1
|
Leventoğlu E, Bakkaloğlu SA. A new era in the treatment of kidney diseases: NLRP3 inflammasome and cytokine-targeted therapies. Pediatr Nephrol 2025; 40:1515-1521. [PMID: 39485496 DOI: 10.1007/s00467-024-06578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
The kidneys are crucial for filtering blood, managing overall body water, electrolyte, and acid-base balance, and regulating blood pressure. They remove metabolic waste products, toxins, and drugs. In addition, they limit inflammation by clearing cytokines and reduce immune cell activation by removing bacterial components. Dendritic cells (DCs) in the kidney maintain peripheral tolerance. About 85% of filtered water is reabsorbed by the proximal tubule, exposing distal nephron cells to high concentrations of low molecular weight antigens. These antigens are captured by DCs, helping to inactivate potentially autoreactive T cells and maintain tolerance to circulating antigens. In kidney failure, immune function is severely compromised due to the retention of toxins and cytokines, which activate immune cells and increase systemic inflammation. The kidneys are also vulnerable to immune-mediated diseases. Loss of immune homeostasis, characterized by over- or under-activity of the immune response, can adversely affect kidney function. With advances in immunology and cellular biology, biologic therapies targeting various pathways involved in the pathophysiology of kidney diseases are being developed. In this review, the immunologic aspects of kidney diseases and focus on cytokine-based therapies that may hold promise for the treatment of kidney diseases in the future will be presented.
Collapse
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Konya City Hospital, Konya, Turkey.
| | - Sevcan A Bakkaloğlu
- Faculty of Medicine, Department of Pediatric Nephrology, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Miyamoto E, Vosoughi D, Wang J, Al-Refaee J, Berra G, Daigneault T, Duong A, Joe B, Moshkelgosha S, Keshavjee S, Tinckam K, Hwang D, Chruscinski A, Juvet S, Martinu T. Local intragraft humoral immune responses in chronic lung allograft dysfunction. J Heart Lung Transplant 2025; 44:105-117. [PMID: 39097215 DOI: 10.1016/j.healun.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Donor human leukocyte antigen (HLA)-specific antibodies (DSA) and non-HLA antibodies can cause allograft injury, possibly leading to chronic lung allograft dysfunction (CLAD) after lung transplantation. It remains unclear whether these antibodies are produced locally in the graft or derived solely from circulation. We hypothesized that DSA and non-HLA antibodies are produced in CLAD lungs. METHODS Lung tissue was prospectively collected from 15 CLAD patients undergoing retransplantation or autopsy. 0.3 g of fresh lung tissue was cultured for 4 days without or with lipopolysaccharide or CD40L: lung culture supernatant (LCS) was sampled. Protein eluate was obtained from 0.3 g of frozen lung tissue. The mean fluorescence intensity (MFI) of DSA and non-HLA antibodies was measured by Luminex and antigen microarray, respectively. RESULTS LCS from all 4 patients who had serum DSA at lung isolation were positive for DSA, with higher levels measured after CD40L stimulation (CD40L+LCS). Of these, only 2 had detectable DSA in lung eluate. MFI of non-HLA antibodies from CD40L+LCS correlated with those from lung eluate but not with those from sera. Flow cytometry showed higher frequencies of activated lung B cells in patients whose CD40L+LCS was positive for DSA (n = 4) or high non-HLA antibodies (n = 6) compared to those with low local antibodies (n = 5). Immunofluorescence staining showed CLAD lung lymphoid aggregates with local antibodies contained larger numbers of IgG+ plasma cells and greater IL-21 expression. CONCLUSIONS We show that DSA and non-HLA antibodies can be produced within activated B cell-rich lung allografts.
Collapse
Affiliation(s)
- Ei Miyamoto
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Daniel Vosoughi
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Jinguo Wang
- HLA Laboratory, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Jamal Al-Refaee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Gregory Berra
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Tina Daigneault
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Allen Duong
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Betty Joe
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Kathryn Tinckam
- HLA Laboratory, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Hwang
- Department of Pathology, Sunnybrook Hospital, Toronto, Ontario, Canada
| | | | - Stephen Juvet
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, Toronto, Ontario, Canada; Toronto Lung Transplant Program, Ajmera Transplant Center, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Stavart L, Halfon M, Dewarrat N, Rotman S, Golshayan D. Case report: Bruton tyrosine kinase inhibitor as therapy for chronic lymphocytic leukemia infiltrating a kidney allograft. Front Med (Lausanne) 2024; 11:1451264. [PMID: 39267975 PMCID: PMC11390570 DOI: 10.3389/fmed.2024.1451264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The burden of chronic lymphocytic leukemia (CLL) in the prognosis of solid organ transplant (SOT) recipients seems non-negligible. Whether transplanting a patient with previous CLL is safe or what is the optimal monitoring and treatment management after transplantation is still unclear and only based on few case series and reports. Therefore, we aimed to contribute to this understanding by reporting the first documented case of a clinically significant CLL with biopsy-proven infiltration of the kidney allograft and its successful management with a Bruton tyrosine kinase inhibitor (BTKi). We then reviewed the related literature, with a focus on CLL and kidney transplantation. Our main message is that BTKi may represent a safe and effective intervention to prevent the hazardous patient and graft outcomes of CLL in SOT patients.
Collapse
Affiliation(s)
- Louis Stavart
- Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Matthieu Halfon
- Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Natacha Dewarrat
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Samuel Rotman
- Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
4
|
Cheang NYZ, Tan KS, Tan PS, Purushotorma K, Yap WC, Tullett KM, Chua BYL, Yeoh AYY, Tan CQH, Qian X, Chen H, Tay DJW, Caminschi I, Tan YJ, Macary PA, Tan CW, Lahoud MH, Alonso S. Single-shot dendritic cell targeting SARS-CoV-2 vaccine candidate induces broad, durable and protective systemic and mucosal immunity in mice. Mol Ther 2024; 32:2299-2315. [PMID: 38715364 PMCID: PMC11286822 DOI: 10.1016/j.ymthe.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/06/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.
