1
|
He S, Luo T, Chen X, Young DJ, Jellicoe M. Recent Developments in Automated Reactors for Plasmonic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:607. [PMID: 40278472 PMCID: PMC12029605 DOI: 10.3390/nano15080607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Automated reactors are transforming nanomaterial synthesis by enabling precise, multistep control over morphology and reaction pathways. This review discusses recent advancements in robotic batch and continuous-flow platforms, highlighting their role in expanding chemical space exploration and adaptive manufacturing. Despite progress, challenges remain in integrating automation for complex, multistep syntheses due to the intricate interplay of chemical and physical processes. Emerging process analytical technologies and advanced control software are enhancing real-time monitoring, adaptive feedback loops, and self-optimizing synthesis strategies. We categorize these developments, emphasizing their impact on plasmonic nanomaterial fabrication and outlining future directions for autonomous synthesis.
Collapse
Affiliation(s)
- Shan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tong Luo
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiao’e Chen
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - David James Young
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Matt Jellicoe
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
2
|
Podor R, Salacroup J, Brau HP, Lautru J, Szenknect S, Candeias A. Design and use of a flow cell for observing evolving solid-fluid interfaces in a scanning electron microscope. Micron 2025; 195:103825. [PMID: 40233542 DOI: 10.1016/j.micron.2025.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
The development of a flow cell dedicated to the direct observation of the interaction between a fluid (the fluid being a gas or a liquid) and a solid in a scanning electron microscope is reported. This fluid flow cell has two main differences and advantages compared with existing devices. Firstly, it has been designed to allow direct observation of complex corrosion, dissolution, nucleation and/or growth processes taking place at solid materials surface. Secondly, the fluid circulates continuously in the cell maintaining constant chemical conditions thanks to the renewal of the fluid in contact with the solid. An electron-transparent SiNx window is used to isolate the interior of the flow cell from the vacuum of the SEM chamber. The surface of the sample is observed by recording images in backscattered electron mode. The contrasts observed in this mode are in good agreement with the results of Monte-Carlo simulations of electron trajectories and backscattered electron emissions carried out on model systems. Monte-Carlo simulations are used to determine the operating limits of the flow cell.
Collapse
Affiliation(s)
- R Podor
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France.
| | - J Salacroup
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France; NewTec Scientific, Caveirac F-30820, France
| | - H P Brau
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France
| | - J Lautru
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France
| | - S Szenknect
- ICSM, Univ Montpellier, CNRS, CEA, ENSCM, Marcoule, France
| | - A Candeias
- NewTec Scientific, Caveirac F-30820, France
| |
Collapse
|
3
|
Kaczmarczyk O, Augustyniak D, Żak A. Imaging of Hydrated and Living Cells in Transmission Electron Microscope: Summary, Challenges, and Perspectives. ACS NANO 2025; 19:12710-12733. [PMID: 40156542 PMCID: PMC11984313 DOI: 10.1021/acsnano.5c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Transmission electron microscopy (TEM) is well-known for performing in situ studies in the nanoscale. Hence, scientists took this opportunity to explore the subtle processes occurring in living organisms. Nevertheless, such observations are complex─they require delicate samples kept in the liquid phase, low electron dose, and proper cell viability verification methods. Despite being highly demanding, so-called "live-cell" experiments have seen some degree of success. The presented review consists of an exhaustive literature review on reported "live-cell" studies and associated subjects, including liquid phase imaging, electron radiation interactions with liquids, and methods for cell viability testing. The challenges of modern, reliable research on living organisms are widely explained and discussed, and future perspectives for developing these techniques are presented.
Collapse
Affiliation(s)
- Olga Kaczmarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Augustyniak
- Department
of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Andrzej Żak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
- Department
of Material Science and Engineering, Massachusetts
Institute of Science and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Xu W, Zhu W, Xia Y, Hu S, Liao G, Xu Z, Shen A, Hu J. Raman spectroscopy for cell analysis: Retrospect and prospect. Talanta 2025; 285:127283. [PMID: 39616760 DOI: 10.1016/j.talanta.2024.127283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025]
Abstract
Cell analysis is crucial to contemporary biomedical research, as it plays a pivotal role in elucidating life processes and advancing disease diagnosis and treatment. Raman spectroscopy, harnessing distinctive molecular vibrational data, provides a non-destructive method for cell analysis. This review surveys the progress of Raman spectroscopy in cellular analysis, emphasizing its utility in identifying individual cells, monitoring biomolecules, and assessing intracellular environments. A significant focus is placed on the novel application of triple-bond molecules as Raman tags, which enhance imaging capabilities by creating a distinctive signature with minimal background noise. The summary of Raman spectroscopy studies provides a forward-looking perspective on its applications.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Wei Zhu
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China.
| | - Yukang Xia
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Shun Hu
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Guangfu Liao
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China.
| | - Zushun Xu
- Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Aiguo Shen
- School of Chemistry and Chemical Engineering, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China.
| | - Jiming Hu
- Institute of Analytical Biomedicine, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
5
|
Fritsch B, Lee S, Körner A, Schneider NM, Ross FM, Hutzler A. The Influence of Ionizing Radiation on Quantification for In Situ and Operando Liquid-Phase Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415728. [PMID: 39981755 PMCID: PMC11962711 DOI: 10.1002/adma.202415728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The ionizing radiation harnessed in electron microscopes or synchrotrons enables unique insights into nanoscale dynamics. In liquid-phase transmission electron microscopy (LP-TEM), irradiating a liquid sample with electrons offers access to real space information at an unmatched combination of temporal and spatial resolution. However, employing ionizing radiation for imaging can alter the Gibbs free energy landscape during the experiment. This is mainly due to radiolysis and the corresponding shift in chemical potential; however, experiments can also be affected by irradiation-induced charging and heating. In this review, the state of the art in describing beam effects is summarized, theoretical and experimental assessment guidelines are provided, and strategies to obtain quantitative information under such conditions are discussed. While this review showcases these effects on LP-TEM, the concepts that are discussed here can also be applied to other types of ionizing radiation used to probe liquid samples, such as synchrotron X-rays.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| | - Serin Lee
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Körner
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergImmerwahrstraße 2a91054ErlangenGermany
| | | | - Frances M. Ross
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Hutzler
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| |
Collapse
|
6
|
Guo Y, Xia T, Walter V, Xie Y, Rho JY, Xiao L, O'Reilly RK, Wallace MI. Real-time label-free imaging of living crystallization-driven self-assembly. Nat Commun 2025; 16:2672. [PMID: 40102380 PMCID: PMC11920093 DOI: 10.1038/s41467-025-57776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Living crystallization-driven self-assembly (CDSA) of semicrystalline block copolymers is a powerful method for the bottom-up construction of uniform polymer microstructures with complex hierarchies. Improving our ability to engineer such complex particles demands a better understanding of how to precisely control the self-assembly process. Here, we apply interferometric scattering (iSCAT) microscopy to observe the real-time growth of individual poly(ε-caprolactone)-based fibers and platelets. This label-free method enables us to map the role of key reaction parameters on platelet growth rate, size, and morphology. Furthermore, iSCAT provides a contrast mechanism for studying multi-annulus platelets formed via the sequential addition of different unimers, offering insights into the spatial distribution of polymer compositions within a single platelet.
Collapse
Affiliation(s)
- Yujie Guo
- Department of Chemistry, King's College London, London, UK
| | - Tianlai Xia
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Vivien Walter
- Department of Engineering, King's College London, London, UK
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Julia Y Rho
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Laihui Xiao
- School of Chemistry, University of Birmingham, Birmingham, UK
| | | | - Mark I Wallace
- Department of Chemistry, King's College London, London, UK.
| |
Collapse
|
7
|
Alsaç EP, Nelson DL, Yoon SG, Cavallaro KA, Wang C, Sandoval SE, Eze UD, Jeong WJ, McDowell MT. Characterizing Electrode Materials and Interfaces in Solid-State Batteries. Chem Rev 2025; 125:2009-2119. [PMID: 39903474 PMCID: PMC11869192 DOI: 10.1021/acs.chemrev.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 02/06/2025]
Abstract
Solid-state batteries (SSBs) could offer improved energy density and safety, but the evolution and degradation of electrode materials and interfaces within SSBs are distinct from conventional batteries with liquid electrolytes and represent a barrier to performance improvement. Over the past decade, a variety of imaging, scattering, and spectroscopic characterization methods has been developed or used for characterizing the unique aspects of materials in SSBs. These characterization efforts have yielded new understanding of the behavior of lithium metal anodes, alloy anodes, composite cathodes, and the interfaces of these various electrode materials with solid-state electrolytes (SSEs). This review provides a comprehensive overview of the characterization methods and strategies applied to SSBs, and it presents the mechanistic understanding of SSB materials and interfaces that has been derived from these methods. This knowledge has been critical for advancing SSB technology and will continue to guide the engineering of materials and interfaces toward practical performance.
Collapse
Affiliation(s)
- Elif Pınar Alsaç
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Douglas Lars Nelson
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sun Geun Yoon
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kelsey Anne Cavallaro
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Congcheng Wang
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephanie Elizabeth Sandoval
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Udochukwu D. Eze
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Won Joon Jeong
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T. McDowell
- G.
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Zhang DY, Xu Z, Li JY, Mao S, Wang H. Graphene-Assisted Electron-Based Imaging of Individual Organic and Biological Macromolecules: Structure and Transient Dynamics. ACS NANO 2025; 19:120-151. [PMID: 39723464 DOI: 10.1021/acsnano.4c12083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Characterizing the structures, interactions, and dynamics of molecules in their native liquid state is a long-existing challenge in chemistry, molecular science, and biophysics with profound scientific significance. Advanced transmission electron microscopy (TEM)-based imaging techniques with the use of graphene emerged as promising tools, mainly due to their performance on spatial and temporal resolution. This review focuses on the various approaches to achieving high-resolution imaging of individual molecules and their transient interactions. We highlight the crucial role of graphene grids in cryogenic electron microscopy for achieving Ångstrom-level resolution for resolving molecular structures and the importance of graphene liquid cells in liquid-phase TEM for directly observing dynamics with subnanometer resolution at a frame rate of several frames per second, as well as the cross-talks of the two imaging modes. To understand the chemistry and physics encoded in these molecular movies, incorporating machine learning algorithms for image analysis provides a promising approach that further bolsters the resolution adventure. Besides reviewing the recent advances and methodologies in TEM imaging of individual molecules using graphene, this review also outlines future directions to improve these techniques and envision problems in molecular science, chemistry, and biology that could benefit from these experiments.
