1
|
Naranjo‐Covo MM, Rincón‐Tabares DS, Flórez‐Álvarez L, Hernandez JC, Zapata‐Builes W. Natural Resistance to HIV Infection: Role of Immune Activation. Immun Inflamm Dis 2025; 13:e70138. [PMID: 39998960 PMCID: PMC11854356 DOI: 10.1002/iid3.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION Although repeated exposure to HIV-1 can result in infection, some individuals remain seronegative without clinical or serologic evidence of infection; these individuals are known as HIV-1-exposed seronegative individuals. This population has been extensively studied to understand the mechanisms associated with natural resistance to HIV infection. Two main hypotheses have been proposed to explain this resistance: some researchers associated resistance with a low activation phenotype characterized by a decrease in the activation and proliferation of immune system cells linked with infection control and decreased production of cytokines and pro-inflammatory molecules, whereas others suggest that resistance is related to immune system activation and the expression of high levels of chemokines, pro-inflammatory cytokines and antiviral molecules. AIMS Our study aims to review and analyze the most relevant evidence supporting the role of the activation level of the immune system during natural resistance to HIV-1 infection. METHODS A search was conducted via the PubMed, SciELO and ScienceDirect databases. The literature search was performed in a nonsystematic manner. Articles published in the last five decades addressing immune activation mechanisms in natural resistance to HIV were reviewed. RESULTS A low-activation phenotype, characterized by a high frequency of Treg cells; reduced expression of CD25, CD38, and HLA-DR; and lower production of pro-inflammatory cytokines in peripheral and mucosal tissues, plays a key role in reducing the number of activated cells susceptible to infection, but it minimizes chronic inflammation, facilitating viral entry and spread. In contrast, the activation phenotype is associated with high expression of markers such as CD25, CD38, and HLA-DR, along with elevated high levels of interferon-stimulated genes and pro-inflammatory cytokines. This profile could promote infection control while increasing the number of virus-susceptible cells. CONCLUSION The complexity of the immune response during HIV exposure, reflected in the conflicting evidence concerning whether low or high immune activation offers protection against infection, suggests that there may be multiple pathways to HIV-1 resistance, influenced by factors such as the type of viral exposure, the immune environment, and individual genetics. Further research is needed to determine which immune states are protective and how these responses can be modulated to prevent infection.
Collapse
Affiliation(s)
- María M. Naranjo‐Covo
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | | | - Lizdany Flórez‐Álvarez
- Departamento de Parasitología, Instituto de Ciencias BiomédicasUniversidad de Sao PauloSao PauloBrazil
| | - Juan C. Hernandez
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | - Wildeman Zapata‐Builes
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| |
Collapse
|
2
|
Vazquez T, Torrieri-Damard L, Pitoiset F, Levacher B, Vigneron J, Mayr L, Brimaud F, Bonnet B, Moog C, Klatzmann D, Bellier B. Particulate antigens administrated by intranasal and intravaginal routes in a prime-boost strategy improve HIV-specific T FH generation, high-quality antibodies and long-lasting mucosal immunity. Eur J Pharm Biopharm 2023; 191:124-138. [PMID: 37634825 DOI: 10.1016/j.ejpb.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Mucosal surfaces serve as the primary entry points for pathogens such as SARS- CoV-2 coronavirus or HIV in the human body. Mucosal vaccination plays a crucial role to successfully induce long-lasting systemic and local immune responses to confer sterilizing immunity. However, antigen formulations and delivery methods must be properly selected since they are decisive for the quality and the magnitude of the elicited immune responses in mucosa. We investigated the significance of using particulate antigen forms for mucosal vaccination by comparing VLP- or protein- based vaccines in a mouse model. Based on a mucosal prime-boost immunization protocol combining (i) HIV- pseudotyped recombinant VLPs (HIV-VLPs) and (ii) plasmid DNA encoding HIV- VLPs (pVLPs), we demonstrated that combination of intranasal primes and intravaginal boosts is optimal to elicit both humoral and cellular memory responses in mucosa. Interestingly, our results show that in contrast to proteins, particulate antigens induce high-quality humoral responses characterized by a high breadth, long-term neutralizing activity and cross-clade reactivity, accompanying with high T follicular helper cell (TFH) response. These results underscore the potential of a VLP-based vaccine in effectively instigating long-lasting, HIV-specific immunity and point out the specific role of particulate antigen form in driving high-quality mucosal immune responses.
Collapse
Affiliation(s)
- Thomas Vazquez
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Léa Torrieri-Damard
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Fabien Pitoiset
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France
| | - Béatrice Levacher
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - James Vigneron
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Luzia Mayr
- Université de Strasbourg, Fédération de médecine Translationnelle de Strasbourg, INSERM U1109, F-67000, France
| | - Faustine Brimaud
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France
| | - Benjamin Bonnet
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France
| | - Christiane Moog
- Université de Strasbourg, Fédération de médecine Translationnelle de Strasbourg, INSERM U1109, F-67000, France
| | - David Klatzmann
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France
| | - Bertrand Bellier
- Sorbonne Université, UMRS 959, laboratory I(3), F-75013 Paris, France; INSERM, UMRS 959, laboratory I(3), F-75013 Paris, France; AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Biotherapies and the Clinical Investigation Center in Biotherapy, F-75013 Paris, France.
| |
Collapse
|
3
|
Grant-McAuley W, Morgenlander W, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Blankson J, Wilson E, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Ruczinski I, Kammers K, Laeyendecker O, Larman HB, Eshleman SH. Comprehensive profiling of pre-infection antibodies identifies HIV targets associated with viremic control and viral load. Front Immunol 2023; 14:1178520. [PMID: 37744365 PMCID: PMC10512082 DOI: 10.3389/fimmu.2023.1178520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Background High HIV viral load (VL) is associated with increased transmission risk and faster disease progression. HIV controllers achieve viral suppression without antiretroviral (ARV) treatment. We evaluated viremic control in a community-randomized trial with >48,000 participants. Methods A massively multiplexed antibody profiling system, VirScan, was used to quantify pre- and post-infection antibody reactivity to HIV peptides in 664 samples from 429 participants (13 controllers, 135 viremic non-controllers, 64 other non-controllers, 217 uninfected persons). Controllers had VLs <2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit and one year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit. Other non-controllers had either ARV drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with no ARV drugs detected at only one HIV-positive visit (n=17). Results We identified pre-infection HIV antibody reactivities that correlated with post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of gp41 was associated with controller status and lower VL. Pre-infection reactivity to an epitope in the C2 domain of gp120 was associated with non-controller status and higher VL. Different patterns of antibody reactivity were observed over time for these two epitopes. Conclusion These studies suggest that pre-infection HIV antibodies are associated with controller status and modulation of HIV VL. These findings may inform research on antibody-based interventions for HIV treatment.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ethan Wilson
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | | | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, United States
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Wang H, Li P, Zhang M, Bi J, He Y, Li F, Yu R, Gao F, Kong W, Yu B, Chen L, Yu X. Vaccine with bacterium-like particles displaying HIV-1 gp120 trimer elicits specific mucosal responses and neutralizing antibodies in rhesus macaques. Microb Biotechnol 2022; 15:2022-2039. [PMID: 35290714 PMCID: PMC9249329 DOI: 10.1111/1751-7915.14022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 02/06/2022] [Indexed: 11/27/2022] Open
Abstract
Preclinical studies have shown that the induction of secretory IgA (sIgA) in mucosa and neutralizing antibodies (NAbs) in sera is essential for designing vaccines that can effectively block the transmission of HIV-1. We previously showed that a vaccine consisting of bacterium-like particles (BLPs) displaying Protan-gp120AE-MTQ (PAM) could induce mucosal immune responses through intranasal (IN) immunization in mice and NAbs through intramuscular (IM) immunization in guinea pigs. Here, we evaluated the ability of this vaccine BLP-PAM to elicit HIV-1-specific mucosal and systemic immune responses through IN and IM immunization combination strategies in rhesus macaques. First, the morphology, antigenicity and epitope accessibility of the vaccine were analysed by transmission electron microscopy, bio-layer interferometry and ELISA. In BLP-PAM-immunized macaques, HIV-1-specific sIgA were rapidly induced through IN immunization in situ and distant mucosal sites, although the immune responses are relatively weak. Furthermore, the HIV-1-specific IgG and IgA antibody levels in mucosal secretions were enhanced and maintained, while production of serum NAbs against heterologous HIV-1 tier 1 and 2 pseudoviruses was elicited after IM boost. Additionally, situ mucosal responses and systemic T cell immune responses were improved by rAd2-gp120AE boost immunization via the IN and IM routes. These results suggested that BLP-based delivery in combination with the IN and IM immunization approach represents a potential vaccine strategy against HIV-1.
Collapse
Affiliation(s)
- Huaiyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mo Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jinpeng Bi
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yizi He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Rongzhen Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510060, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Sobia P, Pillay T, Liebenberg LJP, Sivro A, Mansoor LE, Osman F, Passmore JAS, Abdool Karim Q, Abdool Karim SS, Baxter C, McKinnon LR, Archary D. Higher mucosal antibody concentrations in women with genital tract inflammation. Sci Rep 2021; 11:23514. [PMID: 34873252 PMCID: PMC8648917 DOI: 10.1038/s41598-021-02954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Inflammatory cytokines augment humoral responses by stimulating antibody production and inducing class-switching. In women, genital inflammation (GI) significantly modifies HIV risk. However, the impact of GI on mucosal antibodies remains undefined. We investigated the impact of GI, pre-HIV infection, on antibody isotypes and IgG subclasses in the female genital tract. Immunoglobulin (Ig) isotypes, IgG subclasses and 48 cytokines were measured prior to HIV infection in cervicovaginal lavages (CVL) from 66 HIV seroconverters (cases) and 66 matched HIV-uninfected women (controls) enrolled in the CAPRISA 004 and 008 1% tenofovir gel trials. Pre-HIV infection, cases had significantly higher genital IgM (4.13; IQR, 4.04-4.19) compared to controls (4.06; IQR, 3.90-4.20; p = 0.042). More than one-quarter of cases (27%) had GI compared to just over one-tenth (12%) in controls. Significantly higher IgG1, IgG3, IgG4 and IgM (all p < 0.05) were found in women stratified for GI compared to women without. Adjusted linear mixed models showed several pro-inflammatory, chemotactic, growth factors, and adaptive cytokines significantly correlated with higher titers of IgM, IgA and IgG subclasses (p < 0.05). The strong and significant positive correlations between mucosal antibodies and markers of GI suggest that GI may impact mucosal antibody profiles. These findings require further investigation to establish a plausible biological link between the local inflammatory milieu and its consequence on these genital antibodies.
Collapse
Affiliation(s)
- Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Thevani Pillay
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Lenine J P Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Medical Microbiology, University of Kwazulu-Natal, Durban, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Medical Microbiology, University of Kwazulu-Natal, Durban, South Africa
| | - Leila E Mansoor
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Farzana Osman
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Jo-Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Cheryl Baxter
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 2nd Floor, Doris Duke Medical Research Institute, 719 Umbilo Road, Durban, 4041, South Africa.
