a causal connection between gut microbiota and skin diseases, potentially providing groundbreaking perspectives for future mechanistic and clinical studies on microbiota-affected skin conditions.
Collapse
Affiliation(s)
- Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Jinglan Gu
- National Clinical Research Center for Child Health, Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.L.); (J.Y.); (P.C.); (Y.D.); (Y.L.)
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan 430022, China
| | - Ming Wu
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
30
|
Shibata R, Koga Y, Takahashi M, Murakami Y, Tochio T, Kadota Y. In children with cow's milk allergy, 1-kestose affects the gut microbiota and reaction threshold. Pediatr Res 2023; 94:1067-1074. [PMID: 36918660 DOI: 10.1038/s41390-023-02557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/22/2023] [Accepted: 02/10/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Interventions targeting the gut microbiota for treating food allergy (FA) have been gaining much attention. Although several studies have examined the effects of probiotics, few have verified the effects of prebiotic intervention on FA in humans. METHODS We conducted a preliminary open-label, parallel-group comparison trial in children diagnosed with severe cow's milk allergy (CMA) who were instructed to ingest baked milk (BM; bread or cookies) daily. The subjects either received or did not receive the prebiotic 1-kestose (kestose) daily for 6 months. CMA symptoms and the threshold dose for milk protein were evaluated by oral food challenge with heated milk or BM. Blood and fecal samples were also collected for investigations of the antigen-specific immunoglobulin (Ig) E levels and microbiota composition. RESULTS Kestose treatment significantly increased the threshold dose for milk protein, and decreased the milk- and casein-specific IgE levels in serum. In those treated with kestose, the abundance of Fusicatenibacter spp. significantly increased in the feces, and a significant inverse correlation was seen between the abundance of Fusicatenibacter spp. and the milk- and casein-specific IgE levels. CONCLUSION Kestose treatment induced some tolerance to milk protein via changes in the gut microbiota composition in children with FA. IMPACT A 6-month treatment with the prebiotic kestose increased the threshold dose for milk protein, and decreased the serum levels of milk- and casein-specific IgE in children diagnosed with cow's milk allergy. The kestose treatment increased the abundance of Fusicatenibacter spp. in the gut, which was inversely correlated with the antigen-specific IgE levels. This is the first study to demonstrate that a prebiotic intervention induced some tolerance to an allergen in children with food allergy.
Collapse
Affiliation(s)
- Rumiko Shibata
- Department of Pediatrics, National Hospital Organization, Fukuoka National Hospital, Fukuoka, Japan
| | - Yasuhiro Koga
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Japan
| | - Mayuko Takahashi
- Research and Development Center, B Food Science Co., Ltd., Chita, Japan
| | - Youko Murakami
- Department of Pediatrics, National Hospital Organization, Fukuoka National Hospital, Fukuoka, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Japan
| | - Yoshihiro Kadota
- Research and Development Center, B Food Science Co., Ltd., Chita, Japan.
| |
Collapse
|
31
|
Sato S, Iino C, Chinda D, Sasada T, Tateda T, Kaizuka M, Nomiya H, Igarashi G, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. Effect of Liver Fibrosis on Oral and Gut Microbiota in the Japanese General Population Determined by Evaluating the FibroScan-Aspartate Aminotransferase Score. Int J Mol Sci 2023; 24:13470. [PMID: 37686272 PMCID: PMC10487682 DOI: 10.3390/ijms241713470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The association between liver fibrosis and oral or gut microbiota has been studied before. However, epidemiological studies in the general population are limited owing to the difficulty of noninvasive liver-fibrosis assessment. FibroScan-asparate aminotransferase (FAST) scores can be used to accurately and non-invasively evaluate liver fibrosis. This study aimed to determine the association between liver fibrosis and oral or gut microbiota using the FAST score in the general population. After propensity score matching of 1059 participants based on sex, age, body mass index, homeostasis model assessment of insulin resistance, and triglyceride levels, 125 (non-liver-fibrosis group, 100; liver fibrosis group, 25) were included. The diversity of gut microbiota differed significantly between the two groups; however, no significant differences were noted in their oral microbiota. The liver fibrosis group showed an increase in the relative abundance of Fusobacteria strains and a decrease in the relative abundance of Faecalibacterium, with the presence of Fusicatenibacter in the gut microbiota. Feacalibacterium was not identified as an independent factor of liver fibrosis in adjusting the fatty liver index. In the general population, gut microbiota may be more involved in liver fibrosis than oral microbiota.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Daisuke Chinda
- Division of Endoscopy, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Takafumi Sasada
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Tetsuyuki Tateda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Masatoshi Kaizuka
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Hiroki Nomiya
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Go Igarashi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Kaori Sawada
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Shigeyuki Nakaji
- Center of Healthy Aging Innovation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| |
Collapse
|
32
|
Yazici C, Thaker S, Castellanos KK, Al Rashdan H, Huang Y, Sarraf P, Boulay B, Grippo P, Gaskins HR, Danielson KK, Papachristou GI, Tussing-Humphreys L, Dai Y, Mutlu ER, Layden BT. Diet, Gut Microbiome, and Their End Metabolites Associate With Acute Pancreatitis Risk. Clin Transl Gastroenterol 2023; 14:e00597. [PMID: 37162146 PMCID: PMC10371326 DOI: 10.14309/ctg.0000000000000597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
INTRODUCTION Diet and decreased gut microbiome diversity has been associated with acute pancreatitis (AP) risk. However, differences in dietary intake, gut microbiome, and their impact on microbial end metabolites have not been studied in AP. We aimed to determine differences in (i) dietary intake (ii) gut microbiome diversity and sulfidogenic bacterial abundance, and (iii) serum short-chain fatty acid (SCFA) and hydrogen sulfide (H 2 S) concentrations in AP and control subjects. METHODS This case-control study recruited 54 AP and 46 control subjects during hospitalization. Clinical and diet data and stool and blood samples were collected. 16S rDNA sequencing was used to determine gut microbiome alpha diversity and composition. Serum SCFA and H 2 S levels were measured. Machine learning (ML) model was used to identify microbial targets associated with AP. RESULTS AP patients had a decreased intake of vitamin D 3 , whole grains, fish, and beneficial eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids. AP patients also had lower gut microbiome diversity ( P = 0.021) and a higher abundance of sulfidogenic bacteria including Veillonella sp. and Haemophilus sp., which were associated with AP risk. Serum acetate and H 2 S concentrations were significantly higher in the AP group ( P < 0.001 and P = 0.043, respectively). ML model had 96% predictive ability to distinguish AP patients from controls. DISCUSSION AP patients have decreased beneficial nutrient intake and gut microbiome diversity. An increased abundance of H 2 S-producing genera in the AP and SCFA-producing genera in the control group and predictive ability of ML model to distinguish AP patients indicates that diet, gut microbiota, and their end metabolites play a key role in AP.
