1
|
Vrdoljak J, Imanol Sánchez K, González-Marín A, Morando M, Javier Avila L. A straightforward workflow to explore species diversity using the Patagonian lizards of the Diplolaemus genus (Iguania: Leiosauridae) as a study case, with the description of a new species. Mol Phylogenet Evol 2025; 204:108274. [PMID: 39694347 DOI: 10.1016/j.ympev.2024.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Disputes over species descriptions, stemming from conceptual disparities and arbitrary species boundaries, are among the primary challenges of modern taxonomy. In this study, we introduce a straightforward workflow, grounded in evolutionary theory, designed to tackle these challenges. We exemplified this approach using Patagonian lizards from the Diplolaemus clade. This workflow involves assigning specimens to putative evolutionary lineages, conducting primary species delimitations, constructing a species tree, comparing lineages for evolutionary independence, and using post-hoc analyses to separate well-supported from ambiguous lineages. This approach aims to establish a reliable foundation for exploring the taxonomic and evolutionary diversity of challenging groups. Applying this workflow to the Diplolaemus clade, we used various analytical methods on genetic (mitochondrial and nuclear markers) and phenotypic data (meristic, linear, and geometric morphometrics). We identified ten lineages with varying degrees of evolutionary independence in a clade where only four species had been described. Among the newly identified lineages, two exhibited low support for evolutionary independence, three showed strong support but had non-conclusive information, and one was recognized and described as a new species. In summary, our hierarchical workflow not only facilitated comprehensive comparisons but also enabled us to draw robust conclusions.
Collapse
Affiliation(s)
- Juan Vrdoljak
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Boulevard Almirante Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina.
| | - Kevin Imanol Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| | - Andrea González-Marín
- Parque Nacional Lanín, Administración de Parques Nacionales, Perito Moreno 1006, 8371 San Martín de los Andes, Neuquén, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Boulevard Almirante Brown 3051, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Luciano Javier Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Boulevard Almirante Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
2
|
Liu Y, Wang X, Wan T, Liao R, Chen S, Liu S, Yue B. Integrative phylogenetic analysis of the genus Episoriculus (Mammalia: Eulipotyphla: Soricidae). PLoS One 2025; 20:e0299624. [PMID: 39823452 PMCID: PMC11981537 DOI: 10.1371/journal.pone.0299624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
Shrews in the genus Episoriculus are among the least-known mammals in China, where representatives occur mainly in the Himalayan and Hengduan mountains. We sequence one mitochondrial and three nuclear genes from 77 individuals referable to this genus, collect morphometric data for five shape and 11 skull measurements from 56 specimens, and use museum collections and GenBank sequences to analyze phylogenetic relationships between this and related genera in an integrated molecular and morphometric approach. Whereas historically anywhere from two to eight species have been recognized in this genus, we conclude that six (Episoriculus baileyi, E. caudatus, E. leucops, E. macrurus, E. sacratus, E. soluensis) are valid. We dissent from recent systematic reviews of this genus and regard E. sacratus to be a valid taxon, E. umbrinus to be a subspecies of E. caudatus, and transfer E. fumidus to Pseudosoriculus. Our record of E. soluensis is the first for China, and expands the previously recognized distribution of this taxon from Nepal and NE India into the adjacent Yadong and Nyalam counties. One further undescribed Episoriculus taxon may exist in Xizang.
Collapse
Affiliation(s)
- Yingxun Liu
- Sichuan Academy of Forestry, Chengdu, Sichuan, PR China
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Xuming Wang
- Sichuan Academy of Forestry, Chengdu, Sichuan, PR China
| | - Tao Wan
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, PR China
| | - Rui Liao
- Sichuan Academy of Forestry, Chengdu, Sichuan, PR China
| | - Shunde Chen
- College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, PR China
| | - Shaoying Liu
- Sichuan Academy of Forestry, Chengdu, Sichuan, PR China
| | - Bisong Yue
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
3
|
Arias E, Crawford AJ, Hertz A, Parra Olea G. Deep cryptic diversity in the Craugastor podiciferus Species Group (Anura: Craugastoridae) of Isthmian Central America revealed by mitochondrial and nuclear data. PeerJ 2025; 13:e18212. [PMID: 39834790 PMCID: PMC11745134 DOI: 10.7717/peerj.18212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/11/2024] [Indexed: 01/22/2025] Open
Abstract
The Craugastor podiciferus Species Group contains eleven species of terraranan frogs distributed from eastern Honduras to eastern Panama. All species have remarkable color pattern polymorphisms, which may contribute to potential taxonomic problems. We performed exhaustive sampling throughout the geographic distribution of the group to evaluate the phylogenetic relationships and biogeographic history of all named species based on two mitochondrial markers and nuclear ddRAD loci. We also implemented various species delimitation methods to test for the presence of unconfirmed candidate species within the group. Molecular phylogenetic analyses showed that the group contains four major clades. All currently named species are supported by molecular data, yet species richness within the group is clearly underestimated. Species delimitation was discordant between the mitochondrial and nuclear datasets and among analytical methods. Adopting a conservative approach, we propose that the C. podiciferus species group contains at least 12 unconfirmed candidate species. Ancestral area reconstruction showed that the group originated and diversified in the highlands of the Talamancan montane forest ecoregion of Costa Rica and western Panama.
Collapse
Affiliation(s)
- Erick Arias
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
- Zoology, Instituto de Biología, UNAM, Mexico City, Mexico
| | - Andrew J. Crawford
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Círculo Herpetológico de Panamá, Panama City, Panama
| | - Andreas Hertz
- Department of Biology, University of Massachusetts at Boston, Boston, MA, United States of America
| | | |
Collapse
|
4
|
Scott PA, Najafi-Majd E, Yıldırım Caynak E, Gidiş M, Kaya U, Bradley Shaffer H. Phylogenomics reveal species limits and inter-relationships in the narrow-range endemic lycian salamanders. Mol Phylogenet Evol 2025; 202:108205. [PMID: 39393763 DOI: 10.1016/j.ympev.2024.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]
Abstract
Salamanders of the genus Lyciasalamandra are represented by as many as 20 narrow-range endemic taxa inhabiting the Mediterranean coast of Turkey and a handful of Aegean Islands. Despite recent molecular phylogenetic studies, the genus is rife with uncertainty about the number of contained species and their phylogenetic relationships, both of which can interfere with needed conservation actions. To test species limits and infer interrelationships we generated as many as 113,176 RAD loci containing 229,427 single nucleotide polymorphisms (SNPs), for 110 specimens of Lyciasalamandra representing 19 of the 20 described taxa. Through a conservative species delimitation approach, we found support for eight species in the genus which broadly agree with currently described species-level diversity. We then use multiple coalescent-based species tree methods to resolve relationships in this relatively old, synchronous species radiation. We recommend synonymization of the largely over-split subspecific taxa, and the elevation of L. luschani finikensis to full species status as L. finikensis. Our hope is that this revised taxonomic framework provides a stable foundation for conservation management in these fragile, microendemic taxa.
Collapse
Affiliation(s)
- Peter A Scott
- Natural Sciences Collegium, Eckerd College, 4200 54(th) Ave S, St. Petersburg, FL 33711 USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Elnaz Najafi-Majd
- Section of Zoology, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - Elif Yıldırım Caynak
- Section of Zoology, Department of Biology, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - Müge Gidiş
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biochemistry, Faculty of Arts and Science, Kütahya Dumlupınar University, Kütahya, Turkey
| | - Uğur Kaya
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA; Section of Zoology, Department of Biology, Faculty of Science, Ege University, Bornova, İzmir, Turkey
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA; La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Fonseca EM, Carstens BC. Artificial intelligence enables unified analysis of historical and landscape influences on genetic diversity. Mol Phylogenet Evol 2024; 198:108116. [PMID: 38871263 DOI: 10.1016/j.ympev.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversity. However, even as both disciplines have come to utilize SNP data over the last decades, analytical approaches have remained for the most part focused on either broad-scale inferences of historical processes (phylogeography) or on more localized inferences about environmental and/or landscape features (landscape genetics). Here we demonstrate that an artificial intelligence model-based analytical framework can consider both deeper historical factors and landscape-level processes in an integrated analysis. We implement this framework using data collected from two Brazilian anurans, the Brazilian sibilator frog (Leptodactylus troglodytes) and granular toad (Rhinella granulosa). Our results indicate that historical demographic processes shape most the genetic variation in the sibulator frog, while landscape processes primarily influence variation in the granular toad. The machine learning framework used here allows both historical and landscape processes to be considered equally, rather than requiring researchers to make an a priori decision about which factors are important.
Collapse
Affiliation(s)
- Emanuel M Fonseca
- Museum of Biological Diversity & Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd., Columbus OH 43212, USA
| | - Bryan C Carstens
- Museum of Biological Diversity & Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd., Columbus OH 43212, USA.
| |
Collapse
|
6
|
Morales-Saldaña S, Hipp AL, Valencia-Ávalos S, Hahn M, González-Elizondo MS, Gernandt DS, Pham KK, Oyama K, González-Rodríguez A. Divergence and reticulation in the Mexican white oaks: ecological and phylogenomic evidence on species limits and phylogenetic networks in the Quercus laeta complex (Fagaceae). ANNALS OF BOTANY 2024; 133:1007-1024. [PMID: 38428030 PMCID: PMC11089265 DOI: 10.1093/aob/mcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND AIMS Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.
Collapse
Affiliation(s)
- Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Andrew L Hipp
- The Morton Arboretum, Lisle, IL 60532-1293, USA
- The Field Museum, Chicago, IL 60605, USA
| | - Susana Valencia-Ávalos
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | | | | | - David S Gernandt
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), 04510, Ciudad de México, México
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex‐Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Antigua Carretera a Pátzcuaro No. 8701, Col. Ex-Hacienda de San José de la Huerta, Morelia, 58190, Michoacán, México
| |
Collapse
|
7
|
Burroughs RW, Parham JF, Stuart BL, Smits PD, Angielczyk KD. Morphological Species Delimitation in The Western Pond Turtle ( Actinemys): Can Machine Learning Methods Aid in Cryptic Species Identification? Integr Org Biol 2024; 6:obae010. [PMID: 38689939 PMCID: PMC11058871 DOI: 10.1093/iob/obae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Indexed: 05/02/2024] Open
Abstract
As the discovery of cryptic species has increased in frequency, there has been an interest in whether geometric morphometric data can detect fine-scale patterns of variation that can be used to morphologically diagnose such species. We used a combination of geometric morphometric data and an ensemble of five supervised machine learning methods (MLMs) to investigate whether plastron shape can differentiate two putative cryptic turtle species, Actinemys marmorata and Actinemys pallida. Actinemys has been the focus of considerable research due to its biogeographic distribution and conservation status. Despite this work, reliable morphological diagnoses for its two species are still lacking. We validated our approach on two datasets, one consisting of eight morphologically disparate emydid species, the other consisting of two subspecies of Trachemys (T. scripta scripta, T. scripta elegans). The validation tests returned near-perfect classification rates, demonstrating that plastron shape is an effective means for distinguishing taxonomic groups of emydids via MLMs. In contrast, the same methods did not return high classification rates for a set of alternative phylogeographic and morphological binning schemes in Actinemys. All classification hypotheses performed poorly relative to the validation datasets and no single hypothesis was unequivocally supported for Actinemys. Two hypotheses had machine learning performance that was marginally better than our remaining hypotheses. In both cases, those hypotheses favored a two-species split between A. marmorata and A. pallida specimens, lending tentative morphological support to the hypothesis of two Actinemys species. However, the machine learning results also underscore that Actinemys as a whole has lower levels of plastral variation than other turtles within Emydidae, but the reason for this morphological conservatism is unclear.
