1
|
Kehs Z, Cross AC, Li YM. From defense to disease: IFITM3 in immunity and Alzheimer's disease. Neurotherapeutics 2025; 22:e00482. [PMID: 39516072 PMCID: PMC12047391 DOI: 10.1016/j.neurot.2024.e00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Innate immunity protein interferon induced transmembrane protein 3 (IFITM3) is a transmembrane protein that has a wide array of functions, including in viral infections, Alzheimer's Disease (AD), and cancer. As an interferon stimulated gene (ISG), IFITM3's expression is upregulated by type-I, II, and III interferons. Moreover, the antiviral activity of IFITM3 is modulated by post-translational modifications. IFITM3 functions in innate immunity to disrupt viral fusion and entry to the plasma membrane as well as prevent viral escape from endosomes. As a γ-secretase modulatory protein, IFITM3 distinctly modulates the processing of amyloid precursor protein (APP) to generate amyloid beta peptides (Aβ) and Notch1 cleavages. Increased IFITM3 expression, which can result from aging, cytokine activation, inflammation, and infection, can lead to an upregulation of γ-secretase for Aβ production that causes a risk of AD. Therefore, the prevention of IFITM3 upregulation has potential in the development of novel therapies for the treatment of AD.
Collapse
Affiliation(s)
- Zoe Kehs
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Abigail C Cross
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Programs of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Hong X, Chen T, Liu Y, Li J, Huang D, Ye K, Liao W, Wang Y, Liu M, Luan P. Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease. Ageing Res Rev 2025; 105:102669. [PMID: 39864562 DOI: 10.1016/j.arr.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, brings huge damage to the society, to the whole family and even to the patient himself. However, until now, the etiological factor of AD is still unknown and there is no effective treatment for it. Massive deposition of amyloid-beta peptide(Aβ) and hyperphosphorylation of Tau proteins are acknowledged pathological features of AD. Recent studies have revealed that neuroinflammation plays a pivotal role in the pathology of AD. With the rise of nanomaterials in the biomedical field, researchers are exploring how the unique properties of these materials can be leveraged to develop effective treatments for AD. This article has summarized the influence of neuroinflammation in AD, the design of nanoplatforms, and the current research status and inadequacy of nanomaterials in improving neuroinflammation in AD.
Collapse
Affiliation(s)
- Xinyang Hong
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Kaiyu Ye
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Mengling Liu
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Hayden MR, Tyagi N. Sodium Thiosulfate: An Innovative Multi-Target Repurposed Treatment Strategy for Late-Onset Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:1741. [PMID: 39770582 PMCID: PMC11676759 DOI: 10.3390/ph17121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain. STS is known to have (i) antioxidant and (ii) anti-inflammatory properties; (iii) chelation properties for calcium and the pro-oxidative cation metals such as iron and copper; (iv) donor properties for hydrogen sulfide production; (v) possible restorative properties for brain endothelial-cell-derived bioavailable nitric oxide. Thus, it becomes apparent that STS has the potential for neuroprotection and neuromodulation and may allow for an attenuation of the progressive nature of neurodegeneration and impaired cognition in LOAD. STS has been successfully used to prevent cisplatin oxidative-stress-induced ototoxicity in the treatment of head and neck and solid cancers, cyanide and arsenic poisoning, and fungal skin diseases. Most recently, intravenous STS has become part of the treatment plan for calciphylaxis globally due to vascular calcification and ischemia-induced skin necrosis and ulceration. Side effects have been minimal with reports of metabolic acidosis and increased anion gap; as with any drug treatment, there is also the possibility of allergic reactions, possible long-term osteoporosis from animal studies to date, and minor side-effects of nausea, headache, and rhinorrhea if infused too rapidly. While STS poorly penetrates the intact blood-brain barrier(s) (BBBs), it could readily penetrate BBBs that are dysfunctional and disrupted to deliver its neuroprotective and neuromodulating effects in addition to its ability to penetrate the blood-cerebrospinal fluid barrier of the choroid plexus. Novel strategies such as the future use of nano-technology may be helpful in allowing an increased entry of STS into the brain.
Collapse
Affiliation(s)
- Melvin R. Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| | - Neetu Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| |
Collapse
|
4
|
López-Ornelas A, Jiménez A, Pérez-Sánchez G, Rodríguez-Pérez CE, Corzo-Cruz A, Velasco I, Estudillo E. The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. Int J Mol Sci 2022; 23:ijms231710136. [PMID: 36077533 PMCID: PMC9456198 DOI: 10.3390/ijms231710136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Correspondence:
| |
Collapse
|
5
|
Synaptic Effects of Palmitoylethanolamide in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12081161. [PMID: 36009055 PMCID: PMC9405819 DOI: 10.3390/biom12081161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence strongly supports the key role of neuroinflammation in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Neuroinflammation may alter synaptic transmission contributing to the progression of neurodegeneration, as largely documented in animal models and in patients’ studies. In the last few years, palmitoylethanolamide (PEA), an endogenous lipid mediator, and its new composite, which is a formulation constituted of PEA and the well-recognized antioxidant flavonoid luteolin (Lut) subjected to an ultra-micronization process (co-ultraPEALut), has been identified as a potential therapeutic agent in different disorders by exerting potential beneficial effects on neurodegeneration and neuroinflammation by modulating synaptic transmission. In this review, we will show the potential therapeutic effects of PEA in animal models and in patients affected by neurodegenerative disorders.
Collapse
|
6
|
Phosphodiesterase (PDE) III inhibitor, Cilostazol, improved memory impairment in aluminum chloride-treated rats: modulation of cAMP/CREB pathway. Inflammopharmacology 2022; 30:2477-2488. [PMID: 35727381 DOI: 10.1007/s10787-022-01010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
Abstract
The most prevalent type of dementia is Alzheimer's disease (AD), which is currently incurable. Existing treatments for Alzheimer's disease, such as acetylcholinesterase inhibitors, are only effective for symptom relief. Disease-modifying medications for Alzheimer's disease are desperately required, given the enormous burdens that the disease places on individuals and communities. Phosphodiesterase (PDE) inhibitors are gaining a lot of attention in the research community because of their potential in treating age-related cognitive decline. Cilostazol is a selective PDE III inhibitor used as antiplatelet agent through cAMP response element-binding (CREB) protein phosphorylation pathway (cAMP/CREB). The neuroprotective effect of cilostazol in AD-like cognitive decline in rats was investigated in this study. After 2 months of intraperitoneal administration of 10 mg/kg aluminum chloride, Morris water maze and Y-maze (behavioral tests) were performed. After that, histological and biochemical examinations of the hippocampal region were carried out. Aluminum chloride-treated rats showed histological, biochemical, and behavioral changes similar to Alzheimer's disease. Cilostazol improved rats' behavioral and histological conditions, raised neprilysin level while reduced levels of amyloid-beta protein and phosphorylated tau protein. It also decreased the hippocampal levels of tumor necrosis factor-alpha, nuclear factor-kappa B, FAS ligand, acetylcholinesterase content, and malondialdehyde. These outcomes demonstrate the protective activity of cilostazol versus aluminum-induced memory impairment.
Collapse
|
7
|
Salehipour A, Bagheri M, Sabahi M, Dolatshahi M, Boche D. Combination Therapy in Alzheimer’s Disease: Is It Time? J Alzheimers Dis 2022; 87:1433-1449. [DOI: 10.3233/jad-215680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia globally. There is increasing evidence showing AD has no single pathogenic mechanism, and thus treatment approaches focusing only on one mechanism are unlikely to be meaningfully effective. With only one potentially disease modifying treatment approved, targeting amyloid-β (Aβ), AD is underserved regarding effective drug treatments. Combining multiple drugs or designing treatments that target multiple pathways could be an effective therapeutic approach. Considering the distinction between added and combination therapies, one can conclude that most trials fall under the category of added therapies. For combination therapy to have an actual impact on the course of AD, it is likely necessary to target multiple mechanisms including but not limited to Aβ and tau pathology. Several challenges have to be addressed regarding combination therapy, including choosing the correct agents, the best time and stage of AD to intervene, designing and providing proper protocols for clinical trials. This can be achieved by a cooperation between the pharmaceutical industry, academia, private research centers, philanthropic institutions, and the regulatory bodies. Based on all the available information, the success of combination therapy to tackle complicated disorders such as cancer, and the blueprint already laid out on how to implement combination therapy and overcome its challenges, an argument can be made that the field has to move cautiously but quickly toward designing new clinical trials, further exploring the pathological mechanisms of AD, and re-examining the previous studies with combination therapies so that effective treatments for AD may be finally found.