Collapse
Affiliation(s)
- Cemal Yazici
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sarang Thaker
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Karla K. Castellanos
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Haya Al Rashdan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yongchao Huang
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paya Sarraf
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian Boulay
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paul Grippo
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - H. Rex Gaskins
- Department of Animal Sciences, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Kirstie K. Danielson
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Georgios I. Papachristou
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ece R. Mutlu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
33
|
Chen Y, Li X, Yu C, Wang E, Luo C, Jin Y, Zhang L, Ma Y, Jin Y, Yang L, Sun B, Qiao J, Zhou X, Rasche L, Einsele H, Song J, Bai T, Hou X. Gut microbiome alterations in patients with COVID-19-related coagulopathy. Ann Hematol 2023; 102:1589-1598. [PMID: 37039875 PMCID: PMC10098242 DOI: 10.1007/s00277-023-05186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
COVID-19 is characterized by a predominantly prothrombotic state, which underlies severe disease and poor outcomes. Imbalances of the gut microbiome have been linked with abnormal hemostatic processes. Understanding the relationship between the gut microbiome and abnormal coagulation parameters in COVID-19 could provide a novel framework for the diagnosis and management of COVID-related coagulopathies (CRC). This cross-sectional study used shotgun metagenomic sequencing to examine the gut microbiota of patients with CRC (n = 66) and compared it to COVID control (CCs) (n = 27) and non-COVID control (NCs) (n = 22) groups. Three, 1, and 3 taxa were found enriched in CRCs, CCs, and NCs. Next, random forest models using 7 microbial biomarkers and differential clinical characteristics were constructed and achieved strong diagnostic potential in distinguishing CRC. Specifically, the most promising biomarker species for CRC were Streptococcus thermophilus, Enterococcus faecium, and Citrobacter portucalensis. Conversely, Enterobacteriaceae family and Fusicatenibacter genus are potentially protective against CRC in COVID patients. We further identified 4 species contributing to 20 MetaCyc pathways that were differentially abundant among groups, with S. thermophilus as the main coding species in CRCs. Our findings suggest that the alterations of gut microbiota compositional and functional profiles may influence the pathogenesis of CRC and that microbiota-based diagnosis and treatment could potentially benefit COVID patients in preventing and alleviating thrombosis-related clinical outcomes.
Collapse
Affiliation(s)
- Youli Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Li
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cheng Yu
- Ultrasonic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Erchuan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chang Luo
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Jin
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei Province, China
| | - Xiang Zhou
- Department of Internal Medicine II, University Hospital Würzburg, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Julius-Maximilian University of Würzburg, Würzburg, Germany
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
34
|
Li J, Zhu S, Wang Y, Fan M, Dai J, Zhu C, Xu K, Cui M, Suo C, Jin L, Jiang Y, Chen X. Metagenomic association analysis of cognitive impairment in community-dwelling older adults. Neurobiol Dis 2023; 180:106081. [PMID: 36931530 DOI: 10.1016/j.nbd.2023.106081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The gut microbiota is reportedly involved in neurodegenerative disorders, and exploration of differences in the gut microbiota in different cognitive status could provide clues for early detection and intervention in cognitive impairment. Here, we used data from the Taizhou Imaging Study (N = 516), a community-based cohort, to compare the overall structure of the gut microbiota at the species level through metagenomic sequencing, and to explore associations with cognition. Interestingly, bacteria capable of producing short-chain fatty acids (SCFAs), such as Bacteroides massiliensis, Bifidobacterium pseudocatenulatum, Fusicatenibacter saccharivorans and Eggerthella lenta, that can biotransform polyphenols, were positively associated with better cognitive performance (p < 0.05). Although Diallister invisus and Streptococcus gordonii were not obviously related to cognition, the former was dominant in individuals with mild cognitive impairment (MCI), while the later was more abundant in cognitively normal (CN) than MCI groups, and positively associated with cognitive performance (p < 0.05). Functional analysis further supported a potential role of SCFAs and lactic acid in the association between the gut microbiota and cognition. The significant associations persisted after accounting for dietary patterns. Collectively, our results demonstrate an association between the gut microbiota and cognition in the general population, indicating a potential role in cognitive impairment. The findings provide clues for microbiome biomarkers of dementia, and insight for the prevention and treatment of dementia.
Collapse
Affiliation(s)
- Jincheng Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yingzhe Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Fan
- Taixing Disease Control and Prevention Center, Taizhou, Jiangsu, China
| | - Jiacheng Dai
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Kelin Xu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Ministry of Education Key Laboratory of Public Health Safety, Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Ministry of Education Key Laboratory of Public Health Safety, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; International Human Phenome Institute (Shanghai), Shanghai, China.