Collapse
Affiliation(s)
- R W Burroughs
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Center for Inclusive Education, Stony Brook University, Stony Brook, NY 11794, USA
| | - J F Parham
- Department of Geological Sciences, California State University, Fullerton, CA 92834, USA
| | - B L Stuart
- Section of Research and Collections, NC Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - P D Smits
- 952 NW 60th St., Seattle, Washington, WA 98107, USA
| | - K D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| |
Collapse
|
8
|
Rodrigues BL, da Silva Costa G, Godoy RE, Pereira Júnior AM, Cella W, Ferreira GEM, de Medeiros JF, Shimabukuro PHF. Molecular and morphometric study of Brazilian populations of Psychodopygus davisi. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:83-98. [PMID: 37867259 DOI: 10.1111/mve.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
In this study, we analysed the molecular and morphometric differences of several populations of the putative sand fly vector Psychodopygus davisi (Root, 1934) (Diptera, Psychodidae, Phlebotominae) in Brazil. We amplified the 658 base pair fragments of the DNA barcoding region-cytochrome c oxidase subunit 1 (COI) gene-for 57 specimens of P. davisi and three specimens of Psychodopygus claustrei (Abonnenc, Léger & Fauran, 1979). We merged our data with public sequences of the same species available from GenBank. Then, the combined dataset-87 sequences and 20 localities-was analysed using population structure analysis and different species delimitation approaches. Geometric morphometry of wings was performed for 155 specimens of P. davisi populations from the North, Midwest and Southeast Brazilian regions, analysing the differences in centroid sizes and canonical variates. Molecular analysis indicated high intraspecific genetic distance values for P. davisi (maximum p distance = 5.52%). All algorithms identified P. davisi and P. claustrei as distinct molecular taxonomic units, despite the low interspecific distance (p distance to the nearest neighbour = 4.79%). P. davisi sequences were split into four genetic clusters by population structure analysis and at least five genetic lineages using intermediate scenarios of the species delimitation algorithms. The species validation analysis of BPP strongly supported the five-species model in our dataset. We found high genetic diversity in this taxon, which is in agreement with its wide geographic distribution in Brazil. Furthermore, the wing analysis showed that specimens from the Southeast Region of Brazil are different from those in the North and the Midwest. The evolutionary patterns of P. davisi populations in Brazil suggest the presence of candidate species, which need to be validated in future studies using a more comprehensive approach with both genomic data and morphological characters.
Collapse
Affiliation(s)
- Bruno Leite Rodrigues
- Programa de Pós-Graduação em Saúde Pública, Faculdade de Saúde Pública da Universidade de São Paulo (FSP/USP), São Paulo, Brazil
| | - Glaucilene da Silva Costa
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Brazil
- Laboratório Central de Saúde Pública do Estado de Rondônia, LACEN-RO, Porto Velho, Brazil
| | | | | | - Wilsandrei Cella
- Programa de Pós Graduação em Ciência Animal com Ênfase em Produtos Bioativos, Universidade Paranaense, Paraná, Brazil
- Universidade do Estado do Amazonas (UEA), Tefé, Brazil
| | - Gabriel Eduardo Melim Ferreira
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Brazil
- Laboratório de Epidemiologia Genética, Fiocruz Rondônia, Porto Velho, Brazil
| | - Jansen Fernandes de Medeiros
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Porto Velho, Brazil
- Laboratório de Entomologia, Fiocruz Rondônia, Porto Velho, Brazil
| | - Paloma Helena Fernandes Shimabukuro
- Grupo de Estudos em Leishmanioses, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
- Coleção de Flebotomíneos (Fiocruz/COLFLEB), Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Ahrens D. Species Diagnosis and DNA Taxonomy. Methods Mol Biol 2024; 2744:33-52. [PMID: 38683310 DOI: 10.1007/978-1-0716-3581-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The use of DNA has helped to improve and speed up species identification and delimitation. However, it also provides new challenges to taxonomists. Incongruence of outcome from various markers and delimitation methods, bias from sampling and skewed species distribution, implemented models, and the choice of methods/priors may mislead results and also may, in conclusion, increase elements of subjectivity in species taxonomy. The lack of direct diagnostic outcome from most contemporary molecular delimitation approaches and the need for a reference to existing and best sampled trait reference systems reveal the need for refining the criteria of species diagnosis and diagnosability in the current framework of nomenclature codes and good practices to avoid nomenclatorial instability, parallel taxonomies, and consequently more and new taxonomic impediment.
Collapse
Affiliation(s)
- Dirk Ahrens
- Museum A. Koenig Bonn, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany.
| |
Collapse
|
10
|
Brunes TO, Pinto FCS, Taucce PPG, Santos MTT, Nascimento LB, Carvalho DC, Oliveira G, Vasconcelos S, Leite FSF. Traditional taxonomy underestimates the number of species of Bokermannohyla (Amphibia: Anura: Hylidae) diverging in the mountains of southeastern Brazil since the Miocene. SYST BIODIVERS 2023. [DOI: 10.1080/14772000.2022.2156001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Tuliana O. Brunes
- Laboratório de Herpetologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Felipe C. S. Pinto
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro P. G. Taucce
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Marcus Thadeu T. Santos
- Laboratório de Herpetologia, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista, Rio Claro, Brazil
| | - Luciana B. Nascimento
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel C. Carvalho
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Felipe S. F. Leite
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Campus Florestal, Florestal, MG, Brazil
| |
Collapse
|
11
|
Carter JE, Sporre MA, Eytan RI. Phylogenetic review of the comb-tooth blenny genus Hypleurochilus in the northwest Atlantic and Gulf of Mexico. Mol Phylogenet Evol 2023; 189:107933. [PMID: 37769827 DOI: 10.1016/j.ympev.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
As some of the smallest vertebrates, yet largest producers of consumed reef biomass, cryptobenthic reef fishes serve a disproportionate role in reef ecosystems and are one of the most poorly understood groups of fish. The blenny genera Hypleurochilus and Parablennius are currently considered paraphyletic and the interrelationships of Parablennius have been the focus of recent phylogenetic studies. However, the interrelationships of Hypleurochilus remain understudied. This genus is transatlantically distributed and comprises 11 species with a convoluted taxonomic history. In this study, relationships for ten Hypleurochilus species are resolved using multi-locus nuclear and mtDNA sequence data, morphological data, and mined COI barcode data. Mitochondrial and nuclear sequence data from 61 individuals collected from the western Atlantic and northern Gulf of Mexico (N. GoM) delimit seven species into a temperate clade, a tropical clade, and a third distinct lineage. This lineage, herein referred to as H. cf. aequipinnis, may represent a species of Hypleurochilus whose range has expanded into the N. GoM. Inclusion of publicly available COI sequence for an additional three species provides further phylogenetic resolution. H. bananensis forms a new eastern Atlantic clade with H. cf. aequipinnis, providing further evidence for a western Atlantic range expansion. Single marker COI delimitation was unable to elucidate the relationships between H. springeri/H. pseudoaequipinnis and between H. multifilis/H. caudovittatus due to incomplete lineage sorting. Mitochondrial data are also unable to accurately resolve the placement of H. bermudensis. However, a comprehensive approach using multi-locus phylogenetic and species delimitation methods was able to resolve these relationships. While mining publicly available sequence data allowed for the inclusion of an increased number of species in the analysis and a more comprehensive phylogeny, it was not without drawbacks, as a handful of sequences are potentially mis-identified. Overall, we find that the recent divergence of some species within this genus and potential introgression events confound the results of single locus delimitation methods, yet a combination of single and multi-locus analyses has allowed for insights into the biogeography of this genus and uncovered a potential transatlantic range expansion.
Collapse
Affiliation(s)
- Joshua E Carter
- Department of Marine Biology, Texas A&M University at Galveston, 1001 Texas Clipper Road, Galveston, TX 77554, United States.
| | - Megan A Sporre
- Department of Marine Biology, Texas A&M University at Galveston, 1001 Texas Clipper Road, Galveston, TX 77554, United States
| | - Ron I Eytan
- Department of Marine Biology, Texas A&M University at Galveston, 1001 Texas Clipper Road, Galveston, TX 77554, United States
| |
Collapse
|
12
|
Alexander Pyron R. Unsupervised machine learning for species delimitation, integrative taxonomy, and biodiversity conservation. Mol Phylogenet Evol 2023; 189:107939. [PMID: 37804960 DOI: 10.1016/j.ympev.2023.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Integrative taxonomy, combining data from multiple axes of biologically relevant variation, is a major goal of systematics. Ideally, such taxonomies will derive from similarly integrative species-delimitation analyses. Yet, most current methods rely solely or primarily on molecular data, with other layers often incorporated only in a post hoc qualitative or comparative manner. A major limitation is the difficulty of devising quantitative parametric models linking different datasets in a unified ecological and evolutionary framework. Machine Learning (ML) methods offer flexibility in this arena by easily learning high-dimensional associations between observations (e.g., individual specimens) across a wide array of input features (e.g., genetics, geography, environment, and phenotype) to delimit statistically meaningful clusters. Here, I implement an unsupervised method using Self-Organizing (or "Kohonen") Maps (SOMs) for such purposes. Recent extensions called "SuperSOMs" can integrate multiple layers, each of which exerts independent influence on a two-dimensional output grid via empirically estimated weights. The grid cells are then delimited into K distinct units that can be interpreted as species or other entities. I show empirical examples in salamanders (Desmognathus) and snakes (Storeria) with layers representing alleles, space, climate, and traits. Simulations reveal that the SuperSOM approach can detect K = 1, tends not to over-split, reflects contributions from all layers, and limits large layers (e.g., genetic matrices) from overwhelming other datasets, desirable properties addressing major concerns from previous studies. Finally, I suggest that these and similar methods could integrate conservation-relevant layers such as population trends and human encroachment to delimit management units from an explicitly quantitative framework grounded in the ecology and evolution of species limits and boundaries.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052 USA.
| |
Collapse
|
13
|
Gu TT, Wu H, Yang F, Gaubert P, Heighton SP, Fu Y, Liu K, Luo SJ, Zhang HR, Hu JY, Yu L. Genomic analysis reveals a cryptic pangolin species. Proc Natl Acad Sci U S A 2023; 120:e2304096120. [PMID: 37748052 PMCID: PMC10556634 DOI: 10.1073/pnas.2304096120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/26/2023] [Indexed: 09/27/2023] Open
Abstract
Eight extant species of pangolins are currently recognized. Recent studies found that two mitochondrial haplotypes identified in confiscations in Hong Kong could not be assigned to any known pangolin species, implying the existence of a species. Here, we report that two additional mitochondrial haplotypes identified in independent confiscations from Yunnan align with the putative species haplotypes supporting the existence of this mysterious species/population. To verify the new species scenario we performed a comprehensive analysis of scale characteristics and 138 whole genomes representing all recognized pangolin species and the cryptic new species, 98 of which were generated here. Our morphometric results clearly attributed this cryptic species to Asian pangolins (Manis sp.) and the genomic data provide robust and compelling evidence that it is a pangolin species distinct from those recognized previously, which separated from the Philippine pangolin and Malayan pangolin over 5 Mya. Our study provides a solid genomic basis for its formal recognition as the ninth pangolin species or the fifth Asian one, supporting a new taxonomic classification of pangolins. The effects of glacial climate changes and recent anthropogenic activities driven by illegal trade are inferred to have caused its population decline with the genomic signatures showing low genetic diversity, a high level of inbreeding, and high genetic load. Our finding greatly expands current knowledge of pangolin diversity and evolution and has vital implications for conservation efforts to prevent the extinction of this enigmatic and endangered species from the wild.