Collapse
Affiliation(s)
- Arash Salehipour
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Motahareh Bagheri
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammadmahdi Sabahi
- Neurosurgery Research Group (NRG), Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Dolatshahi
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Students’ Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, United Kingdom
| |
Collapse
|
8
|
Duran-Aniotz C, Orellana P, Leon Rodriguez T, Henriquez F, Cabello V, Aguirre-Pinto MF, Escobedo T, Takada LT, Pina-Escudero SD, Lopez O, Yokoyama JS, Ibanez A, Parra MA, Slachevsky A. Systematic Review: Genetic, Neuroimaging, and Fluids Biomarkers for Frontotemporal Dementia Across Latin America Countries. Front Neurol 2021; 12:663407. [PMID: 34248820 PMCID: PMC8263937 DOI: 10.3389/fneur.2021.663407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Frontotemporal dementia (FTD) includes a group of clinically, genetically, and pathologically heterogeneous neurodegenerative disorders, affecting the fronto-insular-temporal regions of the brain. Clinically, FTD is characterized by progressive deficits in behavior, executive function, and language and its diagnosis relies mainly on the clinical expertise of the physician/consensus group and the use of neuropsychological tests and/or structural/functional neuroimaging, depending on local availability. The modest correlation between clinical findings and FTD neuropathology makes the diagnosis difficult using clinical criteria and often leads to underdiagnosis or misdiagnosis, primarily due to lack of recognition or awareness of FTD as a disease and symptom overlap with psychiatric disorders. Despite advances in understanding the underlying neuropathology of FTD, accurate and sensitive diagnosis for this disease is still lacking. One of the major challenges is to improve diagnosis in FTD patients as early as possible. In this context, biomarkers have emerged as useful methods to provide and/or complement clinical diagnosis for this complex syndrome, although more evidence is needed to incorporate most of them into clinical practice. However, most biomarker studies have been performed using North American or European populations, with little representation of the Latin American and the Caribbean (LAC) region. In the LAC region, there are additional challenges, particularly the lack of awareness and knowledge about FTD, even in specialists. Also, LAC genetic heritage and cultures are complex, and both likely influence clinical presentations and may modify baseline biomarker levels. Even more, due to diagnostic delay, the clinical presentation might be further complicated by both neurological and psychiatric comorbidity, such as vascular brain damage, substance abuse, mood disorders, among others. This systematic review provides a brief update and an overview of the current knowledge on genetic, neuroimaging, and fluid biomarkers for FTD in LAC countries. Our review highlights the need for extensive research on biomarkers in FTD in LAC to contribute to a more comprehensive understanding of the disease and its associated biomarkers. Dementia research is certainly reduced in the LAC region, highlighting an urgent need for harmonized, innovative, and cross-regional studies with a global perspective across multiple areas of dementia knowledge.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Paulina Orellana
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Tomas Leon Rodriguez
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Henriquez
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Victoria Cabello
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | | | - Tamara Escobedo
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Stefanie D. Pina-Escudero
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Oscar Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer S. Yokoyama
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- UCSF Department of Neurology, Memory and Aging Center, UCSF, San Francisco, CA, United States
| | - Agustin Ibanez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile
- Trinity College, Global Brain Health Institute, Dublin, Ireland
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), San Francisco, CA, United States
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Mario A. Parra
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, United Kingdom
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department - Institute of Biomedical Sciences (ICBM), Neuroscience and East Neuroscience Departments, Faculty of Medicine, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Cognitive and Behavioral Neurology Unit - Department of Neurology, University of São Paulo, São Paulo, Brazil
- Department of Neurology and Psychiatry, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
9
|
Abstract
Pollutant agents are exponentially increasing in modern society since industrialization processes and technology are being developed worldwide. Impact of pollution on public health is well known but little has been described on the association between environmental pollutants and mental health. A literature search on PubMed and EMBASE has been conducted and 134 articles published on the issue of pollution and mental health have been included, cited, reviewed, and summarized. Emerging evidences have been collected on association between major environmental pollutants (air pollutants, heavy metals, ionizing radiation [IR], organophosphate pesticides, light pollution, noise pollution, environmental catastrophes) and various mental health disorders including anxiety, mood, and psychotic syndromes. Underlying pathogenesis includes direct and indirect effects of these agents on brain, respectively, due to their biological effect on human Central Nervous System or related to some levels of stress generated by the exposure to the pollutant agents over the time. Most of emerging evidences are still nonconclusive. Further studies should clarify how industrial production, the exploitation of certain resources, the proximity to waste and energy residues, noise, and the change in lifestyles are connected with psychological distress and mental health problems for the affected populations.
Collapse
|
10
|
Trojan E, Bryniarska N, Leśkiewicz M, Regulska M, Chamera K, Szuster-Głuszczak M, Leopoldo M, Lacivita E, Basta-Kaim A. The Contribution of Formyl Peptide Receptor Dysfunction to the Course of Neuroinflammation: A Potential Role in the Brain Pathology. Curr Neuropharmacol 2020; 18:229-249. [PMID: 31629396 PMCID: PMC7327951 DOI: 10.2174/1570159x17666191019170244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammatory processes within the central nervous system (CNS) are in part responsible for the development of neurodegenerative and psychiatric diseases. These processes are associated with, among other things, the increased and disturbed activation of microglia and the elevated production of proinflammatory factors. Recent studies indicated that the disruption of the process of resolution of inflammation (RoI) may be the cause of CNS disorders. It is shown that the RoI is regulated by endogenous molecules called specialized pro-resolving mediators (SPMs), which interact with specific membrane receptors. Some SPMs activate formyl peptide receptors (FPRs), which belong to the family of seven-transmembrane G protein-coupled receptors. These receptors take part not only in the proinflammatory response but also in the resolution of the inflammation process. Therefore, the activation of FPRs might have complex consequences. This review discusses the potential role of FPRs, and in particular the role of FPR2 subtype, in the brain under physiological and pathological conditions and their involvement in processes underlying neurodegenerative and psychiatric disorders as well as ischemia, the pathogenesis of which involves the dysfunction of inflammatory processes.
Collapse
Affiliation(s)
- Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Regulska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| |
Collapse
|
11
|
Salazar AM, Leisgang AM, Ortiz AA, Murtishaw AS, Kinney JW. Alterations of GABA B receptors in the APP/PS1 mouse model of Alzheimer's disease. Neurobiol Aging 2020; 97:129-143. [PMID: 33232936 DOI: 10.1016/j.neurobiolaging.2020.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive decline of memory and cognitive function. The disease is characterized by the presence of amyloid plaques, tau tangles, altered inflammatory signaling, and alterations in numerous neurotransmitter signaling systems, including γ-aminobutyric acid (GABA). Given the extensive role of GABA in regulating neuronal activity, a careful investigation of GABA-related changes is needed. Further, given persistent inflammation has been demonstrated to drive AD pathology, the presence of GABA B receptor expressed on glia that serve a role regulation of the immune response adds to potential implications of altered GABA in AD. There has not previously been a systematic evaluation of GABA-related changes in an amyloid model of AD that specifically focuses on examining changes in GABA B receptors. In the present study, we examined alterations in several GABA-specific targets in the APP/PS1 mouse model at different ages. In the 4-month-old cohort, no significant deficits in spatial learning and memory or alterations in any of the GABAergic targets were observed compared with wild-type controls. However, we identified significant alterations in several GABA-related targets in the 6-month-old cohort that exhibited spatial learning deficits that include changes in glutamic acid decarboxylase 65, GABA transporter type 3, and GABA B receptors protein and mRNA levels. This was the same cohort at which learning and memory deficits and significant amyloid pathology was observed. Overall, our study provides evidence of altered GABAergic signaling in an amyloid model of AD at a time point consistent with AD-related deficits.
Collapse
Affiliation(s)
- Arnold M Salazar
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Amanda M Leisgang
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Andrew A Ortiz
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Andrew S Murtishaw
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jefferson W Kinney
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
12
|
Balin BJ, Hammond CJ, Galluzzi KE. Intriguing Mixed Pathologic Features in a Case of Dementia With Lewy Bodies. J Osteopath Med 2019; 119:632-636. [PMID: 31449309 DOI: 10.7556/jaoa.2019.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuropathologic confirmation of dementia with Lewy bodies (DLB) involves labeling cytoplasmic Lewy body inclusions for α-synuclein in cortical and subcortical neurons. The authors studied the postmortem brain of a 78-year-old man who had a diagnosis of DLB by exclusion. The patient had symptoms ascribed to DLB that included fluctuating cognitive changes in attention and executive function with progression to dementia, visual hallucinations, and parkinsonism. Sections from the olfactory bulbs and cortical and subcortical regions were stained with periodic acid-Schiff, as well as immunolabeled with antibodies specific for α-synuclein, tau protein, β-amyloid 1-42, and Chlamydia pneumoniae. Most regions demonstrated mixed neuropathologic features, and α-synuclein was notable in Lewy bodies in the amygdala and hippocampus. Periodic acid-Schiff-positive staining was noted in bodies in the amygdala and olfactory bulbs. In this case of DLB, neuropathologic inclusions were consistent with the disease diagnosis, but also with Alzheimer disease and other neurodegenerative diseases, such as polyglucosan body disease.
Collapse
|
13
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int J Mol Sci 2019; 20:ijms20133161. [PMID: 31261683 PMCID: PMC6650818 DOI: 10.3390/ijms20133161] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is an inflammatory response in the brain and spinal cord, which can involve the activation of microglia and astrocytes. It is a common feature of many central nervous system disorders, including a range of neurodegenerative disorders. An overlap between activated microglia, pro-inflammatory cytokines and translocator protein (TSPO) ligand binding was shown in early animal studies of neurodegeneration. These findings have been translated in clinical studies, where increases in TSPO positron emission tomography (PET) signal occur in disease-relevant areas across a broad spectrum of neurodegenerative diseases. While this supports the use of TSPO PET as a biomarker to monitor response in clinical trials of novel neurodegenerative therapeutics, the clinical utility of current TSPO PET radioligands has been hampered by the lack of high affinity binding to a prevalent form of polymorphic TSPO (A147T) compared to wild type TSPO. This review details recent developments in exploration of ligand-sensitivity to A147T TSPO that have yielded ligands with improved clinical utility. In addition to developing a non-discriminating TSPO ligand, the final frontier of TSPO biomarker research requires developing an understanding of the cellular and functional interpretation of the TSPO PET signal. Recent insights resulting from single cell analysis of microglial phenotypes are reviewed.