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.
| |
Collapse
|
35
|
Hajjar J, Voigt A, Conner M, Swennes A, Fowler S, Calarge C, Mendonca D, Armstrong D, Chang CY, Walter J, Butte M, Savidge T, Oh J, Kheradmand F, Petrosino J. Common Variable Immunodeficiency Patient Fecal Microbiota Transplant Recapitulates Gut Dysbiosis. RESEARCH SQUARE 2023:rs.3.rs-2640584. [PMID: 36993518 PMCID: PMC10055500 DOI: 10.21203/rs.3.rs-2640584/v1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Purpose Patients with non-infectious complications have worse clinical outcomes in common variable immunodeficiency (CVID) than those with infections-only. Non-infectious complications are associated with gut microbiome aberrations, but there are no reductionist animal models that emulate CVID. Our aim in this study was to uncover potential microbiome roles in the development of non-infectious complications in CVID. Methods We examined fecal whole genome shotgun sequencing from patients CVID, and non-infectious complications, infections-only, and their household controls. We also performed Fecal Microbiota transplant from CVID patients to Germ-Free Mice. Results We found potentially pathogenic microbes Streptococcus parasanguinis and Erysipelatoclostridium ramosum were enriched in gut microbiomes of CVID patients with non-infectious complications. In contrast, Fusicatenibacter saccharivorans and Anaerostipes hadrus, known to suppress inflammation and promote healthy metabolism, were enriched in gut microbiomes of infections-only CVID patients. Fecal microbiota transplant from non-infectious complications, infections-only, and their household controls into germ-free mice revealed gut dysbiosis patterns in recipients from CVID patients with non-infectious complications, but not infections-only CVID, or household controls recipients. Conclusion Our findings provide a proof of concept that fecal microbiota transplant from CVID patients with non-infectious complications to Germ-Free mice recapitulates microbiome alterations observed in the donors.
Collapse
|
36
|
Koh JH, Lee EH, Cha KH, Pan CH, Kim D, Kim WU. Factors associated with the composition of the gut microbiome in patients with established rheumatoid arthritis and its value for predicting treatment responses. Arthritis Res Ther 2023; 25:32. [PMID: 36864473 PMCID: PMC9979421 DOI: 10.1186/s13075-023-03013-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND We aimed to investigate the gut microbiota of patients with established rheumatoid arthritis (RA) who have been managed with disease-modifying anti-rheumatic drugs (DMARDs) for a long time. We focused on factors that might affect composition of the gut microbiota. Furthermore, we investigated whether gut microbiota composition predicts future clinical responses to conventional synthetic DMARDs (csDMARDs) in patients with an insufficient response to initial therapy. METHODS We recruited 94 patients with RA and 30 healthy participants. Fecal gut microbiome was analyzed by 16S rRNA amplificon sequencing; the resulting raw reads were processed based on QIIME2. Calypso online software was used for data visualization and to compare microbial composition between groups. For RA patients with moderate-to-high disease activity, treatment was changed after stool collection, and responses were observed 6 months later. RESULTS The composition of the gut microbiota in patients with established RA was different from that of healthy participants. Young RA patients (< 45 years) had reduced richness, evenness, and distinct gut microbial compositions when compared with older RA patients and healthy individuals. Disease activity and rheumatoid factor levels were not associated with microbiome composition. Overall, biological DMARDs and csDMARDs, except sulfasalazine and TNF inhibitors, respectively, were not associated with the gut microbial composition in patients with established RA. However, the combination of Subdoligranulum and Fusicatenibacter genera was associated with a future good response to second-line csDMARDs in patients who showed an insufficient response to first-line csDMARDs. CONCLUSION Gut microbial composition in patients with established RA is different from that in healthy individuals. Thus, the gut microbiome has the potential to predict responses of some RA patients to csDMARDs.
Collapse
Affiliation(s)
- Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Center for Integrative Rheumatoid Transcriptomics and Dynamics, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eun Ha Lee
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Donghyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Center for Integrative Rheumatoid Transcriptomics and Dynamics, School of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
37
|
Poaty Ditengou JIC, Ahn SI, Chae B, Choi NJ. Are heat-killed probiotics more effective than live ones on colon length shortness, disease activity index, and the histological score of an inflammatory bowel disease-induced murine model? A meta-analysis. J Appl Microbiol 2023; 134:6988181. [PMID: 36646433 DOI: 10.1093/jambio/lxad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
This study was conducted to compare the efficiency of heat-killed and live probiotics against colon length shortness, disease activity index (DAI), and the histological score of an inflammatory bowel disease (IBD) via a meta-analysis. In February 2022, the eligible papers were collected from four databases (Google Scholar, PubMed, ScienceDirect, and Scopus). Using common- and random-effects models, the effect sizes were estimated throughout the standardized mean difference. Forty-three papers were recorded for our meta-analysis, and the heterogeneity of the effect sizes was determined with Cochran's Q test, followed by meta-ANOVA and meta-regression analyses. The probiotics (live and heat-killed) had globally an improving or preventive effect on colon length shortness, DAI, and histological score. The sub-group analysis revealed that the heat-killed probiotics had statistically (P > .05) the same improving effect on colon length shortness, DAI, and histological score as live probiotics. In conclusion, this study suggested that live and heat-killed probiotics had a similar impact on IBD symptoms investigated in this study. The present outcomes would be a good base for researchers willing to further compare the effects of live and heat-killed probiotics on IBD.
