1
|
Bouyssi A, Trecourt A, Déméautis T, Persat F, Glehen O, Wallon M, Devouassoux G, Bentaher A, Menotti J. Aspergillus fumigatus is responsible for inflammation in a murine model of chronic obstructive pulmonary disease exacerbation. Respir Res 2025; 26:25. [PMID: 39827361 PMCID: PMC11743040 DOI: 10.1186/s12931-024-03092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND In patients with chronic obstructive pulmonary disease (COPD), a sensitization to A. fumigatus has been related to a decline in lung function, but the role of fungal agents in the disease pathogenesis remains unclear. The main purpose of the present study was to investigate whether cell inflammation could worsen after exposure to A. fumigatus spores in vitro and then, in mice, following chronic exposure to cigarette smoke mimicking COPD. METHODS The inflammatory response to cigarette smoke alone or with A. fumigatus was investigated in cell culture models of murine macrophages and alveolar epithelial cells. In an animal model, mice were exposed daily to two cigarettes smoke over 14 weeks, and two intranasal instillations of 105 spores at weeks 7 and 14. Then, their lungs were recovered to perform inflammatory and histopathological analyses. RESULTS In co-cultures of macrophages and epithelial cells treated with both cigarette smoke extracts (CSE) and A. fumigatus compared to CSE alone there were significant inductions in TNF-α (6.2-fold) and CXCL-2 (21.5-fold) gene expression, confirmed by significant increases in the corresponding protein secretion. In the murine model, histological analyses of the lung after chronic smoke exposure showed an increase in airspace enlargement. Moreover, a Bio-Plex approach on bronchoalveolar lavage of cigarette smoke and A. fumigatus-treated mice showed significant increases in multiple inflammatory proteins secreted in the lung. CONCLUSIONS There was a stronger inflammatory response after cigarette smoke exposure with A. fumigatus compared to cigarette smoke alone. These findings were correlated with histopathological changes in the mouse lung in vivo.
Collapse
Affiliation(s)
- Alexandra Bouyssi
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
| | - Alexis Trecourt
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
- Department of Pathology, South Lyon Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Tanguy Déméautis
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
| | - Florence Persat
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Olivier Glehen
- Surgical Department, UR3738 CICLY, Claude Bernard University - Lyon 1, South Lyon Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Martine Wallon
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Gilles Devouassoux
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
- Department of Pulmonology, Croix-Rousse Hospital, Hospices Civils de Lyon, and F-CRIN INSERM Network CRISALIS, Lyon, France
| | - Abderrazzak Bentaher
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France
| | - Jean Menotti
- UR3738 CICLY Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University, Lyon 1, Pierre-Bénite, France.
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
2
|
Chirumbolo S, Valdenassi L, Tirelli U, Richelmi T, Franzini M. Successful treatment of aspergillosis in a 63-years old female patient with a SIOOT protocol of oxygen-ozone autohemotherapy: A case report. Int Immunopharmacol 2024; 143:113561. [PMID: 39504858 DOI: 10.1016/j.intimp.2024.113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Infections caused by the Aspergillus genus are relatively uncommon and typically associated with hospitalization, while only a few cases are linked to environmental exposure to filamentous moulds. These infections can significantly impact pulmonary function, and antifungal therapy may further compromise lung physiology, especially if fungal nodules develop. Consequently, many cases of aspergillosis are not directly treated to avoid additional lung damage. In this case report, we explore a novel approach using ozone therapy to improve clinical outcomes in a patient with pulmonary aspergillosis. To our knowledge, no previous data on the use of this procedure in treating Aspergillus infections have been published in the scientific literature. CASE PRESENTATION A 63-year-old Caucasian female physician presented with persistent cough, mild fever, mucous sputum, fatigue, and general discomfort. After extensive laboratory analyses, she was initially suspected of having a Mycobacterium tuberculosis infection but was later accurately diagnosed with Aspergillus fumigatus. Allergy tests, thyroid function assessments, total-body PET, and maxillofacial imaging did not yield any findings to suggest alternative diagnoses. Aside from mild neutropenia and a positive antinuclear antibody (ANA) test, which appeared to be laboratory artifacts, the patient showed no significant inflammatory biomarkers, thyroid dysfunction, or signs of allergy. Chest CT revealed Aspergillus nodules with only mild obstructive respiratory impairment, which did not worsen upon administration of salbutamol. Following a period of mild symptoms, her health declined in the summer of 2022, prompting her to pursue ozone therapy at a colleague's recommendation. After twelve oxygen-ozone treatments, her symptoms-including mild fever, cough, discomfort, and fatigue-fully resolved, and a follow-up chest CT showed a reduction in the presence of Aspergillus. CONCLUSION Oxygen-ozone therapy administered through autohemotherapy proved to be a promising treatment for nodular aspergillosis in the lung, highlighting the need for further exploration of the mechanisms behind this positive outcome. This report is particularly relevant for physicians trained in ozone therapy, as it requires specialized professional expertise. This is the first documented case showing a successful outcome of ozone therapy in treating nodular Aspergillus fumigatus lung infection with mild obstructive pulmonary impairment. The favourable results should encourage physicians to consider this therapeutic approach in the future.
Collapse
Affiliation(s)
| | - Luigi Valdenassi
- Italian Scientific Society of Oxygen-Ozone Therapy (SIOOT), Gorle, Bg, Italy; High School Master of Oxygen Ozone Therapy, University of Pavia, Italy
| | | | - Tommaso Richelmi
- Italian Scientific Society of Oxygen-Ozone Therapy (SIOOT), Gorle, Bg, Italy
| | - Marianno Franzini
- Italian Scientific Society of Oxygen-Ozone Therapy (SIOOT), Gorle, Bg, Italy; High School Master of Oxygen Ozone Therapy, University of Pavia, Italy
| |
Collapse
|
3
|
Chen X, Lin S, Jin Q, Zhang L, Jiang W, Lu X, Wang G, Ge Y. Prevalence, Risk Factors, and Mortality of Invasive Pulmonary Aspergillosis in Patients with Anti-MDA5+ Dermatomyositis: A Retrospective Study in China. J Inflamm Res 2024; 17:3247-3257. [PMID: 38800596 PMCID: PMC11122320 DOI: 10.2147/jir.s460702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Objective To investigate the prevalence, risk factors and prognosis of invasive pulmonary aspergillosis (IPA) in patients with anti-melanoma differentiation-associated gene 5 positive dermatomyositis (anti-MDA5+ DM). Methods A retrospective analysis was conducted in anti-MDA5+ DM patients diagnosed between January 2016 and March 2023. Patients with lower respiratory tract specimens were categorized into IPA+ and IPA- groups based on the presence of IPA and their clinical characteristics and prognoses then compared. Results Of the 415 patients diagnosed with anti-MDA5+ DM, 28 cases had IPA (prevalence rate of 6.7%) with Aspergillus fumigatus being the most common species. The patients were categorized into IPA+ (n=28) and IPA- (n=98) groups, with no significant age or gender-related differences (P>0.05). The IPA+ group had a lower lymphocyte count, particularly the CD4+ T-cell count, and reduced serum albumin and higher serum ferritin levels (P all<0.05). An elevated bronchoalveolar lavage fluid (BALF) galactomannan level was found to be the sole independent risk factor for the occurrence of IPA (adjusted OR=2.191, P=0.029) with a cut-off value of 0.585 and area under the curve of 0.779. The mortality rate in the IPA+ group was 25%. Compared to survivors, non-survivors in this group exhibited a higher incidence of rapidly progressive interstitial lung disease, lower lymphocyte counts, and increased co-infection with Pneumocystis jirovecii (P all<0.05). Conclusion IPA was not rare in patients with anti-MDA5+ DM, with elevated BALF galactomannan levels being an independent risk factor for IPA occurrence. Clinicians must exercise vigilance to identify patients exhibiting the aforementioned risk factors.