Collapse
|
15
|
Resistin-Inhibited Neural Stem Cell-Derived Astrocyte Differentiation Contributes to Permeability Destruction of the Blood-Brain Barrier. Neurochem Res 2019; 44:905-916. [PMID: 30690681 DOI: 10.1007/s11064-019-02726-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is an important part of the development of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's and amyotrophic lateral sclerosis. Inflammatory factors destroy the balance of the microenvironment, which results in changes in neural stem cell differentiation and proliferation behaviour. However, the mechanism underlying inflammatory factor-induced NSC behavioural changes is not clear. Resistin is a proinflammatory and adipogenic factor and is involved in several human pathology processes. The neural stem cell microenvironment changes when the concentration of resistin in the brain during an inflammatory response disease increases. In the present study, we explored the effect and mechanism of resistin on the proliferation and differentiation of neural stem cells. We found that intracerebroventricular injection of resistin induced a decrease in GFAP-positive cells in mice by influencing NSC differentiation. Resistin significantly decreased TEER and increased permeability in an in vitro blood-brain barrier model, which is consistent with the results of an HBMEC-astrocyte coculture system. Resistin-inhibited astrocyte differentiation is mediated through TLR4 on neural stem cells. To our knowledge, this is the first study reporting the effect of resistin on neural stem cells. Our findings shed light on resistin-involved neural stem cell degeneration mechanisms.
Collapse
|
16
|
Conway OJ, Carrasquillo MM, Wang X, Bredenberg JM, Reddy JS, Strickland SL, Younkin CS, Burgess JD, Allen M, Lincoln SJ, Nguyen T, Malphrus KG, Soto AI, Walton RL, Boeve BF, Petersen RC, Lucas JA, Ferman TJ, Cheshire WP, van Gerpen JA, Uitti RJ, Wszolek ZK, Ross OA, Dickson DW, Graff-Radford NR, Ertekin-Taner N. ABI3 and PLCG2 missense variants as risk factors for neurodegenerative diseases in Caucasians and African Americans. Mol Neurodegener 2018; 13:53. [PMID: 30326945 PMCID: PMC6190665 DOI: 10.1186/s13024-018-0289-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Rare coding variants ABI3_rs616338-T and PLCG2_rs72824905-G were identified as risk or protective factors, respectively, for Alzheimer's disease (AD). METHODS We tested the association of these variants with five neurodegenerative diseases in Caucasian case-control cohorts: 2742 AD, 231 progressive supranuclear palsy (PSP), 838 Parkinson's disease (PD), 306 dementia with Lewy bodies (DLB) and 150 multiple system atrophy (MSA) vs. 3351 controls; and in an African-American AD case-control cohort (181 AD, 331 controls). 1479 AD and 1491 controls were non-overlapping with a prior report. RESULTS Using Fisher's exact test, there was significant association of both ABI3_rs616338-T (OR = 1.41, p = 0.044) and PLCG2_rs72824905-G (OR = 0.56, p = 0.008) with AD. These OR estimates were maintained in the non-overlapping replication AD-control analysis, albeit at reduced significance (ABI3_rs616338-T OR = 1.44, p = 0.12; PLCG2_rs72824905-G OR = 0.66, p = 0.19). None of the other cohorts showed significant associations that were concordant with those for AD, although the DLB cohort had suggestive findings (Fisher's test: ABI3_rs616338-T OR = 1.79, p = 0.097; PLCG2_rs72824905-G OR = 0.32, p = 0.124). PLCG2_rs72824905-G showed suggestive association with pathologically-confirmed MSA (OR = 2.39, p = 0.050) and PSP (OR = 1.97, p = 0.061), although in the opposite direction of that for AD. We assessed RNA sequencing data from 238 temporal cortex (TCX) and 224 cerebellum (CER) samples from AD, PSP and control patients and identified co-expression networks, enriched in microglial genes and immune response GO terms, and which harbor PLCG2 and/or ABI3. These networks had higher expression in AD, but not in PSP TCX, compared to controls. This expression association did not survive adjustment for brain cell type population changes. CONCLUSIONS We validated the associations previously reported with ABI3_rs616338-T and PLCG2_rs72824905-G in a Caucasian AD case-control cohort, and observed a similar direction of effect in DLB. Conversely, PLCG2_rs72824905-G showed suggestive associations with PSP and MSA in the opposite direction. We identified microglial gene-enriched co-expression networks with significantly higher levels in AD TCX, but not in PSP, a primary tauopathy. This co-expression network association appears to be driven by microglial cell population changes in a brain region affected by AD pathology. Although these findings require replication in larger cohorts, they suggest distinct effects of the microglial genes, ABI3 and PLCG2 in neurodegenerative diseases that harbor significant vs. low/no amyloid ß pathology.
Collapse
Affiliation(s)
- Olivia J Conway
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | | | - Xue Wang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Jenny M Bredenberg
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Joseph S Reddy
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | | | - Curtis S Younkin
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Sarah J Lincoln
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Kimberly G Malphrus
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Alexandra I Soto
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Ronald L Walton
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic Minnesota, Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic Minnesota, Rochester, MN, 55905, USA
| | - John A Lucas
- Department of Psychiatry and Psychology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - William P Cheshire
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Jay A van Gerpen
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | | | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, 32224, USA. .,Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA.
| |
Collapse
|
17
|
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:575-590. [PMID: 30406177 PMCID: PMC6214864 DOI: 10.1016/j.trci.2018.06.014] [Citation(s) in RCA: 1390] [Impact Index Per Article: 198.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by cognitive decline and the presence of two core pathologies, amyloid β plaques and neurofibrillary tangles. Over the last decade, the presence of a sustained immune response in the brain has emerged as a third core pathology in AD. The sustained activation of the brain's resident macrophages (microglia) and other immune cells has been demonstrated to exacerbate both amyloid and tau pathology and may serve as a link in the pathogenesis of the disorder. In the following review, we provide an overview of inflammation in AD and a detailed coverage of a number of microglia-related signaling mechanisms that have been implicated in AD. Additional information on microglia signaling and a number of cytokines in AD are also reviewed. We also review the potential connection of risk factors for AD and how they may be related to inflammatory mechanisms.
Collapse
Affiliation(s)
- Jefferson W. Kinney
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Shane M. Bemiller
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew S. Murtishaw
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Amanda M. Leisgang
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Arnold M. Salazar
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
18
|
Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, Xiao M, Wang C, Lu M, Hu G. Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of β-arrestin2 and NLRP3. Cell Death Differ 2018; 25:2037-2049. [PMID: 29786071 DOI: 10.1038/s41418-018-0127-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/08/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are involved in the neuroinflammation of neurodegenerative diseases, such as Parkinson's disease (PD). Among the numerous inflammatory cytokines, interleukin-1β (IL-1β) produced by astrocytic Nod-like receptor protein (NLRP) inflammasome is crucial in the pathogenesis of PD. β-arrestin2-mediated dopamine D2 receptor (Drd2) signal transduction has been regarded as a potential anti-inflammatory target. Our previous study revealed that astrocytic Drd2 suppresses neuroinflammation in the central nervous system. However, the role of Drd2 in astrocytic NLRP3 inflammasome activation and subsequent IL-1β production remains unclear. In the present study, we used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD mouse model to investigate whether Drd2 could suppress astrocytic NLRP3 inflammasome activation. We showed that Drd2 agonist inhibited NLRP3 inflammasome activation, evidenced by decreased caspase-1 expression and reduced IL-1β release in the midbrain of wild type mice. The anti-inflammasome effect of Drd2 was abolished in β-arrestin2 knockout and β-arrestin2 small interfering RNA-injected mice, suggesting a critical role of β-arrestin2 in Drd2-regulated NLRP3 inflammasome activation. We also found that Drd2 agonists suppressed the upregulation of caspase-1 and IL-1β expression in primary cultured mouse astrocytes in response to the activation of NLRP3 inflammasome induced by lipopolysaccharide plus adenosine triphosphate. Furthermore, we demonstrated that β-arrestin2 mediated the inhibitory effect of Drd2 on NLRP3 inflammasome activation via interacting with NLRP3 and interfering the inflammasome assembly. Collectively, our study illustrates that astrocytic Drd2 inhibits NLRP3 inflammasome activation through a β-arrestin2-dependent mechanism, and provides a new strategy for treatment of PD.
Collapse
Affiliation(s)
- Jialei Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Zhaoli Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Xiaojuan Han
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Dongshuo Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Qingling Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Cong Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China.