Collapse
Affiliation(s)
| | - Sung-Il Ahn
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Byungho Chae
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
38
|
Nan Q, Ye Y, Tao Y, Jiang X, Miao Y, Jia J, Miao J. Alterations in metabolome and microbiome signatures provide clues to the role of antimicrobial peptide KT2 in ulcerative colitis. Front Microbiol 2023; 14:1027658. [PMID: 36846795 PMCID: PMC9947474 DOI: 10.3389/fmicb.2023.1027658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory disease of the intestinal tract with unknown etiology. Both genetic and environmental factors are involved in the occurrence and development of UC. Understanding changes in the microbiome and metabolome of the intestinal tract is crucial for the clinical management and treatment of UC. Methods Here, we performed metabolomic and metagenomic profiling of fecal samples from healthy control mice (HC group), DSS (Dextran Sulfate Sodium Salt) -induced UC mice (DSS group), and KT2-treated UC mice (KT2 group). Results and Discussion In total, 51 metabolites were identified after UC induction, enriched in phenylalanine metabolism, while 27 metabolites were identified after KT2 treatment, enriched in histidine metabolism and bile acid biosynthesis. Fecal microbiome analysis revealed significant differences in nine bacterial species associated with the course of UC, including Bacteroides, Odoribacter, and Burkholderiales, which were correlated with aggravated UC, and Anaerotruncus, Lachnospiraceae, which were correlated with alleviated UC. We also identified a disease-associated network connecting the above bacterial species with UC-associated metabolites, including palmitoyl sphingomyelin, deoxycholic acid, biliverdin, and palmitoleic acid. In conclusion, our results indicated that Anaerotruncus, Lachnospiraceae, and Mucispirillum were protective species against DSS-induced UC in mice. The fecal microbiomes and metabolomes differed significantly among the UC mice and KT2-treated and healthy-control mice, providing potential evidence for the discovery of biomarkers of UC.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Ye
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Tao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xinyi Jiang
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yinglei Miao,
| | - Jie Jia
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Jie Jia,
| | - Jiarong Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,*Correspondence: Jiarong Miao,
| |
Collapse
|
39
|
Tomita T, Fukui H, Morishita D, Maeda A, Makizaki Y, Tanaka Y, Ohno H, Oshima T, Miwa H. Diarrhea-predominant Irritable Bowel Syndrome-like Symptoms in Patients With Quiescent Crohn's Disease: Comprehensive Analysis of Clinical Features and Intestinal Environment Including the Gut Microbiome, Organic Acids, and Intestinal Permeability. J Neurogastroenterol Motil 2023; 29:102-112. [PMID: 36606441 PMCID: PMC9837540 DOI: 10.5056/jnm22027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/06/2022] [Accepted: 08/06/2022] [Indexed: 01/07/2023] Open
Abstract
Background/Aims Diarrhea-predominant irritable bowel syndrome (IBS-D)-like symptoms frequently occur in patients with quiescent Crohn's disease (CD). To investigate the factors underlying IBS-D-like symptoms in patients with quiescent CD, we performed a comprehensive analysis of the clinical features and intestinal environment in those patients. Methods We performed a prospective observational study of 27 patients with quiescent CD (CD activity index [CDAI] ≤ 150; C-reactive protein ≤ 0.3 mg/dL). The presence and severity of IBS-D-like symptoms, health-related quality of life, disease-specific quality of life, and status of depression and anxiety were evaluated. The level of intestinal permeability, fecal calprotectin and organic acids and the profiles of gut microbiome were analyzed. Results Twelve of the 27 patients with quiescent CD (44.4%) had IBS-like symptoms, and these patients showed a significantly higher CDAI, IBS severity index and anxiety score than those without. The inflammatory bowel disease questionnaire score was significantly lower in the patients with IBS-D-like symptoms. There were no significant differences in small intestinal/colonic permeability or the levels of organic acids between the patients with and without IBS-D-like symptoms. Fusicatenibacter was significantly less abundant in the patients with IBS-D-like symptoms whereas their fecal calprotectin level was significantly higher (384.8 ± 310.6 mg/kg) than in patients without (161.0 ± 251.0 mg/kg). The receiver operating characteristic curve constructed to predict IBS-D-like symptoms in patients with quiescent CD using the fecal calprotectin level (cutoff, 125 mg/kg) showed a sensitivity and specificity of 73.3% and 91.7%, respectively. Conclusion Minimal inflammation is closely associated with the development of IBS-D-like symptoms in patients with quiescent CD.
Collapse
Affiliation(s)
- Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan,Correspondence: Hirokazu Fukui, MD, PhD, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, l-1, Mukogawa, Nishinomiya, 663-8501, Japan, Tel: +81-798-45-6662, Fax: +81-798-45-6661, E-mail:
| | - Daisuke Morishita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ayako Maeda
- R&D Center, Biofermin Pharmaceutical Co, Ltd, Kobe, Japan
| | | | - Yoshiki Tanaka
- R&D Center, Biofermin Pharmaceutical Co, Ltd, Kobe, Japan
| | - Hiroshi Ohno
- R&D Center, Biofermin Pharmaceutical Co, Ltd, Kobe, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
40
|
Tokuno H, Itoga T, Kasuga J, Okuma K, Hasuko K, Masuyama H, Benno Y. Method for estimating disease risk from microbiome data using structural equation modeling. Front Microbiol 2023; 14:1035002. [PMID: 36778866 PMCID: PMC9909428 DOI: 10.3389/fmicb.2023.1035002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
The relationship between the human gut microbiota and disease is of increasing scientific interest. Previous investigations have focused on the differences in intestinal bacterial abundance between control and affected groups to identify disease biomarkers. However, different types of intestinal bacteria may have interacting effects and thus be considered biomarker complexes for disease. To investigate this, we aimed to identify a new kind of biomarker for atopic dermatitis using structural equation modeling (SEM). The biomarkers identified were latent variables, which are complex and derived from the abundance data for bacterial marker candidates. Groups of females and males classified as healthy participants [normal control (NC) (female: 321 participants, male: 99 participants)], and patients afflicted with atopic dermatitis only [AS (female: 45 participants, male: 13 participants)], with atopic dermatitis and other diseases [AM (female: 75 participants, male: 34 participants)], and with other diseases but without atopic dermatitis [OD (female: 1,669 participants, male: 866 participants)] were used in this investigation. The candidate bacterial markers were identified by comparing the intestinal microbial community compositions between the NC and AS groups. In females, two latent variables (lv) were identified; for lv1, the associated components (bacterial genera) were Alistipes, Butyricimonas, and Coprobacter, while for lv2, the associated components were Agathobacter, Fusicatenibacter, and Streptococcus. There was a significant difference in the lv2 scores between the groups with atopic dermatitis (AS, AM) and those without (NC, OD), and the genera identified for lv2 are associated with the suppression of inflammatory responses in the body. A logistic regression model to estimate the probability of atopic dermatitis morbidity with lv2 as an explanatory variable had an area under the curve (AUC) score of 0.66 when assessed using receiver operating characteristic (ROC) analysis, and this was higher than that using other logistic regression models. The results indicate that the latent variables, especially lv2, could represent the effects of atopic dermatitis on the intestinal microbiome in females. The latent variables in the SEM could thus be utilized as a new type of biomarker. The advantages identified for the SEM are as follows: (1) it enables the extraction of more sophisticated information when compared with models focused on individual bacteria and (2) it can improve the accuracy of the latent variables used as biomarkers, as the SEM can be expanded.