Collapse
Affiliation(s)
- Xixia Chen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People’s Republic of China
| | - Sang Lin
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Qiwen Jin
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People’s Republic of China
| | - Lu Zhang
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Wei Jiang
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Xin Lu
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Guochun Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People’s Republic of China
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Yongpeng Ge
- Department of Rheumatology, Key Myositis Laboratories, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of Cytokines and Chemokines in Aspergillosis. J Fungi (Basel) 2024; 10:251. [PMID: 38667922 PMCID: PMC11051073 DOI: 10.3390/jof10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillosis is a fungal infection caused by various species of Aspergillus, most notably A. fumigatus. This fungus causes a spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma, chronic pulmonary aspergillosis, and invasive aspergillosis. The clinical manifestations and severity of aspergillosis can vary depending on individual immune status and the specific species of Aspergillus involved. The recognition of Aspergillus involves pathogen-associated molecular patterns (PAMPs) such as glucan, galactomannan, mannose, and conidial surface proteins. These are recognized by the pathogen recognition receptors present on immune cells such as Toll-like receptors (TLR-1,2,3,4, etc.) and C-type lectins (Dectin-1 and Dectin-2). We discuss the roles of cytokines and pathogen recognition in aspergillosis from both the perspective of human and experimental infection. Several cytokines and chemokines have been implicated in the immune response to Aspergillus infection, including interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CCR4, CCR17, and other interleukins. For example, allergic bronchopulmonary aspergillosis (ABPA) is characterized by Th2 and Th9 cell-type immunity and involves interleukin (IL)-4, IL-5, IL-13, and IL-10. In contrast, it has been observed that invasive aspergillosis involves Th1 and Th17 cell-type immunity via IFN-γ, IL-1, IL-6, and IL-17. These cytokines activate various immune cells and stimulate the production of other immune molecules, such as antimicrobial peptides and reactive oxygen species, which aid in the clearance of the fungal pathogen. Moreover, they help to initiate and coordinate the immune response, recruit immune cells to the site of infection, and promote clearance of the fungus. Insight into the host response from both human and animal studies may aid in understanding the immune response in aspergillosis, possibly leading to harnessing the power of cytokines or cytokine (receptor) antagonists and transforming them into precise immunotherapeutic strategies. This could advance personalized medicine.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan 173234, Himachal Pradesh, India
| | - Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar 144001, Punjab, India;
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Son YE, Han J, Lee KT, Park HS. Pleiotropic functions of SscA on the asexual spore of the human pathogenic fungus Aspergillus fumigatus. Mycology 2023; 15:238-254. [PMID: 38813476 PMCID: PMC11132850 DOI: 10.1080/21501203.2023.2294061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 05/31/2024] Open
Abstract
Asexual spores, called conidia, are key reproductive fungal particles that enable survival in harsh environmental conditions or host systems. The conidia can infect humans, animals, and plants to cause various fungal diseases. Transcription factors, including VosA, WetA, and SscA, have key roles in conidia formation and long-term survival in Aspergillus nidulans. Herein, we report the pleiotropic functions of SscA in the conidia of the human pathogen A. fumigatus. The deletion of sscA increased conidia formation despite decreased fungal growth. Absence of sscA impaired long-term survival and reduced spore resistance to various stresses, including heat, UV, and oxidation. Transcriptomic analyses showed that SscA involved the mRNA expression of cell wall organisation-related genes. Importantly, the sscA deletion mutant conidia contained an increased amount of β-glucan and chitin compared to wild type conidia. In addition, conidial gliotoxin production was decreased in the sscA deletion strain. Overall, SscA has pleiotropic roles in conidia formation, maturation and dormancy and mycotoxin production in A. fumigatus.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jiwoo Han
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyung-Tae Lee
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
De Francesco MA. Drug-Resistant Aspergillus spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023; 12:1305. [PMID: 38003770 PMCID: PMC10674884 DOI: 10.3390/pathogens12111305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Infections due to the Aspergillus species constitute an important challenge for human health. Invasive aspergillosis represents a life-threatening disease, mostly in patients with immune defects. Drugs used for fungal infections comprise amphotericin B, triazoles, and echinocandins. However, in the last decade, an increased emergence of azole-resistant Aspergillus strains has been reported, principally belonging to Aspergillus fumigatus species. Therefore, both the early diagnosis of aspergillosis and its epidemiological surveillance are very important to establish the correct antifungal therapy and to ensure a successful patient outcome. In this paper, a literature review is performed to analyze the prevalence of Aspergillus antifungal resistance in European countries. Amphotericin B resistance is observed in 2.6% and 10.8% of Aspergillus fumigatus isolates in Denmark and Greece, respectively. A prevalence of 84% of amphotericin B-resistant Aspergillus flavus isolates is reported in France, followed by 49.4%, 35.1%, 21.7%, and 20% in Spain, Portugal, Greece, and amphotericin B resistance of Aspergillus niger isolates is observed in Greece and Belgium with a prevalence of 75% and 12.8%, respectively. The prevalence of triazole resistance of Aspergillus fumigatus isolates, the most studied mold obtained from the included studies, is 0.3% in Austria, 1% in Greece, 1.2% in Switzerland, 2.1% in France, 3.9% in Portugal, 4.9% in Italy, 5.3% in Germany, 6.1% in Denmark, 7.4% in Spain, 8.3% in Belgium, 11% in the Netherlands, and 13.2% in the United Kingdom. The mechanism of resistance is mainly driven by the TR34/L98H mutation. In Europe, no in vivo resistance is reported for echinocandins. Future studies are needed to implement the knowledge on the spread of drug-resistant Aspergillus spp. with the aim of defining optimal treatment strategies.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia, ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
7
|
Pfeiffer S, Swoboda I. Problems Encountered Using Fungal Extracts as Test Solutions for Fungal Allergy Diagnosis. J Fungi (Basel) 2023; 9:957. [PMID: 37888213 PMCID: PMC10607634 DOI: 10.3390/jof9100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Fungal allergy is a worldwide public health burden, and problems associated with a reliable allergy diagnosis are far from being solved. Especially, the lack of high-quality standardized fungal extracts contributes to the underdiagnosis of fungal allergy. Compared to the manufacturing processes of extracts from other allergen sources, the processes used to manufacture extracts from fungi show the highest variability. The reasons for the high variability are manifold as the starting material, the growth conditions, the protein extraction methods, and the storage conditions all have an influence on the presence and quantity of individual allergens. Despite the vast variety of studies that have analyzed the impact of the different production steps on the allergenicity of fungal allergen extracts, much remains unknown. This review points to the need for further research in the field of fungal allergology, for standardization and for generally accepted guidelines on the preparation of fungal allergen extracts. In particular, the standardization of fungal extracts has been and will continue to be difficult, but it will be crucial for improving allergy diagnosis and therapy.
Collapse
Affiliation(s)
| | - Ines Swoboda
- The Molecular Biotechnology Section, Department Applied Life Sciences, FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria;
| |
Collapse
|
8
|
Kuo CW, Lin CY, Wei SH, Chou YT, Chen CW, Tsai JS, Su PL, Lin CC. Navigating the challenges of invasive pulmonary aspergillosis in lung cancer treatment: a propensity score study. Ther Adv Med Oncol 2023; 15:17588359231198454. [PMID: 37720497 PMCID: PMC10503299 DOI: 10.1177/17588359231198454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background Invasive pulmonary aspergillosis (IPA) can negatively impact cancer patients' survival. It remains uncertain whether IPA's impact on patient outcomes varies by treatment approach in advanced lung cancer. Objectives To explore the association between IPA and outcomes in patients with advanced lung cancer receiving different treatments. Design A retrospective cohort study. Methods We enrolled patients with advanced-stage lung cancer between 2013 and 2021 at a college hospital in Taiwan and used the 2021 European Organization for Research and Treatment of Cancer/Mycoses Study Group Education and Research Consortium consensus for IPA diagnosis. Multivariable logistic regression was used to identify the IPA risk factors. We compared overall survival (OS) and postgalactomannan (GM) test survival between the IPA and control groups using multivariable Cox proportional hazards regression and the Kaplan-Meier method with propensity score matching (PSM). Results Among 2543 patients with advanced-stage lung cancer, 290 underwent a GM test, of which 34 (11.7%) were diagnosed with IPA. Patients undergoing chemotherapy (HR = 4.02, p = 0.027) and immunotherapy [hazard ratio (HR) = 3.41, p = 0.076] tended to have IPA. Compared to the control group, the IPA group had shorter median OS (14.4 versus 9.9 months, p = 0.030) and post-GM test survival (4.5 versus 1.9 months, p = 0.003). IPA was associated with shorter OS (log-rank p = 0.014 and 0.018 before and after PSM, respectively) and shorter 1-year and 2-year survival post-GM test (HR = 1.65 and 1.66, respectively). Patients receiving chemotherapy or immunotherapy had a shorter post-GM test survival if they had IPA. Conclusions IPA tended to be diagnosed more frequently in patients receiving chemotherapy or immune checkpoint inhibitors. Patients diagnosed with IPA are associated with shorter survival. Larger cohort studies are needed to verify the observations.
Collapse
Affiliation(s)
- Chin-Wei Kuo
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Chien-Yu Lin
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Sheng-Huan Wei
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Yun-Tse Chou
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Chian-Wei Chen
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Jeng-Shiuan Tsai
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Po-Lan Su
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Chien-Chung Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 704
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan
| |
Collapse
|
9
|
Bouyssi A, Déméautis T, Trecourt A, Delles M, Agostini F, Monneret G, Glehen O, Wallon M, Persat F, Devouassoux G, Bentaher A, Menotti J. Characterization of Lung Inflammatory Response to Aspergillus fumigatus Spores. J Fungi (Basel) 2023; 9:682. [PMID: 37367618 DOI: 10.3390/jof9060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
The airway exposure to Aspergillus fumigatus spores (AFsp) is associated with an inflammatory response, potentially leading to allergic and/or chronic pulmonary aspergillosis. The aim of our study is to better understand the host response, first in vitro, then in vivo, following the chronic exposure of mice to AFsp. We investigated the inflammatory response to AFsp in cell mono- and co-culture systems with murine macrophages and alveolar epithelial cells. The mice were subjected to two intranasal instillations using 105 AFsp. Their lungs were processed for inflammatory and histopathological analyses. In cell culture, the gene expressions significantly increased for TNF-α, CXCL-1, CXCL-2, IL-1β, IL-1α and GM-CSF in macrophages, with these increases being limited for TNF-α, CXCL-1 and IL-1α in epithelial cells. In co-culture, increases in the TNF-α, CXCL-2 and CXCL-1 gene expressions were observed to be associated with increased protein levels. The in vivo lung histological analyses of mice challenged by AFsp showed cellular infiltrates in the peribronchial and/or alveolar spaces. A Bio-Plex approach on the bronchoalveolar lavage revealed significant increases in the protein secretion of selected mediators of the challenged mice compared to the unchallenged mice. In conclusion, the exposure to AFsp resulted in a marked inflammatory response of macrophages and epithelial cells. These inflammatory findings were confirmed in mouse models associated with lung histologic changes.
Collapse
Affiliation(s)
- Alexandra Bouyssi
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Tanguy Déméautis
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Alexis Trecourt
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
- Department of Pathology, South Lyon Hospital, Hospices Civils de Lyon, 69495 Pierre Bénite, France
| | - Marie Delles
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Fany Agostini
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Guillaume Monneret
- Immunology Laboratory, EA7426, Edouard Herriot Hospital, Hospices Civils de Lyon and Claude Bernard University-Lyon 1, 69003 Lyon, France
| | - Olivier Glehen
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Surgical Department, South Lyon Hospital, Hospices Civils de Lyon, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Martine Wallon
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| | - Florence Persat
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| | - Gilles Devouassoux
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
- Department of Pulmonology, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| | - Abderrazzak Bentaher
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Jean Menotti
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| |
Collapse
|
10
|
Michel S, Kirchhoff L, Rath PM, Schwab J, Schmidt K, Brenner T, Dubler S. Targeting the Granulocytic Defense against A. fumigatus in Healthy Volunteers and Septic Patients. Int J Mol Sci 2023; 24:9911. [PMID: 37373061 DOI: 10.3390/ijms24129911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Neutrophil granulocytes (NGs) are among the key players in the defense against Aspergillus fumigatus (A. fumigatus). To better elucidate a pathophysiological understanding of their role and functions, we applied a human cell model using NGs from healthy participants and septic patients to evaluate their inhibitory effects on the growth of A. fumigatus ex vivo. Conidia of A. fumigatus (ATCC® 204305) were co-incubated with NGs from healthy volunteers or septic patients for 16 h. A. fumigatus growth was measured by XTT assays with a plate reader. The inhibitory effect of NGs on 18 healthy volunteers revealed great heterogeneity. Additionally, growth inhibition was significantly stronger in the afternoon than the morning, due to potentially different cortisol levels. It is particularly interesting that the inhibitory effect of NGs was reduced in patients with sepsis compared to healthy controls. In addition, the magnitude of the NG-driven defense against A. fumigatus was highly variable among healthy volunteers. Moreover, daytime and corresponding cortisol levels also seem to have a strong influence. Most interestingly, preliminary experiments with NGs from septic patients point to a strongly diminished granulocytic defense against Aspergillus spp.