Collapse
Affiliation(s)
- Tong-Tong Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming650500, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming650500, China
| | - Feng Yang
- Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong Special Administrative Region999077, China
| | - Philippe Gaubert
- Laboratoire Evolution et Diversité Biologique, Université Toulouse III–Paul Sabatier, 31062Toulouse Cedex 9, France
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Porto4450-208, Portugal
| | - Sean P. Heighton
- Laboratoire Evolution et Diversité Biologique, Université Toulouse III–Paul Sabatier, 31062Toulouse Cedex 9, France
| | - Yeyizhou Fu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
| | - Ke Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, China
| | - Hua-Rong Zhang
- Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong Special Administrative Region999077, China
| | - Jing-Yang Hu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming650500, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming650500, China
| |
Collapse
|
14
|
Pérez-Rodríguez R, Domínguez-Domínguez O, Pedraza-Lara C, Rosas-Valdez R, Pérez-Ponce de León G, García-Andrade AB, Doadrio I. Multi-locus phylogeny of the catfish genus Ictalurus Rafinesque, 1820 (Actinopterygii, Siluriformes) and its systematic and evolutionary implications. BMC Ecol Evol 2023; 23:27. [PMID: 37370016 PMCID: PMC10304232 DOI: 10.1186/s12862-023-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Ictalurus is one of the most representative groups of North American freshwater fishes. Although this group has a well-studied fossil record and has been the subject of several morphological and molecular phylogenetic studies, incomplete taxonomic sampling and insufficient taxonomic studies have produced a rather complex classification, along with intricate patterns of evolutionary history in the genus that are considered unresolved and remain under debate. RESULTS Based on four loci and the most comprehensive taxonomic sampling analyzed to date, including currently recognized species, previously synonymized species, undescribed taxa, and poorly studied populations, this study produced a resolved phylogenetic framework that provided plausible species delimitation and an evolutionary time framework for the genus Ictalurus. CONCLUSIONS Our phylogenetic hypothesis revealed that Ictalurus comprises at least 13 evolutionary units, partially corroborating the current classification and identifying populations that emerge as putative undescribed taxa. The divergence times of the species indicate that the diversification of Ictalurus dates to the early Oligocene, confirming its status as one of the oldest genera within the family Ictaluridae.
Collapse
Affiliation(s)
- Rodolfo Pérez-Rodríguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58000, Michoacán, México
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58000, Michoacán, México
| | - Carlos Pedraza-Lara
- Forensic Science, Medicine School, National Autonomous University of Mexico, Circuito de la investigación científica s/n, Ciudad Universitaria, Coyoacan, 04510, CdMx, Mexico
| | - Rogelio Rosas-Valdez
- Laboratorio de Colecciones Biológicas y Sistemática Molecular, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Campus Universitario II, Col. Agronómica, Zacatecas, C. P. 98066, México
| | - Gerardo Pérez-Ponce de León
- Instituto de Biología, UNAM, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, C.P. 04510, D.F, México
- Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Km 4.5 Carretera Mérida-Tetiz, Ucú, Yucatán, México
| | - Ana Berenice García-Andrade
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, 58000, Michoacán, México
- Laboratorio de Macroecología Evolutiva, Red de Biología Evolutiva, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, Veracruz, México
| | - Ignacio Doadrio
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, c/José Gutiérrez Abascal 2, Madrid, E-28006, España.
| |
Collapse
|
15
|
Zhao FY, Yang L, Zou QX, Ali A, Li SQ, Yao ZY. Diversity of Pholcus Spiders (Araneae: Pholcidae) in China's Lüliang Mountains: An Integrated Morphological and Molecular Approach. INSECTS 2023; 14:364. [PMID: 37103180 PMCID: PMC10141095 DOI: 10.3390/insects14040364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Spiders of the genus Pholcus were collected for the first time during an expedition to the Lüliang Mountains in Shanxi Province, North China. Phylogenetic analyses of DNA sequence data from COI, H3, wnt, and 28S genes allowed us to group them into nine well-supported clades. We used morphology and four methods of molecular species delimitation, namely Automatic Barcode Gap Discovery (ABGD), the Generalized Mixed Yule Coalescent (GMYC), Bayesian Poisson Tree Processes (bPTP), and Bayesian Phylogenetics and Phylogeography (BPP), to investigate species boundaries. These integrative taxonomic analyses identified the nine clades as nine distinct species, comprising Pholcus luya Peng & Zhang, 2013 and eight other species new to science: Pholcus jiaocheng sp. nov., Pholcus linfen sp. nov., Pholcus lishi sp. nov., Pholcus luliang sp. nov., Pholcus wenshui sp. nov., Pholcus xiangfen sp. nov., Pholcus xuanzhong sp. nov., and Pholcus zhongyang sp. nov. The species occur in geographic proximity and show many morphological similarities. All of them belong to the P. phungiformes species group. The records from the Lüliang Mountains represent the westernmost distribution limit of this species group.
Collapse
Affiliation(s)
- Fang-Yu Zhao
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Lan Yang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Quan-Xuan Zou
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Abid Ali
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Punjab, Pakistan
| | - Shu-Qiang Li
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Yuan Yao
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
- Liaoning Key Laboratory of Evolution and Biodiversity, Shenyang 110034, China
- Liaoning Key Laboratory for Biological Evolution and Agricultural Ecology, Shenyang 110034, China
| |
Collapse
|
16
|
Uluar O, Yahyaoğlu Ö, Başıbüyük HH, Çıplak B. Taxonomy of the rear-edge populations: the case of genus Anterastes (Orthoptera, Tettigoniidae). ORG DIVERS EVOL 2023. [DOI: 10.1007/s13127-023-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
17
|
Benda P, Uvizl M, Vallo P, Reiter A, Uhrin M. A Revision of the Rhinolophus hipposideros group (Chiroptera: Rhinolophidae) with Definition of an Additional Species from the Middle East. ACTA CHIROPTEROLOGICA 2023. [DOI: 10.3161/15081109acc2022.24.2.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Petr Benda
- Department of Zoology, Department of Zoology, National Museum (Natural History), Václavské nám. 68, CZ-115 79 Praha 1, Czech Republic
| | - Marek Uvizl
- Department of Zoology, Department of Zoology, National Museum (Natural History), Václavské nám. 68, CZ-115 79 Praha 1, Czech Republic
| | - Peter Vallo
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, CZ-603 65 Brno, Czech Republic
| | - Antonín Reiter
- South Moravian Museum in Znojmo, Přemyslovců 129/8, CZ-669 02 Znojmo, Czech Republic
| | - Marcel Uhrin
- Department of Zoology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Šrobárova 2, SK-041 80 Košice, Slovakia
| |
Collapse
|
18
|
Sampaio FL, Day JJ, Mendis Wickramasinghe LJ, Cyriac VP, Papadopoulou A, Brace S, Rajendran A, Simon-Nutbrown C, Flouris T, Kapli P, Ranga Vidanapathirana D, Kotharambath R, Kodandaramaiah U, Gower DJ. A near-complete species-level phylogeny of uropeltid snakes harnessing historical museum collections as a DNA source. Mol Phylogenet Evol 2023; 178:107651. [PMID: 36306995 DOI: 10.1016/j.ympev.2022.107651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Uropeltidae is a clade of small fossorial snakes (ca. 64 extant species) endemic to peninsular India and Sri Lanka. Uropeltid taxonomy has been confusing, and the status of some species has not been revised for over a century. Attempts to revise uropeltid systematics and undertake evolutionary studies have been hampered by incompletely sampled and incompletely resolved phylogenies. To address this issue, we take advantage of historical museum collections, including type specimens, and apply genome-wide shotgun (GWS) sequencing, along with recent field sampling (using Sanger sequencing) to establish a near-complete multilocus species-level phylogeny (ca. 87% complete at species level). This results in a phylogeny that supports the monophyly of all genera (if Brachyophidium is considered a junior synonym of Teretrurus), and provides a firm platform for future taxonomic revision. Sri Lankan uropeltids are probably monophyletic, indicating a single colonisation event of this island from Indian ancestors. However, the position of Rhinophis goweri (endemic to Eastern Ghats, southern India) is unclear and warrants further investigation, and evidence that it may nest within the Sri Lankan radiation indicates a possible recolonisation event. DNA sequence data and morphology suggest that currently recognised uropeltid species diversity is substantially underestimated. Our study highlights the benefits of integrating museum collections in molecular genetic analyses and their role in understanding the systematics and evolutionary history of understudied organismal groups.
Collapse
Affiliation(s)
- Filipa L Sampaio
- Natural History Museum, Cromwell Road, London SW7 5BD, UK; Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK.
| | - Julia J Day
- Natural History Museum, Cromwell Road, London SW7 5BD, UK; Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Vivek P Cyriac
- IISER-TVM Centre for Research and Education in Ecology and Evolution, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695 551, India
| | - Anna Papadopoulou
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Selina Brace
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Albert Rajendran
- Research Department of Zoology, St. John's College, Tirunelveli, Tamil Nadu, India
| | - Cornelia Simon-Nutbrown
- The Lyell Centre for Earth and Marine Science and Technology, Heriot-Watt University, Edinburgh EH14 4BA, UK; Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Tomas Flouris
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Paschalia Kapli
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Ramachandran Kotharambath
- Natural History Museum, Cromwell Road, London SW7 5BD, UK; Department of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, India
| | - Ullasa Kodandaramaiah
- IISER-TVM Centre for Research and Education in Ecology and Evolution, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695 551, India
| | - David J Gower
- Natural History Museum, Cromwell Road, London SW7 5BD, UK; Department of Zoology, Central University of Kerala, Tejaswini Hills, Kasaragod, Kerala, India.
| |
Collapse
|
19
|
Vieira JPS, Selbach-Schnadelbach A, Braz M, Ribeiro PL, van den Berg C, Oliveira RP. Coalescent-Based Species Delimitation in Herbaceous Bamboos (Bambusoideae, Olyreae) from Eastern Brazil: Implications for Taxonomy and Conservation in a Group with Weak Morphological Divergence Coupled with Low Genetic Diversity. PLANTS (BASEL, SWITZERLAND) 2022; 12:107. [PMID: 36616235 PMCID: PMC9824829 DOI: 10.3390/plants12010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Species delimitation in herbaceous bamboos has been complex and, in some genera, a great part of its diversity has been confirmed only based on genetic information, as is the case of the genus Raddia. It includes nine species, all occurring in Brazil, but only R. portoi predominates in dry forests of the Northeast associated with the Caatinga phytogeographic domain. This species is morphologically close to R. angustifolia, which is known for a single location in the Atlantic Forest in Southern Bahia, and is considered to be threatened by extinction. Besides problems with taxonomic focus, actions for its conservation are complicated because it is not certain if it must be considered an independent species or included in the more widespread R. portoi. In this study, we used coalescent multispecies (MSC) theory approaches combined with genetic structure analyses in an attempt to delimit these two species. Different analyses were congruent and the species delimitation using MSC inferred distinct lineages supporting their recognition as two species. These results solved the taxonomic doubts and also showed the power of these approaches to delimit species as lineages, even in groups with weak morphological divergence and low genetic variability, and also impacting our knowledge for conservation purposes.