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu, 211166, China. .,Department of Pharmacology, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
19
|
Wood PL, Tippireddy S, Feriante J, Woltjer RL. Augmented frontal cortex diacylglycerol levels in Parkinson's disease and Lewy Body Disease. PLoS One 2018. [PMID: 29513680 PMCID: PMC5841652 DOI: 10.1371/journal.pone.0191815] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Research from our laboratory, and that of other investigators, has demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of subjects with Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI). We have extended these observations to investigate the frontal cortex of subjects with Parkinson’s disease (PD) and Lewy Body Disease (LBD), with and without coexisting pathologic features of AD. Methods/Principal findings Utilizing a high-resolution mass spectrometry analytical platform, we clearly demonstrate that DAG levels are significantly increased in the frontal cortex of subjects with PD, LBD with intermediate neocortical AD neuropathology, and in LBD with established neocortical AD neuropathology. In the case of the PD cohort, increases in cortical DAG levels were detected in cases with no neocortical pathology but were greater in subjects with neocortical pathology. These data suggest that DAG changes occur early in the disease processes and are amplified as cortical dysfunction becomes more established. Conclusions These findings suggest that altered DAG synthesis/metabolism is a common feature of neurodegenerative diseases, characterized by proteinopathy, that ultimately result in cognitive deficits. With regard to the mechanism responsible for these biochemical alterations, selective decrements in cortical levels of phosphatidylcholines in LBD and PD suggest that augmented degradation and/or decreased synthesis of these structural glycerophospholipids may contribute to increases in the pool size of free DAGs. The observed augmentation of DAG levels may be phospholipase-driven since neuroinflammation is a consistent feature of all disease cohorts. If this conclusion can be validated it would support utilizing DAG levels as a biomarker of the early disease process and the investigation of early intervention with anti-inflammatory agents.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Cumberland Gap Pkwy., Harrogate, TN, United States of America
- * E-mail:
| | - Soumya Tippireddy
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy., Harrogate, TN, United States of America
| | - Joshua Feriante
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy., Harrogate, TN, United States of America
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health Science University and Portland VA Medical Center, Portland, OR, United States of America
| |
Collapse
|
20
|
Matsuda T, Hisatsune T. Cholinergic Modification of Neurogenesis and Gliosis Improves the Memory of AβPPswe/PSEN1dE9 Alzheimer's Disease Model Mice Fed a High-Fat Diet. J Alzheimers Dis 2018; 56:1-23. [PMID: 27911310 DOI: 10.3233/jad-160761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We previously reported that neuroinflammation contributes to the amnesia of AβPPswe/PSEN1dE9 Alzheimer's disease model mice fed a high-fat diet to induce type-2 diabetes (T2DM-AD mice), but the underlying mechanism for the memory decline remained unclear. Recent studies have suggested that cholinergic modulation is involved in neuroinflammatory cellular reactions including neurogenesis and gliosis, and in memory improvement. In this study, we administered a broad-spectrum cholinesterase inhibitor, rivastigmine (2 mg/kg/day, s.c.), into T2DM-AD mice for 6 weeks, and evaluated their memory performance, neurogenesis, and neuroinflammatory reactions. By two hippocampal-dependent memory tests, the Morris water maze and contextual fear conditioning, rivastigmine improved the memory deterioration of the T2DM-AD mice (n = 8, p < 0.01). The number of newborn neurons in the hippocampal dentate gyrus was 1138±324 (Ave±SEM) in wild-type littermates, 2573±442 in T2DM-AD-Vehicle, and 2165±300 in T2DM-AD-Rivastigmine mice, indicating that neurogenesis was accelerated in the two T2DM-AD groups (n = 5, p < 0.05). The dendritic maturation of new neurons in T2DM-AD-Vehicle mice was severely abrogated, and rivastigmine treatment reversed this retarded maturation. In addition, the hippocampus of T2DM-AD-Vehicle mice showed increased proinflammatory cytokines IL-1β and TNF-α and gliosis, and rivastigmine treatment blocked these inflammatory reactions. Rivastigmine did not change the insulin abnormality or amyloid pathology in these mice. Thus, cholinergic modulation by rivastigmine treatment led to enhanced neurogenesis and the suppression of gliosis, which together ameliorated the memory decline in T2DM-AD model mice.
Collapse
|
21
|
Wood PL, Cebak JE, Woltjer RL. Diacylglycerols as biomarkers of sustained immune activation in Proteinopathies associated with dementia. Clin Chim Acta 2018; 476:107-110. [DOI: 10.1016/j.cca.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022]
|
22
|
Abstract
PURPOSE OF REVIEW The aims of the study were to review recent advances in molecular imaging in the Lewy body dementias (LBD) and determine if these may support the clinical but contested temporal profile distinction between Parkinson disease (PD) with dementia (PDD) versus dementia with Lewy bodies (DLB). RECENT FINDINGS There do not appear to be major regional cerebral metabolic or neurotransmitter distinctions between PDD and DLB. However, recent studies highlight the relative discriminating roles of Alzheimer proteinopathies. PDD patients have lower cortical β-amyloid deposition than DLB. Preliminary tau PET studies suggest a gradient of increasing tau binding from cognitively normal PD (absent to lowest) to cognitively impaired PD (low) to DLB (intermediate) to Alzheimer disease (AD; highest). However, tau binding in DLB, including the medial temporal lobe, is substantially lower than in AD. Alzheimer-type proteinopathies appear to be more common in DLB compared to PDD with relative but no absolute differences. Given the spectrum of overlapping pathologies, future α-synuclein ligands are expected to have the best potential to distinguish the LBD from pure AD.
Collapse
|
23
|
Walker DG, Lue LF, Tang TM, Adler CH, Caviness JN, Sabbagh MN, Serrano GE, Sue LI, Beach TG. Changes in CD200 and intercellular adhesion molecule-1 (ICAM-1) levels in brains of Lewy body disorder cases are associated with amounts of Alzheimer's pathology not α-synuclein pathology. Neurobiol Aging 2017; 54:175-186. [PMID: 28390825 DOI: 10.1016/j.neurobiolaging.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Enhanced inflammation has been associated with Alzheimer's disease (AD) and diseases with Lewy body (LB) pathology, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). One issue is whether amyloid and tangle pathology, features of AD, or α-synuclein LB pathology have similar or different effects on brain inflammation. An aim of this study was to examine if certain features of inflammation changed in brains with increasing LB pathology. To assess this, we measured levels of the anti-inflammatory protein CD200 and the pro-inflammatory protein intercellular adhesion molecule-1 (ICAM-1) in cingulate and temporal cortex from a total of 143 cases classified according to the Unified Staging System for LB disorders. Changes in CD200 and ICAM-1 levels did not correlate with LB pathology, but with AD pathology. CD200 negatively correlated with density of neurofibrillary tangles, phosphorylated tau, and amyloid plaque density. ICAM-1 positively correlated with these AD pathology measures. Double immunohistochemistry for phosphorylated α-synuclein and markers for microglia showed limited association of microglia with LB pathology, but microglia strongly associated with amyloid plaques or phosphorylated tau. These results suggest that there are different features of inflammatory pathology in diseases associated with abnormal α-synuclein compared with AD.
Collapse
Affiliation(s)
- Douglas G Walker
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Lih-Fen Lue
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tiffany M Tang
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - John N Caviness
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | | | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | |
Collapse
|
24
|
Calcium Hypothesis of Alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement 2017; 13:178-182.e17. [PMID: 28061328 DOI: 10.1016/j.jalz.2016.12.006] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This article updates the Calcium Hypothesis of Alzheimer's disease and brain aging on the basis of emerging evidence since 1994 (The present article, with the subtitle "New evidence for a central role of Ca2+ in neurodegeneration," includes three appendices that provide context and further explanations for the rationale for the revisions in the updated hypothesis-the three appendices are as follows: Appendix I "Emerging concepts on potential pathogenic roles of [Ca2+]," Appendix II "Future studies to validate the central role of dysregulated [Ca2+] in neurodegeneration," and Appendix III "Epilogue: towards a comprehensive hypothesis.") (Marx J. Fresh evidence points to an old suspect: calcium. Science 2007; 318:384-385). The aim is not only to re-evaluate the original key claims of the hypothesis with a critical eye but also to identify gaps in knowledge required to validate relevant claims and delineate additional studies and/or data that are needed. Some of the key challenges for this effort included examination of questions regarding (1) the temporal and spatial relationships of molecular mechanisms that regulate neuronal calcium ion (Ca2+), (2) the role of changes in concentration of calcium ion [Ca2+] in various subcellular compartments of neurons, (3) how alterations in Ca2+ signaling affect the performance of neurons under various conditions, ranging from optimal functioning in a healthy state to conditions of decline and deterioration in performance during aging and in disease, and (4) new ideas about the contributions of aging, genetic, and environmental factors to the causal relationships between dysregulation of [Ca2+] and the functioning of neurons (see Appendices I and II). The updated Calcium Hypothesis also includes revised postulates that are intended to promote further crucial experiments to confirm or reject the various predictions of the hypothesis (see Appendix III).