Collapse
Affiliation(s)
- Nicholas You Zhi Cheang
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peck Szee Tan
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kiren Purushotorma
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kirsteen McInnes Tullett
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benson Yen Leong Chua
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aileen Ying-Yan Yeoh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Caris Qi Hui Tan
- Histology Core Facility, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Xinlei Qian
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huixin Chen
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Douglas Jie Wen Tay
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Irina Caminschi
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Yee Joo Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul Anthony Macary
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore; Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chee Wah Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mireille Hanna Lahoud
- Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
6
|
Kim HJ, Nakagawa H, Choi JY, Che X, Divris A, Liu Q, Wight AE, Zhang H, Saad A, Solhjou Z, Deban C, Azzi JR, Cantor H. A narrow T cell receptor repertoire instructs thymic differentiation of MHC class Ib-restricted CD8+ regulatory T cells. J Clin Invest 2024; 134:e170512. [PMID: 37934601 PMCID: PMC10760956 DOI: 10.1172/jci170512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Although most CD8+ T cells are equipped to kill infected or transformed cells, a subset may regulate immune responses and preserve self-tolerance. Here, we describe a CD8 lineage that is instructed to differentiate into CD8 T regulatory cells (Tregs) by a surprisingly restricted set of T cell receptors (TCRs) that recognize MHC-E (mouse Qa-1) and several dominant self-peptides. Recognition and elimination of pathogenic target cells that express these Qa-1-self-peptide complexes selectively inhibits pathogenic antibody responses without generalized immune suppression. Immunization with synthetic agonist peptides that mobilize CD8 Tregs in vivo efficiently inhibit antigraft antibody responses and markedly prolong heart and kidney organ graft survival. Definition of TCR-dependent differentiation and target recognition by this lineage of CD8 Tregs may open the way to new therapeutic approaches to inhibit pathogenic antibody responses.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hidetoshi Nakagawa
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - John Y. Choi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xuchun Che
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Andrew Divris
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Qingshi Liu
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Andrew E. Wight
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| | - Hengcheng Zhang
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Anis Saad
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Zhabiz Solhjou
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Christa Deban
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jamil R. Azzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Transplant Research Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Harvey Cantor
- Department of Cancer Immunology & Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology and
| |
Collapse
|
7
|
Zhang J, Liu Z, Wang G, Yang X, Sui W, Guo H, Hou X. The dynamic TRβ/IGH CDR3 repertoire features in patients with liver transplantation. Transpl Immunol 2023; 81:101929. [PMID: 37683736 DOI: 10.1016/j.trim.2023.101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVE At present, little is known about the immune mechanism of liver transplantation caused by decompensated cirrhosis. Lymphocytes play an essential important role in the immune rejection of liver transplantation. In this study, we aimed to comprehensively analyze changes in complementary determinant 3 (CDR3) repertoire of T cell receptor β chain (TRβ) and immunoglobulin heavy chain (IGH) in liver transplantation patients and healthy controls (HC). METHODS High-throughput sequencing technology was used to study the characteristics of TRβ/IGH CDR3 repertoire, and identify the amino acid sequences of TRβ and IGH associated with liver transplantation patients and HC. RESULTS We found that some TRβ and IGH CDR3 repertoire characteristics differed between liver transplant patients and HC. The diversity of TRβ CDR3 increased in the liver transplantation group. First and seven days after live transplantation patients showed a lower degree of T cell clone amplification compared to the HC group. The CDR3 repertoire of the TRβ/IGH chain was certainly biased in the use of some V, D, and J gene segments, TRβ/IGH V-J combined frequency was also skewed and TRβ CDR3 clonotypes were shared at a higher degree in the liver transplantation patients. Importantly, one amino acid sequence in the decompensated cirrhosis group was significantly higher than that in the healthy group. It should be noted that the frequency of some CDR3 sequences is closely correlated with the different stages of liver transplantation, and these sequences may play a key role in liver transplantation. CONCLUSION Based on the above results, we can better understand the dynamic changes of TCβ/IGH CDR3 repertoire in patients during liver transplantation.
Collapse
Affiliation(s)
- Junning Zhang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhenyu Liu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Guangyu Wang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xueli Yang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Diseases Research, Guilin No.924 Hospital, Guilin, Guangxi 541002, PR China
| | - Haonan Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
8
|
Li Q, Lan P. Activation of immune signals during organ transplantation. Signal Transduct Target Ther 2023; 8:110. [PMID: 36906586 PMCID: PMC10008588 DOI: 10.1038/s41392-023-01377-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The activation of host's innate and adaptive immune systems can lead to acute and chronic graft rejection, which seriously impacts graft survival. Thus, it is particularly significant to clarify the immune signals, which are critical to the initiation and maintenance of rejection generated after transplantation. The initiation of response to graft is dependent on sensing of danger and stranger molecules. The ischemia and reperfusion of grafts lead to cell stress or death, followed by releasing a variety of damage-associated molecular patterns (DAMPs), which are recognized by pattern recognition receptors (PRRs) of host immune cells to activate intracellular immune signals and induce sterile inflammation. In addition to DAMPs, the graft exposed to 'non-self' antigens (stranger molecules) are recognized by the host immune system, stimulating a more intense immune response and further aggravating the graft damage. The polymorphism of MHC genes between different individuals is the key for host or donor immune cells to identify heterologous 'non-self' components in allogeneic and xenogeneic organ transplantation. The recognition of 'non-self' antigen by immune cells mediates the activation of immune signals between donor and host, resulting in adaptive memory immunity and innate trained immunity to the graft, which poses a challenge to the long-term survival of the graft. This review focuses on innate and adaptive immune cells receptor recognition of damage-associated molecular patterns, alloantigens and xenoantigens, which is described as danger model and stranger model. In this review, we also discuss the innate trained immunity in organ transplantation.
Collapse
Affiliation(s)
- Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
9
|
DeLaura I, Schroder PM, Yoon J, Ladowski J, Anwar IJ, Ezekian B, Schmitz R, Fitch ZW, Kwun J, Knechtle SJ. A novel method for in vitro culture and expansion of nonhuman primate B cells. J Immunol Methods 2022; 511:113363. [PMID: 36174734 PMCID: PMC10486248 DOI: 10.1016/j.jim.2022.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Given the role of B cells in sensitization and antibody-mediated rejection pathogenesis, the ability to identify, isolate, and study B cells in vitro is critical for understanding these processes and developing novel therapeutics. While in vivo nonhuman primate models have been used to this end, an in vitro nonhuman primate model of B cell activation and proliferation has not been developed. METHODS CD20+ B cells and CD3+ T cells were isolated using magnetic bead separation from the peripheral blood of naive and skin allograft sensitized nonhuman primates. Allogeneic B and T cells were co-cultured in plates pre-coated with murine stromal cells engineered to express human CD40L and stimulated with cytokines. Cells and supernatants were harvested every 2 days for immune phenotyping and donor specific antibody quantification by flow cytometry. RESULTS The optimized culture system consisted of MS40L cells co-cultured with B and allogenic T cells and stimulated with cytokines. This culture system resulted in increased memory cells and plasmablasts over time compared to other culture systems. Comparison of culture of naïve and sensitized nonhuman primate samples revealed faster B cell exhaustion and marginally increased plasmablast differentiation in sensitized culture. Donor-specific antibody production was not observed in either culture group. CONCLUSIONS This study describes the first in vitro nonhuman primate model of B cell activation and proliferation using both naïve and allosensitized samples. This model provides an opportunity for exploration of B cell mechanisms and novel therapeutics and is a preliminary step in the development of an in vitro germinal center model.
Collapse
Affiliation(s)
- Isabel DeLaura
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Paul M Schroder
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Joseph Ladowski
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Imran J Anwar
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Brian Ezekian
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Robin Schmitz
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Zachary W Fitch
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| | - Stuart J Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
10
|
Nair N. Vascular rejection in cardiac allograft vasculopathy: Impact on graft survival. Front Cardiovasc Med 2022; 9:919036. [PMID: 35990962 PMCID: PMC9386065 DOI: 10.3389/fcvm.2022.919036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
|
11
|
Zhou H, Lu H, Sun L, Wang Z, Zheng M, Hang Z, Zhang D, Tan R, Gu M. Diagnostic Biomarkers and Immune Infiltration in Patients With T Cell-Mediated Rejection After Kidney Transplantation. Front Immunol 2022; 12:774321. [PMID: 35058922 PMCID: PMC8764245 DOI: 10.3389/fimmu.2021.774321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
T cell-mediated rejection (TCMR) is an important rejection type in kidney transplantation, characterized by T cells and macrophages infiltration. The application of bioinformatic analysis in genomic research has been widely used. In the present study, Microarray data was analyzed to identify the potential diagnostic markers of TCMR in kidney transplantation. Cell-type identification by estimating relative subsets of RNA transcript (CIBERSORT) was performed to determine the distribution of immune cell infiltration in the pathology. Totally 129 upregulated differently expressed genes (DEGs) and 378 downregulated DEGs were identified. The GO and KEGG results demonstrated that DEGs were mainly associated with pathways and diseases involved in immune response. The intersection of the two algorithms (PPI network and LASSO) contains three overlapping genes (CXCR6, CXCL13 and FCGR1A). After verification in GSE69677, only CXCR6 and CXCL13 were selected. Immune cells Infiltration analysis demonstrated that CXCR6 and CXCL13 were positively correlated with gamma delta T cells (p < 0.001), CD4+ memory activated T cells (p < 0.001), CD8+ T cells (p < 0.001) and M1 macrophages (p = 0.006), and negatively correlated with M2 macrophages (p < 0.001) and regulatory T cells (p < 0.001). Immunohistochemical staining and image analysis confirmed the overexpression of CXCR6 and CXCL13 in human allograft TCMR samples. CXCR6 and CXCL13 could be diagnostic biomarkers of TCMR and potential targets for immunotherapy in patients with TCMR.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongcheng Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhou Hang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongliang Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
CXCL13 Is an Indicator of Germinal Center Activity and Alloantibody Formation Following Transplantation. Transplant Direct 2021; 7:e785. [PMID: 34778545 PMCID: PMC8580198 DOI: 10.1097/txd.0000000000001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text. Donor-specific antibodies (DSA) are a recognized cause of allograft injury, yet biomarkers that indicate their development posttransplant or guide management are not available. CXCL13 (chemokine [C-X-C motif] ligand 1) is a chemoattractant produced within secondary lymphoid organs necessary for germinal center (GC) and alloantibody formation. Perturbations in serum CXCL13 levels have been associated with humoral immune activity. Therefore, CXCL13 may correlate with the formation of HLA antibodies following transplantation.