Collapse
Affiliation(s)
- Stefanie Michel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
- Institute of Medical Microbiology, University Hospital Essen, Excellence Center for Medical Mycology (ECMM), Hufelandstraße 55, D-45147 Essen, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, University Hospital Essen, Hufelandstraße 55, D-45147 Essen, Germany
- Institute of Medical Microbiology, University Hospital Essen, Excellence Center for Medical Mycology (ECMM), Hufelandstraße 55, D-45147 Essen, Germany
| | - Jansje Schwab
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| | - Simon Dubler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, D-45147 Essen, Germany
| |
Collapse
|
11
|
Ren W, Li H, Guo C, Shang Y, Wang W, Zhang X, Li S, Pang Y. Serum Cytokine Biomarkers for Use in Diagnosing Pulmonary Tuberculosis versus Chronic Pulmonary Aspergillosis. Infect Drug Resist 2023; 16:2217-2226. [PMID: 37081946 PMCID: PMC10112472 DOI: 10.2147/idr.s403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Background Aspergillus fumigatus-induced chronic pulmonary aspergillosis (CPA), the most common pulmonary tuberculosis (TB) sequela, tends to occur after pulmonary infection with the intracellular pathogen Mycobacterium tuberculosis (Mtb). Timely and accurate detection of A. fumigatus infection of pulmonary TB patients would undoubtedly greatly improve patient prognosis. Currently, the galactomannan (GM) antigen test is commonly used to detect A. fumigatus infection but has poor sensitivity that renders this assay inadequate for use in clinical practice. Design or Methods Given the fact CPA and TB induce different host immune responses, we evaluated serum cytokine level profiles of CPA, TB patients and patients with both diseases (CPA-TB) for multiple cytokines and cytokine combinations. Results The results revealed significantly higher serum levels of numerous proinflammatory cytokines, including IL-1β, IL-6, IL-8, IL-12p70, IFN-α, IFN-γ and TNF-α, in peripheral blood of CPA-TB patients versus that of TB patients. IL-8 levels alone provided the best discriminatory performance for distinguishing between TB and either CPA-TB patients (AUC = 0.949) or CPA patients (AUC = 0.964). Moreover, both IL-8 and TNF-α (AUC = 0.996) levels could be used to distinguish between TB and CPA-TB patients. Likewise, IL-8, TNF-α and IL-6 levels together could be used to distinguish between CPA-TB and TB patients. Conclusion In this study, multiple cytokines were identified that may serve as potential biomarkers for use in detecting TB patients with CPA. Furthermore, our results should enhance understanding of how immune system dysfunctions influence susceptibility to Mtb and/or A. fumigatus infections.
Collapse
Affiliation(s)
- Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Haoran Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Can Guo
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Wei Wang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People’s Republic of China
- Correspondence: Yu Pang; Shanshan Li, Email ;
| |
Collapse
|
12
|
Vaccination with Live or Heat-Killed Aspergillus fumigatus Δ sglA Conidia Fully Protects Immunocompromised Mice from Invasive Aspergillosis. mBio 2022; 13:e0232822. [PMID: 36066100 PMCID: PMC9600187 DOI: 10.1128/mbio.02328-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aspergillus fumigatus causes invasive aspergillosis (IA) in immunocompromised patients, resulting in high mortality rates. Currently, no vaccine formulations to promote immune protection in at-risk individuals have been developed. In this work, we deleted the sterylglucosidase-encoding gene, sglA, in Aspergillus fumigatus and investigated its role in fungal virulence and host vaccine protection. The ΔsglA mutant accumulated sterylglucosides (SGs), newly studied immunomodulatory glycolipids, and exhibited reduced hyphal growth and altered compositions of cell wall polysaccharides. Interestingly, the ΔsglA mutant was avirulent in two murine models of IA and was fully eliminated from the lungs. Both corticosteroid-induced immunosuppressed and cyclophosphamide-induced leukopenic mice vaccinated with live or heat-killed ΔsglA conidia were fully protected against a lethal wild-type A. fumigatus challenge. These results highlight the potential of SG-accumulating strains as safe and promising vaccine formulations against invasive fungal infections. IMPORTANCE Infections by Aspergillus fumigatus occur by the inhalation of environmental fungal spores called conidia. We found that live mutant conidia accumulating glycolipids named sterylglucosides are not able to cause disease when injected into the lung. Interestingly, these animals are now protected against a secondary challenge with live wild-type conidia. Remarkably, protection against a secondary challenge persists even with vaccination with heat-killed mutant conidia. These results will significantly advance the field of the research and development of a safe fungal vaccine for protection against the environmental fungus A. fumigatus.
Collapse
|
13
|
Neuroimmune Responses in a New Experimental Animal Model of Cerebral Aspergillosis. mBio 2022; 13:e0225422. [PMID: 36040029 PMCID: PMC9600342 DOI: 10.1128/mbio.02254-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exposure of immunosuppressed individuals to the opportunistic fungal pathogen Aspergillus fumigatus may result in invasive pulmonary aspergillosis (IPA), which can lead to the development of cerebral aspergillosis (CA), a highly lethal infection localized in the central nervous system (CNS). There are no experimental models of CA that effectively mimic human disease, resulting in a considerable knowledge gap regarding mechanisms of neurological pathogenicity and neuroimmune responses during infection. In this report, immunosuppressed mice (via acute, high-dose corticosteroid administration) challenged with A. fumigatus resting conidia intranasally, followed a day later by a 70-fold lower inoculum of pre-swollen conidia intravenously (IN + IV + steroid), demonstrated increased weight loss, signs of severe clinical disease, increased fungal burden in the brain, and significant reduction in survival compared to immunosuppressed mice challenged intranasally only (IN + steroid) or non-immunosuppressed mice challenged both intranasally and intravenously (IN + IV). The IN + IV + steroid group demonstrated significant decreases in monocytes, eosinophils, dendritic cells (DCs), and invasive natural killer T (iNKT) cells, but not neutrophils or γδ T cells, in the brain compared to the IN + IV group. Likewise, the IN + IV + steroid group had significantly lower levels of interleukin (IL)-1β, IL-6, IL-17A, CC motif chemokine ligand 3 (CCL3), CXC chemokine ligand 10 (CXCL10), and vascular endothelial growth factor (VEGF) in the brain compared to the IN + IV group. IN + IV + steroid was superior to both IN + IV + chemotherapy (cytarabine + daunorubicin) and IN + IV + neutropenia for the development of CA. In conclusion, we have developed a well-defined, physiologically relevant model of disseminated CA in corticosteroid-induced immunosuppressed mice with a primary pulmonary infection. This model will serve to advance understanding of disease mechanisms, identify immunopathogenic processes, and help define the protective neuroinflammatory response to CA. IMPORTANCE Invasive fungal infections (IFIs) result in significant mortality in immunosuppressed individuals. Of these, invasive pulmonary aspergillosis (IPA), caused by the opportunistic mold Aspergillus fumigatus, is the most lethal. Lethality in IPA is due to two main factors: destruction of the lung leading to compromised pulmonary function, and dissemination of the organism to extrapulmonary organs. Of these, the CNS is the most common site of dissemination. However, very little is known regarding the pathogenesis of or immune response during cerebral aspergillosis, which is directly due to the lack of an animal model that incorporates immunosuppression, lung infection, and consistent dissemination to the CNS/brain. In this report, we have developed a new experimental animal model of CA which includes the above parameters and characterized the neuroimmune response. We further compared this disseminated CA model to two additional immunosuppressive strategies. Overall, this model of disseminated CA following IPA in an immunosuppressed host provides a novel platform for studying the efficacy of antifungal drugs and immunotherapies for improving disease outcomes.
Collapse
|
14
|
Abstract
Inflammation represents a fundamental response to diverse diseases ranging from trauma and infection to immune-mediated disease and neoplasia. As such, inflammation can be a nonspecific finding but is valuable as an indicator of pathology that can itself lead to disease if left unchecked. This article focuses on inflammatory biomarkers that are available and clinically useful in avian species. Inflammatory biomarkers are identified via evaluation of whole blood and plasma and can be divided into acute and chronic, with varying degrees of specificity and sensitivity. Evaluation of multiple biomarkers may be necessary to identify subclinical disease.
Collapse
Affiliation(s)
- Raquel M Walton
- IDEXX Laboratories, Inc., 216 Delmar Street, Philadelphia, PA 19128, USA.
| | - Andrea Siegel
- IDEXX Laboratories, Inc., 510 E. 62nd Street, New York, NY 10065, USA
| |
Collapse
|
15
|
Khambati A, Wright RE, Das S, Pasula S, Sepulveda A, Hernandez F, Kanwar M, Chandrasekar P, Kumar A. Aspergillus Endophthalmitis: Epidemiology, Pathobiology, and Current Treatments. J Fungi (Basel) 2022; 8:656. [PMID: 35887412 PMCID: PMC9318612 DOI: 10.3390/jof8070656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Fungal endophthalmitis is one of the leading causes of vision loss worldwide. Post-operative and traumatic injuries are major contributing factors resulting in ocular fungal infections in healthy and, more importantly, immunocompromised individuals. Among the fungal pathogens, the Aspergillus species, Aspergillus fumigatus, continues to be more prevalent in fungal endophthalmitis patients. However, due to overlapping clinical symptoms with other endophthalmitis etiology, fungal endophthalmitis pose a challenge in its diagnosis and treatment. Hence, it is critical to understand its pathobiology to develop and deploy proper therapeutic interventions for combating Aspergillus infections. This review highlights the different modes of Aspergillus transmission and the host immune response during endophthalmitis. Additionally, we discuss recent advancements in the diagnosis of fungal endophthalmitis. Finally, we comprehensively summarize various antifungal regimens and surgical options for the treatment of Aspergillus endophthalmitis.
Collapse
Affiliation(s)
- Alisha Khambati
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.K.); (R.E.W.III); (S.D.); (M.K.)
| | - Robert Emery Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.K.); (R.E.W.III); (S.D.); (M.K.)
| | - Susmita Das
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.K.); (R.E.W.III); (S.D.); (M.K.)
| | - Shirisha Pasula
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (S.P.); (P.C.)
| | | | | | - Mamta Kanwar
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (A.K.); (R.E.W.III); (S.D.); (M.K.)
| | - Pranatharthi Chandrasekar
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (S.P.); (P.C.)
| | - Ashok Kumar
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (S.P.); (P.C.)
| |
Collapse
|
16
|
Palmieri F, Koutsokera A, Bernasconi E, Junier P, von Garnier C, Ubags N. Recent Advances in Fungal Infections: From Lung Ecology to Therapeutic Strategies With a Focus on Aspergillus spp. Front Med (Lausanne) 2022; 9:832510. [PMID: 35386908 PMCID: PMC8977413 DOI: 10.3389/fmed.2022.832510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Fungal infections are estimated to be the main cause of death for more than 1.5 million people worldwide annually. However, fungal pathogenicity has been largely neglected. This is notably the case for pulmonary fungal infections, which are difficult to diagnose and to treat. We are currently facing a global emergence of antifungal resistance, which decreases the chances of survival for affected patients. New therapeutic approaches are therefore needed to face these life-threatening fungal infections. In this review, we will provide a general overview on respiratory fungal infections, with a focus on fungi of the genus Aspergillus. Next, the immunological and microbiological mechanisms of fungal pathogenesis will be discussed. The role of the respiratory mycobiota and its interactions with the bacterial microbiota on lung fungal infections will be presented from an ecological perspective. Finally, we will focus on existing and future innovative approaches for the treatment of respiratory fungal infections.