- Department of Medical Microbiology, University of Kwazulu-Natal, Durban, South Africa.
| |
Collapse
|
6
|
Frenkel LM, Kuller L, Beck IA, Tsai CC, Joy JP, Mulvania TM, Hu SL, Montefiori DC, Anderson DM. Immunization by exposure to live virus (SIVmne/HIV-2287) during antiretroviral drug prophylaxis may reduce risk of subsequent viral challenge. PLoS One 2021; 16:e0240495. [PMID: 33914754 PMCID: PMC8084236 DOI: 10.1371/journal.pone.0240495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/11/2021] [Indexed: 11/18/2022] Open
Abstract
Rationale/Study design A major challenge in the development of HIV vaccines is finding immunogens that elicit protection against a broad range of viral strains. Immunity to a narrow range of viral strains may protect infants of HIV-infected women or partners discordant for HIV. We hypothesized that immunization to the relevant viral variants could be achieved by exposure to infectious virus during prophylaxis with antiretroviral drugs. To explore this approach in an animal model, macaques were exposed to live virus (SIVmne or HIV-2287) during prophylaxis with parenteral tenofovir and humoral and cellular immune responses were quantified. Subsequently, experimental animals were challenged with homologous virus to evaluate protection from infection, and if infection occurred, the course of disease was compared to control animals. Experimental animals uninfected with SIVmne were challenged with heterologous HIV-2287 to assess resistance to retroviral infection. Methodology/Principal findings Juvenile female Macaca nemestrina (N = 8) were given ten weekly intravaginal exposures with either moderately (SIVmne) or highly (HIV-2287) pathogenic virus during tenofovir prophylaxis. Tenofovir protected all 8 experimental animals from infection, while all untreated control animals became infected. Specific non-neutralizing antibodies were elicited in blood and vaginal secretions of experimental animals, but no ELISPOT responses were detected. Six weeks following the cessation of tenofovir, intravaginal challenge with homologous virus infected 2/4 (50%) of the SIVmne-immunized animals and 4/4 (100%) of the HIV-2287-immunized animals. The two SIVmne-infected and 3 (75%) HIV-2287-infected had attenuated disease, suggesting partial protection. Conclusions/Significance Repeated exposure to SIVmne or HIV-2287, during antiretroviral prophylaxis that blocked infection, induced binding antibodies in the blood and mucosa, but not neutralizing antibodies or specific cellular immune responses. Studies to determine whether antibodies are similarly induced in breastfeeding infants and sexual partners discordant for HIV infection and receiving pre-exposure antiretroviral prophylaxis are warranted, including whether these antibodies appear to confer partial or complete protection from infection.
Collapse
Affiliation(s)
- Lisa M. Frenkel
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - LaRene Kuller
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, United States of America
| | - Ingrid A. Beck
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Che-Chung Tsai
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, United States of America
| | - Jaimy P. Joy
- Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Thera M. Mulvania
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Shiu-Lok Hu
- Department of Pharmaceutics, University of Washington, Seattle, Washington, United States of America
| | - David C. Montefiori
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Anderson
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, United States of America
| |
Collapse
|
7
|
Julg B, Barouch D. Broadly neutralizing antibodies for HIV-1 prevention and therapy. Semin Immunol 2021; 51:101475. [PMID: 33858765 DOI: 10.1016/j.smim.2021.101475] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Despite immense progress in our ability to prevent and treat HIV-1 infection, HIV-1 remains an incurable disease and a highly efficacious HIV-1 vaccine is not yet available. Additional tools to prevent and treat HIV-1 are therefore necessary. The identification of potent and broadly neutralizing antibodies (bNAbs) against HIV-1 has revolutionized the field and may prove clinically useful. Significant advances have been made in identifying broader and more potent antibodies, characterizing antibodies in preclinical animal models, engineering antibodies to extend half-life and expand breadth and functionality, and evaluating the efficacy of single bNAbs and bNAb combinations in people with and without HIV-1. Here, we review recent progress in developing bNAbs for the prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Boris Julg
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA; Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Dan Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA; Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW In the absence of a protective vaccine against HIV-1, passive immunization using novel broadly neutralizing antibodies (bNAbs) is an attractive concept for HIV-1 prevention. Here, we summarize the results of preclinical and clinical studies of bNAbs, discuss strategies for optimizing bNAb efficacy and lay out current pathways for the development of bNAbs as prophylaxis. RECENT FINDINGS Passive transfer of second-generation bNAbs results inpotent protection against infection in preclinical animal models. Furthermore, multiple bNAbs targeting different epitopes on the HIV-1 envelope trimer are in clinical evaluation and have demonstrated favorable safety profiles and robust antiviral activity in chronically infected individuals. The confirmation that passive immunization with bNAb(s) will prevent HIV-1 acquisition in humans is pending and the focus of ongoing investigations. Given the global diversity of HIV-1, bNAb combinations or multispecific antibodies will most likely be required to produce the necessary breadth for effective protection. SUMMARY Encouraging results from preclinical and clinical studies support the development of bNAbs for prevention and a number of antibodies with exceptional breadth and potency are available for clinical evaluation. Further optimization of viral coverage and antibody half-life will accelerate the clinical implementation of bNAbs as a critical tool for HIV-1 prevention strategies.
Collapse
|
9
|
Pitisuttithum P, Nitayaphan S, Chariyalertsak S, Kaewkungwal J, Dawson P, Dhitavat J, Phonrat B, Akapirat S, Karasavvas N, Wieczorek L, Polonis V, Eller MA, Pegu P, Kim D, Schuetz A, Jongrakthaitae S, Zhou Y, Sinangil F, Phogat S, Diazgranados CA, Tartaglia J, Heger E, Smith K, Michael NL, Excler JL, Robb ML, Kim JH, O'Connell RJ, Vasan S. Late boosting of the RV144 regimen with AIDSVAX B/E and ALVAC-HIV in HIV-uninfected Thai volunteers: a double-blind, randomised controlled trial. Lancet HIV 2020; 7:e238-e248. [PMID: 32035516 PMCID: PMC7247755 DOI: 10.1016/s2352-3018(19)30406-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND The RV144 phase 3 vaccine trial in Thailand demonstrated that ALVAC-HIV (vCP1521) and AIDSVAX B/E administration over 6 months resulted in a 31% efficacy in preventing HIV acquisition. In this trial, we assessed the immunological effect of an additional vaccine boost to the RV144 regimen at varying intervals between the priming vaccine series and the boost. METHODS RV306 is a double-blind, placebo-controlled, randomised clinical trial done at three clinical sites in Thailand. Eligible volunteers were HIV-uninfected individuals aged 20-40 years who were at low risk for HIV infection and in good health. A randomisation schedule was centrally generated with fixed sized strata for Research Institute for Health Sciences Chiang Mai and combined Bangkok clinics. Participants were randomly assigned to one of five groups and then further randomly assigned to either vaccine or placebo. All participants received the primary RV144 vaccine series at months 0, 1, 3, and 6. Group 1 received no additional boost, group 2 received additional AIDSVAX B/E and ALVAC-HIV (vCP1521) or placebo at month 12, group 3 received AIDSVAX B/E alone or placebo at month 12, group 4a received AIDSVAX B/E and ALVAC-HIV or placebo at month 15, and group 4b received AIDSVAX B/E and ALVAC-HIV or placebo at month 18. Primary outcomes were safety and tolerability of these vaccination regimens and cellular and humoral immune responses compared between the RV144 series alone and regimens with late boosts at different timepoints. Safety and tolerability outcomes were assessed by evaluating local and systemic reactogenicity and adverse events in all participants. This trial is registered at ClinicalTrials.gov (NCT01931358); clinical follow-up is now complete. FINDINGS Between Oct 28, 2013, and April 29, 2014, 367 participants were enrolled, of whom 27 were assigned active vaccination in group 1, 102 in group 2, 101 in group 3, 52 in group 4a, 51 in group 4b, and 34 combined placebo across all the groups. No vaccine-related serious adverse events were recorded. Occurrence and severity of local and systemic reactogenicity were similar across active groups. Groups with late boosts (groups 2, 3, 4a, and 4b) had increased peak plasma IgG-binding antibody levels against gp70 V1V2 relative to group 1 vaccine recipients with no late boost (gp70 V1V2 92TH023 adjusted p<0·02 for each; gp70 V1V2 CaseA2 adjusted p<0·0001 for each). Boosting at month 12 (groups 2 and 3) did not increase gp120 responses compared with the peak responses after the RV144 priming regimen at month 6; however, boosting at month 15 (group 4a) improved responses to gp120 A244gD- D11 (p=0·0003), and boosting at month 18 (group 4b) improved responses to both gp120 A244gD- D11 (p<0·0001) and gp120 MNgD- D11 (p=0·0016). Plasma IgG responses were significantly lower among vaccine recipients boosted at month 12 (pooled groups 2 + 3) than at month 15 (group 4a; adjusted p<0·0001 for each, except for gp70 V1V2 CaseA2, p=0·0142) and at month 18 (group 4b; all adjusted p<0·001). Boosting at month 18 versus month 15 resulted in a significantly higher plasma IgG response to gp120 antigens (all adjusted p<0·01) but not gp70 V1V2 antigens. CD4 functionality and polyfunctionality scores after stimulation with HIV-1 Env peptides (92TH023) increased with delayed boosting. Groups with late boosts had increased functionality and polyfunctionality scores relative to vaccine recipients with no late boost (all adjusted p<0·05, except for the polyfunctionality score in group 1 vs group 4b, p<0·01). INTERPRETATION Taken together, these results suggest that additional boosting of the RV144 regimen with longer intervals between the primary vaccination series and late boost improved immune responses and might improve the efficacy of preventing HIV acquisition. FUNDING US National Institute of Allergy and Infectious Diseases and US Department of the Army.
Collapse
Affiliation(s)
- Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Suwat Chariyalertsak
- Research Institute for Health Sciences and Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Jaranit Kaewkungwal
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Jittima Dhitavat
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benjaluck Phonrat
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Siriwat Akapirat
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicos Karasavvas
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Victoria Polonis
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Poonam Pegu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dohoon Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexandra Schuetz
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Sanjay Phogat
- Sanofi Pasteur, Swiftwater, PA, USA; GlaxoSmithKline, Siena, Italy
| | | | | | - Elizabeth Heger
- US Army Medical Materiel Development Activity, Fort Detrick, MD, USA
| | - Kirsten Smith
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nelson L Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jean-Louis Excler
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; International Vaccine Institute, Seoul, South Korea
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; International Vaccine Institute, Seoul, South Korea
| | - Robert J O'Connell
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandhya Vasan
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
10
|
Liu J, Clayton K, Gao W, Li Y, Zealey C, Budylowski P, Schwartz J, Yue FY, Bie Y, Rini J, Ostrowski M. Trimeric HIV-1 gp140 fused with APRIL, BAFF, and CD40L on the mucosal gp140-specific antibody responses in mice. Vaccine 2020; 38:2149-2159. [PMID: 32014267 DOI: 10.1016/j.vaccine.2020.01.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/04/2019] [Accepted: 01/19/2020] [Indexed: 12/12/2022]
Abstract
HIV-1 envelope (Env)-specific antibody present at mucosal surfaces can block entry of HIV-1 into these portals and thus should be elicited by an HIV-1 preventive vaccine. Since three molecules of tumor necrosis factor superfamily (TNFSF), APRIL, BAFF, and CD40L, could promote mucosal antibody responses, we made fusion constructs of them with an HIV-1 gp140 trimer and tested the mucosal gp140-specific antibody elicited by the fusion constructs in mice using a DNA prime-protein boost vaccination regimen. The fusion constructs formed trimers and displayed both broadly neutralizing antibody epitopes and non-broadly neutralizing antibody epitopes. Compared with the control construct, trimeric gp140, trimeric gp140-APRIL and gp140-BAFF fusion proteins mildly promoted B cell proliferation in vitro, enhanced HIV-1 gp140-binding IgG responses in vaginal lavage or fecal pellets, respectively, and decreased HIV-1 gp140-binding IgA in sera. Gp140-APRIL also augmented HIV-1 gp140-binding IgG in sera. Surprisingly, gp140-CD40L did not promote B cell proliferation in vitro and inhibited mucosal and systemic HIV-1 gp140-binding IgG or IgA. These results suggest that APRIL and BAFF should be further explored as molecular adjuvants for HIV-1 vaccines to enhance mucosal antibody responses, but covalent fusion of TNFSFs to gp140 may hinder their adjuvancy due to steric interactions.