Collapse
|
25
|
Streit WJ, Xue QS. Microglia in dementia with Lewy bodies. Brain Behav Immun 2016; 55:191-201. [PMID: 26518296 DOI: 10.1016/j.bbi.2015.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022] Open
Abstract
Microglial activation (neuroinflammation) is often cited as a pathogenic factor in the development of neurodegenerative diseases. However, there are significant caveats associated with the idea that inflammation directly causes either α-synuclein pathology or neurofibrillary degeneration (NFD). We have performed immunohistochemical studies on microglial cells in five cases of dementia with Lewy bodies (DLB), median age 87, and nine cases of non-demented (ND) controls, median age 74, using tissue samples from the temporal lobe and the superior frontal gyrus. Three different antibodies known to label microglia and macrophages were employed: iba1, anti-CD68, and anti-ferritin. All DLB cases showed both α-synuclein pathology (Lewy bodies and neurites) and NFD ranging from Braak stage II to IV. In contrast, all controls were devoid of α-synuclein pathology but did show NFD ranging from Braak stage I to III. Using iba1 labeling, our current results show a notable absence of activated microglia in all cases with the exception of two controls that showed small focal areas of microglial activation and macrophage formation. Both iba1 and ferritin antibodies revealed a mixture of ramified and dystrophic microglial cells throughout the regions examined, and there were no measurable differences in the prevalence of dystrophic microglial cells between DLB and controls. Double-labeling for α-synuclein and iba1-positive microglia showed that cortical Lewy bodies were surrounded by both ramified and dystrophic microglial cells. We found an increase in CD68 expression in DLB cases relative to controls. Since microglial dystrophy has been linked to NFD and since it did not appear to be worse in DLB cases over controls, our findings support the idea that the additional Lewy body pathology in DLB is not the result of intensified microglial dystrophy. CD68 is likely associated with lipofuscin deposits in microglial cells which may be increased in DLB cases because of impaired proteostasis. Overall, we conclude that neurodegenerative changes in DLB are unlikely to result directly from activated microglia but rather from dysfunctional ones.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610, USA.
| | - Qing-Shan Xue
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Extrastriatal spreading of microglial activation in Parkinson's disease: a positron emission tomography study. Ann Nucl Med 2016; 30:579-87. [PMID: 27299437 DOI: 10.1007/s12149-016-1099-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND The neuroinflammatory glial response contributes to the degenerative process in Parkinson's disease (PD). However, the pattern of microglial progression remains unclear. METHODS We evaluated microglial activation in early stage PD patients by quantifying changes in neuroinflammation using PET with [(11)C]DPA713, a selective PET tracer for microglial activation. Eleven PD patients (Hoehn and Yahr stages 1-2) without dementia underwent the [(11)C]DPA713 PET scan two times with 1 year apart. The binding potential (BPND) was estimated with the simplified reference tissue model. Voxelwise and regions of interest analyses were used to compare the regional BPND among groups. RESULTS Significant increase in [(11)C]DPA713 BPND was found extrastriatally in the occipital, temporal and parietal cortex in PD patients, and the degree of BPND became much higher over the brain regions predominantly in the temporal and occipital cortex 1 year later. CONCLUSION The current results indicated that an extrastriatal spreading of microglial activation reflects one of PD pathophysiology occurring at an early stage.
Collapse
|
27
|
Zhao Y, Tan W, Sheng W, Li X. Identification of Biomarkers Associated With Alzheimer's Disease by Bioinformatics Analysis. Am J Alzheimers Dis Other Demen 2016; 31:163-8. [PMID: 26082458 PMCID: PMC10852637 DOI: 10.1177/1533317515588181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study aimed to explore the biomarkers of Alzheimer's disease (AD). METHODS The microarray data of GSE16759 were from the expression profile samples of 4 parietal lobe tissues from patients with AD and 4 ones from age-matched control participants. The differentially expressed micro RNAs (miRNAs) and genes (DEGs) underwent hierarchical clustering and function analysis followed by target genes prediction. Finally, DEGs were mapped to the target genes to construct miRNA-regulated networks. RESULTS A total of 427 DEGs were obtained and clustered into 5 functions. After DEGs were mapped to the predicted target genes, 313 regulatory pairs were established. The target genes SEC22 vesicle trafficking protein homolog B (SEC22B) and SEC63 homolog (SEC63) regulated by miRNA-206, RAB10, member RAS oncogene family (RAB10) regulated by miRNA-655, and fms-related tyrosine kinase 1 (FLT1) regulated by miRNA-30e-3p and miRNA-369-3p were involved in the biological processes of protein transport and regulation of cell motion. CONCLUSION The target genes SEC22B, RAB10, and FLT1 may be potential biomarkers of AD.
Collapse
Affiliation(s)
- Yanxin Zhao
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong Province, China
| | - Wei Tan
- Department of General Surgery, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong Province, China
| | - Wenhua Sheng
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
28
|
Eom HS, Park HR, Jo SK, Kim YS, Moon C, Kim SH, Jung U. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells. PLoS One 2016; 11:e0147538. [PMID: 26828720 PMCID: PMC4734671 DOI: 10.1371/journal.pone.0147538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/04/2016] [Indexed: 01/02/2023] Open
Abstract
Most studies of IR effects on neural cells and tissues in the brain are still focused on loss of neural stem cells. On the other hand, the effects of IR on neuronal differentiation and its implication in IR-induced brain damage are not well defined. To investigate the effects of IR on C17.2 mouse neural stem-like cells and mouse primary neural stem cells, neurite outgrowth and expression of neuronal markers and neuronal function-related genes were examined. To understand this process, the signaling pathways including PI3K, STAT3, metabotrophic glutamate receptor 1 (mGluR1) and p53 were investigated. In C17.2 cells, irradiation significantly increased the neurite outgrowth, a morphological hallmark of neuronal differentiation, in a dose-dependent manner. Also, the expression levels of neuronal marker proteins, β-III tubulin were increased by IR. To investigate whether IR-induced differentiation is normal, the expression of neuronal function-related genes including synaptophysin, a synaptic vesicle forming proteins, synaptotagmin1, a calcium ion sensor, γ-aminobutyric acid (GABA) receptors, inhibitory neurotransmitter receptors and glutamate receptors, excitatory neurotransmitter receptors was examined and compared to that of neurotrophin-stimulated differentiation. IR increased the expression of synaptophysin, synaptotagmin1 and GABA receptors mRNA similarly to normal differentiation by stimulation of neurotrophin. Interestingly, the overall expression of glutamate receptors was significantly higher in irradiated group than normal differentiation group, suggesting that the IR-induced neuronal differentiation may cause altered neuronal function in C17.2 cells. Next, the molecular mechanism of the altered neuronal differentiation induced by IR was studied by investigating signaling pathways including p53, mGluR1, STAT3 and PI3K. Increases of neurite outgrowth, neuronal marker and neuronal function-related gene expressions by IR were abolished by inhibition of p53, mGluR-1, STAT3 or PI3K. The inhibition of PI3K blocked both p53 signaling and STAT3-mGluR1 signaling but inhibition of p53 did not affect STAT3-mGluR1 signaling in irradiated C17.2 cells. Finally, these results of the IR-induced altered differentiation in C17.2 cells were verified in ex vivo experiments using mouse primary neural stem cells. In conclusion, the results of this study demonstrated that IR is able to trigger the altered neuronal differentiation in undifferentiated neural stem-like cells through PI3K-STAT3-mGluR1 and PI3K-p53 signaling. It is suggested that the IR-induced altered neuronal differentiation may play a role in the brain dysfunction caused by IR.
Collapse
Affiliation(s)
- Hyeon Soo Eom
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Hae Ran Park
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sung Kee Jo
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Ho Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Uhee Jung
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
29
|
Brudek T, Winge K, Rasmussen NB, Bahl JMC, Tanassi J, Agander TK, Hyde TM, Pakkenberg B. Altered α-synuclein, parkin, and synphilin isoform levels in multiple system atrophy brains. J Neurochem 2015; 136:172-85. [DOI: 10.1111/jnc.13392] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Tomasz Brudek
- Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
- Bispebjerg Movement Disorders Biobank; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen N Denmark
| | - Kristian Winge
- Department of Neurology; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
- Bispebjerg Movement Disorders Biobank; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen N Denmark
| | - Nadja Bredo Rasmussen
- Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
| | | | - Julia Tanassi
- Department of Autoimmunology and Biomarkers; Statens Serum Institut; Copenhagen S Denmark
| | | | - Thomas M. Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus; Baltimore Maryland USA
- Department of Psychiatry and Behavioral Sciences; Johns Hopkins University School of Medicine; Baltimore Maryland USA
- Department of Neurology; Johns Hopkins University School of Medicine; Baltimore Maryland USA
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; University Hospital of Copenhagen; Copenhagen NV Denmark
| |
Collapse
|
30
|
Abstract
The molecular mechanism of neuronal loss and synaptic damage in Alzheimer's disease (AD), Parkinson's disease dementia (PDD), frontotemporal dementia (FTD) and Lewy body dementia (LBD) is poorly understood and could differ among different types of neurodegenerative processes. However, the presence of neuroinflammation is a common feature of dementia. In this setting, reactive microgliosis, oxidative damage and mitochondrial dysfunction are associated with the pathogenesis of all types of neurodegenerative dementia. Moreover, an increased body of evidence suggests that microglia may play a central role in AD progression. In this paper, we review the scientific literature on neuroinflammation related to the most common neurodegenerative dementias (AD, PDD, FTD and LBD) focussing on the possible molecular mechanisms and the available clinical evidence. Furthermore, we discuss the neuroimaging techniques that are currently used for the study of neuroinflammation in human brain.