Collapse
Affiliation(s)
- Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Fabio Palmieri,
| | - Angela Koutsokera
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Eric Bernasconi
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Christophe von Garnier
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Niki Ubags,
| |
Collapse
|
17
|
Worku DA. SARS-CoV-2 Associated Immune Dysregulation and COVID-Associated Pulmonary Aspergilliosis (CAPA): A Cautionary Tale. Int J Mol Sci 2022; 23:3228. [PMID: 35328649 PMCID: PMC8953852 DOI: 10.3390/ijms23063228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
As the global SARS-CoV-2 pandemic continues to plague healthcare systems, it has become clear that opportunistic pathogens cause a considerable proportion of SARS-CoV-2-associated mortality and morbidity cases. Of these, Covid-Associated Pulmonary Aspergilliosis (CAPA) is a major concern with evidence that it occurs in the absence of traditional risk factors such as neutropenia and is diagnostically challenging for the attending physician. In this review, we focus on the immunopathology of SARS-CoV-2 and how this potentiates CAPA through dysregulation of local and systemic immunity as well as the unintended consequences of approved COVID treatments including corticosteroids and IL-6 inhibitors. Finally, we will consider how knowledge of the above may aid in the diagnosis of CAPA using current diagnostics and what treatment should be instituted in probable and confirmed cases.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases and Microbiology Department, Morriston Hospital, Swansea University Health Board, Swansea SA6 6NL, UK;
- Public Health Wales, Cardiff CF10 4BZ, UK
| |
Collapse
|
18
|
Cytotoxicity of Aspergillus Section Fumigati Isolates Recovered from Protection Devices Used on Waste Sorting Industry. Toxins (Basel) 2022; 14:toxins14020070. [PMID: 35202098 PMCID: PMC8879639 DOI: 10.3390/toxins14020070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Safe working conditions must be guaranteed during waste sorting, which is crucial to maximizing recycling and reuse, in order to minimize workers’ exposure to chemical and biological hazards. This study determines the contribution of Aspergillus section Fumigati to the overall cytotoxicity of filtering respiratory protection devices (FRPD) and mechanic protection gloves (MPG) collected in 2019 from different workstations in one waste sorting industry in Portugal. The cytotoxicity of 133 Aspergillus section Fumigati isolates was determined as IC50 in human A549 epithelial lung cells and swine kidney cells, using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Aspergillus section Fumigati cytotoxicity results were compared with previous total cytotoxicity data from FRPD and MPG samples. A significant correlation was detected between the total cytotoxicity of samples and cytotoxicity of Aspergillus section Fumigati isolates in A549 cells (rS = −0.339, p = 0.030). The cytotoxicity of Aspergillus section Fumigati isolates explained 10.7% of the total cytotoxicity of the sample. On the basis of the comparison of cytotoxicity levels, it was possible to determine the contribution of Aspergillus section Fumigati isolates for the total cytotoxicity of protection devices used in the waste sorting industry. The results support in vitro toxicology as a relevant approach in risk assessments regarding cytotoxicity in passive sampling, and thus, useful in determining the contribution of relevant microbial contaminants to overall cytotoxicity. This approach can provide valuable answers in dose/response studies, and support innovations in risk characterization and their translation into occupational policies.
Collapse
|
19
|
Cytotoxicity of Aspergillus Section Fumigati Isolated from Health Care Environments. J Fungi (Basel) 2021; 7:jof7100839. [PMID: 34682260 PMCID: PMC8539694 DOI: 10.3390/jof7100839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
This study analyzed 57 Aspergillus section Fumigati (AF) isolates collected by active and passive sampling (N = 450) in several health care facilities and from biological sampling of health care workers (N = 25) and controls (N = 22) in Portugal. All isolates were cultured in different media and screened for azole resistance. Cytotoxicity was assessed for 40 isolates in lung epithelial cells and kidney cells using the MTT assay. Aspergillus section Fumigati was prevalent in the health care facilities and in nasal swabs from health care workers and controls. All AF isolates reduced cell viability and presented medium to high cytotoxicity, with cytotoxicity being significantly higher in A549 lung epithelial cells. The cytotoxicity of isolates from air and nasal swab samples suggested the inhalation route as a risk factor. Notably, 42% of AF isolates exhibited a pattern of reduced susceptibility to some of the most used antifungals available for the treatment of patients infected with these fungi. In sum, the epidemiology and clinical relevance of Aspergillus section Fumigati should continue to be addressed. A deeper understanding of the mechanisms underlying Aspergillus-mediated cytotoxicity is necessary.
Collapse
|
20
|
Jaggi TK, Ter SK, Mac Aogáin M, Chotirmall SH. Aspergillus-Associated Endophenotypes in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:556-566. [PMID: 34261180 DOI: 10.1055/s-0041-1730947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bronchiectasis is a chronic condition of global relevance resulting in permanent and irreversible structural airway damage. Bacterial infection in bronchiectasis is well studied; however, recent molecular studies identify fungi as important pathogens, either independently or in association with bacteria. Aspergillus species are established fungal pathogens in cystic fibrosis and their role is now increasingly being recognized in noncystic fibrosis bronchiectasis. While the healthy airway is constantly exposed to ubiquitously present Aspergillus conidia in the environment, anatomically damaged airways appear more prone to colonization and subsequent infection by this fungal group. Aspergilli possess diverse immunopathological mechanistic capabilities and when coupled with innate immune defects in a susceptible host, such as that observed in bronchiectasis, it may promote a range of clinical manifestations including sensitization, allergic bronchopulmonary aspergillosis, Aspergillus bronchitis, and/or invasive aspergillosis. How such clinical states influence "endophenotypes" in bronchiectasis is therefore of importance, as each Aspergillus-associated disease state has overlapping features with bronchiectasis itself, and can evolve, depending on underlying host immunity from one type into another. Concurrent Aspergillus infection complicates the clinical course and exacerbations in bronchiectasis and therefore dedicated research to better understand the Aspergillus-host interaction in the bronchiectasis airway is now warranted.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Soo Kai Ter
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital, Dublin, Ireland.,Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
21
|
Kulas J, Tucovic D, Zeljkovic M, Popovic D, Popov Aleksandrov A, Ukropina M, Cakic Milosevic M, Glamoclija J, Kataranovski M, Mirkov I. Proinflammatory effects of environmental cadmium boost resistance to opportunistic pathogen Aspergillus fumigatus: Implications for sustained low-level pulmonary inflammation? Toxicology 2020; 447:152634. [PMID: 33197509 DOI: 10.1016/j.tox.2020.152634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is one of the most toxic environmental heavy metals to which the general population is exposed mainly via the oral route. Owing to its immunomodulatory potential, orally acquired Cd affects antimicrobial immune defense in several organs, including the lungs. While there are data concerning Cd and viral and bacterial pulmonary infections, effects on fungal infections are not studied yet. In the present study, the effect of the Cd (5 mg/L for 30 days, in drinking water, the average daily Cd intake 0.641 ± 0.089 mg/kg) on the immune response of rats to pulmonary A. fumigatus infection was examined. Data obtained showed that orally acquired cadmium does not affect the elimination of the fungus in immunocompetent rats owing to the preservation of some aspects of innate immune responses (lung leukocyte infiltration and NBT reduction) and an increase in other (increased numbers of mucus-producing goblet cells, MPO release). Cd does not affect an IFN-γ response in lung leukocytes during the infection (despite suppression of cytokine production in cells of lung-draining lymph nodes), while it stimulates IL-17 and suppresses IL-10 response to the fungus. As a result, the elimination of the fungus occurs in a milieu with the prevailing proinflammatory response in Cd-exposed animals that preserved fungal elimination from the lungs, though with more intense injury to the lung tissue. Therefore, the proinflammatory microenvironment in the lungs created by Cd that sustains inflammatory/immune response to the fungus to which humans are exposed for a lifetime, raises a concern of orally acquired Cd as a risk factor for the development of chronic low-grade pulmonary inflammation.
Collapse
Affiliation(s)
- Jelena Kulas
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Dina Tucovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Milica Zeljkovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Dusanka Popovic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Mirela Ukropina
- Institute of Zoology, Faculty of Biology, University of Belgrade, 16 Studentski trg, Belgrade, 11000, Serbia
| | - Maja Cakic Milosevic
- Institute of Zoology, Faculty of Biology, University of Belgrade, 16 Studentski trg, Belgrade, 11000, Serbia
| | - Jasmina Glamoclija
- Mycology Laboratory, Department of Plant Physiology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research" Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Bulevar despota Stefana, Belgrade, 11000, Serbia.
| |
Collapse
|
22
|
Microglial Response to Aspergillus flavus and Candida albicans: Implications in Endophthalmitis. J Fungi (Basel) 2020; 6:jof6030162. [PMID: 32899547 PMCID: PMC7558867 DOI: 10.3390/jof6030162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022] Open
Abstract
Aspergillus flavus is the most common etiology of fungal endophthalmitis in India, while Candida albicans is the causative agent in the West. In this study, we determined the role of microglial cells in evoking an inflammatory response following an infection with A. flavus and C. albicans strains isolated from patients with endophthalmitis. Microglia (CHME-3) cells were infected with A. flavus and C. albicans and the expression of Toll-Like Receptors (TLRs), cytokines and Matrix metalloproteinases (MMPs) were assessed at various time intervals. A. flavus infected cells induced higher expressions of TLR-1, -2, -5, -6, -7 and -9 and cytokines such as IL-1α, IL-6, IL-8, IL-10 and IL-17. In contrast, C. albicans infected microglia induced only TLR-2 along with the downregulation of IL-10 and IL-17. The expression of MMP-9 (Matrix metalloproteinase-9) was however upregulated in both A. flavus and C. albicans infected microglia. These results indicate that microglial cells have the ability to incite an innate response towards endophthalmitis causing fungal pathogens via TLRs and inflammatory mediators. Moreover, our study highlights the differential responses of microglia towards yeast vs. filamentous fungi.