Collapse
|
13
|
Choi AY, Manook M, Olaso D, Ezekian B, Park J, Freischlag K, Jackson A, Knechtle S, Kwun J. Emerging New Approaches in Desensitization: Targeted Therapies for HLA Sensitization. Front Immunol 2021; 12:694763. [PMID: 34177960 PMCID: PMC8226120 DOI: 10.3389/fimmu.2021.694763] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/11/2023] Open
Abstract
There is an urgent need for therapeutic interventions for desensitization and antibody-mediated rejection (AMR) in sensitized patients with preformed or de novo donor-specific HLA antibodies (DSA). The risk of AMR and allograft loss in sensitized patients is increased due to preformed DSA detected at time of transplant or the reactivation of HLA memory after transplantation, causing acute and chronic AMR. Alternatively, de novo DSA that develops post-transplant due to inadequate immunosuppression and again may lead to acute and chronic AMR or even allograft loss. Circulating antibody, the final product of the humoral immune response, has been the primary target of desensitization and AMR treatment. However, in many cases these protocols fail to achieve efficient removal of all DSA and long-term outcomes of patients with persistent DSA are far worse when compared to non-sensitized patients. We believe that targeting multiple components of humoral immunity will lead to improved outcomes for such patients. In this review, we will briefly discuss conventional desensitization methods targeting antibody or B cell removal and then present a mechanistically designed desensitization regimen targeting plasma cells and the humoral response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stuart Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
14
|
Azizov V, Zaiss MM. Alcohol Consumption in Rheumatoid Arthritis: A Path through the Immune System. Nutrients 2021; 13:1324. [PMID: 33923766 PMCID: PMC8072698 DOI: 10.3390/nu13041324] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
Benefits and harms of different components of human diet have been known for hundreds of years. Alcohol is one the highest consumed, abused, and addictive substances worldwide. Consequences of alcohol abuse are increased risks for diseases of the cardiovascular system, liver, and nervous system, as well as reduced immune system function. Paradoxically, alcohol has also been a consistent protective factor against the development of autoimmune diseases such as type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis (RA). Here, we focused on summarizing current findings on the effects of alcohol, as well as of its metabolites, acetaldehyde and acetate, on the immune system and RA. Heavy or moderate alcohol consumption can affect intestinal barrier integrity, as well as the microbiome, possibly contributing to RA. Additionally, systemic increase in acetate negatively affects humoral immune response, diminishing TFH cell as well as professional antigen-presenting cell (APC) function. Hence, alcohol consumption has profound effects on the efficacy of vaccinations, but also elicits protection against autoimmune diseases. The mechanism of alcohol's negative effects on the immune system is multivariate. Future studies addressing alcohol and its metabolite acetate's effect on individual components of the immune system remains crucial for our understanding and development of novel therapeutic pathways.
Collapse
Affiliation(s)
- Vugar Azizov
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
15
|
Abstract
The majority of cells comprising the inflammatory infiltrates in kidney allografts undergoing acute and/or chronic rejection are typically T cells and monocyte/macrophages with B cells, plasma cells, and eosinophils accounting for <5%. In a significant minority of biopsies, B lineage cells (B cells and/or plasma cells) may be found more abundantly. Although plasma cell infiltrates tend to be more diffuse, B cells tend to aggregate into nodules that may mature into tertiary lymphoid organs. Given the ability to target B cells with anti-CD20 monoclonal antibodies and plasma cells with proteasome inhibitors and anti-CD38 monoclonal antibodies, it is increasingly important to determine the significance of such infiltrates. Both cell types are potential effectors of rejection, but both also have a tolerizing potential. B cell infiltrates have been associated with steroid resistance and reduced graft survival in some studies but not in others, and their presence should not prompt automatic depletional therapy. Plasma cell-rich infiltrates tend to occur later, may be associated with cell-mediated and/or antibody-mediated rejection, and portend an adverse outcome. Viral infection and malignancy must be ruled out. Randomized controlled trials are needed to determine the appropriateness of specific therapy when B cells and/or plasma cells are found. No strong therapeutic recommendations can be made at this time.
Collapse
|
16
|
Abstract
Immunologic memory is the ability of adaptive immune system to quickly and specifically recognize previously encountered antigens and initiate an effector response. Alloreactive memory cells can mount rapid and robust responses to the transplanted organ resulting in allograft injury. Thus preexisting humoral or cellular memory alloresponses are typically associated with poor graft outcomes in experimental and clinical transplantation. While both B and T lymphocytes exhibit memory responses, this review discusses recent updates on the biology of memory T cells and their relevance to the field of transplantation. Three major areas of focus are the emergence and characterization of tissue resident memory T cells, manipulation of T cell metabolic pathways, and the latest promising approaches to targeting detrimental T cell memory in the settings of organ transplantation.
Collapse
|
17
|
Dudreuilh C, Basu S, Scottà C, Dorling A, Lombardi G. Potential Application of T-Follicular Regulatory Cell Therapy in Transplantation. Front Immunol 2021; 11:612848. [PMID: 33603742 PMCID: PMC7884443 DOI: 10.3389/fimmu.2020.612848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) constitute a small proportion of circulating CD4+ T cells that function to maintain homeostasis and prevent autoimmunity. In light of their powerful immunosuppressive and tolerance-promoting properties, Tregs have become an interesting potential candidate for therapeutic use in conditions such as solid organ transplant or to treat autoimmune and inflammatory conditions. Clinical studies have demonstrated the safety of polyclonally expanded Tregs in graft-versus-host disease, type 1 diabetes, and more recently in renal and liver transplantation. However, Tregs are heterogenous. Recent insights indicate that only a small proportion of Tregs, called T follicular regulatory cells (Tfr) regulate interactions between B cells and T follicular helper (Tfh) cells within the germinal center. Tfr have been mainly described in mouse models due to the challenges of sampling secondary lymphoid organs in humans. However, emerging human studies, characterize Tfr as being CD4+CD25+FOXP3+CXCR5+ cells with different levels of PD-1 and ICOS expression depending on their localization, in the blood or the germinal center. The exact role they play in transplantation remains to be elucidated. However, given the potential ability of these cells to modulate antibody responses to allo-antigens, there is great interest in exploring translational applications in situations where B cell responses need to be regulated. Here, we review the current knowledge of Tfr and the role they play focusing on human diseases and transplantation. We also discuss the potential future applications of Tfr therapy in transplantation and examine the evidence for a role of Tfr in antibody production, acute and chronic rejection and tertiary lymphoid organs. Furthermore, the potential impact of immunosuppression on Tfr will be explored. Based on preclinical research, we will analyse the rationale of Tfr therapy in solid organ transplantation and summarize the different challenges to be overcome before Tfr therapy can be implemented into clinical practice.