Collapse
Affiliation(s)
- João Paulo S. Vieira
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s.n., Novo Horizonte, Feira de Santana 44031-460, Bahia, Brazil
| | - Alessandra Selbach-Schnadelbach
- Instituto de Biologia, Universidade Federal da Bahia, Av. Barão de Jeremoabo s.n., Ondina, Salvador 40150-170, Bahia, Brazil
| | - Marcos Braz
- Instituto de Biologia, Universidade Federal da Bahia, Av. Barão de Jeremoabo s.n., Ondina, Salvador 40150-170, Bahia, Brazil
| | - Patrícia L. Ribeiro
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, Bahia, Brazil
| | - Cássio van den Berg
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s.n., Novo Horizonte, Feira de Santana 44031-460, Bahia, Brazil
| | - Reyjane P. Oliveira
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s.n., Novo Horizonte, Feira de Santana 44031-460, Bahia, Brazil
| |
Collapse
|
20
|
Zhu X, Zheng C, Dong X, Zhang H, Ye Z, Xue H, Bu W. Species boundary and phylogeographical pattern provide new insights into the management efforts of Megacopta cribraria (Hemiptera: Plataspidae), a bean bug invading North America. PEST MANAGEMENT SCIENCE 2022; 78:4871-4881. [PMID: 36181419 DOI: 10.1002/ps.7108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Correct identification together with information on distribution range, geographical origin and evolutionary history are the necessary basis for the management and control of invasive species. The bean bug Megacopta cribraria is a crucial agricultural pest of soybean. Recently, M. cribraria has invaded the United States and spread rapidly, causing severe reductions in soybean yields. However, the species boundary and phylogeographical pattern of this invasive bean bug are still unclear. RESULTS The results of different species delimitation methods (Automatic Barcode Gap Discovery, Assemble Species by Automatic Partitioning, Bayesian Poisson Tree Processes and Bayesian Phylogenetics and Phylogeography) strongly demonstrated that M. cribraria and Megacopta punctatissima represent the same species. M. punctatissima should not be considered a distinct species but rather a variety of M. cribraria. Phylogenetic analyses revealed three well-supported clades (Southeast Asia [SEA], East Asia continent [EAC] and Japan [JA]) with distinct geographical structures in the M. cribraria-M. punctatissima complex. The SEA clade was at the base of the phylogenetic tree, and the sister relationship between the EAC clade and JA clade was strongly supported. The split between the EAC clade and JA clade occurred at approximately 0.71 Ma, corresponding to the submergence period of the East China Sea land bridge. CONCLUSION This study clarified the species boundary between M. cribraria and its closely related species and revealed the phylogeographical pattern and evolutionary history of M. cribraria. The species delimitation and phylogeography results achieved in this study could provide new insights into the monitoring and management of this agricultural pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Dong
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | | | - Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
21
|
Piñeros VJ, Del R Pedraza-Marrón C, Betancourt-Resendes I, Calderón-Cortés N, Betancur-R R, Domínguez-Domínguez O. Genome-wide species delimitation analyses of a silverside fish species complex in central Mexico indicate taxonomic over-splitting. BMC Ecol Evol 2022; 22:108. [PMID: 36104671 PMCID: PMC9472351 DOI: 10.1186/s12862-022-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Delimiting species across a speciation continuum is a complex task, as the process of species origin is not generally instantaneous. The use of genome-wide data provides unprecedented resolution to address convoluted species delimitation cases, often unraveling cryptic diversity. However, because genome-wide approaches based on the multispecies coalescent model are known to confound population structure with species boundaries, often resulting in taxonomic over-splitting, it has become increasingly evident that species delimitation research must consider multiple lines of evidence. In this study, we used phylogenomic, population genomic, and coalescent-based species delimitation approaches, and examined those in light of morphological and ecological information, to investigate species numbers and boundaries comprising the Chirostoma "humboltianum group" (family Atherinidae). The humboltianum group is a taxonomically controversial species complex where previous morphological and mitochondrial studies produced conflicting species delimitation outcomes. We generated ddRADseq data for 77 individuals representing the nine nominal species in the group, spanning their distribution range in the central Mexican plateau. RESULTS Our results conflict with the morphospecies and ecological delimitation hypotheses, identifying four independently evolving lineages organized in three geographically cohesive clades: (i) chapalae and sphyraena groups in Lake Chapala, (ii) estor group in Lakes Pátzcuaro and Zirahuén, and (iii) humboltianum sensu stricto group in Lake Zacapu and Lerma river system. CONCLUSIONS Overall, our study provides an atypical example where genome-wide analyses delineate fewer species than previously recognized on the basis of morphology. It also highlights the influence of the geological history of the Chapala-Lerma hydrological system in driving allopatric speciation in the humboltianum group.
Collapse
Affiliation(s)
- Victor Julio Piñeros
- Laboratorio de Ecología Molecular, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacán, Mexico
| | | | - Isaí Betancourt-Resendes
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de Las Ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, 76230, Querétaro, Mexico
| | - Nancy Calderón-Cortés
- Laboratorio de Ecología Molecular, Escuela Nacional de Estudios Superiores Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Ex-Hacienda de San José de La Huerta, 58190, Morelia, Michoacán, Mexico.
| | - Ricardo Betancur-R
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" Planta Baja, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
- Laboratorio Nacional de Análisis y Síntesis Ecológica Para la Conservación de Recursos Genéticos de México, Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Apartado Postal 27-3 (Xangari), 58089, Michoacán, Morelia, Mexico.
| |
Collapse
|
22
|
Trevine VC, Grazziotin FG, Giraudo A, Sallesbery‐Pinchera N, Vianna JA, Zaher H. The systematics of Tachymenini (Serpentes, Dipsadidae): An updated classification based on molecular and morphological evidence. ZOOL SCR 2022. [DOI: 10.1111/zsc.12565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Vivian C. Trevine
- Laboratório de Coleções Zoológicas Instituto Butantan São Paulo Brazil
- Programa de Pós‐Graduação de Zoologia, Insituto de Biociências Universidade de São Paulo São Paulo Brazil
| | | | - Alejandro Giraudo
- Instituto Nacional de Limnología (CONICET – UNL) Ciudad Universitaria Santa Fe Argentina
- Facultad de Humanidades y Ciencias (FHUC – UNL) Ciudad Universitaria Santa Fe Argentina
| | - Nicole Sallesbery‐Pinchera
- Escuela Medicina Veterinaria, Facultad Ecología y Recursos Naturales Universidad Andrés Bello Santiago Chile
| | - Juliana A. Vianna
- Millennium Institute Center for Genome Regulation (CRG), Departamento de Ecosistemas y Medio Ambiente Pontificia Universidad Católica de Chile Santiago Chile
| | - Hussam Zaher
- Laboratório de Herpetologia, Museu de Zoologia da Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
23
|
Wu MY, Lau CJ, Ng EYX, Baveja P, Gwee CY, Sadanandan K, Ferasyi TR, Haminuddin, Ramadhan R, Menner JK, Rheindt FE. Genomes From Historic DNA Unveil Massive Hidden Extinction and Terminal Endangerment in a Tropical Asian Songbird Radiation. Mol Biol Evol 2022; 39:6692815. [PMID: 36124912 PMCID: PMC9486911 DOI: 10.1093/molbev/msac189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Quantifying the magnitude of the global extinction crisis is important but remains challenging, as many extinction events pass unnoticed owing to our limited taxonomic knowledge of the world's organisms. The increasing rarity of many taxa renders comprehensive sampling difficult, further compounding the problem. Vertebrate lineages such as birds, which are thought to be taxonomically well understood, are therefore used as indicator groups for mapping and quantifying global extinction. To test whether extinction patterns are adequately gauged in well-studied groups, we implemented ancient-DNA protocols and retrieved whole genomes from the historic DNA of museum specimens in a widely known songbird radiation of shamas (genus Copsychus) that is assumed to be of least conservation concern. We uncovered cryptic diversity and an unexpected degree of hidden extinction and terminal endangerment. Our analyses reveal that >40% of the phylogenetic diversity of this radiation is already either extinct in the wild or nearly so, including the two genomically most distinct members of this group (omissus and nigricauda), which have so far flown under the conservation radar as they have previously been considered subspecies. Comparing the genomes of modern samples with those from roughly a century ago, we also found a significant decrease in genetic diversity and a concomitant increase in homozygosity affecting various taxa, including small-island endemics that are extinct in the wild as well as subspecies that remain widespread across the continental scale. Our application of modern genomic approaches demonstrates elevated levels of allelic and taxonomic diversity loss in a songbird clade that has not been listed as globally threatened, highlighting the importance of ongoing reassessments of extinction incidence even across well-studied animal groups. Key words: extinction, introgression, white-rumped shama, conservation.
Collapse
Affiliation(s)
- Meng Yue Wu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Clara Jesse Lau
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Elize Ying Xin Ng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Pratibha Baveja
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Chyi Yin Gwee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Keren Sadanandan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Teuku Reza Ferasyi
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Haminuddin
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | - Rezky Ramadhan
- Faculty of Veterinary Medicine, Universitas Syiah Kuala, Darussalam-Banda Aceh, Indonesia
| | | | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Barrett CF, Santee MV, Fama NM, Freudenstein JV, Simon SJ, Sinn BT. Lineage and role in integrative taxonomy of a heterotrophic orchid complex. Mol Ecol 2022; 31:4762-4781. [PMID: 35837745 PMCID: PMC9452484 DOI: 10.1111/mec.16617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Lineage-based species definitions applying coalescent approaches to species delimitation have become increasingly popular. Yet, the application of these methods and the recognition of lineage-only definitions have recently been questioned. Species delimitation criteria that explicitly consider both lineages and evidence for ecological role shifts provide an opportunity to incorporate ecologically meaningful data from multiple sources in studies of species boundaries. Here, such criteria were applied to a problematic group of mycoheterotrophic orchids, the Corallorhiza striata complex, analysing genomic, morphological, phenological, reproductive-mode, niche, and fungal host data. A recently developed method for generating genomic polymorphism data-ISSRseq-demonstrates evidence for four distinct lineages, including a previously unidentified lineage in the Coast Ranges and Cascades of California and Oregon, USA. There is divergence in morphology, phenology, reproductive mode, and fungal associates among the four lineages. Integrative analyses, conducted in population assignment and redundancy analysis frameworks, provide evidence of distinct genomic lineages and a similar pattern of divergence in the extended data, albeit with weaker signal. However, none of the extended data sets fully satisfy the condition of a significant role shift, which requires evidence of fixed differences. The four lineages identified in the current study are recognized at the level of variety, short of comprising different species. This study represents the most comprehensive application of lineage + role to date and illustrates the advantages of such an approach.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Mathilda V. Santee
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - Nicole M. Fama
- Department of Biology, West Virginia University, 53 Campus Drive, Morgantown, West Virginia, USA 26506
| | - John V. Freudenstein
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 1315 Kinnear Rd., Columbus, Ohio, USA 43212
| | - Sandra J. Simon
- Department of Biology, West Virginia University Institute of Technology, Beckley, WV, USA
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, USA
- Department of Botany and Ecology, University of Latvia, Jelgavas iela 1, Riga, LV-1004, Latvia
| |
Collapse
|
25
|
Chambers EA, Marshall TL, Hillis DM. The Importance of Contact Zones for Distinguishing Interspecific from Intraspecific Geographic Variation. Syst Biol 2022:6673165. [PMID: 35993885 DOI: 10.1093/sysbio/syac056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
With limited sampling, geographic variation within a single species can be difficult to distinguish from interspecific variation, confounding our ability to draw accurate species boundaries. We argue that thorough sampling and analysis of contact zones between putative taxa can determine if assortative mating or selection against hybrids exists (supporting the presence of two distinct species), or alternatively if mating is random among genotypes and admixture among adjacent populations is gradual and continuous (supporting geographic variation within a single species). Here, we test two alternative hypotheses for two pairs of named taxa at contact zones within the American milksnake (Lampropeltis triangulum) complex. A prior morphological analysis found areas of gradual intergradation among named taxa, and concluded that the taxa represented geographical races of a single polytypic species. In contrast, a subsequent analysis of gene sequence data, but with limited sampling near the contact zones, hypothesized distinct boundaries between species at the contact zones. At the contact zone between proposed species L. triangulum and L. gentilis, we examined a ∼700 km-wide transect across the states of Kansas and Missouri, with thorough sampling and reduced-representation genomic-level sequencing, to test the two opposing taxonomic hypotheses. Our transect analyses included examinations of population structure, fixed differences, cline-fitting, and an admixture index analysis. These analyses all supported a gradual and continuous geographic cline across a broad intergrade zone between two geographic forms of L. triangulum, thus providing strong support for a single species in this region (and no support for the recognition of L. gentilis as a distinct species). At a second contact zone between proposed species L. triangulum and L. elapsoides (but variously treated as species or subspecies by different researchers) in Kentucky and Tennessee, we re-evaluated morphological data. In this case, the contact zone analysis indicated sympatry and reproductive isolation of the two taxa, and thus strongly supported L. triangulum and L. elapsoides as distinct species. We conclude that detailed studies of contact zones, based on either genetic or morphological data, are essential for distinguishing intraspecific from interspecific variation in the case of widely and continuously distributed taxa.