Collapse
Affiliation(s)
- Hidetaka Tokuno
- Symbiosis Solutions Inc., Tokyo, Japan,*Correspondence: Hidetaka Tokuno,
| | | | | | | | | | | | | |
Collapse
|
41
|
Heo M, Park YS, Yoon H, Kim NE, Kim K, Shin CM, Kim N, Lee DH. Potential of Gut Microbe-Derived Extracellular Vesicles to Differentiate Inflammatory Bowel Disease Patients from Healthy Controls. Gut Liver 2023; 17:108-118. [PMID: 36424722 PMCID: PMC9840915 DOI: 10.5009/gnl220081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 06/03/2022] [Indexed: 11/26/2022] Open
Abstract
Background/Aims This study aimed to evaluate the potential of the stool microbiome and gut microbe-derived extracellular vesicles (EVs) to differentiate between patients with inflammatory bowel disease (IBD) and healthy controls, and to predict relapse in patients with IBD. Methods Metagenomic profiling of the microbiome and bacterial EVs in stool samples of controls (n=110) and patients with IBD (n=110) was performed using 16S rRNA sequencing and then compared. Patients with IBD were divided into two enterotypes based on their microbiome, and the cumulative risk of relapse was evaluated. Results There was a significant difference in the composition of the stool microbiome and gut microbe-derived EVs between patients with IBD and controls. The alpha diversity of the microbiome in patients with IBD was significantly lower than that in controls, while the beta diversity also differed significantly between the two groups. These findings were more prominent in gut microbe-derived EVs than in the stool microbiome. The survival curve tended to be different for enterotypes based on the gut microbe-derived EVs; however, this difference was not statistically significant (log-rank test, p=0.166). In the multivariable analysis, elevated fecal calprotectin (>250 mg/kg) was the only significant risk factor associated with relapse (adjusted hazard ratio, 3.147; 95% confidence interval, 1.545 to 6.408; p=0.002). Conclusions Analysis of gut microbe-derived EVs is better at differentiating patients with IBD from healthy controls than stool microbiome analysis.
Collapse
Affiliation(s)
- Min Heo
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea,Corresponding AuthorHyuk Yoon, ORCIDhttps://orcid.org/0000-0002-2657-0349, E-mail
| | - Nam-Eun Kim
- Department of Public Health Science, Graduate School of Public Health, Seoul, Korea
| | - Kangjin Kim
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Singh R, Rossini V, Stockdale SR, Saiz-Gonzalo G, Hanrahan N, D’ Souza T, Clooney A, Draper LA, Hill C, Nally K, Shanahan F, Andersson-Engels S, Melgar S. An IBD-associated pathobiont synergises with NSAID to promote colitis which is blocked by NLRP3 inflammasome and Caspase-8 inhibitors. Gut Microbes 2023; 15:2163838. [PMID: 36656595 PMCID: PMC9858430 DOI: 10.1080/19490976.2022.2163838] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Conflicting evidence exists on the association between consumption of non-steroidal anti-inflammatory drugs (NSAIDs) and symptomatic worsening of inflammatory bowel disease (IBD). We hypothesized that the heterogeneous prevalence of pathobionts [e.g., adherent-invasive Escherichia coli (AIEC)], might explain this inconsistent NSAIDs/IBD correlation. Using IL10-/- mice, we found that NSAID aggravated colitis in AIEC-colonized animals. This was accompanied by activation of the NLRP3 inflammasome, Caspase-8, apoptosis, and pyroptosis, features not seen in mice exposed to AIEC or NSAID alone, revealing an AIEC/NSAID synergistic effect. Inhibition of NLRP3 or Caspase-8 activity ameliorated colitis, with reduction in NLRP3 inflammasome activation, cell death markers, activated T-cells and macrophages, improved histology, and increased abundance of Clostridium cluster XIVa species. Our findings provide new insights into how NSAIDs and an opportunistic gut-pathobiont can synergize to worsen IBD symptoms. Targeting the NLRP3 inflammasome or Caspase-8 could be a potential therapeutic strategy in IBD patients with gut inflammation, which is worsened by NSAIDs.
Collapse
Affiliation(s)
- Raminder Singh
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland
| | - Valerio Rossini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gonzalo Saiz-Gonzalo
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Naomi Hanrahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Medicine, School of Medicine, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Tanya D’ Souza
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam Clooney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Microbiology, University College Cork, Cork, Ireland
| | - Ken Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Irish Photonics Integration Centre, Tyndall National Institute, Cork, Ireland,Department of Physics, University College Cork, Cork, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork, Ireland,CONTACT Silvia Melgar APC Microbiome Ireland, University College Cork, Biosciences Building, 4th Floor, Cork, Ireland
| |
Collapse
|
43
|
Comorbidity of functional bowel disorders and obesity in terms of microbiome. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial ecosystem of the gut plays a fundamental role in the normal functioning of the metabolic and immune systems. Functional bowel disease and obesity are highly prevalent in the population and place a heavy burden on healthcare system. Both comorbidity and multimorbidity are considered to be common for obesity and intestinal functional disorders. Changes in the microbiota can be both the cause and consequence of each disease: intestinal functional disorder changes the composition of the microbiota, resulting in obesity, and vice versa. Intestinal functional disorders and obesity are characterized by a similar type of dysbiosis.The aim of the review is to analyze the research findings available to date in order to establish the relationship between the gut microbiome, functional bowel disease and obesity. The researches have shown that patients with intestinal functional disorders have a different gut microbiome than healthy individuals. For intestinal functional disorders, the general patterns of the intestinal microbiota composition were described, and the characteristic taxonomic groups of bacteria were identified. On the other side, it must be noted that there is no clear correlation between intestinal functional disorders and obesity in terms of the microbiota. This can be explained by the high heterogeneity of intestinal functional disorders, as well as by the lack of a unified approach to creating a study design, by different sizes of population samples and also by different diagnostic criteria. The necessity to determine the criteria in the development of the design of future studies is discussed.