Collapse
Affiliation(s)
- Caroline Dudreuilh
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Sumoyee Basu
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Cristiano Scottà
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London (KCL), Guy's Hospital, London, United Kingdom.,Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,NIHR Biomedical Research Centre-Transplant Theme, Guy's Hospital, London, United Kingdom.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
18
|
Activated mesangial cells acquire the function of antigen presentation. Cell Immunol 2020; 361:104279. [PMID: 33422698 DOI: 10.1016/j.cellimm.2020.104279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Mesangial cells (MCs), as resident cells of the kidneys, play an important role in maintaining glomerular function. MCs are located between the capillary loops of the glomeruli and mainly support the capillary plexus, constrict blood vessels, extracellular matrix components, produce cytokines, and perform phagocytosis and clearance of macromolecular substances. When the glomerular environment changes, MCs are often affected, which can lead to functional transformation. The immune response is involved in the occurrence and development of various kidney diseases, in these diseases, antigen-presenting cells (APCs) play an important role. APCs can present antigens to T lymphocytes, causing them to become activated and proliferate. Studies have shown that MCs have phagocytic function and express APC markers on the cell surface. Additionally, MCs are stimulated by or produce various inflammatory factors to participate in the renal inflammatory response. Therefore, MCs have potential antigen presentation function and participate in the pathological changes of various kidney diseases as APCs upon activation. In this paper, by reviewing MC phagocytic function, activated MC expression of APC surface markers, and MC participation in the inflammatory response and local renal immune response, we confirm that activated MCs can act as APCs in renal disease.
Collapse
|
19
|
Assing K, Nielsen C, Jakobsen M, Andersen CB, Skogstrand K, Gaini S, Preiss B, Mortensen SB, Skov MN, Rasmussen LD. Potential anti-EBV effects associated with elevated interleukin-21 levels: a case report. BMC Infect Dis 2020; 20:878. [PMID: 33228556 PMCID: PMC7685648 DOI: 10.1186/s12879-020-05609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. CASE PRESENTATION We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman's rho: - 0.86, p < 0.001. CONCLUSIONS To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.
Collapse
Affiliation(s)
- Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, J.B. Winsloevs Vej 4, 5000, Odense, Denmark.
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, J.B. Winsloevs Vej 4, 5000, Odense, Denmark
| | - Marianne Jakobsen
- Department of Clinical Immunology, Odense University Hospital, J.B. Winsloevs Vej 4, 5000, Odense, Denmark
| | | | - Kristin Skogstrand
- Department of Congenital Disorders, Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
| | - Shahin Gaini
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
| | - Birgitte Preiss
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Sussi Bagge Mortensen
- Department of Clinical Immunology, Odense University Hospital, J.B. Winsloevs Vej 4, 5000, Odense, Denmark
| | | | | |
Collapse
|
20
|
Steines L, Poth H, Herrmann M, Schuster A, Banas B, Bergler T. B Cell Activating Factor (BAFF) Is Required for the Development of Intra-Renal Tertiary Lymphoid Organs in Experimental Kidney Transplantation in Rats. Int J Mol Sci 2020; 21:ijms21218045. [PMID: 33126753 PMCID: PMC7662293 DOI: 10.3390/ijms21218045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/22/2022] Open
Abstract
Intra-renal tertiary lymphoid organs (TLOs) are associated with worsened outcome in kidney transplantation (Ktx). We used an anti-BAFF (B cell activating factor) intervention to investigate whether BAFF is required for TLO formation in a full MHC-mismatch Ktx model in rats. Rats received either therapeutic immunosuppression (no rejection, NR) or subtherapeutic immunosuppression (chronic rejection, CR) and were sacrificed on d56. One group additionally received an anti-BAFF antibody (CR + AB). Intra-renal T (CD3+) and B (CD20+) cells, their proliferation (Ki67+), and IgG+ plasma cells were analyzed by immunofluorescence microscopy. Formation of T and B cell zones and TLOs was assessed. Intra-renal expression of TLO-promoting factors, molecules of T:B crosstalk, and B cell differentiation was analyzed by qPCR. Intra-renal B and T cell zones and TLOs were detected in CR and were associated with elevated intra-renal mRNA expression of TLO-promoting factors, including CXCL13, CCL19, lymphotoxin-β, and BAFF. Intra-renal plasma cells were also elevated in CR. Anti-BAFF treatment significantly decreased intra-renal B cell zones and TLO, as well as intra-renal B cell-derived TLO-promoting factors and B cell differentiation markers. We conclude that BAFF-dependent intra-renal B cells promote TLO formation and advance local adaptive alloimmune responses in chronic rejection.
Collapse
Affiliation(s)
- Louisa Steines
- Correspondence: ; Tel.: +49-941-9447301; Fax: +49-941-9447302
| | | | | | | | | | | |
Collapse
|
21
|
Dangi A, Yu S, Lee FT, Burnette M, Knechtle S, Kwun J, Luo X. Donor apoptotic cell-based therapy for effective inhibition of donor-specific memory T and B cells to promote long-term allograft survival in allosensitized recipients. Am J Transplant 2020; 20:2728-2739. [PMID: 32275799 PMCID: PMC7896418 DOI: 10.1111/ajt.15878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 01/25/2023]
Abstract
Allosensitization constitutes a major barrier in transplantation. Preexisting donor-reactive memory T and B cells and preformed donor-specific antibodies (DSAs) have all been implicated in accelerated allograft rejection in sensitized recipients. Here, we employ a sensitized murine model of islet transplantation to test strategies that promote long-term immunosuppression-free allograft survival. We demonstrate that donor-specific memory T and B cells can be effectively inhibited by peritransplant infusions of donor apoptotic cells in combination with anti-CD40L and rapamycin, and this treatment leads to significant prolongation of islet allograft survival in allosensitized recipients. We further demonstrate that late graft rejection in recipients treated with this regimen is associated with a breakthrough of B cells and their aggressive graft infiltration. Consequently, additional posttransplant B cell depletion effectively prevents late rejection and promotes permanent acceptance of islet allografts. In contrast, persistent low levels of DSAs do not seem to impair graft outcome in these recipients. We propose that B cells contribute to late rejection as antigen-presenting cells for intragraft memory T cell expansion but not to alloantibody production and that a therapeutic strategy combining donor apoptotic cells, anti-CD40L, and rapamycin effectively inhibits proinflammatory B cells and promotes long-term islet allograft survival in such recipients.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Frances T. Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Melanie Burnette
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Stuart Knechtle
- Department of Surgery, Duke University Medical Center, Durham, North Carolina,Duke Transplant Center, Duke University Medical Center, Durham, North Carolina
| | - Jean Kwun
- Department of Surgery, Duke University Medical Center, Durham, North Carolina,Duke Transplant Center, Duke University Medical Center, Durham, North Carolina
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina,Duke Transplant Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
22
|
Steines L, Poth H, Schuster A, Geissler EK, Amann K, Banas B, Bergler T. Anti-BAFF Treatment Interferes With Humoral Responses in a Model of Renal Transplantation in Rats. Transplantation 2020; 104:e16-e22. [PMID: 31609901 DOI: 10.1097/tp.0000000000002992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND B-cell-activating factor (BAFF) is associated with donor-specific antibodies (DSA) and poorer outcomes after renal transplantation (RTx). We examined the effects of anti-BAFF treatment on B cells, expression of costimulatory molecules and cytokines, germinal centers (GCs), and DSA formation in an RTx model in rats. METHODS Anti-BAFF antibody was injected on days 3, 17, 31, and 45 after allogeneic RTx. Rats received reduced dose cyclosporine A for 28 or 56 days to allow chronic rejection and DSA formation. Leukocytes, B-cell subsets, and DSA were measured using flow cytometry; expression of cytokines and costimulatory molecules was measured by quantitative polymerase chain reaction, and GCs and T follicular helper were assessed using immunohistochemistry. Rejection was evaluated by a nephropathologist. RESULTS Anti-BAFF treatment reduced the frequency of B cells in allografts and spleen. Naive B cells were strongly reduced by anti-BAFF treatment in all compartments. Messenger RNA expression of interleukin-6 and the costimulatory molecules CD40 and inducible T cell costimulator ligand was significantly reduced in anti-BAFF-treated rats. GC area was smaller and plasmablasts/plasma cell numbers lower in anti-BAFF-treated rats, which was reflected by less DSA in certain IgG subclasses. CONCLUSIONS Anti-BAFF treatment interferes with humoral responses at multiple levels in this model of allogeneic RTx.