Collapse
Affiliation(s)
- Giuseppe Pasqualetti
- Division of Brain Sciences, Department of Medicine, Imperial College London, 1st Floor B Block, Du Cane Road, London, W12 0NN, UK
| | | | | |
Collapse
|
31
|
Imaging neuroinflammation in Alzheimer's disease and other dementias: Recent advances and future directions. Alzheimers Dement 2014; 11:1110-20. [DOI: 10.1016/j.jalz.2014.08.105] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 04/21/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022]
|
32
|
Streit WJ, Xue QS, Tischer J, Bechmann I. Microglial pathology. Acta Neuropathol Commun 2014; 2:142. [PMID: 25257319 PMCID: PMC4180960 DOI: 10.1186/s40478-014-0142-6] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 02/06/2023] Open
Abstract
This paper summarizes pathological changes that affect microglial cells in the human brain during aging and in aging-related neurodegenerative diseases, primarily Alzheimer’s disease (AD). It also provides examples of microglial changes that have been observed in laboratory animals during aging and in some experimentally induced lesions and disease models. Dissimilarities and similarities between humans and rodents are discussed in an attempt to generate a current understanding of microglial pathology and its significance during aging and in the pathogenesis of Alzheimer dementia (AD). The identification of dystrophic (senescent) microglia has created an ostensible conflict with prior work claiming a role for activated microglia and neuroinflammation during normal aging and in AD, and this has raised a basic question: does the brain’s immune system become hyperactive (inflamed) or does it become weakened (senescent) in elderly and demented people, and what is the impact on neuronal function and cognition? Here we strive to reconcile these seemingly contradictory notions by arguing that both low-grade neuroinflammation and microglial senescence are the result of aging-associated free radical injury. Both processes are damaging for microglia as they synergistically exhaust this essential cell population to the point where the brain’s immune system is effete and unable to support neuronal function.
Collapse
|
33
|
Kim C, Cho ED, Kim HK, You S, Lee HJ, Hwang D, Lee SJ. β1-integrin-dependent migration of microglia in response to neuron-released α-synuclein. Exp Mol Med 2014; 46:e91. [PMID: 24743837 PMCID: PMC3972795 DOI: 10.1038/emm.2014.6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/02/2013] [Accepted: 12/13/2013] [Indexed: 12/14/2022] Open
Abstract
Chronic neuroinflammation is an integral pathological feature of major neurodegenerative diseases. The recruitment of microglia to affected brain regions and the activation of these cells are the major events leading to disease-associated neuroinflammation. In a previous study, we showed that neuron-released α-synuclein can activate microglia through activating the Toll-like receptor 2 (TLR2) pathway, resulting in proinflammatory responses. However, it is not clear whether other signaling pathways are involved in the migration and activation of microglia in response to neuron-released α-synuclein. In the current study, we demonstrated that TLR2 activation is not sufficient for all of the changes manifested by microglia in response to neuron-released α-synuclein. Specifically, the migration of and morphological changes in microglia, triggered by neuron-released α-synuclein, did not require the activation of TLR2, whereas increased proliferation and production of cytokines were strictly under the control of TLR2. Construction of a hypothetical signaling network using computational tools and experimental validation with various peptide inhibitors showed that β1-integrin was necessary for both the morphological changes and the migration. However, neither proliferation nor cytokine production by microglia was dependent on the activation of β1-integrin. These results suggest that β1-integrin signaling is specifically responsible for the recruitment of microglia to the disease-affected brain regions, where neurons most likely release relatively high levels of α-synuclein.
Collapse
Affiliation(s)
- Changyoun Kim
- 1] Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea [2] IBST, Konkuk University, Seoul, Korea
| | - Eun-Deok Cho
- Department of Anatomy, School of Medicine, Konkuk University, Seoul, Korea
| | | | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - He-Jin Lee
- 1] IBST, Konkuk University, Seoul, Korea [2] Department of Anatomy, School of Medicine, Konkuk University, Seoul, Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering and Department of Chemical Engineering, POSTECH, Pohang, Kyoungbuk, Korea
| | - Seung-Jae Lee
- 1] Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea [2] IBST, Konkuk University, Seoul, Korea
| |
Collapse
|
34
|
Alpha-synuclein transmission and mitochondrial toxicity in primary human foetal enteric neurons in vitro. Neurotox Res 2013; 25:170-82. [PMID: 24026637 DOI: 10.1007/s12640-013-9420-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/06/2013] [Accepted: 08/17/2013] [Indexed: 01/19/2023]
Abstract
Parkinson's disease (PD) is a multicentred neurodegenerative disorder characterised by the accumulation and aggregation of alpha-synuclein (α-syn) in several parts of the central nervous system. However, it is well established that PD can generate symptoms of constipation and other gastrointestinal problems and α-syn containing lesions have been identified in intestinal nerve cells. In this study, we show that α-syn can be taken up and accumulate in primary human foetal enteric neurons from the gastrointestinal tract and can be transferred between foetal enteric neurons. Impaired proteosomal/lysosomal degradation can promote the uptake and accumulation of α-syn in enteric neurons. Enteric neurons exposed to α-syn can also lead to impaired mitochondrial complex I activity, reduced mitochondrial function, and NAD(+) depletion culminating in cell death via energy restriction. These findings demonstrate neuron-to-neuron transmission of α-syn in enteric neurons, providing renewed evidence for Braak's hypothesis and the aetiology of PD.
Collapse
|
35
|
McCarty MF, Al-Harbi SA. Vaccination with heat-shocked mononuclear cells as a strategy for treating neurodegenerative disorders driven by microglial inflammation. Med Hypotheses 2013; 81:773-6. [PMID: 23968572 DOI: 10.1016/j.mehy.2013.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/29/2013] [Accepted: 08/04/2013] [Indexed: 11/26/2022]
Abstract
Naturally occurring T regulatory cells targeting epitopes derived from various heat shock proteins escape thymic negative selection and can be activated by vaccination with heat shock proteins; hence, vaccination with such proteins has exerted favorable effects on rodent models of autoimmune disorders. A more elegant way to achieve such vaccination, first evaluated clinically by Al-Harbi in the early 1990s, is to subject mononuclear cells to survivable heat shock ex vivo, incubate them at physiological temperature for a further 24-48 h, and then inject them subcutaneously; anecdotally, beneficial effects were observed with this strategy in a wide range of autoimmune and inflammatory conditions. There is growing evidence that M1-activated microglia play a primary or secondary role in the pathogenesis of numerous neurodegenerative diseases, as well as in major depression. T regulatory cells, by polarizing microglial toward a reparative M2 phenotype, have the potential to aid control of such disorders. It would be appropriate to test the heat-shocked mononuclear cell vaccination strategy in animal models of neurodegeneration and major depression, and to evaluate this approach clinically if such studies yield encouraging results.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Drive, Apt. 316, Carlsbad, California 92009, United States.
| | | |
Collapse
|
36
|
Sanchez-Guajardo V, Barnum C, Tansey M, Romero-Ramos M. Neuroimmunological processes in Parkinson's disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 2013; 5:113-39. [PMID: 23506036 PMCID: PMC3639751 DOI: 10.1042/an20120066] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
The role of neuroinflammation and the adaptive immune system in PD (Parkinson's disease) has been the subject of intense investigation in recent years, both in animal models of parkinsonism and in post-mortem PD brains. However, how these processes relate to and modulate α-syn (α-synuclein) pathology and microglia activation is still poorly understood. Specifically, how the peripheral immune system interacts, regulates and/or is induced by neuroinflammatory processes taking place during PD is still undetermined. We present herein a comprehensive review of the features and impact that neuroinflamation has on neurodegeneration in different animal models of nigral cell death, how this neuroinflammation relates to microglia activation and the way microglia respond to α-syn in vivo. We also discuss a possible role for the peripheral immune system in animal models of parkinsonism, how these findings relate to the state of microglia activation observed in these animal models and how these findings compare with what has been observed in humans with PD. Together, the available data points to the need for development of dual therapeutic strategies that modulate microglia activation to change not only the way microglia interact with the peripheral immune system, but also to modulate the manner in which microglia respond to encounters with α-syn. Lastly, we discuss the immune-modulatory strategies currently under investigation in animal models of parkinsonism and the degree to which one might expect their outcomes to translate faithfully to a clinical setting.