Collapse
|
44
|
Shin SY, Park S, Moon JM, Kim K, Kim JW, Chun J, Lee TH, Choi CH. Compositional Changes in the Gut Microbiota of Responders and Non-responders to Probiotic Treatment Among Patients With Diarrhea-predominant Irritable Bowel Syndrome: A Post Hoc Analysis of a Randomized Clinical Trial. J Neurogastroenterol Motil 2022; 28:642-654. [PMID: 36250371 PMCID: PMC9577570 DOI: 10.5056/jnm21202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Background/Aims We aim to evaluate the differences in the microbiome of responders and non-responders, as well as predict the response to probiotic therapy, based on fecal microbiome data in patients with diarrhea-predominant irritable bowel syndrome (IBS-D). Methods A multi-strain probiotics that contains Lactobacillus acidophilus (KCTC 11906BP), Lactobacillus plantarum (KCTC11867BP), Lactobacillus rhamnosus (KCTC 11868BP), Bifidobacterium breve (KCTC 11858BP), Bifidobacterium lactis (KCTC 11903BP), Bifidobacterium longum (KCTC 11860BP), and Streptococcus thermophilus (KCTC 11870BP) were used. Patients were categorized into probiotic and placebo groups, and fecal samples were collected from all patients before and at the end of 8 weeks of treatment. The probiotic group was further divided into responders and non-responders. Responders were defined as patients who experienced adequate relief of overall irritable bowel syndrome symptoms after probiotic therapy. Fecal microbiota were investigated using Illumina MiSeq and analyzed using the EzBioCloud 16S database and microbiome pipeline (https://www.EZbiocloud.net). Results There was no significant difference in the alpha and beta diversity between the responder and non-responder groups. The abundances of the phylum Proteobacteria and genus Bacteroides significantly decreased after probiotic treatment. Bifidobacterium bifidum, Pediococcus acidilactici, and Enterococcus faecium showed a significantly higher abundance in the probiotic group after treatment compared to the placebo group. Enterococcus faecalis and Lactococcus lactis were identified as biomarkers of non-response to probiotics. The abundance of Fusicatenibacter saccharivorans significantly increased in the responders after treatment. Conclusions Probiotic treatment changes some composition of fecal bacteria in patients with IBS-D. E. faecalis and L. lactis may be prediction biomarkers for non-response to probiotics. Increased abundance of F. sccharivorans is correlated to symptom improvement by probiotics in patients with IBS-D.
Collapse
Affiliation(s)
- Seung Yong Shin
- Chung-Ang University College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Sein Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Jung Min Moon
- Chung-Ang University College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Kisung Kim
- Chung-Ang University College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Jeong Wook Kim
- Chung-Ang University College of Medicine, Department of Internal Medicine, Seoul, Korea
| | - Jongsik Chun
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea.,School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Tae Hee Lee
- Institute for Digestive Research, Digestive Disease Center Soonchunhyang University College of Medicine, Seoul, Korea
| | - Chang Hwan Choi
- Chung-Ang University College of Medicine, Department of Internal Medicine, Seoul, Korea
| | | |
Collapse
|
45
|
Ndungo E, Holm JB, Gama S, Buchwald AG, Tennant SM, Laufer MK, Pasetti MF, Rasko DA. Dynamics of the Gut Microbiome in Shigella-Infected Children during the First Two Years of Life. mSystems 2022; 7:e0044222. [PMID: 36121169 PMCID: PMC9600951 DOI: 10.1128/msystems.00442-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 02/02/2023] Open
Abstract
Shigella continues to be a major contributor to diarrheal illness and dysentery in children younger than 5 years of age in low- and middle-income countries. Strategies for the prevention of shigellosis have focused on enhancing adaptive immunity. The interaction between Shigella and intrinsic host factors, such as the microbiome, remains unknown. We hypothesized that Shigella infection would impact the developing microbial community in infancy and, conversely, that changes in the gastrointestinal microbiome may predispose infections. To test this hypothesis, we characterized the gastrointestinal microbiota in a longitudinal birth cohort from Malawi that was monitored for Shigella infection using 16S rRNA amplicon sequencing. Children with at least one Shigella quantitative polymerase chain reaction (qPCR) positive sample during the first 2 years of life (cases) were compared to uninfected controls that were matched for sex and age. Overall, the microbial species diversity, as measured by the Shannon diversity index, increased over time, regardless of case status. At early time points, the microbial community was dominated by Bifidobacterium longum and Escherichia/Shigella. A greater abundance of Prevotella 9 and Bifidobacterium kashiwanohense was observed at 2 years of age. While no single species was associated with susceptibility to Shigella infection, significant increases in Lachnospiraceae NK4A136 and Fusicatenibacter saccharivorans were observed following Shigella infection. Both taxa are in the family Lachnospiraceae, which are known short-chain fatty acid producers that may improve gut health. Our findings identified temporal changes in the gastrointestinal microbiota associated with Shigella infection in Malawian children and highlight the need to further elucidate the microbial communities associated with disease susceptibility and resolution. IMPORTANCE Shigella causes more than 180 million cases of diarrhea globally, mostly in children living in poor regions. Infection can lead to severe health impairments that reduce quality of life. There is increasing evidence that disruptions in the gut microbiome early in life can influence susceptibility to illnesses. A delayed or impaired reconstitution of the microbiota following infection can further impact overall health. Aiming to improve our understanding of the interaction between Shigella and the developing infant microbiome, we investigated changes in the gut microbiome of Shigella-infected and uninfected children over the course of their first 2 years of life. We identified species that may be involved in recovery from Shigella infection and in driving the microbiota back to homeostasis. These findings support future studies into the elucidation of the interaction between the microbiota and enteric pathogens in young children and into the identification of potential targets for prevention or treatment.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Johanna B. Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Syze Gama
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M. Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F. Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Öğüt ND, Hasçelik G, Atakan N. Alterations of the Human Gut Microbiome in Patients With Hidradenitis Suppurativa: A Case-control Study and Review of the Literature. Dermatol Pract Concept 2022; 12:e2022191. [PMID: 36534543 PMCID: PMC9681239 DOI: 10.5826/dpc.1204a191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 01/25/2023] Open
Abstract