Collapse
Affiliation(s)
- E Anne Chambers
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin TX 78712 USA.,Department of Environmental Science, Policy, and Management, The University of California Berkeley, Berkeley CA 94720 USA
| | - Thomas L Marshall
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin TX 78712 USA
| | - David M Hillis
- Department of Integrative Biology and Biodiversity Center, The University of Texas at Austin, Austin TX 78712 USA
| |
Collapse
|
26
|
Singhal S, Wrath J, Rabosky DL. Genetic variability and the ecology of geographic range: A test of the central-marginal hypothesis in Australian scincid lizards. Mol Ecol 2022; 31:4242-4253. [PMID: 35779002 PMCID: PMC9545263 DOI: 10.1111/mec.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022]
Abstract
For many species, both local abundance and regional occupancy are highest near the centre of their geographic distributions. One hypothesis for this pattern is that niche suitability declines with increasing distance from a species geographic centre, such that populations near range margins are characterized by reduced density and increased patchiness. In these smaller edge populations, genetic drift is more powerful, leading to the loss of genetic diversity. This simple verbal model has been formalized as the central-marginal hypothesis, which predicts that core populations should have greater genetic diversity than edge populations. Here, we tested the central-marginal hypothesis using a genomic data set of 25 species-level taxa of Australian scincid lizards in the genera Ctenotus and Lerista. A majority of taxa in our data set showed range-wide patterns of genetic variation consistent with central-marginal hypothesis, and eight of 25 taxa showed significantly greater genetic diversity in the centre of their range. We then explored biological, historical, and methodological factors that might predict which taxa support the central-marginal hypothesis. We found that taxa with the strongest evidence for range expansion were the least likely to follow predictions of the central-marginal hypothesis. The majority of these taxa had range expansions that originated at the range edge, which led to a gradient of decreasing genetic diversity from the range edge to the core, contrary to the central-marginal hypothesis.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of BiologyCSU Dominguez HillsCarsonCaliforniaUSA
| | - John Wrath
- Department of BiologyCSU Dominguez HillsCarsonCaliforniaUSA
| | - Daniel L. Rabosky
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
- Museum of ZoologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
27
|
Babb-Biernacki SJ, Esselstyn JA, Doyle VP. Predicting Species Boundaries and Assessing Undescribed Diversity in Pneumocystis, an Obligate Lung Symbiont. J Fungi (Basel) 2022; 8:jof8080799. [PMID: 36012788 PMCID: PMC9409666 DOI: 10.3390/jof8080799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Far more biodiversity exists in Fungi than has been described, or could be described in several lifetimes, given current rates of species discovery. Although this problem is widespread taxonomically, our knowledge of animal-associated fungi is especially lacking. Fungi in the genus Pneumocystis are obligate inhabitants of mammal lungs, and they have been detected in a phylogenetically diverse array of species representing many major mammal lineages. The hypothesis that Pneumocystis cospeciate with their mammalian hosts suggests that thousands of Pneumocystis species may exist, potentially equal to the number of mammal species. However, only six species have been described, and the true correspondence of Pneumocystis diversity to host species boundaries is unclear. Here, we use molecular species delimitation to estimate the boundaries of Pneumocystis species sampled from 55 mammal species representing eight orders. Our results suggest that Pneumocystis species often colonize several closely related mammals, especially those in the same genus. Using the newly estimated ratio of fungal to host diversity, we estimate ≈4600 to 6250 Pneumocystis species inhabit the 6495 currently recognized extant mammal species. Additionally, we review the literature and find that only 240 (~3.7%) mammal species have been screened for Pneumocystis, and many detected Pneumocystis lineages are not represented by any genetic data. Although crude, our findings challenge the dominant perspective of strict specificity of Pneumocystis to their mammal hosts and highlight an abundance of undescribed diversity.
Collapse
Affiliation(s)
- Spenser J. Babb-Biernacki
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
- Correspondence:
| | - Jacob A. Esselstyn
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Vinson P. Doyle
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA 70809, USA;
| |
Collapse
|
28
|
Douglas J, Bouckaert R. Quantitatively defining species boundaries with more efficiency and more biological realism. Commun Biol 2022; 5:755. [PMID: 35902726 PMCID: PMC9334598 DOI: 10.1038/s42003-022-03723-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
We introduce a widely applicable species delimitation method based on the multispecies coalescent model that is more efficient and more biologically realistic than existing methods. We extend a threshold-based method to allow the ancestral speciation rate to vary through time as a smooth piecewise function. Furthermore, we introduce the cutting-edge proposal kernels of StarBeast3 to this model, thus enabling rapid species delimitation on large molecular datasets and allowing the use of relaxed molecular clock models. We validate these methods with genomic sequence data and SNP data, and show they are more efficient than existing methods at achieving parameter convergence during Bayesian MCMC. Lastly, we apply these methods to two datasets (Hemidactylus and Galagidae) and find inconsistencies with the published literature. Our methods are powerful for rapid quantitative testing of species boundaries in large multilocus datasets and are implemented as an open source BEAST 2 package called SPEEDEMON. Introducing SPEEDEMON, a package for BEAST 2 that better defines species boundaries based on molecular data demonstrated on gecko and loris datasets.
Collapse
Affiliation(s)
- Jordan Douglas
- School of Computer Science, The University of Auckland, Auckland, New Zealand.
| | - Remco Bouckaert
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
29
|
Wei C, Sangster G, Olsson U, Rasmussen PC, Svensson L, Yao CT, Carey GJ, Leader PJ, Zhang R, Chen G, Song G, Lei F, Wilcove DS, Alström P, Liu Y. Cryptic species in a colorful genus: Integrative taxonomy of the bush robins (Aves, Muscicapidae, Tarsiger) suggests two overlooked species. Mol Phylogenet Evol 2022; 175:107580. [PMID: 35810968 DOI: 10.1016/j.ympev.2022.107580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/04/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Several cryptic avian species have been validated by recent integrative taxonomic efforts in the Sino-Himalayan mountains, indicating that avian diversity in this global biodiversity hotspot may be underestimated. In the present study, we investigated species limits in the genus Tarsiger, the bush robins, a group of montane forest specialists with high species richness in the Sino-Himalayan region. Based on comprehensive sampling of all 11 subspecies of the six currently recognized species, we applied an integrative taxonomic approach by combining multilocus, acoustic, plumage and morphometric analyses. Our results reveal that the isolated north-central Chinese populations of Tarsiger cyanurus, described as the subspecies albocoeruleus but usually considered invalid, is distinctive in genetics and vocalisation, but only marginally differentiated in morphology. We also found the Taiwan endemic T. indicus formosanus to be distinctive in genetics, song and morphology from T. i. indicus and T. i. yunnanensis of the Sino-Himalayan mountains. Moreover, Bayesian species delimitation using BPP suggests that both albocoeruleus and formosanus merit full species status. We propose their treatment as 'Qilian Bluetail' T. albocoeruleus and 'Taiwan Bush Robin' T. formosanus, respectively.
Collapse
Affiliation(s)
- Chentao Wei
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China; South China Institute of Environmental Sciences, MEE, Guangzhou 510530, China
| | | | - Urban Olsson
- Biology and Environmental Sciences, Systematics and Biodiversity, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden; Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| | - Pamela C Rasmussen
- Department of Integrative Biology and MSU Museum, Michigan State University, East Lansing, MI 48864, USA; Bird Group, The Natural History Museum-UK, Akeman Street, Tring, UK
| | | | - Cheng-Te Yao
- Medium Altitude Experimental Station, Endemic Species Research Institute, Chichi, 15 Nantou 552, Taiwan, China
| | - Geoff J Carey
- AEC Ltd, 127 Commercial Centre, Palm Springs, Hong Kong, China
| | - Paul J Leader
- AEC Ltd, 127 Commercial Centre, Palm Springs, Hong Kong, China
| | - Ruiying Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoling Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - David S Wilcove
- Princeton School of Public and International Affairs, Princeton University, NJ 08544, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
30
|
Ancona JJ, Pinzón-Esquivel JP, Ruiz-Sánchez E, Palma-Silva C, Ortiz-Díaz JJ, Tun-Garrido J, Carnevali G, Raigoza NE. Multilocus Data Analysis Reveal the Diversity of Cryptic Species in the Tillandsia ionantha (Bromeliaceae: Tillansiodeae) Complex. PLANTS (BASEL, SWITZERLAND) 2022; 11:1706. [PMID: 35807663 PMCID: PMC9269404 DOI: 10.3390/plants11131706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Independent evolutionary lineages or species that lack phenotypic variation as an operative criterion for their delimitation are known as cryptic species. However, these have been delimited using other data sources and analysis. The aims of this study are: (1) to evaluate the divergence of the populations of the T. ionantha complex; and (2) to delimit the species using multilocus data, phylogenetic analysis and the coalescent model. Phylogenetic analyses, genetic diversity and population structure, and isolation by distance analysis were performed. A multispecies coalescent analysis to delimit the species was conducted. Phylogenetic analysis showed that T. ionantha is polyphyletic composed of eight evolutionary lineages. Haplotype distribution and genetic differentiation analysis detected strong population structure and high values of genetic differentiation among populations. The positive correlation between genetic differences with geographic distance indicate that the populations are evolving under the model of isolation by distance. The coalescent multispecies analysis performed with starBEAST supports the recognition of eight lineages as different species. Only three out of the eight species have morphological characters good enough to recognize them as different species, while five of them are cryptic species. Tillandsia scaposa and T. vanhyningii are corroborated as independent lineages, and T. ionantha var. stricta changed status to the species level.