Collapse
|
23
|
Banfalvi G. Antifungal Activity of Gentamicin B1 Against Systemic Plant Mycoses. Molecules 2020; 25:molecules25102401. [PMID: 32455775 PMCID: PMC7287848 DOI: 10.3390/molecules25102401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Gentamicin is a broad-spectrum aminoglycoside antibiotic produced by Micromonospora purpurea bacteria, effective against Gram-negative bacterial infections. Major fractions of the gentamicin complex (C1, C1a, C2, C2a) possess weak antifungal activity and one of the minor components (A, A1-A4, B, B1, X), gentamicin B1 was found to be a strong antifungal agent. METHODS This work uses in vitro and in vivo dilution methods to compare the antifusarial, antiaspergillic and anticryptococcal effects of gentamicin derivatives and structurally-related congeners. RESULTS The in vitro antifusarial activity of gentamicin B1 (minimum inhibitory concentration (MIC) 0.4 μg/mL) and structurally-related compounds (MIC 0.8-12.5 μg/mL) suggests that the purpuroseamine ring substituents are responsible for the specific antimycotic effect. The functional groups of the garoseamine and 2-deoxystreptamine rings of gentamicin derivatives are identical in gentamicin compounds and are unlikely to exert a significant antifungal effect. Among soil dermatophytes, Microsporum gypseum was more susceptible to gentamicin B1 (MIC 3.1 µg/mL) than Trichophyton gypseum (MIC 25 µg/mL). The in vitro antifungal effect of gentamicin B1 against plant pathogenic fungi was comparable to primary antifungal agents. CONCLUSION Gentamicin is already in medical use. In vitro and preclinical in vivo synergisms of gentamicin B1 with amphotericin B suggest immediate clinical trials starting with subtoxic doses.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, 4010 Debrecen, Hungary
| |
Collapse
|
24
|
Impact of immunosuppressive and antifungal drugs on PBMC- and whole blood-based flow cytometric CD154 + Aspergillus fumigatus specific T-cell quantification. Med Microbiol Immunol 2020; 209:579-592. [PMID: 32236695 DOI: 10.1007/s00430-020-00665-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
Flow cytometric quantification of CD154+ mould specific T-cells in antigen-stimulated peripheral blood mononuclear cells (PBMCs) or whole blood has been described as a supportive biomarker to diagnose invasive mould infections and to monitor therapeutic outcomes. As patients at risk frequently receive immunosuppressive and antifungal medication, this study compared the matrix-dependent impact of representative drugs on CD154+ T-cell detection rates. PBMCs and whole blood samples from healthy adults were pre-treated with therapeutic concentrations of liposomal amphotericin B, voriconazole, posaconazole, cyclosporine A (CsA) or prednisolone. Samples were then stimulated with an Aspergillus fumigatus lysate or a viral antigen cocktail (CPI) and assessed for CD154+ T-helper cell frequencies. Specific T-cell detection rates and technical assay properties remained largely unaffected by exposure of both matrices to the studied antifungals. By contrast, CsA and prednisolone pre-treatment of isolated PBMCs and whole blood adversely impacted specific T-cell detection rates and caused elevated inter-replicate variation. Unexpectedly, the whole blood-based protocol that uses additional α-CD49d co-stimulation was less susceptible to CsA and prednisolone despite prolonged drug exposure in the test tube. Accordingly, addition of α-CD49d during PBMC stimulation partially attenuated the impact of immunosuppressive drugs on test performance. Translating these results into the clinical setting, false-negative results of CD154+ antigen-specific T-cell quantification need to be considered in patients receiving T-cell-active immunosuppressive medication. Optimized co-stimulation regimes with α-CD49d could contribute to an improved feasibility of functional T-cell assays in immunocompromised patient populations.
Collapse
|
25
|
Wassano NS, Goldman GH, Damasio A. Aspergillus fumigatus. Trends Microbiol 2020; 28:594-595. [PMID: 32544445 DOI: 10.1016/j.tim.2020.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Natália S Wassano
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil; EMRC - Experimental Medicine Research Cluster, University of Campinas (UNICAMP), São Paulo, Brazil.
| |
Collapse
|
26
|
Morcos NYS, Saad-Hussein A, Ibrahim KS, Abou-ElMakarem SR, Abd El-Zaher N, Moubarz G. Study of the immunological changes associated with Aspergillus infection among ceramic workers. AEROBIOLOGIA 2019; 35:605-612. [DOI: 10.1007/s10453-019-09600-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/09/2019] [Indexed: 09/02/2023]
|
27
|
Srivastava M, Bencurova E, Gupta SK, Weiss E, Löffler J, Dandekar T. Aspergillus fumigatus Challenged by Human Dendritic Cells: Metabolic and Regulatory Pathway Responses Testify a Tight Battle. Front Cell Infect Microbiol 2019; 9:168. [PMID: 31192161 PMCID: PMC6540932 DOI: 10.3389/fcimb.2019.00168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells which serve as a passage between the innate and the acquired immunity. Aspergillosis is a major lethal condition in immunocompromised patients caused by the adaptable saprophytic fungus Aspergillus fumigatus. The healthy human immune system is capable to ward off A. fumigatus infections however immune-deficient patients are highly vulnerable to invasive aspergillosis. A. fumigatus can persist during infection due to its ability to survive the immune response of human DCs. Therefore, the study of the metabolism specific to the context of infection may allow us to gain insight into the adaptation strategies of both the pathogen and the immune cells. We established a metabolic model of A. fumigatus central metabolism during infection of DCs and calculated the metabolic pathway (elementary modes; EMs). Transcriptome data were used to identify pathways activated when A. fumigatus is challenged with DCs. In particular, amino acid metabolic pathways, alternative carbon metabolic pathways and stress regulating enzymes were found to be active. Metabolic flux modeling identified further active enzymes such as alcohol dehydrogenase, inositol oxygenase and GTP cyclohydrolase participating in different stress responses in A. fumigatus. These were further validated by qRT-PCR from RNA extracted under these different conditions. For DCs, we outlined the activation of metabolic pathways in response to the confrontation with A. fumigatus. We found the fatty acid metabolism plays a crucial role, along with other metabolic changes. The gene expression data and their analysis illuminate additional regulatory pathways activated in the DCs apart from interleukin regulation. In particular, Toll-like receptor signaling, NOD-like receptor signaling and RIG-I-like receptor signaling were active pathways. Moreover, we identified subnetworks and several novel key regulators such as UBC, EGFR, and CUL3 of DCs to be activated in response to A. fumigatus. In conclusion, we analyze the metabolic and regulatory responses of A. fumigatus and DCs when confronted with each other.
Collapse
Affiliation(s)
- Mugdha Srivastava
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Elena Bencurova
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Shishir K Gupta
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Esther Weiss
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,EMBL Heidelberg, Structural and Computational Biology, Heidelberg, Germany
| |
Collapse
|
28
|
Ries LNA, Steenwyk JL, de Castro PA, de Lima PBA, Almeida F, de Assis LJ, Manfiolli AO, Takahashi-Nakaguchi A, Kusuya Y, Hagiwara D, Takahashi H, Wang X, Obar JJ, Rokas A, Goldman GH. Nutritional Heterogeneity Among Aspergillus fumigatus Strains Has Consequences for Virulence in a Strain- and Host-Dependent Manner. Front Microbiol 2019; 10:854. [PMID: 31105662 PMCID: PMC6492530 DOI: 10.3389/fmicb.2019.00854] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/03/2019] [Indexed: 01/09/2023] Open
Abstract
Acquisition and subsequent metabolism of different carbon and nitrogen sources have been shown to play an important role in virulence attributes of the fungal pathogen Aspergillus fumigatus, such as the secretion of host tissue-damaging proteases and fungal cell wall integrity. We examined the relationship between the metabolic processes of carbon catabolite repression (CCR), nitrogen catabolite repression (NCR) and virulence in a variety of A. fumigatus clinical isolates. A considerable amount of heterogeneity with respect to the degree of CCR and NCR was observed and a positive correlation between NCR and virulence in a neutropenic mouse model of pulmonary aspergillosis (PA) was found. Isolate Afs35 was selected for further analysis and compared to the reference strain A1163, with both strains presenting the same degree of virulence in a neutropenic mouse model of PA. Afs35 metabolome analysis in physiological-relevant carbon sources indicated an accumulation of intracellular sugars that also serve as cell wall polysaccharide precursors. Genome analysis showed an accumulation of missense substitutions in the regulator of protease secretion and in genes encoding enzymes required for cell wall sugar metabolism. Based on these results, the virulence of strains Afs35 and A1163 was assessed in a triamcinolone murine model of PA and found to be significantly different, confirming the known importance of using different mouse models to assess strain-specific pathogenicity. These results highlight the importance of nitrogen metabolism for virulence and provide a detailed example of the heterogeneity that exists between A. fumigatus isolates with consequences for virulence in a strain-specific and host-dependent manner.
Collapse
Affiliation(s)
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Fausto Almeida
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Xi Wang
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Lebanon, NH, United States
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Lebanon, NH, United States
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Gago S, Denning DW, Bowyer P. Pathophysiological aspects of Aspergillus colonization in disease. Med Mycol 2019; 57:S219-S227. [PMID: 30239804 DOI: 10.1093/mmy/myy076] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022] Open
Abstract
Aspergillus colonization of the lower respiratory airways is common in normal people, and of little clinical significance. However, in some patients, colonization is associated with severe disease including poorly controlled asthma, allergic bronchopulmonary aspergillosis (ABPA) with sputum plugs, worse lung function in chronic obstructive pulmonary aspergillosis (COPD), invasive aspergillosis, and active infection in patients with chronic pulmonary aspergillosis (CPA). Therefore, understanding the pathophysiological mechanisms of fungal colonization in disease is essential to develop strategies to avert or minimise disease. Aspergillus cell components promoting fungal adherence to the host surface, extracellular matrix, or basal lamina are indispensable for pathogen persistence. However, our understanding of individual differences in clearance of A. fumigatus from the lung in susceptible patients is close to zero.