INTRODUCTION Hidradenitis suppurativa (HS) is a chronic and systemic inflammatory disease that extends beyond the skin. The role of gut microbiome (GM) alterations in the pathogenesis of inflammatory and autoimmune disorders is remarkable. OBJECTIVES Based on the hypothesis that dysbiosis in the GM may trigger systemic inflammation in the pathogenesis of HS, this study aimed to investigate whether the GM is altered in HS patients compared with healthy subjects. METHODS In the present case-control study, fecal samples from 15 patients with HS and 15 age- and sex-matched healthy individuals were collected and analyzed using 16S rRNA-based metagenomic analysis, New Generation Sequencing (NGS). The V3 and V4-hypervariable regions of the bacterial 16S rDNA gene were amplified from all samples and sequenced by the Illumina MiSeq platform. Bioinformatics analyses were performed in QIIME2. RESULTS Shannon alpha diversity index showed significantly reduced diversity in HS patients (P = 0.048). Bray-Curtis Dissimilarity and Jaccard Distance revealed that the gut microbial composition of HS patients was significantly distinctive from that of controls (P = 0.01 and P = 0.007, respectively). The relative abundance of unclassified Clostridiales, unclassified Firmicutes, and Fusicatenibacter in HS was significantly lower than that in controls (P = 0.005, P = 0.029, and P = 0.046, respectively). CONCLUSIONS This study indicated that significant alterations in the GM of HS patients could play a critical role in the pathogenesis of HS and might be a trigger for systemic inflammation. Increased understanding of the pathogenesis of HS will shed light on the new potential therapeutic targets and novel treatment options.
Collapse
Affiliation(s)
| | - Gülşen Hasçelik
- Hacettepe University, Department of Medical Microbiology, Ankara, Turkey
| | - Nilgün Atakan
- Hacettepe University, Department of Dermatology and Venereology, Ankara, Turkey
| |
Collapse
|
47
|
Liu Y, Xu J, Ren X, Zhang Y, Ke Z, Zhou J, Wang Y, Zhang Y, Liu Y. Cholecystectomy-induced secondary bile acids accumulation ameliorates colitis through inhibiting monocyte/macrophage recruitment. Gut Microbes 2022; 14:2107387. [PMID: 36050867 PMCID: PMC9450905 DOI: 10.1080/19490976.2022.2107387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although post-cholecystectomy (PC) patients usually have gastrointestinal complications and a higher risk of colorectal cancer, previous studies undetected a heightened risk of inflammatory bowel disease. Thus, we tried to investigate cholecystectomy's impact and pathophysiological mechanism on murine colitis models and clarify the association among fecal bile acids (BAs), mucosal bacterial microbiota, and immune cells in the PC patients. One month or three months after cholecystectomy, mice have induced colitis and tested BAs and fecal microbiota analysis. Next, mice were treated with various cholecystectomy-accumulated bile acids in drinking water for three months before inducing colitis. All 14 paired PC patients and healthy subjects were enrolled for BAs and mucosal microbiota analysis. Cholecystectomy ameliorated DSS-induced murine colitis, accelerated mucosal repair, and induced a significant shifting of fecal microbiota and BAs profiles under colitis status, which featured a higher relative abundance of species involved in BAs metabolism and increased secondary BAs concentrations. Cholecystectomy-associated secondary BAs (LCA, DCA, and HDCA) also ameliorated DSS-induced colitis and accelerated mucosal repair in mice. Cholecystectomy and specific secondary BAs treatments inhibited monocytes/macrophages recruitment in colitis mice. In vitro, cholecystectomy-associated secondary BAs also downregulated monocytes chemokines in the THP-1 derived macrophages through activation of the LXRα-linked signaling pathway. The alterations of mucosal microbiota and fecal BAs profiles were found in the PC patients, characterized as increased species with potential immuno-modulating effects and secondary BAs, which were negatively associated with peripheral monocytes levels. Cholecystectomy-induced secondary bile acids accumulation ameliorated colitis through inhibiting monocyte/macrophage recruitment, which might be mediated by the LXRα-related signaling pathway. Cholecystectomy, after 3 months follow-up, has an immune-regulatory role in murine colitis, preliminarily explaining that no increased risk of IBD had been reported in the PC patients, which still warrants further studies.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Jun Xu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Xinhua Ren
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Ziliang Ke
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Jianhua Zhou
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Yifan Zhang
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China,Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China,CONTACT Yulan Liu Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
48
|
Oliveira MET, Paulino GVB, Dos Santos Júnior ED, da Silva Oliveira FA, Melo VMM, Ursulino JS, de Aquino TM, Shetty AK, Landell MF, Gitaí DLG. Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Mol Neurobiol 2022; 59:6429-6446. [PMID: 35962889 DOI: 10.1007/s12035-022-02984-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Evidence supports that the gut microbiota and bacteria-dependent metabolites influence the maintenance of epileptic brain activity. However, the alterations in the gut microbiota between epileptic versus healthy individuals are poorly understood. We used a multi-omic approach to evaluate the changes in the composition of gut metagenome as well in the fecal metabolomic profile in rats before and after being submitted to status epilepticus (SE)-induced temporal lobe epilepsy (TLE). The 16S ribosomal RNA (rRNA) sequencing of fecal samples coupled to bioinformatic analysis revealed taxonomic, compositional, and functional shifts in epileptic rats. The species richness (Chao1 index) was significantly lower in the post-TLE group, and the β-diversity analysis revealed clustering separated from the pre-TLE group. The taxonomic abundance analysis showed a significant increase of phylum Desulfobacterota and a decrease of Patescibacteria in the post-TLE group. The DESEq2 and LEfSe analysis resulted in 18 genera significantly enriched between post-TLE and pre-TLE groups at the genus level. We observed that epileptic rats present a peculiar metabolic phenotype, including a lower concentration of D-glucose and L-lactic acid and a higher concentration of L-glutamic acid and glycine. The microbiota-host metabolic correlation analysis showed that the genera differentially abundant in post-TLE rats are associated with the altered metabolites, especially the proinflammatory Desulfovibrio and Marvinbryantia, which were enriched in epileptic animals and positively correlated with these excitatory neurotransmitters and carbohydrate metabolites. Therefore, our data revealed a correlation between dysbacteriosis in epileptic animals and fecal metabolites that are known to be relevant for maintaining epileptic brain activity by enhancing chronic inflammation, an excitatory-inhibitory imbalance, and/or a metabolic disturbance. These data are promising and suggest that targeting the gut microbiota could provide a novel avenue for preventing and treating acquired epilepsy. However, the causal relationship between these microbial/metabolite components and the SRS occurrence still needs further exploration.