Collapse
Affiliation(s)
- Juan J. Ancona
- Departamento de Botánica-Herbario UADY, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km 15.5, Mérida 97315, Mexico; (J.P.P.-E.); (J.J.O.-D.); (J.T.-G.)
| | - Juan P. Pinzón-Esquivel
- Departamento de Botánica-Herbario UADY, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km 15.5, Mérida 97315, Mexico; (J.P.P.-E.); (J.J.O.-D.); (J.T.-G.)
| | - Eduardo Ruiz-Sánchez
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Las Agujas, Zapopan 45200, Mexico;
| | - Clarisse Palma-Silva
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Rua Monteiro Lobato 255, CEP, Campinas 13083-862, Brazil;
| | - Juan J. Ortiz-Díaz
- Departamento de Botánica-Herbario UADY, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km 15.5, Mérida 97315, Mexico; (J.P.P.-E.); (J.J.O.-D.); (J.T.-G.)
| | - Juan Tun-Garrido
- Departamento de Botánica-Herbario UADY, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km 15.5, Mérida 97315, Mexico; (J.P.P.-E.); (J.J.O.-D.); (J.T.-G.)
| | - Germán Carnevali
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán A. C. Calle 43 #130, Colonia Chuburná de Hidalgo, Mérida 97215, Mexico; (G.C.); (N.E.R.)
| | - Néstor E. Raigoza
- Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán A. C. Calle 43 #130, Colonia Chuburná de Hidalgo, Mérida 97215, Mexico; (G.C.); (N.E.R.)
| |
Collapse
|
31
|
Meza‐Lázaro RN, Peña‐Carrillo KI, Poteaux C, Lorenzi MC, Wetterer JK, Zaldívar‐Riverón A. Genome and cuticular hydrocarbon-based species delimitation shed light on potential drivers of speciation in a Neotropical ant species complex. Ecol Evol 2022; 12:e8704. [PMID: 35342602 PMCID: PMC8928884 DOI: 10.1002/ece3.8704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 12/03/2022] Open
Abstract
Geographic separation that leads to the evolution of reproductive isolation between populations generally is considered the most common form of speciation. However, speciation may also occur in the absence of geographic barriers due to phenotypic and genotypic factors such as chemical cue divergence, mating signal divergence, and mitonuclear conflict. Here, we performed an integrative study based on two genome-wide techniques (3RAD and ultraconserved elements) coupled with cuticular hydrocarbon (CHC) and mitochondrial (mt) DNA sequence data, to assess the species limits within the Ectatomma ruidum species complex, a widespread and conspicuous group of Neotropical ants for which heteroplasmy (i.e., presence of multiple mtDNA variants in an individual) has been recently discovered in some populations from southeast Mexico. Our analyses indicate the existence of at least five distinct species in this complex: two widely distributed across the Neotropics, and three that are restricted to southeast Mexico and that apparently have high levels of heteroplasmy. We found that species boundaries in the complex did not coincide with geographic barriers. We therefore consider possible roles of alternative drivers that may have promoted the observed patterns of speciation, including mitonuclear incompatibility, CHC differentiation, and colony structure. Our study highlights the importance of simultaneously assessing different sources of evidence to disentangle the species limits of taxa with complicated evolutionary histories.
Collapse
Affiliation(s)
- Rubi N. Meza‐Lázaro
- Colección Nacional de InsectosInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Kenzy I. Peña‐Carrillo
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
- INIFAPCampo Experimental General TeránGeneral TeránMexico
| | - Chantal Poteaux
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
| | - Maria Cristina Lorenzi
- Laboratoire d’Ethologie Expérimentale et ComparéeUR 4443LEECUniversité Sorbonne Paris NordClémentFrance
| | - James K. Wetterer
- Harriet L. Wilkes Honors CollegeFlorida Atlantic UniversityJupiterFloridaUSA
| | - Alejandro Zaldívar‐Riverón
- Colección Nacional de InsectosInstituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
32
|
Singhal S, Colli GR, Grundler MR, Costa GC, Prates I, Rabosky DL. No link between population isolation and speciation rate in squamate reptiles. Proc Natl Acad Sci U S A 2022; 119:e2113388119. [PMID: 35058358 PMCID: PMC8795558 DOI: 10.1073/pnas.2113388119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022] Open
Abstract
Rates of species formation vary widely across the tree of life and contribute to massive disparities in species richness among clades. This variation can emerge from differences in metapopulation-level processes that affect the rates at which lineages diverge, persist, and evolve reproductive barriers and ecological differentiation. For example, populations that evolve reproductive barriers quickly should form new species at faster rates than populations that acquire reproductive barriers more slowly. This expectation implicitly links microevolutionary processes (the evolution of populations) and macroevolutionary patterns (the profound disparity in speciation rate across taxa). Here, leveraging extensive field sampling from the Neotropical Cerrado biome in a biogeographically controlled natural experiment, we test the role of an important microevolutionary process-the propensity for population isolation-as a control on speciation rate in lizards and snakes. By quantifying population genomic structure across a set of codistributed taxa with extensive and phylogenetically independent variation in speciation rate, we show that broad-scale patterns of species formation are decoupled from demographic and genetic processes that promote the formation of population isolates. Population isolation is likely a critical stage of speciation for many taxa, but our results suggest that interspecific variability in the propensity for isolation has little influence on speciation rates. These results suggest that other stages of speciation-including the rate at which reproductive barriers evolve and the extent to which newly formed populations persist-are likely to play a larger role than population isolation in controlling speciation rate variation in squamates.
Collapse
Affiliation(s)
- Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747;
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Maggie R Grundler
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA 94720
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720
| | - Gabriel C Costa
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117
| | - Ivan Prates
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109;
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
33
|
Magalhães FDM, Camurugi F, Lyra ML, Baldo D, Gehara M, Haddad CFB, Garda AA. Ecological divergence and synchronous Pleistocene diversification in the widespread South American butter frog complex. Mol Phylogenet Evol 2022; 169:107398. [PMID: 35031468 DOI: 10.1016/j.ympev.2022.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Phylogeographic studies primarily focus on the major role of landscape topography in driving lineage diversification. However, populational phylogeographic breaks may also occur as a result of either niche conservatism or divergence, in the absence of geographic barriers to gene flow. Furthermore, these two factors are not mutually exclusive and can act in concert, making it challenging to evaluate their relative importance on explaining genetic variation in nature. Herein, we use sequences of two mitochondrial and four nuclear genes to investigate the timing and diversification patterns of species pertaining to the Leptodactylus latrans complex, which harbors four morphologically cryptic species with broad distributions across environmental gradients in eastern South America. The origin of this species complex dates back to the late Miocene (ca. 5.5 Mya), but most diversification events occurred synchronically during the late Pleistocene likely as the result of ecological divergence driven by Quaternary climatic oscillations. Further, significant patterns of environmental niche divergences among species in the L. latrans complex imply that ecological isolation is the primary mode of genetic diversification, mostly because phylogenetic breaks are associated with environmental transitions rather than topographic barriers at both species and populational scale. We provided new insights about diversification patterns and processes within a species complex of broadly and continuously distributed group of frogs along South America.
Collapse
Affiliation(s)
- Felipe de M Magalhães
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba-UFPB, Centro de Ciências Exatas e da Natureza, Cidade Universitária, 58000-000 João Pessoa, Paraiba, Brazil; Earth and Environmental Sciences, Ecology and Evolution, Rutgers University-Newark 195 University Ave, Newark, NJ 07102, USA.
| | - Felipe Camurugi
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070-900, Campo Grande, Mato Grosso do Sul, Brazil
| | - Mariana L Lyra
- Instituto de Biociências, Universidade Estadual Paulista, Campus Rio Claro, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Laboratório de Herpetologia, Cx. Postal 199, 13506-900 Rio Claro, São Paulo, Brazil
| | - Diego Baldo
- Instituto de Biología Subtropical (IBS, CONICET-UNaM), Laboratorio de Genética Evolutiva, Facultad de Ciencias Exactas, Universidad Nacional de Misiones, Félix de Azara 1552, CPA N3300LQF Posadas, Misiones, Argentina
| | - Marcelo Gehara
- Earth and Environmental Sciences, Ecology and Evolution, Rutgers University-Newark 195 University Ave, Newark, NJ 07102, USA
| | - Célio F B Haddad
- Instituto de Biociências, Universidade Estadual Paulista, Campus Rio Claro, Departamento de Biodiversidade e Centro de Aquicultura (CAUNESP), Laboratório de Herpetologia, Cx. Postal 199, 13506-900 Rio Claro, São Paulo, Brazil
| | - Adrian A Garda
- Laboratório de Anfíbios e Répteis (LAR), Departamento de Botânica e Zoologia da Universidade Federal do Rio Grande do Norte, Campus Universitário. Lagoa Nova, 59078-900 Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
34
|
Anjos MDS, Jardim de Queiroz L, Penido IDS, Bitencourt JDA, Barreto SB, Sarmento‐Soares LM, Batalha‐Filho H, Affonso PRADM. A taxonomically complex catfish group from an underrepresented geographic area: Systematics and species limits in
Hypostomus
Lacépède, 1803 (Siluriformes, Loricariidae) from Eastern South America. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Luiz Jardim de Queiroz
- Department of Fish Ecology and Evolution Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf Switzerland
| | - Iago de Souza Penido
- Programa de Pós‐Graduação em Biologia Comparada Universidade Estadual de Maringá Maringá Brazil
| | | | - Silvia Britto Barreto
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT INTREE) Instituto de Biologia Universidade Federal da Bahia Salvador Brazil
| | | | - Henrique Batalha‐Filho
- Instituto de Biologia Universidade Federal da Bahia Salvador Brazil
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT INTREE) Instituto de Biologia Universidade Federal da Bahia Salvador Brazil
| | | |
Collapse
|
35
|
Martinsson S, Malmberg K, Bakken T, Korshunova T, Martynov A, Lundin K. Species delimitation and phylogeny of
Doto
(Nudibranchia: Dotidae) from the Northeast Atlantic, with a discussion on food specialization. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Svante Martinsson
- Systematics and Biodiversity Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | | | - Torkild Bakken
- NTNU University Museum Norwegian University of Science and Technology Trondheim Norway
| | | | | | - Kennet Lundin
- Gothenburg Natural History Museum Gothenburg Sweden
- Gothenburg Global Biodiversity Centre University of Gothenburg Gothenburg Sweden
| |
Collapse
|
36
|
Bourke BP, Justi SA, Caicedo-Quiroga L, Pecor DB, Wilkerson RC, Linton YM. Phylogenetic analysis of the Neotropical Albitarsis Complex based on mitogenome data. Parasit Vectors 2021; 14:589. [PMID: 34838107 PMCID: PMC8627034 DOI: 10.1186/s13071-021-05090-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some of the most important malaria vectors in South America belong to the Albitarsis Complex (Culicidae; Anophelinae; Anopheles). Understanding the origin, nature, and geographical distribution of species diversity in this important complex has important implications for vector incrimination, control, and management, and for modelling future responses to climate change, deforestation, and human population expansion. This study attempts to further explore species diversity and evolutionary history in the Albitarsis Complex by undertaking a characterization and phylogenetic analysis of the mitogenome of all 10 putative taxa in the Albitarsis Complex. METHODS Mitogenome assembly and annotation allowed for feature comparison among Albitarsis Complex and Anopheles species. Selection analysis was conducted across all 13 protein-coding genes. Maximum likelihood and Bayesian inference methods were used to construct gene and species trees, respectively. Bayesian methods were also used to jointly estimate species delimitation and species trees. RESULTS Gene composition and order were conserved across species within the complex. Unique signatures of positive selection were detected in two species-Anopheles janconnae and An. albitarsis G-which may have played a role in the recent and rapid diversification of the complex. The COI gene phylogeny does not fully recover the mitogenome phylogeny, and a multispecies coalescent-based phylogeny shows that considerable uncertainty exists through much of the mitogenome species tree. The origin of divergence in the complex dates to the Pliocene/Pleistocene boundary, and divergence within the distinct northern South American clade is estimated at approximately 1 million years ago. Neither the phylogenetic trees nor the delimitation approach rejected the 10-species hypothesis, although the analyses could not exclude the possibility that four putative species with scant a priori support (An. albitarsis G, An. albitarsis H, An. albitarsis I, and An. albitarsis J), represent population-level, rather than species-level, splits. CONCLUSION The lack of resolution in much of the species tree and the limitations of the delimitation analysis warrant future studies on the complex using genome-wide data and the inclusion of additional specimens, particularly from two putative species, An. albitarsis I and An. albitarsis J.
Collapse
Affiliation(s)
- Brian P Bourke
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA.
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA.