Collapse
Affiliation(s)
- Jun Liu
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada.
| | - Kiera Clayton
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Wenbo Gao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yu Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chris Zealey
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Budylowski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Schwartz
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yun Yue
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yuan Bie
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - James Rini
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Clinical Sciences Division, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Månberg A, Bradley F, Qundos U, Guthrie BL, Birse K, Noël-Romas L, Lindskog C, Bosire R, Kiarie J, Farquhar C, Burgener AD, Nilsson P, Broliden K. A High-throughput Bead-based Affinity Assay Enables Analysis of Genital Protein Signatures in Women At Risk of HIV Infection. Mol Cell Proteomics 2019; 18:461-476. [PMID: 30504243 PMCID: PMC6398207 DOI: 10.1074/mcp.ra118.000757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/29/2018] [Indexed: 01/28/2023] Open
Abstract
Women at high risk of HIV infection, including sex workers and those with active genital inflammation, have molecular signatures of immune activation and epithelial barrier remodeling in samples of their genital mucosa. These alterations in the local immunological milieu are likely to impact HIV susceptibility. We here analyze host genital protein signatures in HIV uninfected women, with high frequency of condom use, living in HIV-serodiscordant relationships. Cervicovaginal secretions from women living in HIV-serodiscordant relationships (n = 62) were collected at three time points over 12 months. Women living in HIV-negative seroconcordant relationships (controls, n = 25) were sampled at one time point. All study subjects were examined for demographic parameters associated with susceptibility to HIV infection. The cervicovaginal samples were analyzed using a high-throughput bead-based affinity assay. Proteins involved in epithelial barrier function and inflammation were increased in HIV-serodiscordant women. By combining several methods of analysis, a total of five proteins (CAPG, KLK10, SPRR3, elafin/PI3, CSTB) were consistently associated with this study group. Proteins analyzed using the affinity set-up were further validated by label-free tandem mass spectrometry in a partially overlapping cohort with concordant results. Women living in HIV-serodiscordant relationships thus had elevated levels of proteins involved in epithelial barrier function and inflammation despite low prevalence of sexually transmitted infections and a high frequency of safe sex practices. The identified proteins are important markers to follow during assessment of mucosal HIV susceptibility factors and a high-throughput bead-based affinity set-up could be a suitable method for such evaluation.
Collapse
Affiliation(s)
- Anna Månberg
- From the ‡Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Frideborg Bradley
- §Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden;
| | - Ulrika Qundos
- From the ‡Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Brandon L Guthrie
- ¶Department of Global Health and Department of Epidemiology Health, University of Washington, Seattle, Washington
| | - Kenzie Birse
- ‖Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- **National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Laura Noël-Romas
- ‖Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- **National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Cecilia Lindskog
- ‡‡SciLifeLab, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rose Bosire
- §§Kenya Medical Research Institute, Nairobi, Kenya
| | - James Kiarie
- ¶¶Department of Obstetrics and Gynecology, University of Nairobi, Nairobi, Kenya
| | - Carey Farquhar
- ‖‖Department of Medicine, Global Health, and Epidemiology, University of Washington, Seattle, Washington
| | - Adam D Burgener
- §Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- ‖Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- **National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Peter Nilsson
- From the ‡Affinity Proteomics, SciLifeLab, Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Kristina Broliden
- §Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Although approximately 90% of all HIV transmissions in humans occur through mucosal contact, the induction of mucosal anti-HIV immune responses has remained understudied. Here we summarize data demonstrating the powerful protection that is achievable at mucosal frontlines through virus-specific mucosal IgA alone or combined with IgG. RECENT FINDINGS Passive immunization with different monoclonal antibody subclasses but identical epitope specificity (the conserved V3-loop crown of HIV gp120) has revealed that the dimeric IgA1 (dIgA1) form with its open hinge can prevent simian-human immunodeficiency virus (SHIV) acquisition in rhesus macaques at a higher rate than dIgA2. Both dIgAs neutralized the challenge SHIV equally well. Protection was linked to better virion capture and inhibition of cell-free virus transcytosis by dIgA1. Synergistic interactions at the mucosal level between the IgG1 and dIgA2 versions of this monoclonal antibody yielded complete protection. Active vaccine strategies designed to induce mucosal IgA and systemic/mucosal IgG have given promising data. SUMMARY This review seeks to highlight the importance of mucosal IgAs in preventing virus acquisition. Passive immunization gave proof-of-concept for immune exclusion by mucosally administered monoclonal dIgAs. Unanswered questions remain regarding the interplay between mucosal IgA and other host immune defenses, including their induction with active immunization.
Collapse
|
13
|
Lund JM, Broliden K, Pyra MN, Thomas KK, Donnell D, Irungu E, Muwonge TR, Mugo N, Manohar M, Jansson M, Mackelprang R, Marzinke MA, Baeten JM, Lingappa JR. HIV-1-Neutralizing IgA Detected in Genital Secretions of Highly HIV-1-Exposed Seronegative Women on Oral Preexposure Prophylaxis. J Virol 2016; 90:9855-9861. [PMID: 27558421 PMCID: PMC5068535 DOI: 10.1128/jvi.01482-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022] Open
Abstract
Although nonhuman primate studies have shown that simian immunodeficiency virus/simian-human immunodeficiency virus (SIV/SHIV) exposure during preexposure prophylaxis (PrEP) with oral tenofovir can induce SIV immunity without productive infection, this has not been documented in humans. We evaluated cervicovaginal IgA in Partners PrEP Study participants using a subtype C primary isolate and found that women on PrEP had IgA with higher average human immunodeficiency virus type 1 (HIV-1)-neutralizing magnitude than women on placebo (33% versus 7%; P = 0.008). Using a cutoff of ≥90% HIV-1 neutralization, 19% of women on-PrEP had HIV-1-neutralizing IgA compared to 0% of women on placebo (P = 0.09). We also estimated HIV-1 exposure and found that the proportion of women with HIV-1-neutralizing IgA was associated with the level of HIV-1 exposure (P = 0.04). Taken together, our data suggest that PrEP and high levels of exposure to HIV may each enhance mucosal HIV-1-specific humoral immune responses in sexually exposed but HIV-1-uninfected individuals. IMPORTANCE Although there is not yet an effective HIV-1 vaccine, PrEP for at-risk HIV-1-uninfected individuals is a highly efficacious intervention to prevent HIV-1 acquisition and is currently being recommended by the CDC and WHO for all individuals at high risk of HIV-1 acquisition. We previously demonstrated that PrEP use does not enhance peripheral blood HIV-1-specific T-cell responses in HIV-exposed individuals. Here, we evaluate for cervicovaginal HIV-neutralizing IgA responses in genital mucosal secretions of HIV-exposed women, which is likely a more relevant site than peripheral blood for observation of potentially protective immune events occurring in response to sexual HIV-1 exposure for various periods. Furthermore, we assess for host response in the context of longitudinal quantification of HIV-1 exposure. We report that HIV-neutralizing IgA is significantly correlated with higher HIV-1 exposure and, furthermore, that there are more women with HIV-1-neutralizing IgA in the on-PrEP group than in the placebo group.
Collapse
Affiliation(s)
- Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | - Maria N Pyra
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Katherine K Thomas
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Deborah Donnell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Elizabeth Irungu
- Partners in Health Research and Development, Kenya Medical Research Institute, Thika, Kenya
| | | | - Nelly Mugo
- Partners in Health Research and Development, Kenya Medical Research Institute, Thika, Kenya
| | - Madhuri Manohar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marianne Jansson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Romel Mackelprang
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Mark A Marzinke
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jared M Baeten
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Jairam R Lingappa
- Department of Global Health, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Boesch AW, Brown EP, Ackerman ME. The role of Fc receptors in HIV prevention and therapy. Immunol Rev 2016; 268:296-310. [PMID: 26497529 DOI: 10.1111/imr.12339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, a wealth of experimental evidence has accumulated supporting the importance of Fc receptor (FcR) ligation in antibody-mediated pathology and protection in many disease states. Here we present the diverse evidence base that has accumulated as to the importance of antibody effector functions in the setting of HIV prevention and therapy, including clinical correlates, genetic associations, viral evasion strategies, and a rapidly growing number of compelling animal model experiments. Collectively, this work identifies antibody interactions with FcR as important to both therapeutic and prophylactic strategies involving both passive and active immunity. These findings mirror those in other fields as investigators continue to work toward identifying the right antibodies and the right effectors to be present at the right sites at the right time.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|
15
|
Wang Y, Yang GB. Alteration of Polymeric Immunoglobulin Receptor and Neonatal Fc Receptor Expression in the Gut Mucosa of Immunodeficiency Virus-Infected Rhesus Macaques. Scand J Immunol 2016; 83:235-43. [PMID: 26860548 DOI: 10.1111/sji.12416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022]
Abstract
Polymeric immunoglobulin receptors (pIgR) and neonatal Fc receptors (FcRn) are crucial immunoglobulin (Ig) receptors for the transcytosis of immunoglobulins, that is IgA, IgM and IgG, the levels of which in mucosal secretions were altered in both HIV- and SIV-infected individuals. To gain an insight into the changes of pIgR and FcRn expression after immunodeficiency virus (SHIV/SIV) infection, real-time RT-PCR methods were established and the mRNA levels of pIgR and FcRn in normal and SHIV/SIV-infected rhesus macaques were quantitatively examined. It was found that the levels of pIgR mRNA were within a range of 10(7) copies per million copies of GAPDH mRNA in the gut mucosa of rhesus macaques, which were up to 55 times higher than that in the oral mucosa, the highest among the non-gut tissues examined. Levels of FcRn mRNA were generally lower than that of pIgR, and the levels of FcRn mRNA in the gut mucosa were also lower than that in most non-gut tissues examined. Notably, the levels of pIgR mRNA in the duodenal mucosa were positively correlated with that of IL-17A in normal rhesus macaques. Both pIgR and FcRn mRNA levels were significantly reduced in the duodenal mucosa during acute SHIV infection and in the jejunum and caecum during chronic SHIV/SIV infection. These data expanded our knowledge on the expression of pIgR and FcRn in the gastrointestinal tract of rhesus macaques and demonstrated altered expression of pIgR and FcRn in SHIV/SIV, and by extension HIV infections, which might have contributed to HIV/AIDS pathogenesis.