Collapse
Affiliation(s)
- Sara Gago
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| | - David W Denning
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom.,National Aspergillosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
30
|
Mead ME, Knowles SL, Raja HA, Beattie SR, Kowalski CH, Steenwyk JL, Silva LP, Chiaratto J, Ries LNA, Goldman GH, Cramer RA, Oberlies NH, Rokas A. Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri, a Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus. mSphere 2019; 4:e00018-19. [PMID: 30787113 PMCID: PMC6382966 DOI: 10.1128/msphere.00018-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fischeri is closely related to Aspergillus fumigatus, the major cause of invasive mold infections. Even though A. fischeri is commonly found in diverse environments, including hospitals, it rarely causes invasive disease. Why A. fischeri causes less human disease than A. fumigatus is unclear. A comparison of A. fischeri and A. fumigatus for pathogenic, genomic, and secondary metabolic traits revealed multiple differences in pathogenesis-related phenotypes. We observed that A. fischeri NRRL 181 is less virulent than A. fumigatus strain CEA10 in multiple animal models of disease, grows slower in low-oxygen environments, and is more sensitive to oxidative stress. Strikingly, the observed differences for some traits are of the same order of magnitude as those previously reported between A. fumigatus strains. In contrast, similar to what has previously been reported, the two species exhibit high genomic similarity; ∼90% of the A. fumigatus proteome is conserved in A. fischeri, including 48/49 genes known to be involved in A. fumigatus virulence. However, only 10/33 A. fumigatus biosynthetic gene clusters (BGCs) likely involved in secondary metabolite production are conserved in A. fischeri and only 13/48 A. fischeri BGCs are conserved in A. fumigatus Detailed chemical characterization of A. fischeri cultures grown on multiple substrates identified multiple secondary metabolites, including two new compounds and one never before isolated as a natural product. Additionally, an A. fischeri deletion mutant of laeA, a master regulator of secondary metabolism, produced fewer secondary metabolites and in lower quantities, suggesting that regulation of secondary metabolism is at least partially conserved. These results suggest that the nonpathogenic A. fischeri possesses many of the genes important for A. fumigatus pathogenicity but is divergent with respect to its ability to thrive under host-relevant conditions and its secondary metabolism.IMPORTANCEAspergillus fumigatus is the primary cause of aspergillosis, a devastating ensemble of diseases associated with severe morbidity and mortality worldwide. A. fischeri is a close relative of A. fumigatus but is not generally observed to cause human disease. To gain insights into the underlying causes of this remarkable difference in pathogenicity, we compared two representative strains (one from each species) for a range of pathogenesis-relevant biological and chemical characteristics. We found that disease progression in multiple A. fischeri mouse models was slower and caused less mortality than A. fumigatus Remarkably, the observed differences between A. fischeri and A. fumigatus strains examined here closely resembled those previously described for two commonly studied A. fumigatus strains, AF293 and CEA10. A. fischeri and A. fumigatus exhibited different growth profiles when placed in a range of stress-inducing conditions encountered during infection, such as low levels of oxygen and the presence of chemicals that induce the production of reactive oxygen species. We also found that the vast majority of A. fumigatus genes known to be involved in virulence are conserved in A. fischeri, whereas the two species differ significantly in their secondary metabolic pathways. These similarities and differences that we report here are the first step toward understanding the evolutionary origin of a major fungal pathogen.
Collapse
Affiliation(s)
- Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Sarah R Beattie
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lilian P Silva
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Jessica Chiaratto
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Laure N A Ries
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo H Goldman
- Faculdade de Ciencias Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
31
|
Kanj A, Abdallah N, Soubani AO. The spectrum of pulmonary aspergillosis. Respir Med 2018; 141:121-131. [PMID: 30053957 DOI: 10.1016/j.rmed.2018.06.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 11/24/2022]
Abstract
Notable progress has been made in the past years in the classification, diagnosis and treatment of pulmonary aspergillosis. New criteria were proposed by the Working Group of the International Society for Human and Animal Mycology (ISHAM) for the diagnosis of allergic bronchopulmonary aspergillosis (ABPA). The latest classification of chronic pulmonary aspergillosis (CPA) suggested by the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) has become widely accepted among clinicians. Subacute invasive pulmonary aspergillosis is now considered a type of CPA, yet it is still diagnosed and treated similarly to invasive pulmonary aspergillosis (IPA). Isavuconazole, an extended-spectrum triazole, has recently been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of IPA. The most recent Infectious Diseases Society of America (IDSA) guidelines strongly recommend reducing mold exposure to patients at high risk for pulmonary aspergillosis. The excessive relapse rate following discontinuation of therapy remains a common reality to all forms of this semi-continuous spectrum of diseases. This highlights the need to continuously reassess patients and individualize therapy accordingly. Thus far, the duration of therapy and the frequency of follow-up have to be well characterized.
Collapse
Affiliation(s)
- Amjad Kanj
- Division of Pulmonary Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nadine Abdallah
- Division of Pulmonary Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ayman O Soubani
- Division of Pulmonary Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
32
|
Banfalvi G. Improved and adopted murine models to combat pulmonary aspergillosis. Appl Microbiol Biotechnol 2018; 102:6865-6875. [DOI: 10.1007/s00253-018-9161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
|
33
|
Mora Carpio AL, Stempel JM, de Lima Corvino D, Garvia V, Climaco A. Granulomatous response to invasive pulmonary aspergillosis in an immunotherapy-naive host, a maladaptive response? Respir Med Case Rep 2018; 24:158-162. [PMID: 29977786 PMCID: PMC6010647 DOI: 10.1016/j.rmcr.2018.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 11/29/2022] Open
Abstract
Pulmonary aspergillosis causes a wide spectrum of disease, ranging from asymptomatic airway colonization to severe invasive disease, contingent on the host's immune status and underlying pulmonary anatomy. The invasive form of aspergillosis is a rare occurrence in the immunocompetent population. Nevertheless, patients with a compromised innate immune response are at greatest risk. We present a case of a patient with known Crohn's disease who developed invasive pulmonary aspergillosis. His clinical picture was further complicated by an uncommon immune response characterized by the development of granulomas encasing the Aspergillus forms found on his lung biopsy, likely representing a maladaptive response, possibly related to the effects of his granulomatous disease in the lungs. He was successfully treated with antifungal therapy and video assisted thoracoscopic surgery with placement of thoracostomy tube drainage for a parapneumonic effusion. We will discuss the factors leading to his atypical presentation and clinical outcome.
Collapse
Affiliation(s)
- Andres L. Mora Carpio
- Internal Medicine Department, Einstein Medical Center, 5501 Old York Road, Klein Building, Suite 363, Philadelphia PA 19141, USA
| | | | | | | | | |
Collapse
|
34
|
Schneider A, Blatzer M, Posch W, Schubert R, Lass-Flörl C, Schmidt S, Lehrnbecher T. Aspergillus fumigatus responds to natural killer (NK) cells with upregulation of stress related genes and inhibits the immunoregulatory function of NK cells. Oncotarget 2018; 7:71062-71071. [PMID: 27738337 PMCID: PMC5342063 DOI: 10.18632/oncotarget.12616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/17/2016] [Indexed: 11/25/2022] Open
Abstract
Natural Killer (NK) cells are active against Aspergillus fumigatus, which in turn is able to impair the host defense. Unfortunately, little is known on the mutual interaction of NK cells and A. fumigatus. We coincubated human NK cells with A. fumigatus hyphae and assessed the gene expression and protein concentration of selected molecules. We found that A. fumigatus up-regulates the gene expression of pro-inflammatory molecules in NK cells, but inhibited the release of these molecules resulting in intracellular accumulation and limited extracellular availability. A. fumigatus down-regulatedmRNA levels of perforin in NK cells, but increased its intra- and extracellular protein concentration. The gene expression of stress related molecules of A. fumigatus such as heat shock protein hsp90 was up-regulated by human NK cells. Our data characterize for the first time the immunosuppressive effect of A. fumigatus on NK cells and may help to develop new therapeutic antifungal strategies.
Collapse
Affiliation(s)
- Andreas Schneider
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Michael Blatzer
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ralf Schubert
- Division of Pediatric Pulmonology, Allergology and Cystic Fibrosis, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stanislaw Schmidt
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| |
Collapse
|
35
|
|
36
|
Caffrey-Carr AK, Hilmer KM, Kowalski CH, Shepardson KM, Temple RM, Cramer RA, Obar JJ. Host-Derived Leukotriene B 4 Is Critical for Resistance against Invasive Pulmonary Aspergillosis. Front Immunol 2018; 8:1984. [PMID: 29375586 PMCID: PMC5768911 DOI: 10.3389/fimmu.2017.01984] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how immune competent hosts maintain control of fungal infections while constantly being exposed to fungi is rapidly emerging. It is known that timely neutrophil recruitment to and activation in the lungs is critical to the host defense against development of invasive pulmonary aspergillosis, but the inflammatory sequelae necessary remains to be fully defined. Here, we show that 5-Lipoxygenase (5-LO) and Leukotriene B4 (LTB4) are critical for leukocyte recruitment and resistance to pulmonary A. fumigatus challenge in a fungal-strain-dependent manner. 5-LO activity was needed in radiosensitive cells for an optimal anti-fungal response and in vivo LTB4 production was at least partially dependent on myeloid-derived hypoxia inducible factor-1α. Overall, this study reveals a role for host-derived leukotriene synthesis in innate immunity to A. fumigatus.
Collapse
Affiliation(s)
- Alayna K Caffrey-Carr
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kimberly M Hilmer
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kelly M Shepardson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rachel M Temple
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
37
|
Øya E, Afanou AKJ, Malla N, Uhlig S, Rolen E, Skaar I, Straumfors A, Winberg JO, Bang BE, Schwarze PE, Eduard W, Holme JA. Characterization and pro-inflammatory responses of spore and hyphae samples from various mold species. INDOOR AIR 2018; 28:28-39. [PMID: 28922584 DOI: 10.1111/ina.12426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Mold particles from Aspergillus fumigatus, Penicillium chrysogenum, Aspergillus versicolor, and Stachybotrys chartarum have been linked to respiratory-related diseases. We characterized X-ray-inactivated spores and hyphae fragments from these species by number of particles, morphology, and mycotoxin, β-glucan and protease content/activity. The pro-inflammatory properties of mold particles were examined in human bronchial epithelial cells (BEAS-2B) and THP-1 monocytes and phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1. Spores from P. chrysogenum and S. chartarum contained some hyphae fragments, whereas the other preparations contained either spores or hyphae. Each mold species produced mainly one gelatin-degrading protease that was either of the metallo- or serine type, while one remains unclassified. Mycotoxin levels were generally low. Detectable levels of β-glucans were found mainly in hyphae particle preparations. PMA-differentiated THP-1 macrophages were by far the most sensitive model with effects in the order of 10 ng/cm2 . Hyphae preparations of A. fumigatus and P. chrysogenum were more potent than respective spore preparations, whereas the opposite seems to be true for A. versicolor and S. chartarum. Hyphae fragments of A. fumigatus, P. chrysogenum, and A. versicolor enhanced the release of metalloprotease (proMMP-9) most markedly. In conclusion, species, growth stage, and characteristics are all important factors for pro-inflammatory potential.
Collapse
Affiliation(s)
- E Øya
- Department of Air and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - A K J Afanou
- Department for the Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - N Malla
- Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway
| | - S Uhlig
- Norwegian Veterinary Institute, Oslo, Norway
| | - E Rolen
- Norwegian Veterinary Institute, Oslo, Norway
| | - I Skaar
- Norwegian Veterinary Institute, Oslo, Norway
| | - A Straumfors
- Department for the Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - J O Winberg
- Department of Medical Biology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - B E Bang
- Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway
- Department of Medical Biology, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - P E Schwarze
- Department of Air and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - W Eduard
- Department for the Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - J A Holme
- Department of Air and Noise, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
38
|
Morán G, Uberti B, Ortloff A, Folch H. Aspergillus fumigatus-sensitive IgE is associated with bronchial hypersensitivity in a murine model of neutrophilic airway inflammation. J Mycol Med 2017; 28:128-136. [PMID: 29233467 DOI: 10.1016/j.mycmed.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/29/2022]
Abstract
Neutrophils are the predominant inflammatory cells that infiltrate airways during acute exacerbation of asthma. The importance of A. fumigatus sensitization, and IgE response in the airways in patients with acute asthma is unclear. Rockefeller (RK) mice were sensitized with A. fumigatus extract protein. The animals were subsequently challenged with different degrees of A. fumigatus contamination in the cage bedding. All groups of mice were euthanized to obtain bronchoalveolar lavage fluid (BALF) for cytological and Elisa assays, and lung tissue for histological analysis. Moreover, several bioassays were conducted to determine whether BALF IgE antibodies can activate mast cells. In this study, we demonstrated that exposure of sensitized mice to a known concentration of A. fumigatus conidia produces bronchial hyperreactivity with marked neutrophilic bronchial infiltration and increased BALF IgE, capable of triggering mast cell degranulation. This study suggests that IgE may play a role in bronchial hyperreactivity associated to A. fumigatus exposure in mice. Mice sensitized and challenged with this fungus showed characteristics of severe asthma, with an increase of BALF neutrophils, histological changes consistent with severe asthma and an increase of IgE capable of triggering type I hypersensitivity.