Collapse
Affiliation(s)
- De-Yi Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Zhipeng Xu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Jia-Ye Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| | - Sheng Mao
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Huan Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
9
|
Abdellah AM, Salem KE, DiCecco L, Ismail F, Rakhsha A, Grandfield K, Higgins D. In Situ Transmission Electron Microscopy of Electrocatalyst Materials: Proposed Workflows, Technical Advances, Challenges, and Lessons Learned. SMALL METHODS 2025; 9:e2400851. [PMID: 39707656 PMCID: PMC11740959 DOI: 10.1002/smtd.202400851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/19/2024] [Indexed: 12/23/2024]
Abstract
In situ electrochemical liquid phase transmission electron microscopy (LP-TEM) measurements utilize micro-chip three-electrode cells with electron transparent silicon nitride windows that confine the liquid electrolyte. By imaging electrocatalysts deposited on micro-patterned electrodes, LP-TEM provides insight into morphological, phase structure, and compositional changes within electrocatalyst materials under electrochemical reaction conditions, which have practical implications on activity, selectivity, and durability. Despite LP-TEM capabilities becoming more accessible, in situ measurements under electrochemical reaction conditions remain non-trivial, with challenges including electron beam interactions with the electrolyte and electrode, the lack of well-defined experimental workflows, and difficulty interpreting particle behavior within a liquid. Herein a summary of the current state of LP-TEM technique capabilities alongside a discussion of the relevant experimental challenges researchers typically face, with a focus on in situ studies of electrochemical CO2 conversion catalysts is provided. A methodological approach for in situ LP-TEM measurements on CO2R catalysts prepared by electro-deposition, sputtering, or drop-casting is presented and include case studies where challenges and proposed workflows for each are highlighted. By providing a summary of LP-TEM technique capabilities and guidance for the measurements, the goal is for this paper to reduce barriers for researchers who are interested in utilizing LP-TEM characterization to answer their scientific questions.
Collapse
Affiliation(s)
- Ahmed M. Abdellah
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Canadian Centre for Electron MicroscopyMcMaster UniversityHamiltonONL8S 4M1Canada
| | - Kholoud E. Salem
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| | - Liza‐Anastasia DiCecco
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Fatma Ismail
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| | - Amirhossein Rakhsha
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| | - Kathryn Grandfield
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| | - Drew Higgins
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Canadian Centre for Electron MicroscopyMcMaster UniversityHamiltonONL8S 4M1Canada
| |
Collapse
|
10
|
DiCecco L, Tang T, Sone ED, Grandfield K. Exploring Biomineralization Processes Using In Situ Liquid Transmission Electron Microscopy: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407539. [PMID: 39523734 PMCID: PMC11735904 DOI: 10.1002/smll.202407539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Liquid transmission electron microscopy (TEM) is a newly established technique broadly used to study reactions in situ. Since its emergence, complex and multifaceted biomineralization processes have been revealed with real-time resolution, where classical and non-classical mineralization pathways have been dynamically observed primarily for Ca and Fe-based mineral systems in situ. For years, classical crystallization pathways have dominated theories on biomineralization progression despite observations of non-traditional routes involving precursor phases using traditional- and cryo-TEM. The new dynamic lens provided by liquid TEM is a key correlate to techniques limited to time-stamped, static observations - helping shift paradigms in biomineralization toward non-classical theories with dynamic mechanistic visualization. Liquid TEM provides new insights into fundamental biomineralization processes and essential physiological and pathological processes for a wide range of organisms. This review critically reviews a summary of recent in situ liquid TEM research related to the biomineralization field. Key liquid TEM preparation and imaging parameters are provided as a foundation for researchers while technical challenges are discussed. In future, the expansion of liquid TEM research in the biomineralization field will lead to transformative discoveries, providing complementary dynamic insights into biological systems.
Collapse
Affiliation(s)
- Liza‐Anastasia DiCecco
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Department of Biomedical EngineeringPennsylvania State UniversityUniversity ParkPA16802USA
| | - Tengteng Tang
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Center for Applied Biomechanics and Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22911USA
| | - Eli D. Sone
- Institute of Biomedical EngineeringUniversity of TorontoTorontoONM5S 3G9Canada
- Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
- Faculty of DentistryUniversity of TorontoTorontoONM5G 1G6Canada
| | - Kathryn Grandfield
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| |
Collapse
|
11
|
Bryant G, Alzahrani A, Bryant SJ, Nixon-Luke R, Mata J, Shah R. Advanced scattering techniques for characterisation of complex nanoparticles in solution. Adv Colloid Interface Sci 2024; 334:103319. [PMID: 39488033 DOI: 10.1016/j.cis.2024.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Nanoparticles are vital to a broad range of applications including commercial formulations, sensing and advanced material synthesis. Nanoparticles can come in a variety of shapes including cubes, polyhedra, rods, and prisms, and recent literature has demonstrated the importance of nanoparticle shape to downstream function (such as cellular uptake). While researchers routinely characterise nanoparticle shape using electron microscopy techniques, this generally requires drying of the samples. Many particles (e.g. lipid nanoparticles or polymer particles) change with drying, so complementary solution based techniques are needed. Scattering techniques can be used to characterise such nanoparticles in suspension, overcoming many of the limitations of other techniques. Here we review the current state of the art in the characterisation of complex nanoparticles (non-spherical and multi-layered) using advanced scattering techniques including light, X-ray, and neutron scattering. Recent improvements in instrument availability and data analysis makes these techniques much more accessible to researchers. This review provides an introduction to these techniques aimed at all researchers working with nanoparticles, in the hope that full characterisation of nanoparticles in solution becomes standard practice.
Collapse
Affiliation(s)
- Gary Bryant
- School of Science, RMIT University, Melbourne, Australia.
| | - Amani Alzahrani
- School of Science, RMIT University, Melbourne, Australia; College of Science, Al Baha University, Al Baha, Saudi Arabia
| | | | | | - Jitendra Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organization (ANSTO), Sydney, Australia; School of Chemistry, University of New South Wales, Sydney, Australia
| | - Rohan Shah
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
12
|
Caffrey BJ, Pedrazo‐Tardajos A, Liberti E, Gaunt B, Kim JS, Kirkland AI. Liquid Phase Electron Microscopy of Bacterial Ultrastructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402871. [PMID: 39239997 PMCID: PMC11636060 DOI: 10.1002/smll.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Indexed: 09/07/2024]
Abstract
Recent advances in liquid phase scanning transmission electron microscopy (LP-STEM) have enabled the study of dynamic biological processes at nanometer resolutions, paving the way for live-cell imaging using electron microscopy. However, this technique is often hampered by the inherent thickness of whole cell samples and damage from electron beam irradiation. These restrictions degrade image quality and resolution, impeding biological interpretation. Using graphene encapsulation, scanning transmission electron microscopy (STEM), and energy-dispersive X-ray (EDX) spectroscopy to mitigate these issues provides unprecedented levels of intracellular detail in aqueous specimens. This study demonstrates the potential of LP-STEM to examine and identify internal cellular structures in thick biological samples. Specifically, it highlights the use of LP-STEM to investigate the radiation resistant, gram-positive bacterium, Deinococcus radiodurans using various imaging techniques.
Collapse
Affiliation(s)
- Brian J. Caffrey
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
| | | | - Emanuela Liberti
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
| | - Benjamin Gaunt
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordJohn Radcliffe HospitalOxfordOX3 9DUUK
| | - Judy S. Kim
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Angus I. Kirkland
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| |
Collapse
|
13
|
Fernandes DA. Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications. Bioconjug Chem 2024; 35:1639-1686. [PMID: 39377727 DOI: 10.1021/acs.bioconjchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Accurate detection, treatment, and imaging of diseases are important for effective treatment outcomes in patients. In this regard, bubbles have gained much attention, due to their versatility. Bubbles usually 1 nm to 10 μm in size can be produced and loaded with a variety of lipids, polymers, proteins, and therapeutic and imaging agents. This review details the different production and loading methods for bubbles, for imaging and treatment of diseases/conditions such as cancer, tumor angiogenesis, thrombosis, and inflammation. Bubbles can also be used for perfusion measurements, important for diagnostic and therapeutic decision making in cardiac disease. The different factors important in the stability of bubbles and the different techniques for characterizing their physical and chemical properties are explained, for developing bubbles with advanced therapeutic and imaging features. Hence, the review provides important insights for researchers studying bubbles for biomedical applications.