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA.
| | - Silvia A Justi
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - Laura Caicedo-Quiroga
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - David B Pecor
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - Richard C Wilkerson
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit, Smithsonian Institution Museum Support Center, MRC-534, 4210 Silver Hill Rd., Suitland, MD, 20746, USA
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History, 10th St NE & Constitution Ave NE, Washington, DC, 20002, USA
| |
Collapse
|
37
|
Zhao Z, Oosthuizen J, Heideman N. How many species does the
Psammobates tentorius
(tent tortoise) species complex (Reptilia, Testudinidae) comprise? A taxonomic solution potentially applicable to species complexes. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhongning Zhao
- Department of Zoology and Entomology University of the Free State Bloemfontein South Africa
| | - Jaco Oosthuizen
- School of Pathology University of the Free Bloemfontein South Africa
| | - Neil Heideman
- Department of Zoology and Entomology University of the Free State Bloemfontein South Africa
| |
Collapse
|
38
|
Chou MH, Tseng WZ, Sang YD, Morgan B, De Vivo M, Kuan YH, Wang LJ, Chen WY, Huang JP. Incipient speciation and its impact on taxonomic decision: a case study using a sky island sister-species pair of stag beetles (Lucanidae: Lucanus). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Species delimitation can be difficult when the divergence between focal taxa is in the incipient stage of speciation, because conflicting results are expected among different data sets, and the species limits can differ depending on the species concept applied. We studied speciation history and investigated the impact on taxonomic decision-making when using different types of data in a Taiwanese endemic sister-species pair of stag beetles, Lucanus miwai and Lucanus yulaoensis, from sky island habitats. We showed that the two geographical taxa can be diagnosed by male mandibular shape. We found two mitochondrial co1 lineages with pairwise sequence divergence > 3%; however, L. miwai might not be monophyletic. The result of our multispecies coalescent-based species delimitation using five nuclear loci supported the evolutionary independence of the two sister species, but the calculated values of the genealogical divergence index (gdi) corresponded to the ambiguous zone of species delimitation. We also showed that post-divergence gene flow is unlikely. Our study demonstrates challenges in the delineation of incipient species, but shows the importance of understanding the speciation history and adopting integrative approaches to reconcile seemingly conflicting results before making evolutionarily relevant taxonomic decisions.
Collapse
Affiliation(s)
- Ming-Hsun Chou
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Zhe Tseng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yao-De Sang
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Brett Morgan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Mattia De Vivo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsiu Kuan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Liang-Jong Wang
- Division of Forest Protection, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Wei-Yun Chen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
39
|
Ellepola G, Herath J, Manamendra-Arachchi K, Wijayathilaka N, Senevirathne G, Pethiyagoda R, Meegaskumbura M. Molecular species delimitation of shrub frogs of the genus Pseudophilautus (Anura, Rhacophoridae). PLoS One 2021; 16:e0258594. [PMID: 34665841 PMCID: PMC8525734 DOI: 10.1371/journal.pone.0258594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Sri Lanka is an amphibian hotspot of global significance. Its anuran fauna is dominated by the shrub frogs of the genus Pseudophilautus. Except for one small clade of four species in Peninsular India, these cool-wet adapted frogs, numbering some 59 extant species, are distributed mainly across the montane and lowland rain forests of the island. With species described primarily by morphological means, the diversification has never yet been subjected to a molecular species delimitation analysis, a procedure now routinely applied in taxonomy. Here we test the species boundaries of Pseudophilautus in the context of the phylogenetic species concept (PSC). We use all the putative species for which credible molecular data are available (nDNA-Rag-1; mt-DNA- 12S rRNA, 16S rRNA) to build a well resolved phylogeny, which is subjected to species delimitation analyses. The ABGD, bPTP, mPTP and bGMYC species delimitation methods applied to the 16S rRNA frog barcoding gene (for all species), 12S rRNA and Rag-1 nDNA grouped P. procax and P. abundus; P. hallidayi and P. fergusonianus; P. reticulatus and P. pappilosus; P. pleurotaenia and P. hoipolloi; P. hoffmani and P. asankai; P. silvaticus and P. limbus; P. dilmah and P. hankeni; P. fulvus and P. silus.. Surprisingly, all analyses recovered 14 unidentified potential new species as well. The geophylogeny affirms a distribution across the island's aseasonal 'wet zone' and its three principal hill ranges, suggestive of allopatric speciation playing a dominant role, especially between mountain masses. Among the species that are merged by the delimitation analyses, a pattern leading towards a model of parapatric speciation emerges-ongoing speciation in the presence of gene flow. This delimitation analysis reinforces the species hypotheses, paving the way to a reasonable understanding of Sri Lankan Pseudophilautus, enabling both deeper analyses and conservation efforts of this remarkable diversification. http://zoobank.org/urn:lsid:zoobank.org:pub:DA869B6B-870A-4ED3-BF5D-5AA3F69DDD27.
Collapse
Affiliation(s)
- Gajaba Ellepola
- College of Forestry, Guangxi Key Lab for Forest Ecology and Conservation, Guangxi University, Nanning, PR China
- Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Jayampathi Herath
- College of Forestry, Guangxi Key Lab for Forest Ecology and Conservation, Guangxi University, Nanning, PR China
| | | | - Nayana Wijayathilaka
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Gayani Senevirathne
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Rohan Pethiyagoda
- Ichthyology Section, Australian Museum, Sydney, New South Wales, Australia
| | - Madhava Meegaskumbura
- College of Forestry, Guangxi Key Lab for Forest Ecology and Conservation, Guangxi University, Nanning, PR China
| |
Collapse
|
40
|
Calderon MS, Bustamante DE, Gabrielson PW, Martone PT, Hind KR, Schipper SR, Mansilla A. Type specimen sequencing, multilocus analyses, and species delimitation methods recognize the cosmopolitan Corallina berteroi and establish the northern Japanese C. yendoi sp. nov. (Corallinaceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2021; 57:1659-1672. [PMID: 34310713 DOI: 10.1111/jpy.13202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A partial rbcL sequence of the lectotype specimen of Corallina berteroi shows that it is the earliest available name for C. ferreyrae. Multilocus species delimitation analyses (ABGD, SPN, GMYC, bPTP, and BPP) using independent or concatenated COI, psbA, and rbcL sequences recognized one, two, or three species in this complex, but only with weak support for each species hypothesis. Conservatively, we recognize a single worldwide species in this complex of what appears to be multiple, evolving populations. Included in this species, besides C. ferreyrae, are C. caespitosa, the morphologically distinct C. melobesioides, and, based on a partial rbcL sequence of the holotype specimen, C. pinnatifolia. Corallina berteroi, not C. officinalis, is the cosmopolitan temperate species found thus far in the NE Atlantic, Mediterranean Sea, warm temperate NW Atlantic and NE Pacific, cold temperate SW Atlantic (Falkland Islands), cold and warm temperate SE Pacific, NW Pacific and southern Australia. Also proposed is C. yendoi sp. nov. from Hokkaido, Japan, which was recognized as distinct by 10 of the 13 species discrimination analyses, including the multilocus BPP.
Collapse
Affiliation(s)
- Martha S Calderon
- Laboratorio de Ecosistemas Marinos Antárticos y Sub-antárticos (LEMAS), Universidad de Magallanes, Punta Arenas, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| | - Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Peru
- Department of Civil and Environmental Engineering (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Peru
| | - Paul W Gabrielson
- Biology Department and Herbarium, Coker Hall CB 3280, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, 27599-3280, USA
| | - Patrick T Martone
- Botany Department & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Katharine R Hind
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
| | - Soren R Schipper
- Botany Department & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Andrés Mansilla
- Laboratorio de Ecosistemas Marinos Antárticos y Sub-antárticos (LEMAS), Universidad de Magallanes, Punta Arenas, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago, Chile
| |
Collapse
|
41
|
Burbrink FT, Ruane S. Contemporary Philosophy and Methods for Studying Speciation and Delimiting Species. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Frank T. Burbrink
- Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024; . Send reprint requests to this address
| | - Sara Ruane
- Earth and Environmental Sciences: Ecology and Evolution, Rutgers University–Newark, 195 University Avenue, Newark, New Jersey 07102
| |
Collapse
|
42
|
Ramírez-Portilla C, Baird AH, Cowman PF, Quattrini AM, Harii S, Sinniger F, Flot JF. Solving the Coral Species Delimitation Conundrum. Syst Biol 2021; 71:461-475. [PMID: 34542634 DOI: 10.1093/sysbio/syab077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
Distinguishing coral species is not only crucial for physiological, ecological and evolutionary studies, but also to enable effective management of threatened reef ecosystems. However, traditional hypotheses that delineate coral species based on morphological traits from the coral skeleton are frequently at odds with tree-based molecular approaches. Additionally, a dearth of species-level molecular markers has made species delimitation particularly challenging in species-rich coral genera, leading to the widespread assumption that inter-specific hybridization might be responsible for this apparent conundrum. Here, we used three lines of evidence - morphology, breeding trials and molecular approaches - to identify species boundaries in a group of ecologically important tabular Acropora corals. In contrast to previous studies, our morphological analyses yielded groups that were congruent with experimental crosses as well as with coalescent-based and allele sharing-based multilocus approaches to species delimitation. Our results suggest that species of the genus Acropora are reproductively isolated and independently evolving units that can be distinguished morphologically. These findings not only pave the way for a taxonomic revision of coral species, but also outline an approach that can provide a solid basis to address species delimitation and provide conservation support to a wide variety of keystone organisms.
Collapse
Affiliation(s)
- Catalina Ramírez-Portilla
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, B-1050, Belgium.,Systematics & Biodiversity, Justus-Liebig University, Giessen, D-35392, Germany
| | - Andrew H Baird
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Peter F Cowman
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, 20560, USA
| | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Frederic Sinniger
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, B-1050, Belgium.,Interuniversity Institute of Bioinformatics in Brussels - (IB)2, Brussels, B-1050, Belgium
| |
Collapse
|
43
|
Blackburn DC, Nielsen SV, Ghose SL, Burger M, Gonwouo LN, Greenbaum E, Gvoždík V, Hirschfeld M, Kouete MT, Kusamba C, Lawson D, McLaughlin PJ, Zassi-Boulou AG, Rödel MO. Phylogeny of African Long-Fingered Frogs (Arthroleptidae: Cardioglossa) Reveals Recent Allopatric Divergences in Coloration. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Sympatric and independently evolving lineages in the Thoropa miliaris - T. taophora species complex (Anura: Cycloramphidae). Mol Phylogenet Evol 2021; 166:107220. [PMID: 34481948 DOI: 10.1016/j.ympev.2021.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
Species delimitation can be challenging and affected by subjectivity. Sibling lineages that occur in sympatry constitute good candidates for species delimitation regardless of the adopted species concept. The Thoropa miliaris + T. taophora species complex exhibits high genetic diversity distributed in several lineages that occur sympatrically in the southeastern Atlantic Forest of Brazil. We used 414 loci obtained by anchored hybrid enrichment to characterize genetic variation in the Thoropa miliaris species group (T. saxatilis, T megatympanum, T. miliaris, and T. taophora), combining assignment analyses with traditional and coalescent phylogeny reconstruction. We also investigated evolutionary independence in co-occurring lineages by estimating gene flow, and validated lineages under the multispecies coalescent. We recovered most previously described lineages as unique populations in assignment analyses; exceptions include two lineages within T. miliaris that are further substructured, and the merging of all T. taophora lineages. We found very low probabilities of gene flow between sympatric lineages, suggesting independent evolution. Species tree inferences and species delimitation yielded resolved relationships and indicate that all lineages constitute putative species that diverged during the Pliocene and Pleistocene, later than previously estimated.