Collapse
Affiliation(s)
- G Morán
- Department of pharmacology, faculty of veterinary science, universidad Austral de Chile, Valdivia, Chile.
| | - B Uberti
- Department of clinical veterinary sciences, faculty of veterinary sciences, universidad Austral de Chile, Valdivia, Chile
| | - A Ortloff
- College of veterinary medicine, universidad Católica de Temuco, Temuco, Chile
| | - H Folch
- Department of immunology, faculty of medicine, universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
39
|
Liu X, Yang J, Ma W. Primary cutaneous aspergillosis caused by Aspergillus.fumigatus in an immunocompetent patient: A case report. Medicine (Baltimore) 2017; 96:e8916. [PMID: 29310381 PMCID: PMC5728782 DOI: 10.1097/md.0000000000008916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Primary cutaneous aspergillosis in immunocompromised patients has been well described in extensive investigations. However, in immunocompetent hosts, primary cutaneous infection of aspergillus occurs rarely, and remains poorly characterized. PATIENT CONCERNS We present a case of primary cutaneous aspergillosis manifested by erythematous plague covered with flava eschar. DIAGNOSES The patient was diagnosed with primary cutaneous aspergillosis. INTERVENTIONS Treatments with oral itraconazole at a dose of 75 mg/d and local wound care with ciclopirox olamine ointment were administered. OUTCOMES After half a month, a partial resolution and a decrease in tenderness indicated gradual improvement, and a complete remission was achieved 2 months later. LESSONS Primary cutaneous aspergillosis could occur in immunocompetent hosts. The initial lesions may appear in different forms, including macules, papules, nodules, or plaques. Repeated biopsy of a skin lesion for both culture and histopathology is needed.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Pulmonary Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Yang
- Department of Pulmonary Medicine, Ankang Central Hospital, Ankang
| | - Weiyuan Ma
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
40
|
Dhusia K, Bajpai A, Ramteke PW. Overcoming antibiotic resistance: Is siderophore Trojan horse conjugation an answer to evolving resistance in microbial pathogens? J Control Release 2017; 269:63-87. [PMID: 29129658 DOI: 10.1016/j.jconrel.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Comparative study of siderophore biosynthesis pathway in pathogens provides potential targets for antibiotics and host drug delivery as a part of computationally feasible microbial therapy. Iron acquisition using siderophore models is an essential and well established model in all microorganisms and microbial infections a known to cause great havoc to both plant and animal. Rapid development of antibiotic resistance in bacterial as well as fungal pathogens has drawn us at a verge where one has to get rid of the traditional way of obstructing pathogen using single or multiple antibiotic/chemical inhibitors or drugs. 'Trojan horse' strategy is an answer to this imperative call where antibiotic are by far sneaked into the pathogenic cell via the siderophore receptors at cell and outer membrane. This antibiotic once gets inside, generates a 'black hole' scenario within the opportunistic pathogens via iron scarcity. For pathogens whose siderophore are not compatible to smuggle drug due to their complex conformation and stiff valence bonds, there is another approach. By means of the siderophore biosynthesis pathways, potential targets for inhibition of these siderophores in pathogenic bacteria could be achieved and thus control pathogenic virulence. Method to design artificial exogenous siderophores for pathogens that would compete and succeed the battle of intake is also covered with this review. These manipulated siderophore would enter pathogenic cell like any other siderophore but will not disperse iron due to which iron inadequacy and hence pathogens control be accomplished. The aim of this review is to offer strategies to overcome the microbial infections/pathogens using siderophore.
Collapse
Affiliation(s)
- Kalyani Dhusia
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| | - Archana Bajpai
- Laboratory for Disease Systems Modeling, Center for Integrative Medical Sciences, RIKEN, Yokohama City, Kanagawa, 230-0045, Japan
| | - P W Ramteke
- Deptartment of Computational Biology and Bioinformatics, Jacob Institute of Biotechnology and Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Allahabad-211007 (U.P.), India
| |
Collapse
|
41
|
Naylor AD, Girling SJ, Brown D, Crompton CG, Pizzi R. Plasma protein electrophoresis as a prognostic indicator in Aspergillus species-infected Gentoo penguins (Pygoscelis papua papua). Vet Clin Pathol 2017; 46:605-614. [PMID: 28692132 DOI: 10.1111/vcp.12527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Avian aspergillosis presents a significant threat to captive penguin populations. Currently, a lack of objective prognostic factors limits disease staging, objective reassessment throughout treatment, comparative evaluation of treatment regimes, and appropriate timing of euthanasia. OBJECTIVE The study objective was to investigate absolute and relative plasma protein fractions by agarose gel electrophoresis (EPH) as predictors of survival in Gentoo penguins (Pygoscelis papua papua) under treatment for aspergillosis. METHODS One hundred and eighty-three EPH profiles from individual clinical cases were examined retrospectively. Animal survival to 90 days post sampling was established from clinical records; birds either survived (n = 146) or died within 90 days (n = 37), and time to death was recorded. RESULTS Fourteen variables showed statistically significant differences (P < .05) between surviving and dying birds. Receiver operating characteristic curve analysis identified total albumin concentration (albumin + prealbumin) and albumin-to-globulin (A:G) ratio as having strongest discriminatory values (95% CI) at 0.788 (0.710-0.866) and 0.784 (0.696-0.871), respectively. Albumin (concentration and percentage of total protein) displayed moderate discriminatory value but additionally a weak positive correlation with time to death (95% CI); r = .353 (0.033-0.608) and .424 (0.116-0.658), respectively. CONCLUSIONS Optimized test cutoffs for total albumins, albumin (concentration and percentage of total protein), and A:G ratio achieved moderate sensitivity and specificity, strong negative predictive values, but weak positive predictive values due to a low prevalence of death. Selection of appropriate test cutoff values may provide valuable adjunctive prognostic tools for clinical decision-making when the prognosis is difficult to assess clinically.
Collapse
Affiliation(s)
| | | | - Donna Brown
- Royal Zoological Society of Scotland, Edinburgh, UK
| | | | - Romain Pizzi
- Royal Zoological Society of Scotland, Edinburgh, UK
| |
Collapse
|
42
|
Liu C, Wang M, Sun W, Cai F, Geng S, Su X, Shi Y. PU.1 serves a critical role in the innate defense against Aspergillus fumigatus via dendritic cell-associated C-type lectin receptor-1 and toll-like receptors-2 and 4 in THP-1-derived macrophages. Mol Med Rep 2017; 15:4084-4092. [PMID: 28440496 PMCID: PMC5436209 DOI: 10.3892/mmr.2017.6504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is one of the most common fungal pathogens of invasive pulmonary aspergillosis (IPA), which may be life threatening in immunocompromised individuals. The dendritic cell-associated C-type lectin receptor (Dectin-1), toll-like receptor (TLR)-2 and TLR-4 are major pattern recognition receptors in alveolar macrophages that recognize A. fumigatus components. The PU.1 transcription factor is known to be important for the transcriptional control of these three receptors in mature macrophages. The present study investigated whether alterations of PU.1 expression may affect the innate defense against A. fumigatus in the human monocyte THP-1 cell line. THP-1-derived macrophages were transduced with PU.1 adenoviral vectors and transfected with PU.1 small interfering RNA, and the mRNA and protein expression levels of Dectin-1, TLR-2 and TLR-4 were measured. In addition, the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β were ascertained, and fungal phagocytosis and killing were assessed. The results demonstrated that overexpression of PU.1 by recombinant adenoviral vectors resulted in a significant upregulation of Dectin-1, TLR-2 and TLR-4 at the transcriptional and translational levels. In response to A. fumigatus stimulation, PU.1 overexpression increased TNF-α and IL-1β production. In addition, Dectin-1, TLR-2 and TLR-4 upregulation may have enhanced the phagocytosis and killing ability of THP-1-derived macrophages. As expected, silencing of PU.1 led to downregulation of Dectin-1, TLR-2, TLR-4 and the expression of pro-inflammatory cytokines, as well as decreased phagocytosis and the killing ability of THP1-derived macrophages. In conclusion, the results indicate that PU.1 may be a critical factor for the innate defense against A. fumigatus, and may therefore be a potential target for the prophylaxis and treatment of IPA.
Collapse
Affiliation(s)
- Chenyang Liu
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Min Wang
- Department of Respiratory Medicine, Shanghai First People's Hospital, Shanghai 200080, P.R. China
| | - Wenkui Sun
- Department of Respiratory and Critical Care Medicine, Jinling Hospital Affiliated to Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Feng Cai
- Medical School of Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Shen Geng
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Jinling Hospital Affiliated to Southern Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Yi Shi
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
43
|
Park HS, Jun SC, Han KH, Hong SB, Yu JH. Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:161-202. [PMID: 28732553 DOI: 10.1016/bs.aambs.2017.03.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The filamentous fungal genus Aspergillus consists of over 340 officially recognized species. A handful of these Aspergillus fungi are predominantly used for food fermentation and large-scale production of enzymes, organic acids, and bioactive compounds. These industrially important Aspergilli primarily belong to the two major Aspergillus sections, Nigri and Flavi. Aspergillus oryzae (section Flavi) is the most commonly used mold for the fermentation of soybeans, rice, grains, and potatoes. Aspergillus niger (section Nigri) is used in the industrial production of various enzymes and organic acids, including 99% (1.4 million tons per year) of citric acid produced worldwide. Better understanding of the genomes and the signaling mechanisms of key Aspergillus species can help identify novel approaches to enhance these commercially significant strains. This review summarizes the diversity, current applications, key products, and synthetic biology of Aspergillus fungi commonly used in industry.
Collapse
Affiliation(s)
- Hee-Soo Park
- Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | - Jae-Hyuk Yu
- University of Wisconsin, Madison, WI, United States
| |
Collapse
|
44
|
Paulussen C, Hallsworth JE, Álvarez‐Pérez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 2017; 10:296-322. [PMID: 27273822 PMCID: PMC5328810 DOI: 10.1111/1751-7915.12367] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/26/2023] Open
Abstract
Fungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life-threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host-related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress-tolerance biology and exceptional capacity to generate cell-available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well-studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human- and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.