Collapse
|
14
|
Wu K, Wang JP, Natekar NA, Ciannella S, González-Fernández C, Gomez-Pastora J, Bao Y, Liu J, Liang S, Wu X, Nguyen T Tran L, Mercedes Paz González K, Choe H, Strayer J, Iyer PR, Chalmers J, Chugh VK, Rezaei B, Mostufa S, Tay ZW, Saayujya C, Huynh Q, Bryan J, Kuo R, Yu E, Chandrasekharan P, Fellows B, Conolly S, Hadimani RL, El-Gendy AA, Saha R, Broomhall TJ, Wright AL, Rotherham M, El Haj AJ, Wang Z, Liang J, Abad-Díaz-de-Cerio A, Gandarias L, Gubieda AG, García-Prieto A, Fdez-Gubieda ML. Roadmap on magnetic nanoparticles in nanomedicine. NANOTECHNOLOGY 2024; 36:042003. [PMID: 39395441 PMCID: PMC11539342 DOI: 10.1088/1361-6528/ad8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 10/12/2024] [Indexed: 10/14/2024]
Abstract
Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored forin vivoapplications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States of America
| | - Jinming Liu
- Western Digital Corporation, San Jose, CA, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Xian Wu
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Linh Nguyen T Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | | | - Hyeon Choe
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jacob Strayer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Poornima Ramesh Iyer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jeffrey Chalmers
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Elaine Yu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | | | - Steven Conolly
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Ravi L Hadimani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States of America
| | - Ahmed A El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Thomas J Broomhall
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Zhiyi Wang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jiarong Liang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ana Abad-Díaz-de-Cerio
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Lucía Gandarias
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA—UMR 7265, Saint-Paul-lez-Durance, France
- Dpto. Electricidad y Electrónica, Universidad del País Vasco—UPV/EHU, Leioa, Spain
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Ana García-Prieto
- Dpto. Física Aplicada, Universidad del País Vasco–UPV/EHU, Bilbao, Spain
| | | |
Collapse
|
15
|
Zhang L, Iwata R, Lu Z, Wang X, Díaz-Marín CD, Zhong Y. Bridging Innovations of Phase Change Heat Transfer to Electrochemical Gas Evolution Reactions. Chem Rev 2024; 124:10052-10111. [PMID: 39194152 DOI: 10.1021/acs.chemrev.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change. Recent developments of liquid-vapor phase change systems have substantially advanced the fundamental knowledge of bubbles, leading to unprecedented enhancement of heat transfer performance. In this Review, we aim to elucidate a promising opportunity of understanding bubble dynamics in electrochemical gas evolution reactions through a lens of phase change heat transfer. We first provide a background about key parallels between electrochemical gas evolution reactions and phase change heat transfer. Then, we discuss bubble dynamics in gas evolution systems across multiple length scales, with an emphasis on exciting research problems inspired by new insights gained from liquid-vapor phase change systems. Lastly, we review advances in engineered surfaces for manipulating bubbles to enhance heat and mass transfer, providing an outlook on the design of high-performance gas evolving electrodes.
Collapse
Affiliation(s)
- Lenan Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ryuichi Iwata
- Toyota Central R&D Laboratories, Inc, Nagakute City 480-1192, Japan
| | - Zhengmao Lu
- Institute of Mechanical Engineering, EPFL, 1015 Lausanne, Switzerland
| | - Xuanjie Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Petla RK, Lindsey I, Li J, Meng X. Interface Modifications of Lithium Metal Anode for Lithium Metal Batteries. CHEMSUSCHEM 2024; 17:e202400281. [PMID: 38573033 DOI: 10.1002/cssc.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Lithium metal batteries (LMBs) enable much higher energy density than lithium-ion batteries (LIBs) and thus hold great promise for future transportation electrification. However, the adoption of lithium metal (Li) as an anode poses serious concerns about cell safety and performance, which has been hindering LMBs from commercialization. To this end, extensive effort has been invested in understanding the underlying mechanisms theoretically and experimentally and developing technical solutions. In this review, we devote to providing a comprehensive review of the challenges, characterizations, and interfacial engineering of Li anodes in both liquid and solid LMBs. We expect that this work will stimulate new efforts and help peer researchers find new solutions for the commercialization of LMBs.
Collapse
Affiliation(s)
- Ramesh Kumar Petla
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ian Lindsey
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianlin Li
- Applied Materials Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Xiangbo Meng
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
17
|
Gordon MN, Junkers LS, Googasian JS, Mathiesen JK, Zhan X, Morgan DG, Jensen KMØ, Skrabalak SE. Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEM. NANOSCALE 2024; 16:15544-15557. [PMID: 39028007 DOI: 10.1039/d4nr01749h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The synthesis of bismuth oxyhalides as defined nanostructures is hindered by their fast nucleation and growth in aqueous solutions. Using our recently developed single-source precursor, the formation of bismuth oxychloride in such solutions can be slowed significantly. As reported herein, this advance enables BiOCl formation to be investigated by in situ X-ray total scattering and in situ liquid cell transmission electron microscopy. In situ pair distribution function analysis of X-ray total scattering data reveals the local order of atomic structures throughout the synthesis, while in situ liquid cell transmission electron microscopy allows for tracking the growth of individual nanoparticles. Through this work, the precursor complex is shown to give rise to BiOCl upon heating in solution without the observation of structurally distinct intermediates. The emerging nanoparticles have a widened interlayer spacing, which moderately decreases as the particles grow. Mechanistic insights into the formation of bismuth oxyhalide nanoparticles, including the absence of distinct intermediates within the available time resolution, will help facilitate future design of controlled BiOX nanostructures.
Collapse
Affiliation(s)
- Matthew N Gordon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Laura S Junkers
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jack S Googasian
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Jette K Mathiesen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Xun Zhan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, USA
| | - David Gene Morgan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, USA
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
18
|
Schwarz TM, Yang J, Aota LS, Woods E, Zhou X, Neugebauer J, Todorova M, McCarroll I, Gault B. Quasi-"In Situ" Analysis of the Reactive Liquid-Solid Interface during Magnesium Corrosion Using Cryo-Atom Probe Tomography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401735. [PMID: 38813786 DOI: 10.1002/adma.202401735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/23/2024] [Indexed: 05/31/2024]
Abstract
The early stages of corrosion occurring at liquid-solid interfaces control the evolution of the material's degradation process, yet due to their transient state, their analysis remains a formidable challenge. Here corrosion tests are performed on a MgCa alloy, a candidate material for biodegradable implants using pure water as a model system. The corrosion reaction is suspended by plunge freezing into liquid nitrogen. The evolution of the early-stage corrosion process on the nanoscale by correlating cryo-atom probe tomography (APT) with transmission-electron microscopy (TEM) and spectroscopy, is studied. The outward growth of Mg hydroxide Mg(OH)2 and the inward growth of an intermediate corrosion layer consisting of hydrloxides of different compositions, mostly monohydroxide Mg(OH) instead of the expected MgO layer, are observed. In addition, Ca partitions to these newly formed hydroxides and oxides. Density-functional theory calculations suggest a domain of stability for this previously experimental unreported Mg(OH) phase. This new approach and these new findings advance the understanding of the early stages of magnesium corrosion, and in general reactions and processes at liquid-solid interfaces, which can further facilitate the development of corrosion-resistant materials or better control of the biodegradation rate of future implants.
Collapse
Affiliation(s)
- Tim M Schwarz
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
| | - Jing Yang
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
| | - Leonardo S Aota
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
| | - Eric Woods
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
| | - Xuyang Zhou
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
| | - Jörg Neugebauer
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
| | - Mira Todorova
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
| | - Ingrid McCarroll
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
| | - Baptiste Gault
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237, Düsseldorf, Germany
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
19
|
Tan SF, Roslie H, Salim T, Han Z, Wu D, Liang C, Teo LF, Lam YM. Operando Electrodeposition of Nonprecious Metal Copper Nanocatalysts on Low-Dimensional Support Materials for Nitrate Reduction Reactions. ACS NANO 2024; 18:19220-19231. [PMID: 38976597 DOI: 10.1021/acsnano.4c04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Supported nonprecious metal catalysts such as copper (Cu) are promising replacements for Pt-based catalysts for a wide range of energy-related electrochemical reactions. Direct electrochemical deposition is one of the most straightforward and versatile methods to synthesize supported nonprecious metal catalysts. However, further advancement in the design of supported nonprecious metal catalysts requires a detailed mechanistic understanding of the interplay between kinetics and thermodynamics of the deposition phenomena under realistic reaction conditions. Here, we study the electrodeposition of Cu on carbon nanotubes and graphene derivatives under electrochemical conditions using in situ liquid cell transmission electron microscopy (TEM). By combining real-time imaging, electrochemical measurements, X-ray photoelectron spectroscopy (XPS), and finite-element analysis (FEA), we show that low-dimensional support materials, especially carbon nanotubes, are excellent for generating uniform and finely dispersed platinum group metal-(PGM)-free catalysts under mild electrochemical conditions. The electrodeposited Cu on graphene and carbon nanotubes is also observed to show good electrochemical activity toward nitrate reduction reactions (NO3RRs), further supported by density functional theory (DFT) calculations. Nitrogen doping plays an important role in guiding nonprecious metal deposition, but its low electrical conductivity may give rise to lower NO3RR activity compared to its nondoped analogue. The development of supported nonprecious metals through interfacial and surface engineering for the design of supported catalysts will substantially reduce the demand for precious metals and generate robust catalysts with better durability, thereby presenting opportunities for solving the critical problems in energy storage and electrocatalysis.
Collapse
Affiliation(s)
- Shu Fen Tan
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798 Singapore
| | - Hany Roslie
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Teddy Salim
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798 Singapore
| | - Zengyu Han
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Dongshuang Wu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Caihong Liang
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Lim Fong Teo
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Yeng Ming Lam
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- Facility for Analysis, Characterisation, Testing and Simulation (FACTS), Nanyang Technological University, 639798 Singapore
| |
Collapse
|
20
|
Zhou L, Wen H, Kuschnerus IC, Chang SLY. Efficientand Robust Automated Segmentation of Nanoparticles and Aggregates from Transmission Electron Microscopy Images with Highly Complex Backgrounds. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1169. [PMID: 39057846 PMCID: PMC11279516 DOI: 10.3390/nano14141169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Morphologies of nanoparticles and aggregates play an important role in their properties for a range of applications. In particular, significant synthesis efforts have been directed toward controlling nanoparticle morphology and aggregation behavior in biomedical applications, as their size and shape have a significant impact on cellular uptake. Among several techniques for morphological characterization, transmission electron microscopy (TEM) can provide direct and accurate characterization of nanoparticle/aggregate morphology details. Nevertheless, manually analyzing a large number of TEM images is still a laborious process. Hence, there has been a surge of interest in employing machine learning methods to analyze nanoparticle size and shape. In order to achieve accurate nanoparticle analysis using machine learning methods, reliable and automated nanoparticle segmentation from TEM images is critical, especially when the nanoparticle image contrast is weak and the background is complex. These challenges are particularly pertinent in biomedical applications. In this work, we demonstrate an efficient, robust, and automated nanoparticle image segmentation method suitable for subsequent machine learning analysis. Our method is robust for noisy, low-electron-dose cryo-TEM images and for TEM cell images with complex, strong-contrast background features. Moreover, our method does not require any a priori training datasets, making it efficient and general. The ability to automatically, reliably, and efficiently segment nanoparticle/aggregate images is critical for advancing precise particle/aggregate control in biomedical applications.