Collapse
Affiliation(s)
- Y Wang
- National Center for AIDS/STD Control and Prevention, Beijing, China.,Dalian Center for Disease Control and Prevention, Dalian, China
| | - G B Yang
- National Center for AIDS/STD Control and Prevention, Beijing, China
| |
Collapse
|
16
|
Non-Cationic Proteins Are Associated with HIV Neutralizing Activity in Genital Secretions of Female Sex Workers. PLoS One 2015; 10:e0130404. [PMID: 26090884 PMCID: PMC4475052 DOI: 10.1371/journal.pone.0130404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Objective Cationic proteins found in cervicovaginal secretions (CVS) are known to contribute to the early antiviral immune response against HIV-infection in vitro. We here aimed to define additional antiviral factors that are over-expressed in CVS from female sex workers at high risk of infection. Methods CVS were collected from Kenyan HIV-seronegative (n = 34) and HIV-seropositive (n = 12) female sex workers, and were compared with those from HIV-seronegative low-risk women (n = 12). The highly exposed seronegative (HESN) sex workers were further divided into those with less (n = 22) or more (n = 12) than three years of documented sex work. Cationic protein-depleted CVS were assessed for HIV-neutralizing activity by a PBMC-based HIV-neutralizing assay, and then characterized by proteomics. Results HIV neutralizing activity was detected in all unprocessed CVS, however only CVS from the female sex worker groups maintained its HIV neutralizing activity after cationic protein-depletion. Differentially abundant proteins were identified in the cationic protein-depleted secretions including 26, 42, and 11 in the HESN>3yr, HESN<3yr, and HIV-positive groups, respectively. Gene ontology placed these proteins into functional categories including proteolysis, oxidation-reduction, and epidermal development. The proteins identified in this study include proteins previously associated with the HESN phenotype in other cohorts as well as novel proteins not yet associated with anti-HIV activities. Conclusion While cationic proteins appear to contribute to the majority of the intrinsic HIV neutralizing activity in the CVS of low-risk women, a broader range of non-cationic proteins were associated with HIV neutralizing activity in HESN and HIV-positive female sex workers. These results indicate that novel protein factors found in CVS of women with high-risk sexual practices may have inherent antiviral activity, or are involved in other aspects of anti-HIV host defense, and warrant further exploration into their mode of action.
Collapse
|
17
|
Distinct natural killer cells in HIV-exposed seronegative subjects with effector cytotoxic CD56(dim) and CD56(bright) cells and memory-like CD57⁺NKG2C⁺CD56(dim) cells. J Acquir Immune Defic Syndr 2015; 67:463-71. [PMID: 25230289 DOI: 10.1097/qai.0000000000000350] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Innate immunity, including natural killer (NK) cells, may play a significant role in maintaining natural resistance to infection in highly HIV-exposed seronegative (HESN) subjects. The differences between NK-cell subsets, regarding their activating/maturing marker expression and their memory markers, in HESN subjects are not fully defined. METHODS We have conducted an analysis of the activating/memory markers and intracellular CD107a and interferon γ (IFN-γ) expression in NK-cell subsets from HESN and HIV-infected and healthy subjects. RESULTS HESN individuals showed an increased expression of activating markers, such as NKG2D in CD56(bright) and CD56(dim) NK cells, and an increased frequency of CD56(bright)CD127⁺ and fully mature CD56(dim)CD57⁺ NK cells compared with HIV-infected patients and healthy control subjects. Of note, HESN individuals showed an increased frequency of memory CD56(dim)CD57⁺ NK cells, and this is known to be expanded on cytomegalovirus infection, as evidenced by their high rate of cytomegalovirus seropositivity. Simultaneous expression of the CD94, NKG2A, NKG2C, and NKG2D receptors on CD56(bright) NK cells was detected in HESN subjects, whereas in the HIV-1 group, the expression of these 4 receptors was enhanced in CD56(dim) NK cells. It was also found that CD56(bright) and CD56(dim) NK cells in HESN subjects showed increased CD107a and/or IFN-γ expression. CONCLUSIONS The NK cells from HESN individuals presented a unique activation profile, with increased expression of NKG2D, CD107a, and IFN-γ and "memory" CD57⁺CD56(dim) NK cells. The complex network of functional NK-cell activities in HESN individuals may be exploited for long-term protection through vaccination.
Collapse
|
18
|
Acceptability and feasibility of repeated mucosal specimen collection in clinical trial participants in Kenya. PLoS One 2014; 9:e110228. [PMID: 25360819 PMCID: PMC4215886 DOI: 10.1371/journal.pone.0110228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mucosal specimens are essential to evaluate compartmentalized immune responses to HIV vaccine candidates and other mucosally targeted investigational products. We studied the acceptability and feasibility of repeated mucosal sampling in East African clinical trial participants at low risk of HIV and other sexually transmitted infections. METHODS AND FINDINGS The Kenya AIDS Vaccine Initiative (KAVI) enrolled participants into three Phase 1 trials of preventive HIV candidate vaccines in 2011-2012 at two clinical research centers in Nairobi. After informed consent to a mucosal sub-study, participants were asked to undergo collection of mucosal secretions (saliva, oral fluids, semen, cervico-vaginal and rectal), but could opt out of any collection at any visit. Specimens were collected at baseline and two additional time points. A tolerability questionnaire was administered at the final sub-study visit. Of 105 trial participants, 27 of 34 women (79%) and 62 of 71 men (87%) enrolled in the mucosal sub-study. Nearly all sub-study participants gave saliva and oral fluids at all visits. Semen was collected from about half the participating men (47-48%) at all visits. Cervico-vaginal secretions were collected by Softcup from about two thirds of women (63%) at baseline, increasing to 78% at the following visits, with similar numbers for cervical secretion collection by Merocel sponge; about half of women (52%) gave cervico-vaginal samples at all visits. Rectal secretions were collected with Merocel sponge from about a quarter of both men and women (24%) at all 3 visits, with 16% of men and 19% of women giving rectal samples at all visits. CONCLUSIONS Repeated mucosal sampling in clinical trial participants in Kenya is feasible, with a good proportion of participants consenting to most sampling methods with the exception of rectal samples. Experienced staff members of both sexes and trained counselors with standardized messaging may improve acceptance of rectal sampling.
Collapse
|
19
|
Hirbod T, Kong X, Kigozi G, Ndyanabo A, Serwadda D, Prodger JL, Tobian AA, Nalugoda F, Wawer MJ, Shahabi K, Rojas OL, Gommerman JL, Broliden K, Kaul R, Gray RH. HIV acquisition is associated with increased antimicrobial peptides and reduced HIV neutralizing IgA in the foreskin prepuce of uncircumcised men. PLoS Pathog 2014; 10:e1004416. [PMID: 25275513 PMCID: PMC4183701 DOI: 10.1371/journal.ppat.1004416] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The foreskin is the site of most HIV acquisition in uncircumcised heterosexual men. Although HIV-exposed, seronegative (HESN) uncircumcised men demonstrate HIV-neutralizing IgA and increased antimicrobial peptides (AMPs) in the foreskin prepuce, no prospective studies have examined the mucosal immune correlates of HIV acquisition. METHODS To assess the association of foreskin immune parameters with HIV acquisition, antimicrobial peptides and IgA with the capacity to neutralize a primary clade C HIV strain were quantified by blinded investigators, using sub-preputial swabs collected longitudinally during a randomized trial of male circumcision for HIV prevention in Rakai, Uganda. RESULTS Participants were 99 men who acquired HIV (cases) and 109 randomly selected controls who remained HIV seronegative. At enrollment, 44.4% of cases vs. 69.7% of controls demonstrated IgA neutralization (adjusted OR = 0.31; 95% CI, 0.16-0.61). IgA neutralization was detected in 38.7% of cases and 70.7% of controls at the last seronegative case visit prior to HIV acquisition and the comparable control visit (adjusted OR 0.21; 95% CI, 0.11-0.39). Levels of the α-defensins and secretory leukocyte protease inhibitor (SLPI) were over ten-fold higher in the foreskin prepuce of cases who acquired HIV, both at enrollment (mean 4.43 vs. 3.03 and 5.98 vs. 4.61 log(n) pg/mL, P = 0.005 and 0.009, respectively), and at the last seronegative visit (mean 4.81 vs. 3.15 and 6.46 vs. 5.20 log(n) pg/mL, P = 0.0002 and 0.013). CONCLUSIONS This prospective, blinded analysis is the first to assess the immune correlates of HIV acquisition in the foreskin. HIV-neutralizing IgA, previously associated with the HESN phenotype, was a biomarker of HIV protection, but other HESN associations correlated with increased HIV acquisition. This emphasizes the importance of prospective epidemiological studies or in vitro tissue studies to define the impact of mucosal parameters on HIV risk.
Collapse
Affiliation(s)
- Taha Hirbod
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Xiangrong Kong
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | | | - David Serwadda
- Rakai Health Sciences Program, Kalisizo, Uganda
- School of Public Health, College of Medicine, Makerere University, Kampala, Uganda
| | - Jessica L. Prodger
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada
| | - Aaron A. Tobian
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | | | - Maria J. Wawer
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Rakai Health Sciences Program, Kalisizo, Uganda
| | - Kamnoosh Shahabi
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada
| | - Olga L. Rojas
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada
| | | | - Kristina Broliden
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rupert Kaul
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada
- * E-mail:
| | - Ronald H. Gray
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Rakai Health Sciences Program, Kalisizo, Uganda
| |
Collapse
|
20
|
Abstract
In spite of several attempts over many years at developing a HIV vaccine based on classical strategies, none has convincingly succeeded to date. As HIV is transmitted primarily by the mucosal route, particularly through sexual intercourse, understanding antiviral immunity at mucosal sites is of major importance. An ideal vaccine should elicit HIV-specific antibodies and mucosal CD8⁺ cytotoxic T-lymphocyte (CTL) as a first line of defense at a very early stage of HIV infection, before the virus can disseminate into the secondary lymphoid organs in mucosal and systemic tissues. A primary focus of HIV preventive vaccine research is therefore the induction of protective immune responses in these crucial early stages of HIV infection. Numerous approaches are being studied in the field, including building upon the recent RV144 clinical trial. In this article, we will review current strategies and briefly discuss the use of adjuvants in designing HIV vaccines that induce mucosal immune responses.
Collapse
|
21
|
Romas LM, Hasselrot K, Aboud LG, Birse KD, Ball TB, Broliden K, Burgener AD. A comparative proteomic analysis of the soluble immune factor environment of rectal and oral mucosa. PLoS One 2014; 9:e100820. [PMID: 24978053 PMCID: PMC4076261 DOI: 10.1371/journal.pone.0100820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/30/2014] [Indexed: 02/04/2023] Open
Abstract
Objective Sexual transmission of HIV occurs across a mucosal surface, which contains many soluble immune factors important for HIV immunity. Although the composition of mucosal fluids in the vaginal and oral compartments has been studied extensively, the knowledge of the expression of these factors in the rectal mucosa has been understudied and is very limited. This has particular relevance given that the highest rates of HIV acquisition occur via the rectal tract. To further our understanding of rectal mucosa, this study uses a proteomics approach to characterize immune factor components of rectal fluid, using saliva as a comparison, and evaluates its antiviral activity against HIV. Methods Paired salivary fluid (n = 10) and rectal lavage fluid (n = 10) samples were collected from healthy, HIV seronegative individuals. Samples were analyzed by label-free tandem mass spectrometry to comprehensively identify and quantify mucosal immune protein abundance differences between saliva and rectal fluids. The HIV inhibitory capacity of these fluids was further assessed using a TZM-bl reporter cell line. Results Of the 315 proteins identified in rectal lavage fluid, 72 had known immune functions, many of which have described anti-HIV activity, including cathelicidin, serpins, cystatins and antileukoproteinase. The majority of immune factors were similarly expressed between fluids, with only 21 differentially abundant (p<0.05, multiple comparison corrected). Notably, rectal mucosa had a high abundance of mucosal immunoglobulins and antiproteases relative to saliva, Rectal lavage limited HIV infection by 40–50% in vitro (p<0.05), which is lower than the potent anti-HIV effect of oral mucosal fluid (70–80% inhibition, p<0.005). Conclusions This study reveals that rectal mucosa contains many innate immune factors important for host immunity to HIV and can limit viral replication in vitro. This indicates an important role for this fluid as the first line of defense against HIV.