Collapse
Affiliation(s)
- Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Helen Poth
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Elevated serum IL-21 levels are associated with stable immune status in kidney transplant recipients and a mouse model of kidney transplantation. Aging (Albany NY) 2020; 12:18396-18414. [PMID: 32991326 PMCID: PMC7585127 DOI: 10.18632/aging.103713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Allograft rejection after renal transplantation remains a challenge to overcome. Interleukin (IL)-21, a cytokine with pleiotropic effects, maintains immune homeostasis post-transplantation. Here, we report higher levels of IL-21 in kidney transplant recipients with non-rejection (NR) than in recipients with T cell-mediated rejection (TCMR, P < 0.001) and antibody-mediated rejection (ABMR, P = 0.005). We observed a negative correlation between IL-21 and creatinine (Cr) levels (P = 0.016). The receiving operating characteristic (ROC) curve showed a promising diagnostic value of IL-21 to identify acute rejection with an area under the curve (AUC) of 0.822 (P < 0.001). In contrast, exogenous administration of IL-21 accelerated acute rejection in a comparative translational kidney transplant (KT) mouse model. Reduced IL-21 levels in the peripheral blood were observed in KT mice after IL-21 injection. Further analysis revealed that increased IL-21 levels in the spleen induced proliferation of CD4+ T cells and CD19+ B cells after IL-21 treatment. Our findings suggest a critical function of IL-21 in kidney transplantation and the potential involvement of the IL-21/IL-21R pathway in acute rejection management.
Collapse
|
24
|
Jones NP. Immunosuppression in the Management of Presumed Non-infective Uveitis; Are We Sure What We are Treating? Notes on the Antimicrobial Properties of the Systemic Immunosuppressants. Ocul Immunol Inflamm 2020; 28:994-1003. [PMID: 31418624 DOI: 10.1080/09273948.2019.1643030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To describe the antimicrobial effects of immunosuppressants used for presumed autoimmune uveitis, and to discuss the potential importance of these effects in the context of increasing knowledge of the human microbiomes and their influence on inflammation. METHODS Literature review. REVIEW OF EVIDENCE All immunosuppressants have intrinsic antimicrobial effects; these vary considerably between drugs, and include antibacterial, antiviral and antifungal action. Immunosuppression is known to affect the composition of the gut microbiome, and alterations in microbiome composition are known to affect inflammations including uveitis. CONCLUSIONS Oral immunosuppressants are assumed to act on presumed autoimmune uveitis by downregulation of, or other interference with, an aberrant immune response. However, their antimicrobial properties are usually forgotten, and in the context of increasing knowledge of the involvement of microbes in the initiation of, and also potentially the perpetuation of, tissue inflammation, these effects may prove to be a fundamental part of their action.
Collapse
Affiliation(s)
- Nicholas P Jones
- Manchester Royal Eye Hospital, Manchester University Hospitals NHS Foundation Trust , Manchester, UK.,Medical Academic Health Science Centre, University of Manchester , Manchester, UK
| |
Collapse
|
25
|
Kwun J, Knechtle S. Experimental modeling of desensitization: What have we learned about preventing AMR? Am J Transplant 2020; 20 Suppl 4:2-11. [PMID: 32538533 PMCID: PMC7522789 DOI: 10.1111/ajt.15873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023]
Abstract
During the past 5 decades, short-term outcomes in kidney transplant have significantly improved, in large part due to reduced rates and severity of acute rejection. Development of better immunosuppressive maintenance agents, as well as new induction therapies, helped make these advances. Nonhuman primate models provided a rigorous testing platform to evaluate candidate biologics during this process. However, antibody-mediated rejection remains a major cause of late failure of kidney allografts despite advances made in pharmacologic immunosuppression and strategies developed to facilitate improved donor-recipient matching. Our laboratory has been actively working to develop strategies to prevent and treat antibody-mediated rejection and immunologic sensitization in organ transplant, relying largely on a nonhuman primate model of kidney transplant. In this review, we will cover outcomes achieved by managing antibody-mediated rejection or sensitization in nonhuman primate models and discuss promises, limitations, and future directions for this model.
Collapse
Affiliation(s)
- Jean Kwun
- Address all correspondence and requests for reprints to: Jean Kwun, PhD, 207 Research Drive, Jones 362, DUMC Box 2645, Durham, NC 27710, USA Phone: 919-668-6792; Fax: 919-684-8716;
| | | |
Collapse
|
26
|
PDL1 blockage increases fetal resorption and Tfr cells but does not affect Tfh/Tfr ratio and B-cell maturation during allogeneic pregnancy. Cell Death Dis 2020; 11:119. [PMID: 32051396 PMCID: PMC7016117 DOI: 10.1038/s41419-020-2313-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
A successful pregnancy requires sophisticated regulation of uterine microenvironment to guarantee the existence of semi-allogeneic conceptus without immune rejection. T follicular regulatory (Tfr) cells exert a suppressive effect on Tfh-cell expansion, B-cell response, and antibody production. Although accumulating evidence has demonstrated that dysregulations of Tfr cells can bring on various immunological diseases, their immunomodulatory roles during pregnancy still remain unheeded. Herein, we introduced an allogeneic normal-pregnant mouse model and found that CD4+CXCR5hiPD-1hiFoxp3+ Tfr cells were preferentially accumulated in the uterus at mid-gestation and displayed a distinct phenotype. In addition, the absence of PDL1 resulted in increased fetal resorption by favoring Tfr cells accumulation and upregulating PD-1 expression on these cells. However, PDL1 blockade affected neither the ratio of Tfh/Tfr cells nor the maturation and differentiation of B cells. Overall, our results are the first to present a correlation of Tfr cells accumulation with healthy allogeneic pregnancy and PDL1 blockade-induced miscarriage, and to indicate that appropriate assembly of Tfr cells is important for pregnancy maintenance. Since blockade of PD-1-PDL1 pathway leads to more Tfr cells and fetal losses, the reproductive safety must be taken into consideration when PD-1/PD-L1 checkpoint blockade immunotherapy is used in pregnancy.
Collapse
|
27
|
Keikha M, Soleimanpour S, Eslami M, Yousefi B, Karbalaei M. The mystery of tuberculosis pathogenesis from the perspective of T regulatory cells. Meta Gene 2020; 23:100632. [DOI: 10.1016/j.mgene.2019.100632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
28
|
Tay C, Kanellakis P, Hosseini H, Cao A, Toh BH, Bobik A, Kyaw T. B Cell and CD4 T Cell Interactions Promote Development of Atherosclerosis. Front Immunol 2020; 10:3046. [PMID: 31998318 PMCID: PMC6965321 DOI: 10.3389/fimmu.2019.03046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Interaction between B and CD4 T cells is crucial for their optimal responses in adaptive immunity. Immune responses augmented by their partnership promote chronic inflammation. Here we report that interaction between B and CD4 T cells augments their atherogenicity to promote lipid-induced atherosclerosis. Genetic deletion of the gene encoding immunoglobulin mu (μ) heavy chain (μMT) in ApoE−/− mice resulted in global loss of B cells including those in atherosclerotic plaques, undetectable immunoglobulins and impaired germinal center formation. Despite unaffected numbers in the circulation and peripheral lymph nodes, CD4 T cells were also reduced in spleens as were activated and memory CD4 T cells. In hyperlipidemic μMT−/− ApoE−/− mice, B cell deficiency decreased atherosclerotic lesions, accompanied by absence of immunoglobulins and reduced CD4 T cell accumulation in lesions. Adoptive transfer of B cells deficient in either MHCII or co-stimulatory molecule CD40, molecules required for B and CD4 T cell interaction, into B cell-deficient μMT−/− ApoE−/− mice failed to increase atherosclerosis. In contrast, wildtype B cells transferred into μMT−/− ApoE−/− mice increased atherosclerosis and increased CD4 T cells in lesions including activated and memory CD4 T cells. Transferred B cells also increased their expression of atherogenic cytokines IL-1β, TGF-β, MCP-1, M-CSF, and MIF, with partial restoration of germinal centers and plasma immunoglobulins. Our study demonstrates that interaction between B and CD4 T cells utilizing MHCII and CD40 is essential to augment their function to increase atherosclerosis in hyperlipidemic mice. These findings suggest that targeting B cell and CD4 T cell interaction may be a therapeutic strategy to limit atherosclerosis progression.