Collapse
Affiliation(s)
- Lishi Zhou
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (L.Z.); (I.C.K.)
| | - Haotian Wen
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (L.Z.); (I.C.K.)
| | - Inga C. Kuschnerus
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (L.Z.); (I.C.K.)
- Electron Microscope Unit, Mark Wrainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shery L. Y. Chang
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (L.Z.); (I.C.K.)
- Electron Microscope Unit, Mark Wrainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
21
|
Pileni MP. "Nano-egg" superstructures of hydrophobic nanocrystals dispersed in water. Phys Chem Chem Phys 2024; 26:16931-16941. [PMID: 38835199 DOI: 10.1039/d4cp01299b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In this feature article, we use hydrophobic ferrite (Fe3O4) nanocrystal shells filled with Au nanocrystals self-assembled into 3D superlattices and dispersed in water. These superstructures act as nano-heaters. The stability of such superstructures is very high, even for several years, when stored at room temperature. When subjected to an electron beam, the inverted structure of Fe3O4 structures is gradually dissolved due to the formation of hydrated electrons and hydroxyl radicals.
Collapse
Affiliation(s)
- M P Pileni
- Sorbonne Université, Department of Chemistry, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
22
|
Chen G, Gallegos MJ, Soetrisno DD, Vekilov PG, Conrad JC. A minimal colloid model of solution crystallization nucleates crystals classically. SOFT MATTER 2024; 20:2575-2583. [PMID: 38415982 DOI: 10.1039/d3sm01609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A fundamental assumption of the classical theories of crystal nucleation is that the individual molecules from the "old" phase associate to an emerging nucleus individually and sequentially. Numerous recent studies of crystal nucleation in solution have revealed nonclassical pathways, whereby crystal nuclei are hosted and fed by amorphous clusters pre-formed in the solution. A sizable knowledge gap has persisted, however, in the definition of the molecular-level parameters that direct a solute towards classical or nonclassical nucleation. Here we construct a suspension of colloid particles of hydrodynamic diameter 1.1 μm and monitor their individual motions towards a quasi-two-dimensional crystal by scanning confocal microscopy. We combine electrostatic repulsion and polymer-induced attraction to obtain a simple isotropic pair interaction potential with a single attractive minimum of tunable depth between 1.2kBT and 2.7kBT. We find that even the smallest aggregates that form in this system structure as hexagonal two-dimensional crystals and grow and maturate by the association and exchange of single particles from the solution, signature behaviors during classical nucleation. The particles in the suspension equilibrate with those in the clusters and the volume fractions of suspensions at equilibrium correspond to straightforward thermodynamic predictions based on depth of the interparticle attraction. These results demonstrate that classical nucleation is selected by particles interacting with a minimal potential and present a benchmark for future modifications of the molecular interactions that may induce nonclassical nucleation.
Collapse
Affiliation(s)
- Gary Chen
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
| | - Mariah J Gallegos
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
| | - Diego D Soetrisno
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, Texas 77204-5003, USA
| | - Jacinta C Conrad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, Texas 77204-4004, USA.
| |
Collapse
|
23
|
Peng X, Shangguan J, Zhang Q, Hauwiller M, Yu H, Nie Y, Bustillo KC, Alivisatos AP, Asta M, Zheng H. Unveiling Corrosion Pathways of Sn Nanocrystals through High-Resolution Liquid Cell Electron Microscopy. NANO LETTERS 2024; 24:1168-1175. [PMID: 38251890 PMCID: PMC10835717 DOI: 10.1021/acs.nanolett.3c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Unveiling materials' corrosion pathways is significant for understanding the corrosion mechanisms and designing corrosion-resistant materials. Here, we investigate the corrosion behavior of Sn@Ni3Sn4 and Sn nanocrystals in an aqueous solution in real time by using high-resolution liquid cell transmission electron microscopy. Our direct observation reveals an unprecedented level of detail on the corrosion of Sn metal with/without a coating of Ni3Sn4 at the nanometric and atomic levels. The Sn@Ni3Sn4 nanocrystals exhibit "pitting corrosion", which is initiated at the defect sites in the Ni3Sn4 protective layer. The early stage isotropic etching transforms into facet-dependent etching, resulting in a cavity terminated with low-index facets. The Sn nanocrystals under fast etching kinetics show uniform corrosion, and smooth surfaces are obtained. Sn nanocrystals show "creeping-like" etching behavior and rough surfaces. This study provides critical insights into the impacts of coating, defects, and ion diffusion on corrosion kinetics and the resulting morphologies.
Collapse
Affiliation(s)
- Xinxing Peng
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junyi Shangguan
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Qiubo Zhang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Matthew Hauwiller
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Haobo Yu
- Beijing Key Laboratory of Failure, Corrosion and Protection of Oil/Gas Facility Materials, College of New Energy and Materials, China University of Petroleum, Beijing, Beijing 102249, China
| | - Yifan Nie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mark Asta
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Haimei Zheng
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Altenburger B, Andersson C, Levin S, Westerlund F, Fritzsche J, Langhammer C. Label-Free Imaging of Catalytic H 2O 2 Decomposition on Single Colloidal Pt Nanoparticles Using Nanofluidic Scattering Microscopy. ACS NANO 2023; 17:21030-21043. [PMID: 37847543 PMCID: PMC10655234 DOI: 10.1021/acsnano.3c03977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Single-particle catalysis aims at determining factors that dictate the nanoparticle activity and selectivity. Existing methods often use fluorescent model reactions at low reactant concentrations, operate at low pressures, or rely on plasmonic enhancement effects. Hence, methods to measure single-nanoparticle activity under technically relevant conditions and without fluorescence or other enhancement mechanisms are still lacking. Here, we introduce nanofluidic scattering microscopy of catalytic reactions on single colloidal nanoparticles trapped inside nanofluidic channels to fill this gap. By detecting minuscule refractive index changes in a liquid flushed trough a nanochannel, we demonstrate that local H2O2 concentration changes in water can be accurately measured. Applying this principle, we analyze the H2O2 concentration profiles adjacent to single colloidal Pt nanoparticles during catalytic H2O2 decomposition into O2 and H2O and derive the particles' individual turnover frequencies from the growth rate of the O2 gas bubbles formed in their respective nanochannel during reaction.
Collapse
Affiliation(s)
- Björn Altenburger
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Carl Andersson
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Sune Levin
- Department
of Life Sciences, Chalmers University of
Technology, SE-412 96 Gothenburg, Sweden
| | - Fredrik Westerlund
- Department
of Life Sciences, Chalmers University of
Technology, SE-412 96 Gothenburg, Sweden
| | - Joachim Fritzsche
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
25
|
Goldmann C, Chaâbani W, Hotton C, Impéror-Clerc M, Moncomble A, Constantin D, Alloyeau D, Hamon C. Confinement Effects on the Structure of Entropy-Induced Supercrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303380. [PMID: 37386818 DOI: 10.1002/smll.202303380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Depletion-induced self-assembly is routinely used to separate plasmonic nanoparticles (NPs) of different shapes, but less often for its ability to create supercrystals (SCs) in suspension. Therefore, these plasmonic assemblies have not yet reached a high level of maturity and their in-depth characterization by a combination of in situ techniques is still very much needed. In this work, gold triangles (AuNTs) and silver nanorods (AgNRs) are assembled by depletion-induced self-assembly. Small Angle X-ray Scattering (SAXS) and scanning electron microscopy (SEM) analysis shows that the AuNTs and AgNRs form 3D and 2D hexagonal lattices in bulk, respectively. The colloidal crystals are also imaged by in situ Liquid-Cell Transmission Electron Microscopy. Under confinement, the affinity of the NPs for the liquid cell windows reduces their ability to stack perpendicularly to the membrane and lead to SCs with a lower dimensionality than their bulk counterparts. Moreover, extended beam irradiation leads to disassembly of the lattices, which is well described by a model accounting for the desorption kinetics highlighting the key role of the NP-membrane interaction in the structural properties of SCs in the liquid-cell. The results shed light on the reconfigurability of NP superlattices obtained by depletion-induced self-assembly, which can rearrange under confinement.
Collapse
Affiliation(s)
- Claire Goldmann
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Wajdi Chaâbani
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Claire Hotton
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Marianne Impéror-Clerc
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | - Adrien Moncomble
- Université Paris-Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, 75013, France
| | - Doru Constantin
- Institut Charles Sadron, CNRS and Université de Strasbourg, Strasbourg, 67034, France
| | - Damien Alloyeau
- Université Paris-Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, 75013, France
| | - Cyrille Hamon
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| |
Collapse
|
26
|
Chao HY, Venkatraman K, Moniri S, Jiang Y, Tang X, Dai S, Gao W, Miao J, Chi M. In Situ and Emerging Transmission Electron Microscopy for Catalysis Research. Chem Rev 2023. [PMID: 37327473 DOI: 10.1021/acs.chemrev.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Catalysts are the primary facilitator in many dynamic processes. Therefore, a thorough understanding of these processes has vast implications for a myriad of energy systems. The scanning/transmission electron microscope (S/TEM) is a powerful tool not only for atomic-scale characterization but also in situ catalytic experimentation. Techniques such as liquid and gas phase electron microscopy allow the observation of catalysts in an environment conducive to catalytic reactions. Correlated algorithms can greatly improve microscopy data processing and expand multidimensional data handling. Furthermore, new techniques including 4D-STEM, atomic electron tomography, cryogenic electron microscopy, and monochromated electron energy loss spectroscopy (EELS) push the boundaries of our comprehension of catalyst behavior. In this review, we discuss the existing and emergent techniques for observing catalysts using S/TEM. Challenges and opportunities highlighted aim to inspire and accelerate the use of electron microscopy to further investigate the complex interplay of catalytic systems.