Collapse
Affiliation(s)
- Laura M. Romas
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Klara Hasselrot
- Karolinska Institutet, Department of Medicine Solna, Unit of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lindsay G. Aboud
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kenzie D. Birse
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Kristina Broliden
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
| | - Adam D. Burgener
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Canada
- * E-mail:
| |
Collapse
|
22
|
Ackerman ME, Alter G. Opportunities to exploit non-neutralizing HIV-specific antibody activity. Curr HIV Res 2014; 11:365-77. [PMID: 24191934 DOI: 10.2174/1570162x113116660058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/16/2013] [Accepted: 08/03/2013] [Indexed: 12/22/2022]
Abstract
Antibodies act as a nexus between innate and adaptive immunity: they provide a means to engage a spectrum of innate immune effector cells in order to clear viral particles and infected cells and prime antigen presentation. This functional landscape is remarkably complex, and depends on antibody isotype, subclass, and glycosylation; the expression levels and patterns of a suite of Fc receptors with both complementary and opposing activities; and a host of innate immune cells capable of differential responses to opsonized particles and present at different sites. In vivo, even neutralizing antibodies rely on their ability to act as molecular beacons and recruit innate immune effector cells in order to provide protection, and results from both human and macaque studies have implicated these effector functions in vaccinemediated protection. Thus, while enhancing effector function is a tractable handle for potentiating antibody-mediated protection from HIV infection, success will depend critically on leveraging understanding of the means by which antibodies with specific functional profiles could be elicited, which effector functions could provide optimal protection, and perhaps most critically, how to efficiently recruit the innate effector cells present at sites of infection.
Collapse
Affiliation(s)
- Margaret E Ackerman
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA 02139, USA.
| | | |
Collapse
|
23
|
Immune correlates of HIV exposure without infection in foreskins of men from Rakai, Uganda. Mucosal Immunol 2014; 7:634-44. [PMID: 24150258 PMCID: PMC3997757 DOI: 10.1038/mi.2013.83] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/21/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023]
Abstract
Human immunodeficiency virus (HIV) susceptibility is heterogenous, with some HIV-exposed but seronegative (HESN) individuals remaining uninfected despite repeated exposure. Previous studies in the cervix have shown that reduced HIV susceptibility may be mediated by immune alterations in the genital mucosa. However, immune correlates of HIV exposure without infection have not been investigated in the foreskin. We collected sub-preputial swabs and foreskin tissue from HESN (n=20) and unexposed control (n=57) men undergoing elective circumcision. Blinded investigators assayed swabs for HIV-neutralizing IgA, innate antimicrobial peptides, and cytokine levels. Functional T-cell subsets from foreskin tissue were assessed by flow cytometry. HESN foreskins had elevated α-defensins (3,027 vs. 1,795 pg ml(-1), P=0.011) and HIV-neutralizing IgA (50.0 vs. 13.5% of men, P=0.019). Foreskin tissue from HESN men contained a higher density of CD3 T cells (151.9 vs. 69.9 cells mm(-2), P=0.018), but a lower proportion of these was Th17 cells (6.12 vs. 8.04% of CD4 T cells, P=0.007), and fewer produced tumor necrosis factor α (TNFα) (34.3 vs. 41.8% of CD4 T cells, P=0.037; 36.9 vs. 45.7% of CD8 T cells, P=0.004). A decrease in the relative abundance of susceptible CD4 T cells and local TNFα production, in combination with HIV-neutralizing IgA and α-defensins, may represent a protective immune milieu at a site of HIV exposure.
Collapse
|
24
|
Chung AW, Alter G. Dissecting the antibody constant region protective immune parameters in HIV infection. Future Virol 2014. [DOI: 10.2217/fvl.14.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: RV144 vaccine immune-correlates analysis has generated a renewed interest in understanding the potentially protective role of non-neutralizing antibodies in HIV infection and vaccine design. Antibodies consist of a variable region involved in antigen binding and a constant region. While both ends of the antibody collaborate to induce protective immunity, it is through the constant portion that an antibody provides instructions to the innate immune system on how the recognized antigen should be processed, contributing directly to antiviral immunity. Antibody constant regions, despite their name, are not uniform structures, but can vary both in protein sequence and glycosylation, together modulating antibody functionality via conformational changes that alter antibody affinity for Fc receptors, complement and so on. This review will focus on how the immune system naturally modulates the Fc domain of antibodies to achieve optimum protective Fc effector responses for vaccine and monoclonal therapeutic design efforts aimed at preventing or curing HIV infection.
Collapse
Affiliation(s)
- Amy W Chung
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology & Harvard, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology & Harvard, Boston, MA, USA
| |
Collapse
|
25
|
Nagelkerke NJD, Arora P, Jha P, Williams B, McKinnon L, de Vlas SJ. The rise and fall of HIV in high-prevalence countries: a challenge for mathematical modeling. PLoS Comput Biol 2014; 10:e1003459. [PMID: 24626088 PMCID: PMC3952813 DOI: 10.1371/journal.pcbi.1003459] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several countries with generalized, high-prevalence HIV epidemics, mostly in sub-Saharan Africa, have experienced rapid declines in transmission. These HIV epidemics, often with rapid onsets, have generally been attributed to a combination of factors related to high-risk sexual behavior. The subsequent declines in these countries began prior to widespread therapy or implementation of any other major biomedical prevention. This change has been construed as evidence of behavior change, often on the basis of mathematical models, but direct evidence for behavior changes that would explain these declines is limited. Here, we look at the structure of current models and argue that the common “fixed risk per sexual contact" assumption favors the conclusion of substantial behavior changes. We argue that this assumption ignores reported non-linearities between exposure and risk. Taking this into account, we propose that some of the decline in HIV transmission may be part of the natural dynamics of the epidemic, and that several factors that have traditionally been ignored by modelers for lack of precise quantitative estimates may well hold the key to understanding epidemiologic trends.
Collapse
Affiliation(s)
- Nico J. D. Nagelkerke
- Institute of Public Health, College of Medicine and Health Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Paul Arora
- Center for Global Health Research, St. Michael's Hospital, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Prabhat Jha
- Center for Global Health Research, St. Michael's Hospital, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Brian Williams
- South African Centre for Epidemiological Modelling and Analysis, University of Stellenbosch, Stellenbosch, South Africa
| | - Lyle McKinnon
- Department of Medicine, University of Toronto, Toronto, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Sake J. de Vlas
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- * E-mail:
| |
Collapse
|
26
|
Wirtz AL, Pretorius C, Beyrer C, Baral S, Decker MR, Sherman SG, Sweat M, Poteat T, Butler J, Oelrichs R, Semini I, Kerrigan D. Epidemic impacts of a community empowerment intervention for HIV prevention among female sex workers in generalized and concentrated epidemics. PLoS One 2014; 9:e88047. [PMID: 24516580 PMCID: PMC3916392 DOI: 10.1371/journal.pone.0088047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
Introduction Sex workers have endured a high burden of HIV infection in and across HIV epidemics. A comprehensive, community empowerment-based HIV prevention intervention emphasizes sex worker organization and mobilization to address HIV risk and often includes community-led peer education, condom distribution, and other activities. Meta-analysis of such interventions suggests a potential 51% reduction in inconsistent condom use. Mathematical modeling exercises provide theoretical insight into potential impacts of the intervention on HIV incidence and burden in settings where interventions have not yet been implemented. Methods We used a deterministic model, Goals, to project the impact on HIV infections when the community empowerment interventions were scaled up among female sex workers in Kenya, Thailand, Brazil, and Ukraine. Modeling scenarios included expansion of the comprehensive community empowerment-based HIV prevention intervention from baseline coverage over a 5-year period (5–65% in Kenya and Ukraine; 10–70% in Thailand and Brazil), while other interventions were held at baseline levels. A second exercise increased the intervention coverage simultaneously with equitable access to ART for sex workers. Impacts on HIV outcomes among sex workers and adults are observed from 2012–2016 and, compared to status quo when all interventions are held constant. Results Optimistic but feasible coverage (65%–70%) of the intervention demonstrated a range of impacts on HIV: 220 infections averted over 5 yrs. among sex workers in Thailand, 1,830 in Brazil, 2,220 in Ukraine, and 10,800 infections in Kenya. Impacts of the intervention for female sex workers extend to the adult population, cumulatively averting 730 infections in Thailand to 20,700 adult infections in Kenya. Impacts vary by country, influenced by HIV prevalence in risk groups, risk behaviors, intervention use, and population size. Discussion A community empowerment approach to HIV prevention and access to universal ART for female sex workers is a promising human rights-based solution to overcoming the persistent burden of HIV among female sex workers across epidemic settings.
Collapse
Affiliation(s)
- Andrea L. Wirtz
- Center for Public Health and Human Rights, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Emergency Medicine, Johns Hopkins Medical Institute, Baltimore, Maryland, United States of America
- * E-mail:
| | - Carel Pretorius
- Futures Institute, Glastonbury, Connecticut, United States of America
| | - Chris Beyrer
- Center for Public Health and Human Rights, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Stefan Baral
- Center for Public Health and Human Rights, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Michele R. Decker
- Center for Public Health and Human Rights, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Population, Family, and Reproductive Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Susan G. Sherman
- Center for Public Health and Human Rights, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Michael Sweat
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tonia Poteat
- Center for Public Health and Human Rights, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jennifer Butler
- HIV and Key Populations, United Nations Population Fund, New York, New York, United States of America
| | - Robert Oelrichs
- Human Development Network, The World Bank, Washington, District of Columbia, United States of America
| | - Iris Semini
- Human Development Network, The World Bank, Washington, District of Columbia, United States of America
| | - Deanna Kerrigan
- Center for Public Health and Human Rights, Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Health, Behavior & Society, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
27
|
Shen R, Smith PD. Mucosal correlates of protection in HIV-1-exposed sero-negative persons. Am J Reprod Immunol 2014; 72:219-27. [PMID: 24428610 DOI: 10.1111/aji.12202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/17/2013] [Indexed: 01/31/2023] Open
Abstract
Resistance to HIV-1 infection in HIV-1-exposed sero-negative (HESN) persons offers a promising opportunity to identify mechanisms of 'natural' protection. Unique features of the mucosa in particular may contribute to this protection. Here, we highlight several key issues pertaining to the mucosal correlates of protection in HESN persons, including humoral immune responses, mechanisms of mucosal HIV-1 neutralization, immune cell activation, and role of the microbiota in mucosal responses. We also discuss mucosal model systems that can be used to investigate the mechanisms of resistance in HESN subjects. A clear understanding of the mucosal correlates of protection against HIV-1 in HESN persons will provide critical new insights for the development of effective vaccine and microbicide strategies for the prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
28
|
Jespers V, Harandi AM, Hinkula J, Medaglini D, Grand RL, Stahl-Hennig C, Bogers W, Habib RE, Wegmann F, Fraser C, Cranage M, Shattock RJ, Spetz AL. Assessment of mucosal immunity to HIV-1. Expert Rev Vaccines 2014; 9:381-94. [DOI: 10.1586/erv.10.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Decker MR, Wirtz AL, Pretorius C, Sherman SG, Sweat MD, Baral SD, Beyrer C, Kerrigan DL. Estimating the impact of reducing violence against female sex workers on HIV epidemics in Kenya and Ukraine: a policy modeling exercise. Am J Reprod Immunol 2013; 69 Suppl 1:122-32. [PMID: 23387931 DOI: 10.1111/aji.12063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/19/2012] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Female sex workers (FSWs) worldwide suffer disproportionate burdens of HIV and gender-based violence. Despite evidence linking these threats, little is known about the potential HIV epidemic impact of reducing abuse. METHOD OF STUDY The Goals model approximated the impact of reducing violence against FSWs on HIV epidemics in Ukraine and Kenya, measured by reductions in new infections among FSWs and adults. Cumulative infections averted over a 5-year period, in which violence declined was calculated, relative to a status quo with no reduction. Projections held HIV interventions constant at baseline levels; subsequently, scenarios adjusted for planned expansion of antiretroviral therapy (ART) coverage. RESULTS An approximate 25% reduction in incident HIV infections among FSWs was observed when physical or sexual violence was reduced; cumulative infections averted were 21,200 and 4700 in Kenya and Ukraine, respectively. Similar percent reductions were observed assuming ART coverage expansion, with approximately 18,200 and 4400 infections averted among FSWs in Kenya and Ukraine. New infections were also averted in the general population. CONCLUSION Reducing violence against FSWs appears to impart significant reductions in new infections among FSWs and in the general adult population in both generalized and concentrated epidemics. Limitations provide direction to improve the precision of future estimates.