Collapse
Affiliation(s)
- Christopher Tay
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hamid Hosseini
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Inhibition of T Helper Cell Differentiation by Tacrolimus or Sirolimus Results in Reduced B-Cell Activation: Effects on T Follicular Helper Cells. Transplant Proc 2019; 51:3463-3473. [DOI: 10.1016/j.transproceed.2019.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/12/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
|
30
|
Schroder PM, Fitch ZW, Schmitz R, Choi AY, Kwun J, Knechtle SJ. The past, present, and future of costimulation blockade in organ transplantation. Curr Opin Organ Transplant 2019; 24:391-401. [PMID: 31157670 PMCID: PMC7088447 DOI: 10.1097/mot.0000000000000656] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Manipulating costimulatory signals has been shown to alter T cell responses and prolong graft survival in solid organ transplantation. Our understanding of and ability to target various costimulation pathways continues to evolve. RECENT FINDINGS Since the approval of belatacept in kidney transplantation, many additional biologics have been developed targeting clinically relevant costimulation signaling axes including CD40-CD40L, inducible costimulator-inducible costimulator ligand (ICOS-ICOSL), and OX40-OX40L. Currently, the effects of costimulation blockade on posttransplant humoral responses, tolerance induction, and xenotransplantation are under active investigation. Here, we will discuss these pathways as well as preclinical and clinical outcomes of biologics targeting these pathways in organ transplantation. SUMMARY Targeting costimultion is a promising approach for not only controlling T cell but also B cell responses. Consequently, costimulation blockade shows considerable potential for improving outcomes in antibody-mediated rejection and xenotransplantation.
Collapse
Affiliation(s)
- Paul M. Schroder
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary W. Fitch
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Ashley Y. Choi
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, North Carolina, USA
| | | | | |
Collapse
|
31
|
Sailliet N, Brosseau C, Robert JM, Brouard S. Role of JAK inhibitors and immune cells in transplantation. Cytokine Growth Factor Rev 2019; 47:62-73. [DOI: 10.1016/j.cytogfr.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
|
32
|
Schiffer L, Wiehler F, Bräsen JH, Gwinner W, Greite R, Kreimann K, Thorenz A, Derlin K, Teng B, Rong S, von Vietinghoff S, Haller H, Mengel M, Pape L, Lerch C, Schiffer M, Gueler F. Chemokine CXCL13 as a New Systemic Biomarker for B-Cell Involvement in Acute T Cell-Mediated Kidney Allograft Rejection. Int J Mol Sci 2019; 20:ijms20102552. [PMID: 31137652 PMCID: PMC6567305 DOI: 10.3390/ijms20102552] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 12/31/2022] Open
Abstract
The presence of B-cell clusters in allogenic T cell-mediated rejection (TCMR) of kidney allografts is linked to more severe disease entities. In this study we characterized B-cell infiltrates in patients with TCMR and examined the role of serum CXCL-13 in these patients and experimentally. CXCL-13 serum levels were analyzed in 73 kidney allograft recipients at the time of allograft biopsy. In addition, four patients were evaluated for CXCL13 levels during the first week after transplantation. ELISA was done to measure CXCL-13 serum levels. For further mechanistic understanding, a translational allogenic kidney transplant (ktx) mouse model for TCMR was studied in BalbC recipients of fully mismatched transplants with C57BL/6 donor kidneys. CXCL-13 serum levels were measured longitudinally, CD20 and CD3 composition and CXCL13 mRNA in tissue were examined by flow cytometry and kidneys were examined by histology and immunohistochemistry. We found significantly higher serum levels of the B-cell chemoattractant CXCL13 in patients with TCMR compared to controls and patients with borderline TCMR. Moreover, in patients with acute rejection within the first week after ktx, a >5-fold CXCL13 increase was measured and correlated with B-cell infiltrates in the biopsies. In line with the clinical findings, TCMR in mice correlated with increased systemic serum-CXCL13 levels. Moreover, renal allografts had significantly higher CXCL13 mRNA expression than isogenic controls and showed interstitial CD20+ B-cell clusters and CD3+ cell infiltrates accumulating in the vicinity of renal vessels. CXCL13 blood levels correlate with B-cell involvement in TCMR and might help to identify patients at risk of a more severe clinical course of rejection.
Collapse
Affiliation(s)
- Lena Schiffer
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
- Pediatric Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Flavia Wiehler
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | - Robert Greite
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Kirill Kreimann
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Anja Thorenz
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Katja Derlin
- Radiology, Hannover Medical School, 30625 Hannover, Germany.
| | - Beina Teng
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Song Rong
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | | | - Hermann Haller
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Michael Mengel
- Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Lars Pape
- Pediatric Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Christian Lerch
- Pediatric Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| | - Mario Schiffer
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
- Nephrology and Hypertension, University Hospital Erlangen, 91054 Erlangen, Gerrmany.
| | - Faikah Gueler
- Nephrology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
33
|
Abstract
De novo donor-specific antibody (DSA) formation is a major problem in transplantation, and associated with long-term graft decline and loss as well as sensitization, limiting future transplant options. Forming high-affinity, long-lived antibody responses involves a process called the germinal center (GC) reaction, and requires interaction between several cell types, including GC B cells, T follicular helper (Tfh) and T follicular regulatory (Tfr) cells. T follicular regulatory cells are an essential component of the GC reaction, limiting its size and reducing nonspecific or self-reactive responses.An imbalance between helper function and regulatory function can lead to excessive antibody production. High proportions of Tfh cells have been associated with DSA formation in transplantation; therefore, Tfr cells are likely to play an important role in limiting DSA production. Understanding the signals that govern Tfr cell development and the balance between helper and regulatory function within the GC is key to understanding how these cells might be manipulated to reduce the risk of DSA development.This review discusses the development and function of Tfr cells and their relevance to transplantation. In particular how current and future immunosuppressive strategies might allow us to skew the ratio between Tfr and Tfh cells to increase or decrease the risk of de novo DSA formation.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The application of regulatory T cell (Treg) therapy in organ transplantation is actively being pursued using unmodified, typically polyclonal cells. As the results of these ongoing clinical trials emerge, it is time to plan the next wave of clinical trials of Tregs. Here we will review a key strategy to improve Treg effectiveness and reduce side effects, namely increasing Treg specificity - both in terms of antigen recognition and localization to the allograft. RECENT FINDINGS Study of chemokine signatures accompanying acute rejection has revealed several chemokines that could be targeted to increase Treg homing. For example, Tregs possessing a Th1-like phenotype and expressing CXCR3 are better able to migrate towards local inflammation. Allografts themselves can be modified to increase Treg-attracting chemokines and Tregs themselves can produce chemokines, facilitating local proximity to their targets of suppression. Finally, tailoring Treg antigen specificity by T-cell or chimeric antigen receptor engineering is another approach to increase the specificity of suppression and optimize localization. SUMMARY Treg localization to the graft is important, but the important role of lymph node and germinal center homing cannot be overlooked. There is an opportunity to learn from advances made in cancer immunotherapy to optimize Treg therapy for transplantation.