Collapse
Affiliation(s)
- Hsin-Yun Chao
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Kartik Venkatraman
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| | - Saman Moniri
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yongjun Jiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenpei Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, One Bethel Valley Road, Building 4515, Oak Ridge, Tennessee 37831-6064, United States
| |
Collapse
|
27
|
Vratsanos M, Xue W, Rosenmann ND, Zarzar LD, Gianneschi NC. Ouzo Effect Examined at the Nanoscale via Direct Observation of Droplet Nucleation and Morphology. ACS CENTRAL SCIENCE 2023; 9:457-465. [PMID: 36968532 PMCID: PMC10037490 DOI: 10.1021/acscentsci.2c01194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Indexed: 06/12/2023]
Abstract
Herein, we present the direct observation via liquid-phase transmission electron microscopy (LPTEM) of the nucleation and growth pathways of structures formed by the so-called "ouzo effect", which is a classic example of surfactant-free, spontaneous emulsification. Such liquid-liquid phase separation occurs in ternary systems with an appropriate cosolvent such that the addition of the third component extracts the cosolvent and makes the other component insoluble. Such droplets are homogeneously sized, stable, and require minimal energy to disperse compared to conventional emulsification methods. Thus, ouzo precipitation processes are an attractive, straightforward, and energy-efficient technique for preparing dispersions, especially those made on an industrial scale. While this process and the resulting emulsions have been studied by numerous indirect techniques (e.g., X-ray and light scattering), direct observation of such structures and their formation at the nanoscale has remained elusive. Here, we employed the nascent technique of LPTEM to simultaneously evaluate droplet growth and nanostructure. Observation of such emulsification and its rate dependence is a promising indication that similar LPTEM methodologies may be used to investigate emulsion formation and kinetics.
Collapse
Affiliation(s)
- Maria
A. Vratsanos
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Wangyang Xue
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nathan D. Rosenmann
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lauren D. Zarzar
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Nathan C. Gianneschi
- Department
of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Simpson Querrey Institute, Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United
States
- Department
of Chemistry, Department of Biomedical Engineering, Department of
Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Jabbari V, Sawczyk M, Amiri A, Král P, Shahbazian-Yassar R. Unveiling growth and dynamics of liposomes by graphene liquid cell-transmission electron microscopy. NANOSCALE 2023; 15:5011-5022. [PMID: 36790028 DOI: 10.1039/d2nr06147c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liposome is a model system for biotechnological and biomedical purposes spanning from targeted drug delivery to modern vaccine research. Yet, the growth mechanism of liposomes is largely unknown. In this work, the formation and evolution of phosphatidylcholine-based liposomes are studied in real-time by graphene liquid cell-transmission electron microscopy (GLC-TEM). We reveal important steps in the growth, fusion and denaturation of phosphatidylcholine (PC) liposomes. We show that initially complex lipid aggregates resembling micelles start to form. These aggregates randomly merge while capturing water and forming small proto-liposomes. The nanoscopic containers continue sucking water until their membrane becomes convex and free of redundant phospholipids, giving stabilized PC liposomes of different sizes. In the initial stage, proto-liposomes grow at a rate of 10-15 nm s-1, which is followed by their growth rate of 2-5 nm s-1, limited by the lipid availability in the solution. Molecular dynamics (MD) simulations are used to understand the structure of micellar clusters, their evolution, and merging. The liposomes are also found to fuse through lipid bilayers docking followed by the formation of a hemifusion diaphragm and fusion pore opening. The liposomes denaturation can be described by initial structural destabilization and deformation of the membrane followed by the leakage of the encapsulated liquid. This study offers new insights on the formation and growth of lipid-based molecular assemblies which is applicable to a wide range of amphiphilic molecules.
Collapse
Affiliation(s)
- Vahid Jabbari
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA. rsyassar@uic
| | - Michal Sawczyk
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Azadeh Amiri
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA. rsyassar@uic
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, USA
| | - Reza Shahbazian-Yassar
- Mechanical and Industrial Engineering Department, University of Illinois at Chicago, Chicago, IL 60607, USA. rsyassar@uic
| |
Collapse
|
29
|
Merkens S, De Salvo G, Kruse J, Modin E, Tollan C, Grzelczak M, Chuvilin A. Quantification of reagent mixing in liquid flow cells for Liquid Phase-TEM. Ultramicroscopy 2023; 245:113654. [PMID: 36470094 DOI: 10.1016/j.ultramic.2022.113654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Liquid-Phase Transmission Electron Microscopy (LP-TEM) offers the opportunity to study nanoscale dynamics of phenomena related to materials and life science in a native liquid environment and in real time. Until now, the opportunity to control/induce such dynamics by changing the chemical environment in the liquid flow cell (LFC) has rarely been exploited due to an incomplete understanding of hydrodynamic properties of LP-TEM flow systems. This manuscript introduces a method for hydrodynamic characterization of LP-TEM flow systems based on monitoring transmitted intensity while flowing a strongly electron scattering contrast agent solution. Key characteristic temporal indicators of solution replacement for various channel geometries were experimentally measured. A numerical physical model of solute transport based on realistic flow channel geometries was successfully implemented and validated against experiments. The model confirmed the impact of flow channel geometry on the importance of convective and diffusive solute transport, deduced by experiment, and could further extend understanding of hydrodynamics in LP-TEM flow systems. We emphasize that our approach can be applied to hydrodynamic characterization of any customized LP-TEM flow system. We foresee the implemented predictive model driving the future design of application-specific LP-TEM flow systems and, when combined with existing chemical reaction models, to a flourishing of the planning and interpretation of experimental observations.
Collapse
Affiliation(s)
- Stefan Merkens
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain; Department of Physics, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, San Sebastián 20018, Spain.
| | - Giuseppe De Salvo
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain; Department of Physics, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, San Sebastián 20018, Spain
| | - Joscha Kruse
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain; Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia, San Sebastián 20018, Spain
| | - Evgenii Modin
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain
| | - Christopher Tollan
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain
| | - Marek Grzelczak
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia, San Sebastián 20018, Spain; Centro de Física de Materiales CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, Donostia, San Sebastián 20018, Spain
| | - Andrey Chuvilin
- Electron Microscopy Laboratory, CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia, San Sebastián 20018, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
30
|
Boiko DA, Kashin AS, Sorokin VR, Agaev YV, Zaytsev RG, Ananikov VP. Analyzing ionic liquid systems using real-time electron microscopy and a computational framework combining deep learning and classic computer vision techniques. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
31
|
Sheyfer D, Mariano RG, Kawaguchi T, Cha W, Harder RJ, Kanan MW, Hruszkewycz SO, You H, Highland MJ. Operando Nanoscale Imaging of Electrochemically Induced Strain in a Locally Polarized Pt Grain. NANO LETTERS 2023; 23:1-7. [PMID: 36541700 DOI: 10.1021/acs.nanolett.2c01015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.
Collapse
Affiliation(s)
- Dina Sheyfer
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ruperto G Mariano
- Department of Chemistry, Stanford University, Stanford, California94305, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02141, United States
| | - Tomoya Kawaguchi
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Institute for Materials Research, Tohoku University, Sendai, 9808577, Japan
| | - Wonsuk Cha
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ross J Harder
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Stephan O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Hoydoo You
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew J Highland
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| |
Collapse
|
32
|
Sugihara A, Ishida T. Microfluidic Liquid Cell with Silicon Nitride Super-Thin Membrane for Electron Microscopy of Samples in Liquid. BIOSENSORS 2022; 12:1138. [PMID: 36551105 PMCID: PMC9775586 DOI: 10.3390/bios12121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Microfluidic liquid cells have been developed to visualize nanoscaled biological samples in liquid using a scanning electron microscope (SEM) through an electron-transparent membrane (ETM). However, despite the combination of the high-resolution visualization of SEM and the high experimental capability of microfluidics, the image is unclear because of the scattering of the electron beam in the ETM. Thus, this study developed a microfluidic liquid cell with a super-thin ETM of thickness 10 nm. Because the super-thin ETM is excessively fragile, the bonding of a silicon-nitride-deposited substrate and a polydimethylsiloxane microchannel before silicon anisotropic etching was proposed prevented the super-thin ETM from damage and breakage due to etching. With this protection against etchant using the microchannel, the yield of the fabricated super-thin ETM increased from 0 to 87%. Further, the scattering of the electron beam was suppressed using a microfluidic liquid cell with a super-thin ETM, resulting in high-resolution visualization. In addition, T4 bacteriophages were visualized using a super-thin ETM in vacuum. Furthermore, the cyanobacterium Synechocystis sp. PCC6803 in liquid was visualized using a super-thin ETM, and sub-microscopic structures on the surface were observed.
Collapse
|
33
|
Li M, Ling L. Visualizing Dynamic Environmental Processes in Liquid at Nanoscale via Liquid-Phase Electron Microscopy. ACS NANO 2022; 16:15503-15511. [PMID: 35969015 DOI: 10.1021/acsnano.2c04246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Visualizing the structure and processes in liquids at the nanoscale is essential for understanding the fundamental mechanisms and underlying processes of environmental research. Cutting-edge progress of in situ liquid-phase (scanning) transmission electron microscopy (LP-S/TEM) and inferred possible applications are highlighted as a more and more indispensable tool for visualization of dynamic environmental processes in this Perspective. Advancements in nanofabrication technology, high-speed imaging, comprehensive detectors, and spectroscopy analysis have made it increasingly convenient to use LP S/TEM, thus providing an approach for visualization of direct and insightful scientific information with the exciting possibility of solving an increasing number of tricky environmental problems. This includes evaluating the transformation fate and path of contamination, assessing toxicology of nanomaterials, simulating solid surface corrosion processes in the environment, and observing water pollution control processes. Distinct nanoscale or even atomic understanding of the reaction would provide dependable and precise identification and quantification of contaminants in dynamic processes, thus facilitating trouble-tracing of environmental problems with amplifying complexity.