Collapse
|
45
|
De Lange R, Adamčík S, Adamčíkova K, Asselman P, Borovička J, Delgat L, Hampe F, Verbeken A. Enlightening the black and white: species delimitation and UNITE species hypothesis testing in the Russula albonigra species complex. IMA Fungus 2021; 12:20. [PMID: 34334127 PMCID: PMC8327428 DOI: 10.1186/s43008-021-00064-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
Russula albonigra is considered a well-known species, morphologically delimited by the context of the basidiomata blackening without intermediate reddening, and the menthol-cooling taste of the lamellae. It is supposed to have a broad ecological range and a large distribution area. A thorough molecular analysis based on four nuclear markers (ITS, LSU, RPB2 and TEF1-α) shows this traditional concept of R. albonigra s. lat. represents a species complex consisting of at least five European, three North American, and one Chinese species. Morphological study shows traditional characters used to delimit R. albonigra are not always reliable. Therefore, a new delimitation of the R. albonigra complex is proposed and a key to the described European species of R. subgen. Compactae is presented. A lectotype and an epitype are designated for R. albonigra and three new European species are described: R. ambusta, R. nigrifacta, and R. ustulata. Different thresholds of UNITE species hypotheses were tested against the taxonomic data. The distance threshold of 0.5% gives a perfect match to the phylogenetically defined species within the R. albonigra complex. Publicly available sequence data can contribute to species delimitation and increase our knowledge on ecology and distribution, but the pitfalls are short and low quality sequences.
Collapse
Affiliation(s)
- Ruben De Lange
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| | - Slavomír Adamčík
- Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia
| | - Katarína Adamčíkova
- Institute of Forest Ecology Slovak Academy of Sciences, Akademická 2, 949 01, Nitra, Slovakia
| | - Pieter Asselman
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Jan Borovička
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic.,Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, 250 68, Husinec-Řež, Czech Republic
| | - Lynn Delgat
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.,Meise Botanic Garden, Research Department, Nieuwelaan 38, 1860, Meise, Belgium
| | - Felix Hampe
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
46
|
MacGuigan DJ, Hoagstrom CW, Domisch S, Hulsey CD, Near TJ. Integrative ichthyological species delimitation in the Greenthroat Darter complex (Percidae: Etheostomatinae). ZOOL SCR 2021. [DOI: 10.1111/zsc.12504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Sami Domisch
- Department of Ecosystem Research Leibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - C. Darrin Hulsey
- Laboratory for Zoology and Evolutionary Biology Department of Biology University of Konstanz Konstanz Germany
| | - Thomas J. Near
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
- Peabody Museum of Natural History Yale University New Haven CT USA
| |
Collapse
|
47
|
Maggioni D, Garese A, Huang D, Hoeksema BW, Arrigoni R, Seveso D, Galli P, Berumen ML, Montalbetti E, Pica D, Torsani F, Montano S. Diversity, host specificity and biogeography in the Cladocorynidae (Hydrozoa, Capitata), with description of a new genus. Cladistics 2021; 38:13-37. [DOI: 10.1111/cla.12480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Davide Maggioni
- Department of Earth and Environmental Sciences (DISAT) University of Milano‐Bicocca Piazza della Scienza Milano 20126 Italy
- Marine Research and High Education (MaRHE) Center University of Milano‐Bicocca Faafu Magoodhoo Island 12030 Republic of Maldives
| | - Agustín Garese
- Instituto de Investigaciones Marinas y Costeras (IIMyC) Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata (UNMDP) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Mar del Plata 7600 Argentina
| | - Danwei Huang
- Department of Biological Sciences Tropical Marine Science Institute and Centre for Nature‐based Climate Solutions National University of Singapore Singapore 117558 Singapore
| | - Bert W. Hoeksema
- Taxonomy, Systematics and Geodiversity Group Naturalis Biodiversity Center Leiden 2300 RA The Netherlands
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen 9700 CC The Netherlands
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms (BEOM) Stazione Zoologica Anton Dohrn Villa Comunale Napoli 80121 Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT) University of Milano‐Bicocca Piazza della Scienza Milano 20126 Italy
- Marine Research and High Education (MaRHE) Center University of Milano‐Bicocca Faafu Magoodhoo Island 12030 Republic of Maldives
| | - Paolo Galli
- Department of Earth and Environmental Sciences (DISAT) University of Milano‐Bicocca Piazza della Scienza Milano 20126 Italy
- Marine Research and High Education (MaRHE) Center University of Milano‐Bicocca Faafu Magoodhoo Island 12030 Republic of Maldives
| | - Michael L. Berumen
- Red Sea Research Center Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT) University of Milano‐Bicocca Piazza della Scienza Milano 20126 Italy
- Marine Research and High Education (MaRHE) Center University of Milano‐Bicocca Faafu Magoodhoo Island 12030 Republic of Maldives
| | - Daniela Pica
- Department of Biological and Environmental Sciences and Technologies University of Salento Lecce 73100 Italy
- CoNISMa – Consorzio Nazionale Interuniversitario per le Scienze del Mare Roma 00196 Italy
| | - Fabrizio Torsani
- Department of Life and Environmental Sciences Polytechnic University of Marche Ancona 60131 Italy
| | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT) University of Milano‐Bicocca Piazza della Scienza Milano 20126 Italy
- Marine Research and High Education (MaRHE) Center University of Milano‐Bicocca Faafu Magoodhoo Island 12030 Republic of Maldives
| |
Collapse
|
48
|
Piñeiro R, Hardy OJ, Tovar C, Gopalakrishnan S, Garrett Vieira F, Gilbert MTP. Contrasting genetic signal of recolonization after rainforest fragmentation in African trees with different dispersal abilities. Proc Natl Acad Sci U S A 2021; 118:e2013979118. [PMID: 34210795 PMCID: PMC8271564 DOI: 10.1073/pnas.2013979118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although today the forest cover is continuous in Central Africa, this may have not always been the case, as the scarce fossil record in this region suggests that arid conditions might have significantly reduced tree density during the ice ages. Our aim was to investigate whether the dry ice age periods left a genetic signature on tree species that can be used to infer the date of the past fragmentation of the rainforest. We sequenced reduced representation libraries of 182 samples representing five widespread legume trees and seven outgroups. Phylogenetic analyses identified an early divergent lineage for all species in West Africa (Upper Guinea) and two clades in Central Africa: Lower Guinea-North and Lower Guinea-South. As the structure separating the Northern and Southern clades-congruent across species-cannot be explained by geographic barriers, we tested other hypotheses with demographic model testing using δαδι. The best estimates indicate that the two clades split between the Upper Pliocene and the Pleistocene, a date compatible with forest fragmentation driven by ice age climatic oscillations. Furthermore, we found remarkably older split dates for the shade-tolerant tree species with nonassisted seed dispersal than for light-demanding species with long-distance wind-dispersed seeds. Different recolonization abilities after recurrent cycles of forest fragmentation seem to explain why species with long-distance dispersal show more recent genetic admixture between the two clades than species with limited seed dispersal. Despite their old history, our results depict the African rainforests as a dynamic biome where tree species have expanded relatively recently after the last glaciation.
Collapse
Affiliation(s)
- Rosalía Piñeiro
- The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark;
- Unit of Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
- Geography, College of Life and Environmental Sciences, CLES, University of Exeter, Exeter EX4 4RJ, United Kingdom
| | - Olivier J Hardy
- Unit of Evolutionary Biology and Ecology, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Carolina Tovar
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3AB, United Kingdom
| | | | | | - M Thomas P Gilbert
- The GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
49
|
Quintero-Galvis JF, Saenz-Agudelo P, Celis-Diez JL, Amico GC, Vazquez S, Shafer ABA, Nespolo RF. The biogeography of Dromiciops in southern South America: Middle Miocene transgressions, speciation and associations with Nothofagus. Mol Phylogenet Evol 2021; 163:107234. [PMID: 34146676 DOI: 10.1016/j.ympev.2021.107234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/16/2023]
Abstract
The current distribution of the flora and fauna of southern South America is the result of drastic geological events that occurred during the last 20 million years, including marine transgressions, glaciations and active vulcanism. All these have been associated with fragmentation, isolation and subsequent expansion of the biota, south of 35°S, such as the temperate rainforest. This forest is mostly dominated by Nothofagus trees and is the habitat of the relict marsupial monito del monte, genus Dromiciops, sole survivor of the order Microbiotheria. Preliminary analyses using mtDNA proposed the existence of three main Dromiciops lineages, distributed latitudinally, whose divergence was initially attributed to recent Pleistocene glaciations. Using fossil-calibrated dating on nuclear and mitochondrial genes, here we reevaluate this hypothesis and report an older (Miocene) biogeographic history for the genus. We performed phylogenetic reconstructions using sequences from two mitochondrial DNA and four nuclear DNA genes in 159 specimens from 31 sites across Chile and Argentina. Our phylogenetic analysis resolved three main clades with discrete geographic distributions. The oldest and most differentiated clade corresponds to that of the northern distribution (35.2°S to 39.3°S), which should be considered a distinct species (D. bozinovici, sensu D'Elía et al. 2016). According to our estimations, this species shared a common ancestor with D. gliroides (southern clades) about ~13 million years ago. Divergence time estimates for the southern clades (39.6°S to 42.0°S) ranged from 9.57 to 6.5 Mya. A strong genetic structure was also detected within and between clades. Demographic analyses suggest population size stability for the northern clade (D. bozinovici), and recent demographic expansions for the central and southern clades. All together, our results suggest that the diversification of Dromiciops were initiated by the Middle Miocene transgression (MMT), the massive marine flooding that covered several lowlands of the western face of Los Andes between 37 and 48°S. The MMT resulted from an increase in global sea levels at the Miocene climatic optimum, which shaped the biogeographic origin of several species, including Nothofagus forests, the habitat of Dromiciops.
Collapse
Affiliation(s)
- Julian F Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Chile
| | - Pablo Saenz-Agudelo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Juan L Celis-Diez
- Pontificia Universidad Católica de Valparaíso Escuela de Agronomía Quillota, Chile
| | - Guillermo C Amico
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Soledad Vazquez
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Aaron B A Shafer
- Department of Forensic Science & Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile; Millenium Institute for Integrative Biology (iBio), Santiago, Chile.
| |
Collapse
|
50
|
Bustamante DE, Calderon MS, Leiva S, Mendoza JE, Arce M, Oliva M. Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia 2021; 113:1056-1072. [PMID: 34128770 DOI: 10.1080/00275514.2021.1917243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The hyperdiverse genus Trichoderma is one of most useful groups of microbes for a number of human activities, and their accurate identification is crucial. The structural simplicity and lack of distinctive phenotypic variation in this group enable the use of DNA-based species delimitation methods in combination with phylogenies (and morphology when feasible) to establish well-supported boundaries among species. Our study employed a multilocus phylogeny and four DNA-based methods (automated barcode gap discovery [ABGD], statistical parsimony [SPN], generalized mixed Yule coalescent [GMYC], and Bayesian phylogenetics and phylogeography [BPP]) for four molecular markers (acl1, act, rpb2, and tef1) to delimit species of two lineages of Trichoderma. Although incongruence among these methods was observed in our analyses, the genetic distance (ABGD) and coalescence (BPP) methods and the multilocus phylogeny strongly supported and confirmed recognition of 108 and 39 different species in the Harzianum and Longibrachiatum lineages, including three new species associated with cacao farms in northern Peru, namely, T.awajun, sp. nov., T. jaklitschii, sp. nov., and T. peruvianum, sp. nov. Morphological distinctions between the new species and their close relatives are primarily related to growth rates, colony appearance, and size of phialides and conidia. This study confirmed that an integrative approach (DNA-based methods, multilocus phylogeny, and phenotype) is more likely to reliably verify supported species boundaries in Trichoderma.
Collapse
Affiliation(s)
- Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.,Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Martha S Calderon
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.,Facultad de Ingeniería Civil y Ambiental, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Santos Leiva
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Jani E Mendoza
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Marielita Arce
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Manuel Oliva
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| |
Collapse
|