Collapse
|
35
|
Leibler C, Thiolat A, Elsner RA, El Karoui K, Samson C, Grimbert P. Costimulatory blockade molecules and B-cell-mediated immune response: current knowledge and perspectives. Kidney Int 2019; 95:774-786. [PMID: 30711200 DOI: 10.1016/j.kint.2018.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
There is an urgent need for therapeutic agents that target humoral alloimmunity in solid organ transplantation. This includes sensitized patients with preformed donor-specific human leukocyte antigen antibodies and patients who develop de novo donor-specific antibodies, both of which are associated with acute and chronic antibody-mediated rejection and allograft loss. In the last decade, both experimental and clinical studies highlighted the major impact of costimulation molecules in the control of immune responses both in the field of transplantation and autoimmune disease. Although these molecules have been initially developed to control the early steps of T-cell activation, recent evidence also supports their influence at several steps of the humoral response. In this review, we aim to provide an overview of the current knowledge of the effects of costimulatory blockade agents on humoral responses in both autoimmune and allogeneic contexts. We first present the effects of costimulatory molecules on the different steps of alloantibody production. We then summarize mechanisms and clinical results observed using cytotoxic T lymphocyte antigen-4 (CTLA4)-Ig molecules both in transplantation and autoimmunity. Finally, we present the potential interest and implications of other costimulatory family members as therapeutic targets, with emphasis on combinatorial approaches, for the optimal control of the alloantigen-specific humoral response.
Collapse
Affiliation(s)
- Claire Leibler
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allan Thiolat
- Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Rebecca A Elsner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Khalil El Karoui
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Chloe Samson
- Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France
| | - Philippe Grimbert
- Service de Néphrologie et Transplantation, Pôle Cancérologie-Immunité-Transplantation-Infectiologie, Paris-Est Creteil, France; Institut National de la Santé et de la Recherch Médicale, U955, Equipe 21 and Université Paris-Est, Créteil, France.
| |
Collapse
|
36
|
Velidedeoglu E, Cavaillé-Coll MW, Bala S, Belen OA, Wang Y, Albrecht R. Summary of 2017 FDA Public Workshop: Antibody-mediated Rejection in Kidney Transplantation. Transplantation 2019; 102:e257-e264. [PMID: 29470345 DOI: 10.1097/tp.0000000000002141] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite major advances in understanding the pathophysiology of antibody-mediated rejection (AMR); prevention, diagnosis and treatment remain unmet medical needs. It appears that early T cell-mediated rejection, de novo donor-specific antibody (dnDSA) formation and AMR result from patient or physician initiated suboptimal immunosuppression, and represent landmarks in an ongoing process rather than separate events. On April 12 and 13, 2017, the Food and Drug Administration sponsored a public workshop on AMR in kidney transplantation to discuss new advances, importance of immunosuppressive medication nonadherence in dnDSA formation, associations between AMR, cellular rejection, changes in glomerular filtration rate, and challenges of clinical trial design for the prevention and treatment of AMR. Key messages from the workshop are included in this summary. Distinction between type 1 (due to preexisting DSA) and type 2 (due to dnDSA) phenotypes of AMR needs to be considered in patient management and clinical trial design. Standardization and more widespread adoption of routine posttransplant DSA monitoring may permit timely diagnosis and understanding of the natural course of type 2 and chronic AMR. Clinical trial design, especially as related to type 2 and chronic AMR, has specific challenges, including the high prevalence of nonadherence in the population at risk, indolent nature of the process until the appearance of graft dysfunction, and the absence of accepted surrogate endpoints. Other challenges include sample size and study duration, which could be mitigated by enrichment strategies.
Collapse
Affiliation(s)
- Ergun Velidedeoglu
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Marc W Cavaillé-Coll
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Shukal Bala
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Ozlem A Belen
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Yan Wang
- Division of Biometrics IV, Office of Biostatistics, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | - Renata Albrecht
- Division of Transplant and Ophthalmology Products, Office of Antimicrobial Products, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| |
Collapse
|
37
|
Complete B Cell Deficiency Reduces Allograft Inflammation and Intragraft Macrophages in a Rat Kidney Transplant Model. Transplantation 2018; 102:396-405. [PMID: 29215459 DOI: 10.1097/tp.0000000000002010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Increasingly, it is being appreciated that B cells have broad roles beyond the humoral response and are able to contribute to and regulate inflammation. The specific role of B cells in the pathogenesis of early allograft inflammation remains unclear. METHODS To address this question, we generated B cell-deficient (B) Lewis rats via clustered regularly interspaced short palindromic repeats (CRISPR) technology. In a full mismatch transplant model, kidneys from Brown Norway donors were transplanted into B Lewis recipients or wild type Lewis recipients. T cell-mediated rejection was attenuated with cyclosporine. RESULTS Renal inflammation was reduced at 1 week after transplant (Banff scores for interstitial inflammation, microvascular inflammation, glomerulitis, and C4d) in allografts from B recipients. The reduction in interstitial inflammation was predominantly due to a decline in graft infiltrating macrophages. Intragraft T-cell numbers remained unchanged. In addition, B-cell deficiency was associated with increased T regulatory cells and reduced splenic T follicular helper cells at baseline; and significantly increased intragraft and splenic IL-10 mRNA levels after transplant. In vitro, B and wild type splenic T cells produced similar levels of IFN-γ in response to T cell-specific activation. CONCLUSIONS B-cell deficiency in this model produced an anti-inflammatory phenotype with a shift toward regulatory T-cell populations, production of anti-inflammatory cytokines (IL-10), and a reduction in allograft inflammation. These findings define a role for B cells to influence the cell populations and mediators involved in the pathogenesis of early allograft inflammation.
Collapse
|
38
|
Kwun J, Park J, Yi JS, Farris AB, Kirk AD, Knechtle SJ. IL-21 Biased Alemtuzumab Induced Chronic Antibody-Mediated Rejection Is Reversed by LFA-1 Costimulation Blockade. Front Immunol 2018; 9:2323. [PMID: 30374350 PMCID: PMC6196291 DOI: 10.3389/fimmu.2018.02323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/18/2018] [Indexed: 11/25/2022] Open
Abstract
Despite its excellent efficacy in controlling T cell mediated acute rejection, lymphocyte depletion may promote a humoral response. While T cell repopulation after depletion has been evaluated in many aspects, the B cell response has not been fully elucidated. We tested the hypothesis that the mechanisms also involve skewed T helper phenotype after lymphocytic depletion. Post-transplant immune response was measured from alemtuzumab treated hCD52Tg cardiac allograft recipients with or without anti-LFA-1 mAb. Alemtuzumab induction promoted serum DSA, allo-B cells, and CAV in humanized CD52 transgenic (hCD52Tg) mice after heterotopic heart transplantation. Additional anti-LFA-1 mAb treatment resulted in reduced DSA (Fold increase 4.75 ± 6.9 vs. 0.7 ± 0.5; p < 0.01), allo-specific B cells (0.07 ± 0.06 vs. 0.006 ± 0.002 %; p < 0.01), neo-intimal hyperplasia (56 ± 14% vs. 23 ± 13%; p < 0.05), arterial disease (77.8 ± 14.2 vs. 25.8 ± 20.1%; p < 0.05), and fibrosis (15 ± 23.3 vs. 4.3 ± 1.65%; p < 0.05) in this alemtuzumab-induced chronic antibody-mediated rejection (CAMR) model. Surprisingly, elevated serum IL-21 levels in alemtuzumab-treated mice was reduced with LFA-1 blockade. In accordance with the increased serum IL-21 level, alemtuzumab treated mice showed hyperplastic germinal center (GC) development, while the supplemental anti-LFA-1 mAb significantly reduced the GC frequency and size. We report that the incomplete T cell depletion inside of the GC leads to a systemic IL-21 dominant milieu with hyperplastic GC formation and CAMR. Conventional immunosuppression, such as tacrolimus and rapamycin, failed to reverse AMR, while co-stimulation blockade with LFA-1 corrected the GC hyperplastic response. The identification of IL-21 driven chronic AMR elucidates a novel mechanism that suggests a therapeutic approach with cytolytic induction.