Collapse
Affiliation(s)
- Michele R Decker
- Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Neutralizing antibodies (NAbs) typically play a key role in controlling viral infections and contribute to the protective effect of many successful vaccines. In the case of HIV-1 infection, there is compelling data in experimental animal models that NAbs can prevent HIV-1 acquisition, although there is no similar data in humans and their role in controlling established infection in humans is also limited. It is clear HIV-specific NAbs drive the evolution of the HIV-1 envelope glycoprotein within an infected individual. The virus's ability to evade immune selection may be the main reason HIV-1 NAbs exert limited control during infection. The extraordinary antigenic diversity of HIV-1 also presents formidable challenges to defining NAbs that could provide broad protection against diverse circulating HIV-1 strains. Several new potent monoclonal antibodies (MAbs) have been identified, and are beginning to yield important clues into the epitopes common to diverse HIV-1 strains. In addition, antibodies can also act in concert with effector cells to kill HIV-infected cells; this could provide another mechanism for antibody-mediated control of HIV-1 replication. Understanding the impact of antibodies on HIV-1 transmission and pathogenesis is critical to helping move forward with rational HIV-1 vaccine design.
Collapse
Affiliation(s)
- Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | | |
Collapse
|
31
|
A systems biology examination of the human female genital tract shows compartmentalization of immune factor expression. J Virol 2013; 87:5141-50. [PMID: 23449785 DOI: 10.1128/jvi.03347-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many mucosal factors in the female genital tract (FGT) have been associated with HIV susceptibility, but little is known about their anatomical distribution in the FGT compartments. This study comprehensively characterized global immune factor expression in different tissue sites of the lower and upper FGT by using a systems biology approach. Tissue sections from the ectocervix, endocervix, and endometrium from seven women who underwent hysterectomy were analyzed by a combination of quantitative mass spectrometry and immunohistochemical staining. Of the >1,000 proteins identified, 281 were found to be differentially abundant in different tissue sites. Hierarchical clustering identified four major functional pathways distinguishing compartments, including innate immune pathways (acute-phase response, LXR/RXR) and development (RhoA signaling, gluconeogenesis), which were enriched in the ectocervix/endocervix and endometrium, respectively. Immune factors important for HIV susceptibility, including antiproteases, immunoglobulins, complement components, and antimicrobial factors, were most abundant in the ectocervix/endocervix, while the endometrium had a greater abundance of certain factors that promote HIV replication. Immune factor abundance is heterogeneous throughout the FGT and shows unique immune microenvironments for HIV based on the exposure site. This may have important implications for early events in HIV transmission and site-specific susceptibility to HIV in the FGT.
Collapse
|
32
|
|
33
|
|
34
|
Cervicovaginal HIV-1-neutralizing immunoglobulin A detected among HIV-1-exposed seronegative female partners in HIV-1-discordant couples. AIDS 2012; 26:2155-63. [PMID: 22948273 DOI: 10.1097/qad.0b013e328359b99b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Cervicovaginal HIV-1-neutralizing immunoglobulin A (IgA) was associated with reduced HIV-1 acquisition in a cohort of commercial sex workers. We aimed to define the prevalence and correlates of HIV-1-neutralizing IgA from HIV-1-exposed seronegative (HESN) women in HIV-1-serodiscordant relationships. METHODS HIV-1-serodiscordant couples in Nairobi were enrolled and followed quarterly up to 2 years, and women in concordant HIV-1-negative relationships were enrolled as controls. Cervicovaginal, seminal, and blood samples were collected at enrollment and follow-up. Cervicovaginal IgA was assessed for HIV-1-neutralizing activity by a peripheral blood mononuclear cell-based assay using an HIV-1 clade A primary isolate. RESULTS HESN women in discordant relationships had significantly more HIV-1-neutralizing IgA detected in genital secretions compared with control women [36 of 155 (23%) vs. four of 70 (6%), respectively; odds ratio (OR) 5.0; 95% confidence interval (CI) 1.70-14.64; P = 0.003]. These responses persisted over time in all available follow-up cervicovaginal samples from women with detectable HIV-1-neutralizing IgA at baseline. Partner median HIV-1 plasma viral load was lower among women who had HIV-1-neutralizing IgA compared with women without detectable activity (4.3 vs. 4.8 log(10) copies/ml, respectively; OR 0.70; 95% CI 0.51-0.94; P = 0.02). A similar trend was found with partner seminal viral load (OR 0.57; 95% CI 0.32-1.02; P = 0.06). CONCLUSION HESN women were five times more likely to have neutralizing IgA in cervicovaginal secretions than low-risk control women, and these responses were inversely associated with partner viral load. These observations support the existence of antiviral activity in the mucosal IgA fraction following sexual HIV-1 exposure.
Collapse
|
35
|
Salivary basic proline-rich proteins are elevated in HIV-exposed seronegative men who have sex with men. AIDS 2012; 26:1857-67. [PMID: 22824632 DOI: 10.1097/qad.0b013e328357f79c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Innate mucosal factors are associated with protection in HIV-exposed seronegative (HESN) individuals, but studies of MSM have been very limited. We performed proteomic analysis of saliva from a cohort of HESN MSM who have regular unprotected oral receptive intercourse with their HIV-infected partner. METHODS Saliva samples from HESN (n = 25) and non-exposed male controls (n = 22) were analyzed by 2D-LC mass spectrometry. An overexpressed innate protein factor was further characterized by immunoblot, and compared with CC-chemokine expression, HIV-neutralizing activity, clinical factors, and sexual behavior. RESULTS Of 337 total proteins, seven were identified as differentially abundant in the HESN group. The five overabundant proteins (Basic salivary proline-rich proteins (bPRP) 2 and 3, Histatin-3, Lysozyme C, and SLPI) have known antimicrobial activity. bPRP2 showed the highest overabundance (>six-fold) in HESN individuals compared with controls (P = 0.009), including multiple isoforms. Salivary bPRP2 correlated with CC-chemokine levels in HESN individuals including RANTES (P = 0.02), MIP-1-alpha (P = 0.01), MIP-1-beta (P = 0.0002), MCP-1 (P = 0.005) and Eotaxin (P = 0.003) but not with frequency of HIV neutralizing activity, oral sexual practices, or viral load of the sexual partner. CONCLUSION This study identifies salivary bPRP2 as a novel soluble factor elevated in the oral compartment of HIV-exposed MSM.
Collapse
|
36
|
Chege D, Chai Y, Huibner S, Kain T, Wachihi C, Kimani M, Barasa S, McKinnon LR, Muriuki FK, Kariri A, Jaoko W, Anzala O, Kimani J, Ball TB, Plummer FA, Kaul R. Blunted IL17/IL22 and pro-inflammatory cytokine responses in the genital tract and blood of HIV-exposed, seronegative female sex workers in Kenya. PLoS One 2012; 7:e43670. [PMID: 22928014 PMCID: PMC3425491 DOI: 10.1371/journal.pone.0043670] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/24/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Identifying the immune correlates of reduced susceptibility to HIV remains a key goal for the HIV vaccine field, and individuals who are HIV-exposed, seronegative (HESN) may offer important clues. Reduced systemic immune activation has been described in HESN individuals. Conversely, pro-inflammatory T cell subsets, particularly CD4+ T cells producing the cytokine IL17 (Th17 cells), may represent a highly susceptible target for HIV infection after sexual exposure. Therefore, we characterized the cellular pro-inflammatory and IL17/IL22 cytokine immune milieu in the genital mucosa and blood of HESN female sex workers (FSWs). METHODS AND RESULTS Blinded lab personnel characterized basal and mitogen-induced gene and cytokine immune responses in the cervix and blood of HESN FSWs (n = 116) and non-FSW controls (n = 17) using qPCR and ELISA. IL17 and IL22 production was significantly reduced in both the cervix and blood of HESNs, both in resting cells and after mitogen stimulation. In addition, HESN participants demonstrated blunted production of both pro-inflammatory cytokines and β-chemokines. DISCUSSION AND CONCLUSIONS We conclude that HIV exposure without infection was associated with blunted IL17/IL22 and pro-inflammatory responses, both systemically and at the site of mucosal HIV exposure. It will be important for further studies to examine the causal nature of the association and to define the cell subsets responsible for these differences.
Collapse
Affiliation(s)
- Duncan Chege
- Departments of Medicine/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yijie Chai
- Departments of Medicine/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Huibner
- Departments of Medicine/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Taylor Kain
- Departments of Medicine/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Charles Wachihi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Makubo Kimani
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Samson Barasa
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Lyle R. McKinnon
- Departments of Medicine/University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Festus K. Muriuki
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Anthony Kariri
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Omu Anzala
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Canada
- Laboratory for HIV Immunology, National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
| | - Francis A. Plummer
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Departments of Immunology and Medical Microbiology, University of Manitoba, Winnipeg, Canada
- Laboratory for HIV Immunology, National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Winnipeg, Canada
| | - Rupert Kaul
- Departments of Medicine/University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
37
|
Mabuka J, Nduati R, Odem-Davis K, Peterson D, Overbaugh J. HIV-specific antibodies capable of ADCC are common in breastmilk and are associated with reduced risk of transmission in women with high viral loads. PLoS Pathog 2012; 8:e1002739. [PMID: 22719248 PMCID: PMC3375288 DOI: 10.1371/journal.ppat.1002739] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/23/2012] [Indexed: 01/25/2023] Open
Abstract
There are limited data describing the functional characteristics of HIV-1 specific antibodies in breast milk (BM) and their role in breastfeeding transmission. The ability of BM antibodies to bind HIV-1 envelope, neutralize heterologous and autologous viruses and direct antibody-dependent cell cytotoxicity (ADCC) were analyzed in BM and plasma obtained soon after delivery from 10 non-transmitting and 9 transmitting women with high systemic viral loads and plasma neutralizing antibodies (NAbs). Because subtype A is the dominant subtype in this cohort, a subtype A envelope variant that was sensitive to plasma NAbs was used to assess the different antibody activities. We found that NAbs against the subtype A heterologous virus and/or the woman's autologous viruses were rare in IgG and IgA purified from breast milk supernatant (BMS)--only 4 of 19 women had any detectable NAb activity against either virus. Detected NAbs were of low potency (median IC50 value of 10 versus 647 for the corresponding plasma) and were not associated with infant infection (p = 0.58). The low NAb activity in BMS versus plasma was reflected in binding antibody levels: HIV-1 envelope specific IgG titers were 2.2 log(10) lower (compared to 0.59 log(10) lower for IgA) in BMS versus plasma. In contrast, antibodies capable of ADCC were common and could be detected in the BMS from all 19 women. BMS envelope-specific IgG titers were associated with both detection of IgG NAbs (p = 0.0001) and BMS ADCC activity (p = 0.014). Importantly, BMS ADCC capacity was inversely associated with infant infection risk (p = 0.039). Our findings indicate that BMS has low levels of envelope specific IgG and IgA with limited neutralizing activity. However, this small study of women with high plasma viral loads suggests that breastmilk ADCC activity is a correlate of transmission that may impact infant infection risk.