Collapse
Affiliation(s)
- Meirong Li
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
34
|
Dachraoui W, Bodnarchuk MI, Erni R. Direct Imaging of the Atomic Mechanisms Governing the Growth and Shape of Bimetallic Pt-Pd Nanocrystals by In Situ Liquid Cell STEM. ACS NANO 2022; 16:14198-14209. [PMID: 36036793 DOI: 10.1021/acsnano.2c04291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the atomic mechanisms governing the growth of bimetallic nanoalloys is of great interest for scientists. As a promising material for photocatalysis applications, Pt-Pd bimetallic nanoparticles (NPs) have been in the spotlight for many years due to their catalytic performance, which is typically superior to that of pure Pt NPs. In this work, we use in situ liquid cell scanning transmission electron microscopy to track the exact atomic mechanisms governing the formation of bimetallic Pt-Pd NPs. We find that the formation process of the bimetallic Pt-Pd is divided into three stages. First, the nucleation and growth of ultrasmall primary nanoclusters are formed by the agglomeration of Pt and Pd atoms. Second, the primary nanoclusters are involved in a coalescence process to form two types of bigger agglomerates, namely, amorphous (a-NC) and crystalline (c-NC) nanoclusters. In the third stage, these clusters undergo a coalescence process leading to the formation of Pt-Pd NPs, while, in parallel, monomer attachment continues. We found that the third stage contains three types of coalescence processes, a-NC-a-NC, a-NC-c-NC, and c-NC-c-NC coalescence, which eventually give rise to crystalline bimetallic alloys. However, each type of coalescence gave distinct NPs in terms of shape and defects. Our results thus reveal the exact growth mechanisms of bimetallic alloys on the atomic scale, unravel the origin of their structure, and overall are of key interest to tailor the structure of bimetallic NPs.
Collapse
Affiliation(s)
- Walid Dachraoui
- Electron Microscopy Center, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maryna I Bodnarchuk
- Laboratory for Thin Films and Photovoltaics, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa─Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
35
|
Self-assembly in binary mixtures of spherical colloids. Adv Colloid Interface Sci 2022; 308:102748. [DOI: 10.1016/j.cis.2022.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
36
|
Sung J, Bae Y, Park H, Kang S, Choi BK, Kim J, Park J. Liquid-Phase Transmission Electron Microscopy for Reliable In Situ Imaging of Nanomaterials. Annu Rev Chem Biomol Eng 2022; 13:167-191. [PMID: 35700529 DOI: 10.1146/annurev-chembioeng-092120-034534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liquid-phase transmission electron microscopy (LPTEM) is a powerful in situ visualization technique for directly characterizing nanomaterials in the liquid state. Despite its successful application in many fields, several challenges remain in achieving more accurate and reliable observations. We present LPTEM in chemical and biological applications, including studies for the morphological transformation and dynamics of nanoparticles, battery systems, catalysis, biomolecules, and organic systems. We describe the possible interactions and effects of the electron beam on specimens during observation and present sample-specific approaches to mitigate and control these electron-beam effects. We provide recent advances in achieving atomic-level resolution for liquid-phase investigation of structures anddynamics. Moreover, we discuss the development of liquid cell platforms and the introduction of machine-learning data processing for quantitative and objective LPTEM analysis.
Collapse
Affiliation(s)
- Jongbaek Sung
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Hayoung Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Back Kyu Choi
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea; , , , , , , .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
37
|
Cotin G, Heinrich B, Perton F, Kiefer C, Francius G, Mertz D, Freis B, Pichon B, Strub JM, Cianférani S, Ortiz Peña N, Ihiawakrim D, Portehault D, Ersen O, Khammari A, Picher M, Banhart F, Sanchez C, Begin-Colin S. A Confinement-Driven Nucleation Mechanism of Metal Oxide Nanoparticles Obtained via Thermal Decomposition in Organic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200414. [PMID: 35426247 DOI: 10.1002/smll.202200414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Thermal decomposition is a very efficient synthesis strategy to obtain nanosized metal oxides with controlled structures and properties. For the iron oxide nanoparticle synthesis, it allows an easy tuning of the nanoparticle's size, shape, and composition, which is often explained by the LaMer theory involving a clear separation between nucleation and growth steps. Here, the events before the nucleation of iron oxide nanocrystals are investigated by combining different complementary in situ characterization techniques. These characterizations are carried out not only on powdered iron stearate precursors but also on a preheated liquid reaction mixture. They reveal a new nucleation mechanism for the thermal decomposition method: instead of a homogeneous nucleation, the nucleation occurs within vesicle-like-nanoreactors confining the reactants. The different steps are: 1) the melting and coalescence of iron stearate particles, leading to "droplet-shaped nanostructures" acting as nanoreactors; 2) the formation of a hitherto unobserved iron stearate crystalline phase within the nucleation temperature range, simultaneously with stearate chains loss and Fe(III) to Fe(II) reduction; 3) the formation of iron oxide nuclei inside the nanoreactors, which are then ejected from them. This mechanism paves the way toward a better mastering of the metal oxide nanoparticles synthesis and the control of their properties.
Collapse
Affiliation(s)
- Geoffrey Cotin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
- Labex CSC, Fondation IcFRC/Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg Cedex, F-67083, France
| | - Benoît Heinrich
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
| | - Francis Perton
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
- Labex CSC, Fondation IcFRC/Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg Cedex, F-67083, France
| | - Céline Kiefer
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
- Labex CSC, Fondation IcFRC/Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg Cedex, F-67083, France
| | - Gregory Francius
- Université de Lorraine and CNRS, LPCME UMR 7564, Nancy, F-54000, France
| | - Damien Mertz
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
- Labex CSC, Fondation IcFRC/Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg Cedex, F-67083, France
| | - Barbara Freis
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
| | - Benoit Pichon
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
- Labex CSC, Fondation IcFRC/Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg Cedex, F-67083, France
| | - Jean-Marc Strub
- Université Strasbourg, CNRS, IPHC, Laboratoire de Spectrométrie de Masse BioOrganique, UMR 7178, Strasbourg, F-67000, France
| | - Sarah Cianférani
- Université Strasbourg, CNRS, IPHC, Laboratoire de Spectrométrie de Masse BioOrganique, UMR 7178, Strasbourg, F-67000, France
| | - Nathalie Ortiz Peña
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
| | - Dris Ihiawakrim
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
| | - David Portehault
- Sorbonne Université, CNRS UMR 7574, Collège de France, LCMCP, 4 place Jussieu, Paris cedex 05, 75252, France
| | - Ovidiu Ersen
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
- Labex CSC, Fondation IcFRC/Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg Cedex, F-67083, France
| | - Amir Khammari
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
| | - Matthieu Picher
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
| | - Florian Banhart
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
| | - Clement Sanchez
- Sorbonne Université, CNRS UMR 7574, Collège de France, LCMCP, 4 place Jussieu, Paris cedex 05, 75252, France
- USIAS Chair of Chemistry of ultradivided matter, University of Strasbourg Institut of Advanced Study, Strasbourg, 67000, France
| | - Sylvie Begin-Colin
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, Strasbourg, F-67034, France
- Labex CSC, Fondation IcFRC/Université de Strasbourg, 8 allée Gaspard Monge BP 70028, Strasbourg Cedex, F-67083, France
| |
Collapse
|
38
|
Bhatia A, Cretu S, Hallot M, Folastre N, Berthe M, Troadec D, Roussel P, Pereira-Ramos JP, Baddour-Hadjean R, Lethien C, Demortière A. In Situ Liquid Electrochemical TEM Investigation of LiMn 1.5 Ni 0.5 O 4 Thin Film Cathode for Micro-Battery Applications. SMALL METHODS 2022; 6:e2100891. [PMID: 34954905 DOI: 10.1002/smtd.202100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Micro-batteries are attractive miniaturized energy devices for new Internet of Things applications, but the lack of understanding of their degradation process during cycling hinders improving their performance. Here focused ion beam (FIB)-lamella from LiMn1.5 Ni0.5 O4 (LMNO) thin-film cathode is in situ cycled in a liquid electrolyte inside an electrochemical transmission electron microscope (TEM) holder to analyze structural and morphology changes upon (de)lithiation processes. A high-quality electrical connection between the platinum (Pt) current collector of FIB-lamella and the microchip's Pt working electrode is established, as confirmed by local two-probe conductivity measurements. In situ cyclic voltammetry (CV) experiments show two redox activities at 4.41 and 4.58/4.54 V corresponding to the Ni2+/3+ and Ni3+/4+ couples, respectively. (S)TEM investigations of the cycled thin-film reveal formation of voids and cracks, loss of contact with current collector, and presence of organic decomposition products. The 4D STEM ASTAR technique highlights the emergence of an amorphization process and a decrease in average grain size from 20 to 10 nm in the in situ cycled electrode. The present findings, obtained for the first time through the liquid electrochemical TEM study, provide several insights explaining the capacity fade of the LMNO thin-film cathode typically observed upon cycling in a conventional liquid electrolyte.