Collapse
Affiliation(s)
- Caroline Paulussen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Sergio Álvarez‐Pérez
- Faculty of Veterinary MedicineDepartment of Animal HealthUniversidad Complutense de MadridMadridE‐28040Spain
| | | | - Philip G. Hamill
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - David Blain
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| |
Collapse
|
45
|
Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, Drummond RA, Rongkavilit C, Hoffman K, Henderson C, Clark L, Mezger M, Swamydas M, Engeholm M, Schüle R, Neumayer B, Ebel F, Mikelis CM, Pittaluga S, Prasad VK, Singh A, Milner JD, Williams KW, Lim JK, Kwon-Chung KJ, Holland SM, Hartl D, Kuijpers TW, Lionakis MS. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight 2016; 1:e89890. [PMID: 27777981 DOI: 10.1172/jci.insight.89890] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invasive pulmonary aspergillosis is a life-threatening mycosis that only affects patients with immunosuppression, chemotherapy-induced neutropenia, transplantation, or congenital immunodeficiency. We studied the clinical, genetic, histological, and immunological features of 2 unrelated patients without known immunodeficiency who developed extrapulmonary invasive aspergillosis at the ages of 8 and 18. One patient died at age 12 with progressive intra-abdominal aspergillosis. The other patient had presented with intra-abdominal candidiasis at age 9, and developed central nervous system aspergillosis at age 18 and intra-abdominal aspergillosis at age 25. Neither patient developed Aspergillus infection of the lungs. One patient had homozygous M1I CARD9 (caspase recruitment domain family member 9) mutation, while the other had homozygous Q295X CARD9 mutation; both patients lacked CARD9 protein expression. The patients had normal monocyte and Th17 cell numbers in peripheral blood, but their mononuclear cells exhibited impaired production of proinflammatory cytokines upon fungus-specific stimulation. Neutrophil phagocytosis, killing, and oxidative burst against Aspergillus fumigatus were intact, but neither patient accumulated neutrophils in infected tissue despite normal neutrophil numbers in peripheral blood. The neutrophil tissue accumulation defect was not caused by defective neutrophil-intrinsic chemotaxis, indicating that production of neutrophil chemoattractants in extrapulmonary tissue is impaired in CARD9 deficiency. Taken together, our results show that CARD9 deficiency is the first known inherited or acquired condition that predisposes to extrapulmonary Aspergillus infection with sparing of the lungs, associated with impaired neutrophil recruitment to the site of infection.
Collapse
Affiliation(s)
- Nikolaus Rieber
- Infectious Diseases and Immunology, Department of Pediatrics I, University of Tübingen, Germany.,Department of Pediatrics, Munich Schwabing Hospital, Munich Technical University, Munich, Germany
| | - Roel P Gazendam
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexandra F Freeman
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amy P Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Amanda L Collar
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Janyce A Sugui
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Rebecca A Drummond
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Kevin Hoffman
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolyn Henderson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lily Clark
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Markus Mezger
- Infectious Diseases and Immunology, Department of Pediatrics I, University of Tübingen, Germany
| | - Muthulekha Swamydas
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Maik Engeholm
- Department of Neurodegenerative Disease, Hertie-Institute for Clinical Brain Research and Center for Neurology, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Disease, Hertie-Institute for Clinical Brain Research and Center for Neurology, Tübingen, Germany
| | - Bettina Neumayer
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | - Frank Ebel
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Constantinos M Mikelis
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Stefania Pittaluga
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Vinod K Prasad
- Pediatric Blood and Marrow Transplantation, Duke University Medical Center, Durham, North Carolina, USA
| | - Anurag Singh
- Infectious Diseases and Immunology, Department of Pediatrics I, University of Tübingen, Germany
| | - Joshua D Milner
- Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Kelli W Williams
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Jean K Lim
- Wayne State University and Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Kyung J Kwon-Chung
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dominik Hartl
- Infectious Diseases and Immunology, Department of Pediatrics I, University of Tübingen, Germany
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michail S Lionakis
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
46
|
Al-Bader N, Sheppard DC. Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies. Virulence 2016; 7:950-966. [PMID: 27687755 DOI: 10.1080/21505594.2016.1231278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Invasive aspergillosis is a life-threatening infection caused by the opportunistic filamentous fungus Aspergillus fumigatus. Patients undergoing haematopoietic stem cell transplant (HSCT) for the treatment of hematological malignancy are at particularly high risk of developing this fatal infection. The susceptibility of HSCT patients to infection with A. fumigatus is a consequence of a complex interplay of both fungal and host factors. Here we review our understanding of the host-pathogen interactions underlying the susceptibility of the immunocompromised host to infection with A. fumigatus with a focus on the experimental validation of fungal and host factors relevant to HSCT patients. These include fungal factors such as secondary metabolites, cell wall constituents, and metabolic adaptations that facilitate immune evasion and survival within the host microenvironment, as well as the innate and adaptive immune responses involved in host defense against A. fumigatus.
Collapse
Affiliation(s)
- Nadia Al-Bader
- a Departments of Medicine, Microbiology and Immunology , McGill University , Montréal , Québec , Canada
| | - Donald C Sheppard
- a Departments of Medicine, Microbiology and Immunology , McGill University , Montréal , Québec , Canada.,b Infectious Diseases in Global Health Program, Research Institute of the McGill University Health Center, McGill University , Montréal , Québec , Canada
| |
Collapse
|
47
|
Kalleda N, Amich J, Arslan B, Poreddy S, Mattenheimer K, Mokhtari Z, Einsele H, Brock M, Heinze KG, Beilhack A. Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens. Front Microbiol 2016; 7:1107. [PMID: 27468286 PMCID: PMC4942482 DOI: 10.3389/fmicb.2016.01107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/01/2016] [Indexed: 11/26/2022] Open
Abstract
Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4+ or CD8+ T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b+ myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b+ myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions.
Collapse
Affiliation(s)
- Natarajaswamy Kalleda
- Department of Medicine II, Würzburg University HospitalWürzburg, Germany; Research Center for Infectious Diseases, Julius-Maximilians-University WürzburgWürzburg, Germany; Interdisciplinary Center for Clinical Science Research LaboratoryWuürzburg, Germany; Graduate School of Life Sciences WürzburgWürzburg, Germany
| | - Jorge Amich
- Department of Medicine II, Würzburg University HospitalWürzburg, Germany; Research Center for Infectious Diseases, Julius-Maximilians-University WürzburgWürzburg, Germany
| | - Berkan Arslan
- Department of Medicine II, Würzburg University Hospital Würzburg, Germany
| | | | | | - Zeinab Mokhtari
- Department of Medicine II, Würzburg University Hospital Würzburg, Germany
| | - Hermann Einsele
- Department of Medicine II, Würzburg University Hospital Würzburg, Germany
| | - Matthias Brock
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Friedrich Schiller University JenaJena, Germany; Institute for Microbiology, Friedrich Schiller University JenaJena, Germany; Fungal Genetics and Biology Group, University of Nottingham, School of Life SciencesNottingham, UK
| | | | - Andreas Beilhack
- Department of Medicine II, Würzburg University HospitalWürzburg, Germany; Research Center for Infectious Diseases, Julius-Maximilians-University WürzburgWürzburg, Germany; Interdisciplinary Center for Clinical Science Research LaboratoryWuürzburg, Germany; Graduate School of Life Sciences WürzburgWürzburg, Germany
| |
Collapse
|
48
|
Bat-Ochir C, Kwak JY, Koh SK, Jeon MH, Chung D, Lee YW, Chae SK. The signal peptide peptidase SppA is involved in sterol regulatory element-binding protein cleavage and hypoxia adaptation in Aspergillus nidulans. Mol Microbiol 2016; 100:635-55. [PMID: 26822492 DOI: 10.1111/mmi.13341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 12/22/2022]
Abstract
Using forward genetics, we revealed that the signal peptide peptidase (SPP) SppA, an aspartyl protease involved in regulated intramembrane proteolysis (RIP), is essential for hypoxia adaptation in Aspergillus nidulans, as well as hypoxia-sensitive mutant alleles of a sterol regulatory element-binding protein (SREBP) srbA and the Dsc ubiquitin E3 ligase complex dscA-E. Both null and dead activity [D337A] mutants of sppA failed to grow in hypoxia, and the growth defect of ΔsppA was complemented by nuclear SrbA-N381 expression. Additionally, SppA interacted with SrbA in the endoplasmic reticulum, where SppA localized in normoxia and hypoxia. Expression of the truncated SrbA-N414 covering the SrbA sequence prior to the second transmembrane region rescued the growth of ΔdscA but not of ΔsppA in hypoxia. Unlike ΔdscA and ΔdscA;ΔsppA double mutants, in which SrbA cleavage was blocked, the molecular weight of cleaved SrbA increased in ΔsppA compared to the control strain in immunoblot analyses. Overall, our data demonstrate the sequential cleavage of SrbA by Dsc-linked proteolysis followed by SppA, proposing a new model of RIP for SREBP cleavage in fungal hypoxia adaptation. Furthermore, the function of SppA in hypoxia adaptation was consistent in Aspergillus fumigatus, suggesting the potential roles of SppA in fungal pathogenesis.
Collapse
Affiliation(s)
- Chinbayar Bat-Ochir
- Department of Biochemistry and Center for Fungal Pathogenesis, Pai Chai University, Daejeon, 34015, Republic of Korea
| | - Jun-Yong Kwak
- Department of Biochemistry and Center for Fungal Pathogenesis, Pai Chai University, Daejeon, 34015, Republic of Korea
| | - Sun-Ki Koh
- Department of Biochemistry and Center for Fungal Pathogenesis, Pai Chai University, Daejeon, 34015, Republic of Korea
| | - Mee-Hyang Jeon
- Department of Biochemistry and Center for Fungal Pathogenesis, Pai Chai University, Daejeon, 34015, Republic of Korea
| | - Dawoon Chung
- Department of Biochemistry and Center for Fungal Pathogenesis, Pai Chai University, Daejeon, 34015, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suhn-Kee Chae
- Department of Biochemistry and Center for Fungal Pathogenesis, Pai Chai University, Daejeon, 34015, Republic of Korea
| |
Collapse
|
49
|
Park HS, Yu JH. Developmental regulators in Aspergillus fumigatus. J Microbiol 2016; 54:223-31. [DOI: 10.1007/s12275-016-5619-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/29/2022]
|
50
|
Cho SY, Kwon EY, Choi SM, Lee DG, Park C, Park SH, Yoo JH, Choi JH. Immunomodulatory effect of mesenchymal stem cells on the immune response of macrophages stimulated byAspergillus fumigatusconidia. Med Mycol 2016; 54:377-83. [DOI: 10.1093/mmy/myv110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022] Open
|