Collapse
Affiliation(s)
- Jennifer Mabuka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Program of Pathobiology, Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Ruth Nduati
- Department of Pediatrics, University of Nairobi, Nairobi, Kenya
| | - Katherine Odem-Davis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Dylan Peterson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
38
|
Baral S, Beyrer C, Muessig K, Poteat T, Wirtz AL, Decker MR, Sherman SG, Kerrigan D. Burden of HIV among female sex workers in low-income and middle-income countries: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2012; 12:538-49. [PMID: 22424777 DOI: 10.1016/s1473-3099(12)70066-x] [Citation(s) in RCA: 890] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Female sex workers are a population who are at heightened risk of HIV infection secondary to biological, behavioural, and structural risk factors. However, three decades into the HIV pandemic, understanding of the burden of HIV among these women remains limited. We aimed to assess the burden of HIV in this population compared with that of other women of reproductive age. METHODS We searched PubMed, Embase, Global Health, SCOPUS, PsycINFO, Sociological Abstracts, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Web of Science, and POPLine for studies of female sex workers in low-income and middle-income countries published between Jan 1, 2007, and June 25, 2011. Studies of any design that measured the prevalence or incidence of HIV among female sex workers, even if sex workers were not the main focus of the study, were included. Meta-analyses were done with the Mantel-Haenszel method with a random-effects model characterising an odds ratio for the prevalence of HIV among female sex workers compared with that for all women of reproductive age. FINDINGS Of 434 selected articles and surveillance reports, 102 were included in the analyses, representing 99,878 female sex workers in 50 countries. The overall HIV prevalence was 11·8% (95% CI 11·6-12·0) with a pooled odds ratio for HIV infection of 13·5 (95% CI 10·0-18·1) with wide intraregional ranges in the pooled HIV prevalence and odds ratios for HIV infection. In 26 countries with medium and high background HIV prevalence, 30·7% (95% CI 30·2-31·3; 8627 of 28,075) of sex workers were HIV-positive and the odds ratio for infection was 11·6 (95% CI 9·1-14·8). INTERPRETATION Although data characterising HIV risk among female sex workers is scarce, the burden of disease is disproportionately high. These data suggest an urgent need to scale up access to quality HIV prevention programmes. Considerations of the legal and policy environments in which sex workers operate and actions to address the important role of stigma, discrimination, and violence targeting female sex workers is needed. FUNDING The World Bank, UN Population Fund.
Collapse
Affiliation(s)
- Stefan Baral
- Johns Hopkins School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Levinson P, Choi RY, Cole AL, Hirbod T, Rhedin S, Payne B, Guthrie BL, Bosire R, Cole AM, Farquhar C, Broliden K. HIV-neutralizing activity of cationic polypeptides in cervicovaginal secretions of women in HIV-serodiscordant relationships. PLoS One 2012; 7:e31996. [PMID: 22389677 PMCID: PMC3289637 DOI: 10.1371/journal.pone.0031996] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
Background HIV exposed seronegative (HESN) women represent the population most in need of a prophylactic antiviral strategy. Mucosal cationic polypeptides can potentially be regulated for this purpose and we here aimed to determine their endogenous expression and HIV neutralizing activity in genital secretions of women at risk of HIV infection. Methodology/Principal Findings Cervicovaginal secretions (CVS) of Kenyan women in HIV-serodiscordant relationships (HESN, n = 164; HIV seropositive, n = 60) and low-risk controls (n = 72) were assessed for the cationic polypeptides HNP1–3, LL-37 and SLPI by ELISA and for HIV neutralizing activity by a PBMC-based assay using an HIV primary isolate. Median levels of HNP1–3 and LL-37 in CVS were similar across study groups. Neither HSV-2 serostatus, nor presence of bacterial vaginosis, correlated with levels of HNP1–3 or LL-37 in the HESN women. However, an association with their partner's viral load was observed. High viral load (>10,000 HIV RNA copies/ml plasma) correlated with higher levels of HNP1–3 and LL-37 (p = 0.04 and 0.03, respectively). SLPI was most abundant in the low-risk group and did not correlate with male partner's viral load in the HESN women. HIV neutralizing activity was found in CVS of all study groups. In experimental studies, selective depletion of cationic polypeptides from CVS rendered the remaining CVS fraction non-neutralizing, whereas the cationic polypeptide fraction retained the activity. Furthermore, recombinant HNP1–3 and LL-37 could induce neutralizing activity when added to CVS lacking intrinsic activity. Conclusions/Significance These findings show that CVS from HESN, low-risk, and HIV seropositive women contain HIV neutralizing activity. Although several innate immune proteins, including HNP1–3 and LL-37, contribute to this activity these molecules can also have inflammatory properties. This balance is influenced by hormonal and environmental factors and in the present HIV serodiscordant couple cohort study we show that a partner's viral load is associated with levels of such molecules.
Collapse
Affiliation(s)
- Pauline Levinson
- Unit of Infectious Diseases, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Y. Choi
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Amy L. Cole
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Taha Hirbod
- Unit of Infectious Diseases, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Samuel Rhedin
- Unit of Infectious Diseases, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Barbara Payne
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Brandon L. Guthrie
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Rose Bosire
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
- Centre for Public Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Alexander M. Cole
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, Florida, United States of America
| | - Carey Farquhar
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Broliden
- Unit of Infectious Diseases, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
40
|
Nilssen DE, Brandtzaeg P. Intraepithelial γδ T cells remain increased in the duodenum of AIDS patients despite antiretroviral treatment. PLoS One 2012; 7:e29066. [PMID: 22238587 PMCID: PMC3251554 DOI: 10.1371/journal.pone.0029066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/20/2011] [Indexed: 11/19/2022] Open
Abstract
Intraepithelial lymphocytes (IELs) bearing the γδ T-cell receptor are a unique intestinal subset whose function remains elusive. Here, we examine how they behave in AIDS and during various regimens of antiretroviral treatment in order to obtain mechanistic insight into their adaptive or innate functional in vivo properties. IELs were studied by multimarker two-colour immunofluorescence in situ staining. Consecutive duodenal biopsies were obtained from advanced infection-prone HIV(+) patients (n = 30). The systemic adaptive immune status was monitored by determining T-cell subsets and immunoglobulins in peripheral blood. The γδ IEL ratio (median 14.5%, range 1.5-56.3%) was significantly increased (p<0.02) compared with that in clinically healthy HIV(-) control subjects (n = 11, median 2.8%; range 0.3-38%), although the number of γδ IELs per mucosal length unit (U) only tended to be increased (4.0/U in HIV(+) versus 3.2/U in HIV(-) subjects). Notably, the total number of CD3(+) IELs was significantly reduced in AIDS (p<0.0001, 39.6/U in HIV(+) versus 86.4/U in HIV(-) subjects). Almost 100% of the γδ IELs were CD8(-) and they often expressed the Vδ1/Jδ1-encoded epitope (median 65.2%). HIV(+) patients on highly active antiretroviral therapy only tended to have a lower ratio of γδ IELs (median 12.8%) than those receiving no treatment (median 14.3%) or 1 nucleoside analogue (NA) (median 23.5%) or 2 NAs (median 13.0%). This minimal variation among therapy groups, contrasting the treatment response of systemic and local adaptive immunity, harmonizes with the novel idea derived from animal experiments that γδ T cells are largely innate cells in first-line microbial defence.
Collapse
Affiliation(s)
- Dag E. Nilssen
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, and Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, and Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- * E-mail:
| |
Collapse
|
41
|
Johnson LF, Dorrington RE, Bradshaw D, Coetzee DJ. The role of sexually transmitted infections in the evolution of the South African HIV epidemic. Trop Med Int Health 2011; 17:161-8. [PMID: 22035250 DOI: 10.1111/j.1365-3156.2011.02906.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVES To assess the extent to which sexually transmitted infections (STIs) have contributed to the spread of HIV in South Africa and to estimate the extent to which improvements in STI treatment have reduced HIV incidence. METHODS A mathematical model was used to simulate interactions between HIV and six other STIs (genital herpes, syphilis, chancroid, gonorrhoea, chlamydial infection and trichomoniasis) as well as bacterial vaginosis and vaginal candidiasis. The effects of STIs on HIV transmission probabilities were assumed to be consistent with meta-analytic reviews of observational studies, and the model was fitted to South African HIV prevalence data. RESULTS The proportion of new HIV infections in adults that were attributable to curable STIs reduced from 39% (uncertainty range: 24-50%) in 1990 to 14% (8-18%) in 2010, while the proportion of new infections attributable to genital herpes increased. Syndromic management programmes are estimated to have reduced adult HIV incidence by 6.6% (3.3-10.3%) between 1994 and 2004, by which time syndromic management coverage was 52%. Had syndromic management been introduced in 1986, with immediate achievement of 100% coverage and a doubling of the rate of health seeking, HIV incidence would have reduced by 64% (36-82%) over the next decade, but had the same intervention been delayed until 2004, HIV incidence would have reduced by only 5.5% (2.8-9.0%). CONCLUSIONS Sexually transmitted infections have contributed significantly to the spread of HIV in South Africa, but STI control efforts have had limited impact on HIV incidence because of their late introduction and suboptimal coverage.
Collapse
Affiliation(s)
- Leigh F Johnson
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Anzio Road, Observatory, South Africa
| | | | | | | |
Collapse
|
42
|
HIV-specific functional antibody responses in breast milk mirror those in plasma and are primarily mediated by IgG antibodies. J Virol 2011; 85:9555-67. [PMID: 21734046 DOI: 10.1128/jvi.05174-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite months of mucosal virus exposure, the majority of breastfed infants born to HIV-infected mothers do not become infected, raising the possibility that immune factors in milk inhibit mucosal transmission of HIV. HIV Envelope (Env)-specific antibodies are present in the milk of HIV-infected mothers, but little is known about their virus-specific functions. In this study, HIV Env-specific antibody binding, autologous and heterologous virus neutralization, and antibody-dependent cell cytotoxicity (ADCC) responses were measured in the milk and plasma of 41 HIV-infected lactating women. Although IgA is the predominant antibody isotype in milk, HIV Env-specific IgG responses were higher in magnitude than HIV Env-specific IgA responses in milk. The concentrations of anti-HIV gp120 IgG in milk and plasma were directly correlated (r = 0.75; P < 0.0001), yet the response in milk was 2 logarithm units lower than in plasma. Similarly, heterologous virus neutralization (r = 0.39; P = 0.010) and ADCC activity (r = 0.64; P < 0.0001) in milk were directly correlated with that in the systemic compartment but were 2 log units lower in magnitude. Autologous neutralization was rarely detected in milk. Milk heterologous virus neutralization titers correlated with HIV gp120 Env-binding IgG responses but not with IgA responses (r = 0.71 and P < 0.0001, and r = 0.17 and P = 0.30). Moreover, IgGs purified from milk and plasma had equal neutralizing potencies against a tier 1 virus (r = 0.65; P < 0.0001), whereas only 1 out of 35 tested non-IgG milk fractions had detectable neutralization. These results suggest that plasma-derived IgG antibodies mediate the majority of the low-level HIV neutralization and ADCC activity in breast milk.