Collapse
Affiliation(s)
- Maria Eduarda T Oliveira
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Gustavo V B Paulino
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Erivaldo D Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Francisca A da Silva Oliveira
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Vânia M M Melo
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Jeferson S Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Thiago M de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Melissa Fontes Landell
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| |
Collapse
|
49
|
Toumi E, Goutorbe B, Plauzolles A, Bonnet M, Mezouar S, Militello M, Mege JL, Chiche L, Halfon P. Gut microbiota in systemic lupus erythematosus patients and lupus mouse model: a cross species comparative analysis for biomarker discovery. Front Immunol 2022; 13:943241. [PMID: 35983031 PMCID: PMC9378784 DOI: 10.3389/fimmu.2022.943241] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
An increasing number of studies have provided strong evidence that gut microbiota interact with the immune system and stimulate various mechanisms involved in the pathogenesis of auto-immune diseases such as Systemic Lupus Erythematosus (SLE). Indeed, gut microbiota could be a source of diagnostic and prognostic biomarkers but also hold the promise to discover novel therapeutic strategies. Thus far, specific SLE microbial signatures have not yet been clearly identified with alteration patterns that may vary between human and animal studies. In this study, a comparative analysis of a clinically well-characterized cohort of adult patients with SLE showed reduced biodiversity, a lower Firmicutes/Bacteroidetes (F/B) ratio, and six differentially abundant taxa compared with healthy controls. An unsupervised clustering of patients with SLE patients identified a subgroup of patients with a stronger alteration of their gut microbiota. Interestingly, this clustering was strongly correlated with the disease activity assessed with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score (p = 0.03, odd ratio = 15) and the identification of specific alterations involving the F/B ratio and some different taxa. Then, the gut microbiota of pristane-induced lupus and control mice were analyzed for comparison with our human data. Among the six differentially abundant taxa of the human disease signature, five were common with our murine model. Finally, an exhaustive cross-species comparison between our data and previous human and murine SLE studies revealed a core-set of gut microbiome species that might constitute biomarker panels relevant for future validation studies.
Collapse
Affiliation(s)
- Eya Toumi
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
- *Correspondence: Eya Toumi,
| | - Benoit Goutorbe
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix‐Marseille Univ U105, Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Marseille, France
- Université Paris-Saclay, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Mathématiques et Informatique Appliquées du Génome à l’Environnement (MaIAGE), Jouy-en-Josas, France
| | - Anne Plauzolles
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
| | - Marion Bonnet
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
| | - Muriel Militello
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
- Hopital de la Conception, Immunology Department, Marseille, France
| | - Laurent Chiche
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Philippe Halfon
- Aix-Marseille Univ, Microbes, Evolution, Phylogénie et infection (MEPHI), Institut de recherche pour le développement (IRD), Assistance Publique-Hopitaux de Marseille (APHM), Marseille, France
- Institut Hospitalo-universaire (IHU)-Méditerranée Infection, Marseille, France
- Laboratoire Alphabio, Clinical Research and R&D Department, Marseille, France
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| |
Collapse
|
50
|
Haifer C, Luu LDW, Paramsothy S, Borody TJ, Leong RW, Kaakoush NO. Microbial determinants of effective donors in faecal microbiota transplantation for UC. Gut 2022; 72:gutjnl-2022-327742. [PMID: 35879048 DOI: 10.1136/gutjnl-2022-327742] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Faecal microbiota transplantation (FMT) has variable efficacy in treating UC. Recently, oral lyophilised FMT was found to induce remission in patients with UC, with one donor having 100% efficacy compared with a second donor (36% efficacy). We characterised differences in the gut microbiota of these two donors with the aim of improving FMT donor selection. DESIGN Faecal samples from the two donors were collected over a period of 44 (donor 1) or 70 (donor 2) weeks. The microbiome and metabolome were profiled using shotgun metagenomics and untargeted metabolomics RESULTS: Gut microbiome long-term stability was highly evident in the effective donor. Donor microbiota species evenness was a robust feature associated with clinical efficacy across two clinical trials of FMT in UC, leading to increased donor species engraftment in patients. Alpha diversity and beta diversity of donor gut microbiotas significantly differed. 90 bacterial species and one archaeon were differentially abundant between donors, 44 of which were >0.1% in relative abundance. 17/44 species were enriched in the effective donor, 11 of which (64.7%) were assembled into high-quality genomes that were prevalent (≥75% samples) in that donor, and six showed evidence of engraftment in patients. Taxonomic differences between donors translated to substantial microbial functional differences that were validated using metabolomics. CONCLUSION Donor microbiota stability and species evenness were identified as novel metrics that were associated with therapeutic efficacy in UC, beyond individual microbial species or metabolites. These metrics may represent community resilience that translates to better engraftment in the host. TRIAL REGISTRATION NUMBER ACTRN12619000611123.
Collapse
Affiliation(s)
- Craig Haifer
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, Australia
- Department of Gastroenterology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Laurence Don Wai Luu
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sudarshan Paramsothy
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | | | - Rupert W Leong
- Concord Clinical School, University of Sydney, Sydney, NSW, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|