Collapse
Affiliation(s)
- Ankush Bhatia
- Institut de Chimie et des Matériaux Paris Est (ICMPE), CNRS UMR 7182 -Université Paris Est Créteil, 2-8 Rue Henri Dunant, Thiais, 94320, France
- Laboratoire de Réactivité et de Chimie des solides (LRCS), Université de Picardie Jules Verne, CNRS UMR 7314, 33 Rue Saint Leu, Amiens Cedex, 80039, France
| | - Sorina Cretu
- Laboratoire de Réactivité et de Chimie des solides (LRCS), Université de Picardie Jules Verne, CNRS UMR 7314, 33 Rue Saint Leu, Amiens Cedex, 80039, France
- Réseau sur le stockage Electrochimique de l'Energie, CNRS FR 3459, 33 Rue Saint Leu, Amiens Cedex, 80039, France
| | - Maxime Hallot
- Réseau sur le stockage Electrochimique de l'Energie, CNRS FR 3459, 33 Rue Saint Leu, Amiens Cedex, 80039, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, F-59000, France
| | - Nicolas Folastre
- Laboratoire de Réactivité et de Chimie des solides (LRCS), Université de Picardie Jules Verne, CNRS UMR 7314, 33 Rue Saint Leu, Amiens Cedex, 80039, France
- Réseau sur le stockage Electrochimique de l'Energie, CNRS FR 3459, 33 Rue Saint Leu, Amiens Cedex, 80039, France
| | - Maxime Berthe
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, F-59000, France
| | - David Troadec
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, F-59000, France
| | - Pascal Roussel
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), Lille, F-59000, France
| | - Jean-Pierre Pereira-Ramos
- Institut de Chimie et des Matériaux Paris Est (ICMPE), CNRS UMR 7182 -Université Paris Est Créteil, 2-8 Rue Henri Dunant, Thiais, 94320, France
| | - Rita Baddour-Hadjean
- Institut de Chimie et des Matériaux Paris Est (ICMPE), CNRS UMR 7182 -Université Paris Est Créteil, 2-8 Rue Henri Dunant, Thiais, 94320, France
| | - Christophe Lethien
- Réseau sur le stockage Electrochimique de l'Energie, CNRS FR 3459, 33 Rue Saint Leu, Amiens Cedex, 80039, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, Junia, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, F-59000, France
- Institut Universitaire de France (IUF), 1 rue Descartes, Paris Cedex 05, 75231, France
| | - Arnaud Demortière
- Laboratoire de Réactivité et de Chimie des solides (LRCS), Université de Picardie Jules Verne, CNRS UMR 7314, 33 Rue Saint Leu, Amiens Cedex, 80039, France
- Réseau sur le stockage Electrochimique de l'Energie, CNRS FR 3459, 33 Rue Saint Leu, Amiens Cedex, 80039, France
- ALISTORE-European Research Institute, CNRS FR 3104, Hub de l'Energie, 15 Rue Baudelocque, Amiens Cedex, 80039, France
| |
Collapse
|
39
|
Sikes JC, Wonner K, Nicholson A, Cignoni P, Fritsch I, Tschulik K. Characterization of Nanoparticles in Diverse Mixtures Using Localized Surface Plasmon Resonance and Nanoparticle Tracking by Dark-Field Microscopy with Redox Magnetohydrodynamics Microfluidics. ACS PHYSICAL CHEMISTRY AU 2022; 2:289-298. [PMID: 35915589 PMCID: PMC9335947 DOI: 10.1021/acsphyschemau.1c00046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Redox magnetohydrodynamics
(RMHD) microfluidics is coupled with
dark-field microscopy (DFM) to offer high-throughput single-nanoparticle
(NP) differentiation in situ and operando in a flowing mixture by localized surface plasmon resonance (LSPR)
and tracking of NPs. The color of the scattered light allows visualization
of the NPs below the diffraction limit. Their Brownian motion in 1-D
superimposed on and perpendicular to the RMHD trajectory yields their
diffusion coefficients. LSPR and diffusion coefficients provide two
orthogonal modalities for characterization where each depends on a
particle’s material composition, shape, size, and interactions
with the surrounding medium. RMHD coupled with DFM was demonstrated
on a mixture of 82 ± 9 nm silver and 140 ± 10 nm gold-coated
silica nanospheres. The two populations of NPs in the mixture were
identified by blue/green and orange/red LSPR and their scattering
intensity, respectively, and their sizes were further evaluated based
on their diffusion coefficients. RMHD microfluidics facilitates high-throughput
analysis by moving the sample solution across the wide field of view
absent of physical vibrations within the experimental cell. The well-controlled
pumping allows for a continuous, reversible, and uniform flow for
precise and simultaneous NP tracking of the Brownian motion. Additionally,
the amounts of nanomaterials required for the analysis are minimized
due to the elimination of an inlet and outlet. Several hundred individual
NPs were differentiated from each other in the mixture flowing in
forward and reverse directions. The ability to immediately reverse
the flow direction also facilitates re-analysis of the NPs, enabling
more precise sizing.
Collapse
Affiliation(s)
- Jazlynn C. Sikes
- University of Arkansas Department of Chemistry and Biochemistry, Fayetteville, Arkansas 72701, United States
| | - Kevin Wonner
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Analytical Chemistry II, Bochum 44801, Germany
| | - Aaron Nicholson
- University of Arkansas Department of Chemistry and Biochemistry, Fayetteville, Arkansas 72701, United States
| | - Paolo Cignoni
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Analytical Chemistry II, Bochum 44801, Germany
| | - Ingrid Fritsch
- University of Arkansas Department of Chemistry and Biochemistry, Fayetteville, Arkansas 72701, United States
| | - Kristina Tschulik
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Chair of Analytical Chemistry II, Bochum 44801, Germany
| |
Collapse
|
40
|
de la Mata M, Molina SI. STEM Tools for Semiconductor Characterization: Beyond High-Resolution Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:337. [PMID: 35159686 PMCID: PMC8840450 DOI: 10.3390/nano12030337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022]
Abstract
The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies.
Collapse
Affiliation(s)
- María de la Mata
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorganica, IMEYMAT, Universidad de Cádiz, 11510 Puerto Real, Spain;
| | | |
Collapse
|
41
|
Wang C, Zou Q, Cheng Z, Chen J, Luo C, Liang F, Cai C, Bi H, Lian X, Ji X, Zhang Q, Sun L, Wu X. Tailoring atomic 1T phase CrTe 2for in situfabrication. NANOTECHNOLOGY 2021; 33:085302. [PMID: 34787098 DOI: 10.1088/1361-6528/ac3a3a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Controllable tailoring and understanding the phase-structure relationship of the 1T phase two-dimensional (2D) materials are critical for their applications in nanodevices. Thein situtransmission electron microscope (TEM) could regulate and monitor the evolution process of the nanostructure of 2D material with atomic resolution. In this work, a controllably tailoring 1T-CrTe2nanopore is carried out by thein situTEM. A preferred formation of the 1T-CrTe2border structure and nanopore healing process are studied at the atomic scale. The controllable tailoring of the 1T phase nanopore could be achieved by regulating the transformation of two types of low indices of crystal faces {101¯0} and {112¯0} at the nanopore border. Machine learning is applied to automatically process the TEM images with high efficiency. By adopting the deep-learning-based image segmentation method and augmenting the TEM images specifically, the nanopore of the TEM image could be automatically identified and the evaluation result of DICE metric reaches 93.17% on test set. This work presents the unique structure evolution of 1T phase 2D material and the computer aided high efficiency TEM data analysis based on deep learning. The techniques applied in this work could be generalized to other materials for controlled nanostructure regulation and automatic TEM image analyzation.
Collapse
Affiliation(s)
- Chaolun Wang
- In Situ Devices Center, Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Qiran Zou
- Department of Automation, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhiheng Cheng
- In Situ Devices Center, Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Jietao Chen
- In Situ Devices Center, Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Chen Luo
- In Situ Devices Center, Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Fang Liang
- In Situ Devices Center, Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Chunhua Cai
- In Situ Devices Center, Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Hengchang Bi
- In Situ Devices Center, Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Xiaocong Lian
- BNRist, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiangyang Ji
- Department of Automation, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qiubo Zhang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing 210096, People's Republic of China
| | - Xing Wu
- In Situ Devices Center, Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| |
Collapse
|
42
|
Song Q, Cheng Z, Kariuki M, Hall SCL, Hill SK, Rho JY, Perrier S. Molecular Self-Assembly and Supramolecular Chemistry of Cyclic Peptides. Chem Rev 2021; 121:13936-13995. [PMID: 33938738 PMCID: PMC8824434 DOI: 10.1021/acs.chemrev.0c01291] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/19/2023]
Abstract
This Review focuses on the establishment and development of self-assemblies governed by the supramolecular interactions between cyclic peptides. The Review first describes the type of cyclic peptides able to assemble into tubular structures to form supramolecular cyclic peptide nanotubes. A range of cyclic peptides have been identified to have such properties, including α-peptides, β-peptides, α,γ-peptides, and peptides based on δ- and ε-amino acids. The Review covers the design and functionalization of these cyclic peptides and expands to a recent advance in the design and application of these materials through their conjugation to polymer chains to generate cyclic peptide-polymer conjugates nanostructures. The Review, then, concentrates on the challenges in characterizing these systems and presents an overview of the various analytical and characterization techniques used to date. This overview concludes with a critical survey of the various applications of the nanomaterials obtained from supramolecular cyclic peptide nanotubes, with a focus on biological and medical applications, ranging from ion channels and membrane insertion to antibacterial materials, anticancer drug delivery, gene delivery, and antiviral applications.
Collapse
Affiliation(s)
- Qiao Song
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Zihe Cheng
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Maria Kariuki
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Sophie K. Hill
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Julia Y. Rho
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Sébastien Perrier
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick Medical
School, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
43
|
Parlanti P, Cappello V. Microscopes, tools, probes, and protocols: A guide in the route of correlative microscopy for biomedical investigation. Micron 2021; 152:103182. [PMID: 34801960 DOI: 10.1016/j.micron.2021.103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022]
Abstract
In the last decades, the advancements of microscopes technology, together with the development of new imaging approaches, are trying to address some biological questions that have been unresolved in the past: the need to combine in the same analysis temporal, functional and morphological information on the biological sample has become pressing. For this reason, the use of correlative microscopy, in which two or more imaging techniques are combined in the same analysis, is getting increasingly widespread. In fact, correlative microscopy can overcome limitations of a single imaging method, giving access to a larger amount of information from the same specimen. However, correlative microscopy can be challenging, and appropriate protocols for sample preparation and imaging methods must be selected. Here we review the state of the art of correlating electron microscopy with different imaging methods, focusing on sample preparation, tools, and labeling methods, with the aim to provide a comprehensive guide for those scientists who are approaching the field of correlative methods.