Collapse
Key Words
- lymphocytes
- m1/m2 phenotype
- microglia
- neuroinflammation
- parkinson’s disease
- α-synuclein
- 6-ohda, 6-hydroxydopamine
- ad, alzheimer’s disease
- apc, antigen-presenting cell
- α-syn, α-synuclein
- bbb, brain–blood barrier
- bcg, bacille calmette–guérin
- bm, bone marrow
- cfa, complete freund’s adjuvant
- cm, conditioned media
- cns, central nervous system
- cox, cyclooxygenase
- cr, complement receptor
- csf, cerebrospinal fluid
- da, dopamine
- eae, experimental autoimmune encephalomyelitis
- ga, galatiramer acetate
- gdnf, glial-derived neurotrophic factor
- gfp, green fluorescent protein
- hla-dr, human leucocyte antigen type dr
- ifnγ, interferon γ
- igg, immunoglobulin g
- il, interleukin
- inos, inducible nitric oxide synthase
- lamp, lysosome-associated membrane protein
- lb, lewy body
- lps, lipopolysaccharide
- mhc, major histocompatibility complex
- mptp, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- nfκb, nuclear factor κb
- nk, natural killer
- no, nitric oxide
- pd, parkinson’s disease
- pet, positron-emission tomography
- prp, prion protein
- raav, recombinant adeno-associated virus
- rns, reactive nitrogen species
- ros, reactive oxygen species
- sn, substantia nigra
- snp, single nucleotide polymorphism
- tcr, t-cell receptor
- tgfβ, tumour growth factor β
- th, tyrosine hydroxylase
- th1, t helper 1
- tlr, toll-like receptor
- tnf, tumour necrosis factor
- treg, regulatory t-cell
- vip, vasoactive intestinal peptide
- wt, wild-type
Collapse
Affiliation(s)
- Vanesa Sanchez-Guajardo
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christopher J. Barnum
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Malú G. Tansey
- †Department of Physiology, Emory University, School of Medicine, Atlanta, GA
30233, U.S.A
| | - Marina Romero-Ramos
- *CNS Disease Modeling Group, Department of Biomedicine, Ole Worms Allé 3,
Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Kempf SJ, Azimzadeh O, Atkinson MJ, Tapio S. Long-term effects of ionising radiation on the brain: cause for concern? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:5-16. [PMID: 23100112 DOI: 10.1007/s00411-012-0436-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
There is no clear evidence proving or disproving that ionising radiation is causally linked with neurodegenerative diseases such as Parkinson's and Alzheimer's. However, it is known that high doses of ionising radiation to the head (20-50 Gy) lead to severe learning and memory impairment which is characteristical for Alzheimer's. The cumulative doses of ionising radiation to the Western population are accruing, mostly due to the explosive growth of medical imaging procedures. Children are in particular prone to ionising radiation as the molecular processes within the brain are not completely finished. Furthermore, they have a long lifespan under risk. We wish to open a debate if such low doses of radiation exposure may lead to delayed long-term cognitive and other defects, albeit at a lower frequency than those observed during application of high doses. Further, we want to sensitise the society towards the risks of ionising radiation. To achieve these aims, we will recapitulate the known symptoms of Parkinson's and Alzheimer's on the molecular level and incorporate data of mainly low- and moderate-ionising radiation (<5 Gy). Thus, we want to highlight in general the potential similarities of both the neurodegenerative and radiation-induced pathways. We will propose a mechanistic model for radiation-induced neurodegeneration pointing out mitochondria as a key element. This includes effects of oxidative stress and neuroinflammation-all fundamental players of neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefan J Kempf
- German Research Center for Environmental Health, Institute of Radiation Biology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
38
|
Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S, Gelsomino G, Moresco RM, Perani D. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson's disease. Parkinsonism Relat Disord 2012; 19:47-52. [PMID: 22841687 DOI: 10.1016/j.parkreldis.2012.07.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/01/2012] [Accepted: 07/01/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Reactive microgliosis, hallmark of neuroinflammation, may contribute to neuronal degeneration, as shown in several neurodegenerative diseases. We in vivo evaluated microglia activation in early dementia with Lewy bodies, still not reported, and compared with early Parkinson's disease, to assess possible differential pathological patterns. METHODS We measured the [(11)C]-PK11195 binding potentials with Positron Emission Tomography, using a simplified reference tissue model, as marker of microglia activation, and cerebral spinal fluid protein carbonylation levels, as marker of oxidative stress. Six dementia with Lewy bodies and 6 Parkinson's disease patients within a year from the onset, and eleven healthy controls were included. Clinical diagnosis was confirmed at a 4-year follow-up. RESULTS In dementia with Lewy bodies as well as in Parkinson's disease, we found significant (p < 0.001) [(11)C]-PK11195 binding potential increases in the substantia nigra and putamen. Patients with Lewy bodies dementia had extensive additional microglia activation in several associative cortices. This was evident also at a single subject level. Significant increase of Cerebral Spinal Fluid protein carbonylation was shown in both patients' groups. CONCLUSIONS [(11)C]-PK11195 Positron Emission Tomography imaging revealed neuroinflammation in dementia with Lewy bodies and Parkinson's disease, mirroring, even at a single subject level, the common and the different topographical distribution of neuropathological changes, yet in the earliest stages of the disease process. Focusing on those events that characterize parkinsonisms and Parkinson's disease may be the key to further advancing the understanding of pathogenesis and to taking these mechanisms forward as a means of defining targets for neuroprotection.
Collapse
Affiliation(s)
- S Iannaccone
- Neurorehabilitation Unit, Department of Clinical Neurosciences, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jellinger KA. Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med 2012; 16:1166-83. [PMID: 22176890 PMCID: PMC3823071 DOI: 10.1111/j.1582-4934.2011.01507.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022] Open
Abstract
The misfolding and progressive aggregation of specific proteins in selective regions of the nervous system is a seminal occurrence in many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic and experimental differences, increasing evidence indicates considerable overlap between synucleinopathies, tauopathies and other protein-misfolding diseases. Inclusions, often characteristic hallmarks of these disorders, suggest interactions of pathological proteins enganging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Alzheimer, Parkinson, Huntington and prion diseases, have confirmed correlations/overlaps between these and other neurodegenerative disorders. Emerging evidence, in addition to synergistic effects of tau protein, amyloid-β, α-synuclein and other pathologic proteins, suggests that prion-like induction and spreading, involving secreted proteins, are major pathogenic mechanisms in various neurodegenerative diseases, depending on genetic backgrounds and environmental factors. The elucidation of the basic molecular mechanisms underlying the interaction and spreading of pathogenic proteins, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, is a major challenge for modern neuroscience, to provide a deeper insight into their pathogenesis as a basis of effective diagnosis and treatment.
Collapse
|
40
|
Microglia in Alzheimer brain: a neuropathological perspective. Int J Alzheimers Dis 2012; 2012:165021. [PMID: 22655212 PMCID: PMC3359674 DOI: 10.1155/2012/165021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/19/2012] [Indexed: 11/30/2022] Open
Abstract
Microglia have long been noted to be present and activated in Alzheimer brain. Demonstrations that these microglia are associated with the specific lesions of Alzheimer disease—Aβ plaques and neurofibrillary tangles—and that these microglia overexpress the potent proinflammatory cytokine interleukin-1 led to the recognition of a potential pathogenic role for these cells in initiation and progression of disease. Activated, cytokine-overexpressing microglia are near-universal components of Aβ plaques at early (diffuse) and mid (neuritic) stages of progression in Alzheimer brain, and only decline in end-stage, dense core plaques. They correlate with plaque distribution across cerebral cortical cytoarchitectonic layers and across brain regions. They also show close associations with tangle-bearing neurons in Alzheimer brain. Microglial activation is a consistent feature in conditions that confer increased risk for Alzheimer disease or that are associated with accelerated appearance of Alzheimer-type neuropathological changes. These include normal ageing, head injury, diabetes, heart disease, and chronic intractable epilepsy. The neuropathological demonstration of microglial activation in Alzheimer brain and in Alzheimer-related conditions opened the field of basic and applied investigations centered on the idea of a pathogenically important neuroinflammatory process in Alzheimer disease.
Collapse
|
41
|
Banks CN, Lein PJ. A review of experimental evidence linking neurotoxic organophosphorus compounds and inflammation. Neurotoxicology 2012; 33:575-84. [PMID: 22342984 DOI: 10.1016/j.neuro.2012.02.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 01/14/2023]
Abstract
Organophosphorus (OP) nerve agents and pesticides inhibit acetylcholinesterase (AChE), and this is thought to be a primary mechanism mediating the neurotoxicity of these compounds. However, a number of observations suggest that mechanisms other than or in addition to AChE inhibition contribute to OP neurotoxicity. There is significant experimental evidence that acute OP intoxication elicits a robust inflammatory response, and emerging evidence suggests that chronic repeated low-level OP exposure also upregulates inflammatory mediators. A critical question that is just beginning to be addressed experimentally is the pathophysiologic relevance of inflammation in either acute or chronic OP intoxication. The goal of this article is to provide a brief review of the current status of our knowledge linking inflammation to OP intoxication, and to discuss the implications of these findings in the context of therapeutic and diagnostic approaches to OP neurotoxicity.