Collapse
|
43
|
Coming of age: reconstruction of heterosexual HIV-1 transmission in human ex vivo organ culture systems. Mucosal Immunol 2011; 4:383-96. [PMID: 21430654 DOI: 10.1038/mi.2011.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heterosexual transmission of human immunodeficiency virus-1 (HIV-1), from men to women, involves exposure to infectious HIV-1 in semen. Therefore, the cellular and molecular processes that underlie HIV-1 transmission are closely interconnected with fundamental principles of human reproductive biology. Human ex vivo organ culture systems allow experimental reconstruction of HIV-1 transmission, using human semen and premenopausal cervicovaginal mucosal tissue, with specific emphasis on the progression from exposure to development of primary HIV-1 infection. Clearly, an isolated piece of human tissue cannot duplicate the full complexity of events in natural infections, but with correct observation of conventional medical and ethical standards, there is no opportunity to study HIV-1 exposure and primary infection in young women. Human mucosal organ cultures allow direct study of HIV-1 infection in a reproducible format while retaining major elements of complexity and variability that typify community-based HIV-1 transmission. Experimental manipulation of human mucosal tissue both allows and requires acquisition of new insights into basic processes of human mucosal immunology. Expanding from the current foundations, we believe that human organ cultures will become increasingly prominent in experimental studies of HIV-1 transmission and continuing efforts to prevent HIV-1 infection at human mucosal surfaces.
Collapse
|
44
|
HIV-specific CD8+ T-cell proliferation is prospectively associated with delayed disease progression. Immunol Cell Biol 2011; 90:346-51. [PMID: 21606945 DOI: 10.1038/icb.2011.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human immunodeficiency virus (HIV)-specific CD8(+) T-cell proliferation is consistently correlated with enhanced host HIV immune control, but whether proliferative responses are a cause or consequence of immune protection is unclear. We measured Env-specific CD8(+) T-cell proliferation and interferon (IFN)-γ secretion in HIV-infected participants with CD4 counts >200, who then completed 121 person-years of prospective follow-up to monitor HIV disease progression. In all, 13 of 31 participants (42%) reached end point during longitudinal follow-up. Strong Env-specific CD8(+) T-cell proliferation (>10% of CD8(+) T cells) was observed in 14/31 participants at baseline, and this was associated with a longer time to HIV disease progression end point, stratified baseline CD4 count (P=0.016). No associations were observed for IFN-γ ELISPOT responses and progression (P>0.2). Strong proliferation remained significant in multivariate Cox regression analyses (P=0.044) as an independent predictor of delayed HIV disease progression, along with baseline CD4 count (P=0.04). Duration of HIV infection was associated with more rapid progression in univariate, but not multivariate, analysis (P=0.112). Age and baseline viral load were not predictive of progression. HIV-specific CD8(+) T-cell proliferation was a correlate of protective immunity in this prospective study; such responses may be important for HIV vaccine protection.
Collapse
|
45
|
Taborda-Vanegas N, Zapata W, Rugeles MT. Genetic and Immunological Factors Involved in Natural Resistance to HIV-1 Infection. Open Virol J 2011; 5:35-43. [PMID: 21660188 PMCID: PMC3109745 DOI: 10.2174/1874357901105010035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/24/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022] Open
Abstract
Infection with Human immunodeficiency virus type-1 (HIV-1) induces severe alterations of the immune system leading to an increased susceptibility to opportunistic infections and malignancies. However, exposure to the virus does not always results in infection. Indeed, there exist individuals who have been repeatedly exposed to HIV-1 but do not exhibit clinical or serological evidence of infection, known as exposed seronegative individuals. Many studies have focused on the different mechanisms involved in natural resistance to HIV-1 infection, and have reported several factors associated with this phenomenon, including the presence of genetic polymorphisms in the viral coreceptors, innate and adaptive immune cells with particular phenotypic and functional features, and molecules such as antibodies and soluble factors that play an important role in defense against infection by HIV-1. The study of these factors could be the key for controlling this viral infection. This review summarizes the main mechanisms involved in resistance to HIV-1 infection.
Collapse
|
46
|
Wahl SM, Redford M, Christensen S, Mack W, Cohn J, Janoff EN, Mestecky J, Jenson HB, Navazesh M, Cohen M, Reichelderfer P, Kovacs A, DATRI 009 Study Group. Systemic and mucosal differences in HIV burden, immune, and therapeutic responses. J Acquir Immune Defic Syndr 2011; 56:401-11. [PMID: 21239996 PMCID: PMC3164950 DOI: 10.1097/qai.0b013e31820cdfdb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mucosal tissues represent major targets for HIV transmission but differ in susceptibility and reservoir function by unknown mechanisms. METHODS In a cross-sectional study, HIV RNA and infectious virus were compared between oral and genital compartments and blood in HIV-infected women, in association with clinical parameters, copathogens, and putative innate and adaptive HIV inhibitors. RESULTS HIV RNA was detectable in 24.5% of women from all 3 compartments, whereas 45% had RNA in only 1 or 2 sites. By comparison, infectious HIV, present in blood of the majority, was rare in mucosal sites. Innate mediators, secretory leukocyte protease inhibitor and thrombospondin, were highest in mucosae. Highly active antiretroviral therapy was associated with an 80% decreased probability of shedding. Multivariate logistic regression models revealed that mucosal HIV RNA was associated with higher plasma RNA, infectious virus, and total mucosal IgA, but not IgG. There was a 37-fold increased probability of detecting RNA in both genital and oral specimens (P = 0.008; P = 0.02, respectively) among women in highest versus lowest IgA tertiles. CONCLUSIONS Mucosal sites exhibit distinct characteristics of infectious HIV, viral shedding, and responses to therapy, dependent upon both systemic and local factors. Of the putative innate and adaptive mucosal defense factors examined, only IgA was associated with HIV RNA shedding. However, rather than being protective, there was a striking increase in probability of detectable HIV RNA shedding in women with highest total IgA.
Collapse
Affiliation(s)
- Sharon M Wahl
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4352, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
H Minkoff, M Young, David Burns, Paolo Miotti, Penny Baron, Larry Corey, Kathleen Weber, Alan Landay, Barbara Weiser, Patricia Garcia, Beverly Sha, Ronald Hershow, Bill Meyers, Bob Grant, Yvonne DeSouze, Maria Wamerdam, Joel Palefsky, Marek Nowicki, Cheryl Jennings, James Bremer, Eric Peterson, Alex Ryncarz, Anne Cent, William Hardy, Jan Englund,
Collapse
|
47
|
Tomescu C, Abdulhaqq S, Montaner LJ. Evidence for the innate immune response as a correlate of protection in human immunodeficiency virus (HIV)-1 highly exposed seronegative subjects (HESN). Clin Exp Immunol 2011; 164:158-69. [PMID: 21413945 DOI: 10.1111/j.1365-2249.2011.04379.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The description of highly exposed individuals who remain seronegative (HESN) despite repeated exposure to human immunodeficiency virus (HIV)-1 has heightened interest in identifying potential mechanisms of HIV-1 resistance. HIV-specific humoral and T cell-mediated responses have been identified routinely in HESN subjects, although it remains unknown if these responses are a definitive cause of protection or merely a marker for exposure. Approximately half of HESN lack any detectible HIV-specific adaptive immune responses, suggesting that other mechanisms of protection from HIV-1 infection also probably exist. In support of the innate immune response as a mechanism of resistance, increased natural killer (NK) cell activity has been correlated with protection from infection in several high-risk cohorts of HESN subjects, including intravenous drug users, HIV-1 discordant couples and perinatally exposed infants. Inheritance of protective NK KIR3DL1(high) and KIR3DS1 receptor alleles have also been observed to be over-represented in a high-risk cohort of HESN intravenous drug users and HESN partners of HIV-1-infected subjects. Other intrinsic mechanisms of innate immune protection correlated with resistance in HESN subjects include heightened dendritic cell responses and increased secretion of anti-viral factors such as β-chemokines, small anti-viral factors and defensins. This review will highlight the most current evidence in HESN subjects supporting the role of epithelial microenvironment and the innate immune system in sustaining resistance against HIV-1 infection. We will argue that as a front-line defence the innate immune response determines the threshold of infectivity that HIV-1 must overcome to establish a productive infection.
Collapse
Affiliation(s)
- C Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA, USA
| | | | | |
Collapse
|
48
|
Restrepo C, Rallón NI, Benito JM. [Factors involved in resistance to human immunodeficiency virus infection]. Med Clin (Barc) 2011; 137:600-4. [PMID: 21382628 DOI: 10.1016/j.medcli.2010.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/28/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Repeated exposure to human immunodeficiency virus (HIV) is not always associated with infection and a subset of individuals remains persistently as HIV-seronegative despite multiple episodes of HIV exposure. These individuals are called HIV-exposed seronegatives (ESN). Several genetic and immunological factors have been involved in this resistance to HIV acquisition. Genetic factors have been linked to genes encoding chemokine receptors and their natural ligands as well as genes of the major histocompatibility complex. Immunological factors include both innate and adaptive immunity. The study of ESN provides a unique opportunity to unveil the mechanisms of natural protection against viral infection. Their better understanding may lead to novel preventive and immune-therapeutic approaches, including vaccines.
Collapse
Affiliation(s)
- Clara Restrepo
- Laboratorio de Biología Molecular, Servicio de Enfermedades Infecciosas, Hospital Carlos III, Madrid, España
| | | | | |
Collapse
|
49
|
Shacklett BL, Greenblatt RM. Immune responses to HIV in the female reproductive tract, immunologic parallels with the gastrointestinal tract, and research implications. Am J Reprod Immunol 2011; 65:230-41. [PMID: 21223420 PMCID: PMC3063101 DOI: 10.1111/j.1600-0897.2010.00948.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The female reproductive tract is a major site of mucosa-associated lymphoid tissue and susceptibility to HIV infection, yet the tissue site(s) of infection and the impact of HIV infection on this important mucosal tissue remain poorly understood. CD4(+) T cells and other cell types expressing the major coreceptors for HIV, CCR5, and CXCR4 are abundant in both the lower reproductive tract (endocervix and vagina) and the upper tract (endocervix and uterus) and are highly susceptible to infection. Antiviral defenses in the female reproductive tract are mediated by a variety of soluble factors and by mucosal effector cells that differ phenotypically from their counterparts in blood. The immunologic characteristics of the female reproductive tract parallel those of the gut, where major HIV-related immunologic injury occurs. The susceptibility of the female reproductive tract to HIV infection and immunopathogenesis suggests important new avenues for further research.
Collapse
Affiliation(s)
- Barbara L Shacklett
- Department of Medical Microbiology and Immunology, and Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Major roadblocks persist in the development of vaccines that elicit potent neutralizing antibodies targeting diverse HIV-1 strains, similar to known broadly neutralizing HIV-1 human monoclonal antibodies. Alternatively, other types of anti-HIV-1 envelope antibodies that may not neutralize HIV-1 in traditional neutralization assays but have other anti-HIV-1 activities (hereafter termed HIV-1 inhibitory antibodies) can be elicited by current vaccine strategies, and numerous studies are exploring their roles in preventing HIV-1 acquisition. We review examples of strategies for eliciting potentially protective HIV-1 inhibitory antibodies. RECENT FINDINGS Heterologous prime-boost strategies can yield anti-HIV immune responses, although only one (canarypox prime, Env protein boost) has been tested and shown positive results in an efficacy trial (RV144). Although the immune correlates of protection are as yet undefined, the reduced rate of acquisition without a significant effect on initial viral loads or CD4 T-cell counts, have raised the hypothesis of an RV144 vaccine-elicited transient protective B-cell response. SUMMARY In light of the RV144 trial, there is a critical need to define the entire functional spectrum of anti-HIV-1 antibodies, how easily each can be elicited, and how effective different types of antibody effector mechanisms can be in prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|