Collapse
Affiliation(s)
- Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| |
Collapse
|
44
|
Shetty PP, Wright SC, McDowell MT. Melting, Crystallization, and Alloying Dynamics in Nanoscale Bismuth Telluride. NANO LETTERS 2021; 21:8197-8204. [PMID: 34570490 DOI: 10.1021/acs.nanolett.1c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is critical to understand the transformation mechanisms in layered metal chalcogenides to enable controlled synthesis and processing. Here, we develop an alumina encapsulation layer-based in situ transmission electron microscopy (TEM) setup that enables the investigation of melting, crystallization, and alloying of nanoscale bismuth telluride platelets while limiting sublimation in the high-vacuum TEM environment. Heating alumina-encapsulated platelets to 700 °C in situ resulted in melting that initiated at edge planes and proceeded via the movement of a sharp interface. The encapsulated melt was then cooled to induce solidification, with individual nuclei growing to form single crystals with the same basal plane orientation as the original platelet and nonequilibrium crystal shapes imposed by the encapsulation layer. Finally, heating platelets in the presence of antimony caused alloying and lattice strain, along with heterogeneous phase formation. These findings provide new insight into important transformation processes in layered metal chalcogenide materials.
Collapse
Affiliation(s)
- Pralav P Shetty
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Salem C Wright
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T McDowell
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
45
|
Cherednichenko K, Kopitsyn D, Batasheva S, Fakhrullin R. Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations. Polymers (Basel) 2021; 13:3510. [PMID: 34685269 PMCID: PMC8538282 DOI: 10.3390/polym13203510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
Halloysite is a tubular clay nanomaterial of the kaolin group with a characteristic feature of oppositely charged outer and inner surfaces, allowing its selective spatial modification. The natural origin and specific properties of halloysite make it a potent material for inclusion in biopolymer composites with polysaccharides, nucleic acids and proteins. The applications of halloysite/biopolymer composites range from drug delivery and tissue engineering to food packaging and the creation of stable enzyme-based catalysts. Another important application field for the halloysite complexes with biopolymers is surface coatings resistant to formation of microbial biofilms (elaborated communities of various microorganisms attached to biotic or abiotic surfaces and embedded in an extracellular polymeric matrix). Within biofilms, the microorganisms are protected from the action of antibiotics, engendering the problem of hard-to-treat recurrent infectious diseases. The clay/biopolymer composites can be characterized by a number of methods, including dynamic light scattering, thermo gravimetric analysis, Fourier-transform infrared spectroscopy as well as a range of microscopic techniques. However, most of the above methods provide general information about a bulk sample. In contrast, the combination of electron microscopy with energy-dispersive X-ray spectroscopy allows assessment of the appearance and composition of biopolymeric coatings on individual nanotubes or the distribution of the nanotubes in biopolymeric matrices. In this review, recent contributions of electron microscopy to the studies of halloysite/biopolymer composites are reviewed along with the challenges and perspectives in the field.
Collapse
Affiliation(s)
- Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| |
Collapse
|
46
|
Mazur R, Mostowska A, Kowalewska Ł. How to Measure Grana - Ultrastructural Features of Thylakoid Membranes of Plant Chloroplasts. FRONTIERS IN PLANT SCIENCE 2021; 12:756009. [PMID: 34691132 PMCID: PMC8527009 DOI: 10.3389/fpls.2021.756009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 06/11/2023]
Abstract
Granum is a basic structural unit of the thylakoid membrane network of plant chloroplasts. It is composed of multiple flattened membranes forming a stacked arrangement of a cylindrical shape. Grana membranes are composed of lipids and tightly packed pigment-protein complexes whose primary role is the catalysis of photosynthetic light reactions. These membranes are highly dynamic structures capable of adapting to changing environmental conditions by fine-tuning photochemical efficiency, manifested by the structural reorganization of grana stacks. Due to a nanometer length scale of the structural granum features, the application of high-resolution electron microscopic techniques is essential for a detailed analysis of the granum architecture. This mini-review overviews recent approaches to quantitative grana structure analyses from electron microscopy data, highlighting the basic manual measurements and semi-automated workflows. We outline and define structural parameters used by different authors, for instance, granum height and diameter, thylakoid thickness, end-membrane length, Stacking Repeat Distance, and Granum Lateral Irregularity. This article also presents insights into efficient and effective measurements of grana stacks visualized on 2D micrographs. The information on how to correctly interpret obtained data, taking into account the 3D nature of grana stacks projected onto 2D space of electron micrograph, is also given. Grana ultrastructural observations reveal key features of this intriguing membrane arrangement, broadening our knowledge of the thylakoid network's remarkable plasticity.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
47
|
Vidallon MLP, Giles LW, Pottage MJ, Butler CSG, Crawford SA, Bishop AI, Tabor RF, de Campo L, Teo BM. Tracking the heat-triggered phase change of polydopamine-shelled, perfluorocarbon emulsion droplets into microbubbles using neutron scattering. J Colloid Interface Sci 2021; 607:836-847. [PMID: 34536938 DOI: 10.1016/j.jcis.2021.08.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023]
Abstract
Perfluorocarbon emulsion droplets are hybrid colloidal materials with vast applications, ranging from imaging to drug delivery, due to their controllable phase transition into microbubbles via heat application or acoustic droplet vapourisation. The current work highlights the application of small- and ultra-small-angle neutron scattering (SANS and USANS), in combination with contrast variation techniques, in observing the in situ phase transition of polydopamine-shelled, perfluorocarbon (PDA/PFC) emulsion droplets with controlled polydispersity into microbubbles upon heating. We correlate these measurements with optical and transmission electron microscopy imaging, dynamic light scattering, and thermogravimetric analysis to characterise these emulsions, and observe their phase transition into microbubbles. Results show that the phase transition of PDA/PFC droplets with perfluorohexane (PFH), perfluoropentane (PFP), and PFH-PFP mixtures occur at temperatures that are around 30-40 °C higher than the boiling points of pure liquid PFCs, and this is influenced by the specific PFC compositions (perfluorohexane, perfluoropentane, and mixtures of these PFCs). Analysis and model fitting of neutron scattering data allowed us to monitor droplet size distributions at different temperatures, giving valuable insights into the transformation of these polydisperse, emulsion droplet systems.
Collapse
Affiliation(s)
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Pottage
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Calum S G Butler
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Liliana de Campo
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
48
|
Čapek J, Roušar T. Detection of Oxidative Stress Induced by Nanomaterials in Cells-The Roles of Reactive Oxygen Species and Glutathione. Molecules 2021; 26:4710. [PMID: 34443297 PMCID: PMC8401563 DOI: 10.3390/molecules26164710] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.
Collapse
Affiliation(s)
- Jan Čapek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic;
| | | |
Collapse
|
49
|
Light-induced in situ transmission electron microscopy: Novel approach for antimicrobial photodynamic therapy imaging. Photodiagnosis Photodyn Ther 2021; 35:102463. [PMID: 34325078 DOI: 10.1016/j.pdpdt.2021.102463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023]
Abstract
The novel approach for imaging of antimicrobial photodynamic therapy processes presented in this work is based on transmission electron microscopy methods. With the use of liquid cell, illumination system, and lowered electron dose the successful light-induced in-situ observations on Staphylococcus aureus encapsulated with methylene blue were performed. Results showed that with specified imaging parameters it is possible to conduct reliable research on bacteria in electron microscope despite the unfavorable damaging effect of the highly energetic electron beam used for imaging. This approach differs from the common methods, as it provides direct observations of the processes occurring upon light illumination. The effects obtained with the proposed method are very promising and may serve to answer why different microorganisms respond to the therapy differently.
Collapse
|
50
|
Serra-Maia R, Kumar P, Meng AC, Foucher AC, Kang Y, Karki K, Jariwala D, Stach EA. Nanoscale Chemical and Structural Analysis during In Situ Scanning/Transmission Electron Microscopy in Liquids. ACS NANO 2021; 15:10228-10240. [PMID: 34003639 DOI: 10.1021/acsnano.1c02340] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-cell scanning/transmission electron microscopy (S/TEM) has impacted our understanding of multiple areas of science, most notably nanostructure nucleation and growth and electrochemistry and corrosion. In the case of electrochemistry, the incorporation of electrodes requires the use of silicon nitride membranes to confine the liquid. The combined thickness of the liquid layer and the confining membranes prevents routine atomic-resolution characterization. Here, we show that by performing electrochemical water splitting in situ to generate a gas bubble, we can reduce the thickness of the liquid to a film approximately 30 nm thick that remains covering the sample. The reduced thickness of the liquid allows the acquisition of atomic-scale S/TEM images with chemical and valence analysis through electron energy loss spectroscopy (EELS) and structural analysis through selected area electron diffraction (SAED). This contrasts with a specimen cell entirely filled with liquid, where the broad plasmon peak from the liquid obscures the EELS signal from the sample and induces beam incoherence that impedes SAED analysis. The gas bubble generation is fully reversible, which allows alternating between a full cell and thin-film condition to obtain optimal experimental and analytical conditions, respectively. The methodology developed here can be applied to other scientific techniques, such as X-ray scattering, Raman spectroscopy, and X-ray photoelectron spectroscopy, allowing for a multi-modal, nanoscale understanding of solid-state samples in liquid media.
Collapse
Affiliation(s)
- Rui Serra-Maia
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pawan Kumar
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Andrew C Meng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yijin Kang
- Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
| | - Khim Karki
- Hummingbird Scientific, USA, Lacey, Washington 98516, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|