Collapse
Affiliation(s)
- Christopher N Banks
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, One Shields Ave., Davis, CA 95616, USA.
| | | |
Collapse
|
42
|
Jellinger KA. Neuropathology of sporadic Parkinson's disease: evaluation and changes of concepts. Mov Disord 2011; 27:8-30. [PMID: 22081500 DOI: 10.1002/mds.23795] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD), one of the most frequent neurodegenerative disorders, is no longer considered a complex motor disorder characterized by extrapyramidal symptoms, but a progressive multisystem or-more correctly-multiorgan disease with variegated neurological and nonmotor deficiencies. It is morphologically featured not only by the degeneration of the dopaminergic nigrostriatal system, responsible for the core motor deficits, but by multifocal involvement of the central, peripheral and autonomic nervous system and other organs associated with widespread occurrence of Lewy bodies and dystrophic Lewy neurites. This results from deposition of abnormal α-synuclein (αSyn), the major protein marker of PD, and other synucleinopathies. Recent research has improved both the clinical and neuropathological diagnostic criteria of PD; it has further provided insights into the development and staging of αSyn and Lewy pathologies and has been useful in understanding the pathogenesis of PD. However, many challenges remain, for example, the role of Lewy bodies and the neurobiology of axons in the course of neurodegeneration, the relation between αSyn, Lewy pathology, and clinical deficits, as well as the interaction between αSyn and other pathologic proteins. Although genetic and experimental models have contributed to exploring the causes, pathomechanisms, and treatment options of PD, there is still a lack of an optimal animal model, and the etiology of this devastating disease is far from being elucidated.
Collapse
|
43
|
Jellinger KA. Interaction between α-synuclein and other proteins in neurodegenerative disorders. ScientificWorldJournal 2011; 11:1893-907. [PMID: 22125446 PMCID: PMC3217595 DOI: 10.1100/2011/371893] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023] Open
Abstract
Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, A-1070 Vienna, Austria.
| |
Collapse
|
44
|
The PPAR-gamma Agonist 15-Deoxy-Delta-Prostaglandin J(2) Attenuates Microglial Production of IL-12 Family Cytokines: Potential Relevance to Alzheimer's Disease. PPAR Res 2011; 2008:349185. [PMID: 18615183 PMCID: PMC2442897 DOI: 10.1155/2008/349185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Accepted: 04/22/2008] [Indexed: 01/01/2023] Open
Abstract
Accumulation of amyloid-beta peptide (Abeta) appears to contribute to the pathogenesis of Alzheimer's disease (AD). Therapeutic hope for the prevention or removal of Abeta deposits has been placed in strategies involving immunization against the Abeta peptide. Initial Abeta immunization studies in animal models of AD showed great promise. However, when this strategy was attempted in human subjects with AD, an unacceptable degree of meningoencephalitis occurred. It is generally believed that this adverse outcome resulted from a T-cell response to Abeta. Specifically, CD4(+) Th1 and Th17 cells may contribute to severe CNS inflammation and limit the utility of Abeta immunization in the treatment of AD. Interleukin (IL)-12 and IL-23 play critical roles in the development of Th1 and Th17 cells, respectively. In the present study, Abeta(1-42) synergistically elevated the expression of IL-12 and IL-23 triggered by inflammatory activation of microglia, and the peroxisome proliferator-activated receptor (PPAR)-gamma agonist 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) effectively blocked the elevation of these proinflammatory cytokines. Furthermore, 15d-PGJ(2) suppressed the Abeta-related synergistic induction of CD14, MyD88, and Toll-like receptor 2, molecules that play critical roles in neuroinflammatory conditions. Collectively, these studies suggest that PPAR-gamma agonists may be effective in modulating the development of AD.
Collapse
|
45
|
Calì T, Ottolini D, Brini M. Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. Biofactors 2011; 37:228-40. [PMID: 21674642 DOI: 10.1002/biof.159] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta (SNPC) and the presence of intracytoplasmatic inclusions known as Lewy bodies, largely composed of alpha-synuclein (α-syn). PD is a multifactorial disease and its etiology remains largely elusive. Although more than 90% of the cases are sporadic, mutations in several nuclear encoded genes have been linked to the development of autosomal recessive and dominant familial parkinsonian syndromes (Bogaerts et al. (2008) Genes Brain Behav 7, 129-151), enhancing our understanding of biochemical and cellular mechanisms contributing to the disease. Many cellular mechanisms are thought to be involved in the dopaminergic neuronal death in PD, including oxidative stress, intracellular Ca(2+) homeostasis impairment, and mitochondrial dysfunctions. Furthermore, endoplasmic reticulum (ER) stress together with abnormal protein degradation by the ubiquitin proteasome system is considered to contribute to the PD pathogenesis. This review covers all the aspects related to the molecular mechanisms underlying the interplay between mitochondria, ER, and proteasome system in PD-associated neurodegeneration.
Collapse
Affiliation(s)
- Tito Calì
- Department of Biological Chemistry, University of Padova, Italy
| | | | | |
Collapse
|
46
|
Hensley K. Neuroinflammation in Alzheimer's disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J Alzheimers Dis 2010; 21:1-14. [PMID: 20182045 DOI: 10.3233/jad-2010-1414] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The concept of neuroinflammation has evolved over the past two decades from an initially controversial viewpoint to its present status as a generally accepted idea whose mechanisms and consequences are still actively under research and debate, particularly with regard to Alzheimer's disease (AD). This review summarizes the current status of neuroinflammation research as it specifically relates to AD. Neuroinflammation is discussed mechanistically with emphasis on the role of redox signal transduction linked to the activation of central nervous system-relevant innate immune pathways. Redox signaling is presented both as a causal factor and a consequence of sustained neuroinflammation. Functional relationships are discussed that connect distinct neuroinflammatory components such as cytokines, eicosanoids, classic AD pathology (amyloid plaques and neurofibrillary tangles), and the recently emergent notion of "damage-associated molecular patterns". The interaction of these paracrine factors likely can produce positive as well as negative effects on the AD brain, ranging from plaque clearance by microglia in the short term to glial dysfunction and neuronal compromise if the neuroinflammation is chronically sustained and unmitigated. Recent disappointments in AD clinical trials of anti-inflammatory drugs are discussed with reference to possible explanations and potential avenues for future pharmacological approaches to the disease.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Health Sciences Center, Toledo, OH 43614-2598, USA.
| |
Collapse
|
47
|
Abstract
Over the past few decades, inflammation has been recognized as a major risk factor for various human diseases. Acute inflammation is short-term, self-limiting and it's easy for host defenses to return the body to homeostasis. Chronic inflammatory responses are predispose to a pathological progression of chronic illnesses characterized by infiltration of inflammatory cells, excessive production of cytokines, dysregulation of cellular signaling and loss of barrier function. Targeting reduction of chronic inflammation is a beneficial strategy to combat several human diseases. Flavonoids are widely present in the average diet in such foods as fruits and vegetables, and have been demonstrated to exhibit a broad spectrum of biological activities for human health including an anti-inflammatory property. Numerous studies have proposed that flavonoids act through a variety mechanisms to prevent and attenuate inflammatory responses and serve as possible cardioprotective, neuroprotective and chemopreventive agents. In this review, we summarize current knowledge and underlying mechanisms on anti-inflammatory activities of flavonoids and their implicated effects in the development of various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, No.142, Haijhuan Rd., Nanzih District, Kaohsiung, 81143, Taiwan.
| | | | | |
Collapse
|
48
|
Horstmann S, Budig L, Gardner H, Koziol J, Deuschle M, Schilling C, Wagner S. Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in patients with Alzheimer's disease. Int Psychogeriatr 2010; 22:966-72. [PMID: 20561382 DOI: 10.1017/s1041610210000827] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Deposition of amyloid beta in senile plaques and in cerebral blood vessels is one hallmark of the pathogenesis of Alzheimer's disease (AD). The ability of several matrix metalloproteinases (MMPs) to degrade amyloid precursor protein leading to aggregation of amyloid beta, as well as the increased expression of MMPs in post mortem brain tissue of Alzheimer's patients, indicate that MMPs play an important role in the pathogenesis of AD. METHODS We investigated levels of MMP-2,-3,-9 and -10 in plasma and cerebrospinal fluid (CSF) of AD patients (n = 14) by gelatin and casein zymography. Comparisons between AD patients and controls relative to levels of MMP-2, MMP-3, MMP-9, and MMP-10 were made with Wilcoxon rank statistics. Pearson correlations were computed as measures of association. RESULTS MMP-3 in AD was significantly elevated in plasma (p = 0.006) and there was a trend towards increase in CSF (p = 0.05). MMP-2 in CSF of AD patients was significantly decreased (p = 0.02) while levels in plasma remained unchanged. MMP-9 and MMP-10 could not be detected in CSF; MMP-10 was unchanged in plasma, but MMP-9 was significantly decreased (p = 0.02). CONCLUSIONS These findings constitute further evidence for the important role of MMPs in the pathogenesis of AD.
Collapse
Affiliation(s)
- Solveig Horstmann
- Department of Neurology, Medical School, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Santangelo A, Testai’ M, Albani S, Mamazza G, Pavano S, Zuccaro C, Atteritano M, Berretta M, Tomarchio M, Maugeri D. The clinical and rehabilitative complexity in dementia with Lewy bodies (DLB): Experience on a random sample of elderly patients dwelling in an RSA (“Residenza Sanitaria Assistita”) of Catania. Arch Gerontol Geriatr 2010; 51:e7-10. [DOI: 10.1016/j.archger.2009.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/20/2009] [Accepted: 06/23/2009] [Indexed: 11/17/2022]
|
50
|
Heurtaux T, Michelucci A, Losciuto S, Gallotti C, Felten P, Dorban G, Grandbarbe L, Morga E, Heuschling P. Microglial activation depends on beta-amyloid conformation: role of the formylpeptide receptor 2. J Neurochem 2010; 114:576-86. [DOI: 10.1111/j.1471-4159.2010.06783.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|