Collapse
Affiliation(s)
- Jean Kwun
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Jaeberm Park
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Alton B Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allan D Kirk
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
39
|
Chen M, Lin X, Olsen N, He X, Zheng SG. Advances in T follicular helper and T follicular regulatory cells in transplantation immunity. Transplant Rev (Orlando) 2018; 32:187-193. [PMID: 30139705 DOI: 10.1016/j.trre.2018.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/08/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
B cells play a crucial role in alloreactivity of organ transplant rejection and graft versus host diseases (GVHD). Over the past decade, it has been well recognized that B-cell infiltration in allografts and de novo donor-specific antibodies (DSA) were strongly associated with severe graft rejection and loss, as well as glucocorticoid resistance. Emerging evidence has demonstrated that Follicular T helper (Tfh) cells are key effectors to promote the proliferation and differentiation of B cells into antibody-producing plasmablasts and memory B cells. T-follicular regulatory (Tfr) cells are a recently recognized cell population that has a negative regulatory role on Tfh cells in the follicle, preventing incessant antibody production. It is still less clear how those humoral immunoreactive cells affect transplant rejection and allograft loss. This review focuses on the production and function of Tfr/Tfh cells in the transplant environment. Better understanding of the functions and mechanisms of Tfr/Tfh cells will help to design new strategies to prevent allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Maogen Chen
- Organ transplant center, First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, PR China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Xiaohong Lin
- Division of general surgery, The Eastern Hospital of the First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Nancy Olsen
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Xiaoshun He
- Organ transplant center, First affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou 510080, PR China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou 510080, PR China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
40
|
How the definition of acceptable antigens and epitope analysis can facilitate transplantation of highly sensitized patients with excellent long-term graft survival. Curr Opin Organ Transplant 2018; 23:493-499. [DOI: 10.1097/mot.0000000000000545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Baan CC, de Graav GN, Weimar W, Hesselink DA. Response: Commentary: Belatacept Does Not Inhibit Follicular T Cell-Dependent B-Cell Differentiation in Kidney Transplantation. Front Immunol 2018; 9:466. [PMID: 29569634 PMCID: PMC5852332 DOI: 10.3389/fimmu.2018.00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/21/2018] [Indexed: 11/23/2022] Open
Affiliation(s)
- Carla C Baan
- Section Nephrology and Transplantation, Department Internal Medicine, The Rotterdam Transplant Group, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Gretchen N de Graav
- Section Nephrology and Transplantation, Department Internal Medicine, The Rotterdam Transplant Group, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Willem Weimar
- Section Nephrology and Transplantation, Department Internal Medicine, The Rotterdam Transplant Group, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Section Nephrology and Transplantation, Department Internal Medicine, The Rotterdam Transplant Group, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
42
|
de Leur K, Clahsen-van Groningen MC, van den Bosch TPP, de Graav GN, Hesselink DA, Samsom JN, Baan CC, Boer K. Characterization of ectopic lymphoid structures in different types of acute renal allograft rejection. Clin Exp Immunol 2018; 192:224-232. [PMID: 29319177 DOI: 10.1111/cei.13099] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 12/15/2022] Open
Abstract
We hypothesize that T cells such as interleukin (IL)-21+ B cell lymphoma 6 (BCL6)+ T follicular helper cells can regulate B cell-mediated immunity within the allograft during acute T cell-mediated rejection; this process may feed chronic allograft rejection in the long term. To investigate this mechanism, we determined the presence and activation status of organized T and B cells in so-called ectopic lymphoid structures (ELSs) in different types of acute renal allograft rejection. Biopsies showing the following primary diagnosis were included: acute/active antibody-mediated rejection, C4d+ (a/aABMR), acute T cell-mediated rejection grade I (aTCMRI) and acute T cell-mediated rejection grade II (aTCMRII). Paraffin sections were stained for T cells (CD3 and CD4), B cells (CD20), follicular dendritic cells (FDCs, CD23), activated B cells (CD79A), immunoglobulin (Ig)D, cell proliferation (Ki67) and double immunofluorescent stainings for IL-21 and BCL6 were performed. Infiltrates of T cells were detected in all biopsies. In aTCMRI, B cells formed aggregates surrounded by T cells. In these aggregates, FDCs, IgD and Ki67 were detected, suggesting the presence of ELSs. In contrast, a/aABMR and aTCMRII showed diffuse infiltrates of T and B cells but no FDCs and IgD. IL-21 was present in all biopsies. However, co-localization with BCL6 was observed mainly in aTCMRI biopsies. In conclusion, ELSs with an activated phenotype are found predominantly in aTCMRI where T cells co-localize with B cells. These findings suggest a direct pathway of B cell alloactivation at the graft site during T cell mediated rejection.
Collapse
Affiliation(s)
- K de Leur
- Section Transplantation and Nephrology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.,Division of HPB and Transplant Surgery, Department of Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - T P P van den Bosch
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - G N de Graav
- Section Transplantation and Nephrology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - D A Hesselink
- Section Transplantation and Nephrology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - J N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C C Baan
- Section Transplantation and Nephrology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - K Boer
- Section Transplantation and Nephrology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Schroder PM, Ezekian B, Ford M, Knechtle SJ, Kwun J. Commentary: Belatacept Does Not Inhibit Follicular T Cell-Dependent B-Cell Differentiation in Kidney Transplantation. Front Immunol 2017; 8:1615. [PMID: 29218048 PMCID: PMC5704107 DOI: 10.3389/fimmu.2017.01615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/08/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Paul M Schroder
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Brian Ezekian
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Mandy Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Stuart J Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
44
|
Yan L, de Leur K, Hendriks RW, van der Laan LJW, Shi Y, Wang L, Baan CC. T Follicular Helper Cells As a New Target for Immunosuppressive Therapies. Front Immunol 2017; 8:1510. [PMID: 29163552 PMCID: PMC5681999 DOI: 10.3389/fimmu.2017.01510] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023] Open
Abstract
Over the past decade, antibody-mediated (humoral) rejection has been recognized as a common cause of graft dysfunction after organ transplantation and an important determinant for graft loss. In humoral alloimmunity, T follicular helper (Tfh) cells play a crucial role, because they help naïve B cells to differentiate into memory B cells and alloantibody-producing plasma cells within germinal centers. In this way, they contribute to the induction of donor-specific antibodies, which are responsible for the humoral immune response to the allograft. In this article, we provide an overview of the current knowledge on the effects of immunosuppressive therapies on Tfh cell development and function, and discuss possible new approaches to influence the activity of Tfh cells. In addition, we discuss the potential use of Tfh cells as a pharmacodynamic biomarker to improve alloimmune-risk stratification and tailoring of immunosuppression to individualize therapy after transplantation.
Collapse
Affiliation(s)
- Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kitty de Leur
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands.,Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Yunying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Carla C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
45
|
Cozzi E, Colpo A, De Silvestro G. The mechanisms of rejection in solid organ transplantation. Transfus Apher Sci 2017; 56:498-505. [PMID: 28916402 DOI: 10.1016/j.transci.2017.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organ transplantation represents the preferred treatment option for many patients in terminal organ failure. The half-life of transplanted organs, however, is still far from being satisfactory with the vast majority of the organs failing within the first two decades following transplantation. At this stage, it has become apparent that rejection (prevalently mediated by humoral events) remains the primary cause of graft loss after the first year. In this light, studies are underway to better comprehend the immune events underlying graft rejection and novel immunosuppressive strategies are being explored. In this context, therapeutic apheresis techniques, that include therapeutic plasma exchange (TPE), immunoadsorption (IA) and extracorporeal photochemotherapy (ECP), represent an important adjunct in the current immunosuppressive armamentarium. This article briefly reviews our current understanding of the immune process underlying rejection of a solid organ transplant and describes the principal areas of application of therapeutic apheresis techniques in transplantation.
Collapse
Affiliation(s)
- Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences, Transplant Immunology Unit, Padua University Hospital, Padova, Italy; CORIT (Consortium for Research in Organ Transplantation), Padova, Italy.
| | - Anna Colpo
- Department of Transfusion Medicine, Padua University Hospital, Padova, Italy
| | | |
Collapse
|