1
|
Yang Y, Wang Y, Campbell DE, Lee HW, Beatty W, Wang L, Baldridge M, López CB. SLC35A2 gene product modulates paramyxovirus fusion events during infection. PLoS Pathog 2025; 21:e1012531. [PMID: 39792924 PMCID: PMC11756793 DOI: 10.1371/journal.ppat.1012531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/23/2025] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. As expected, SLC35A1 knockout (KO) cells showed drastic reduction in infections with SeV, NDV and MuV due to the lack of cell surface sialic acids receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events for the different paramyxoviruses. While UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, UGT promoted the formation of syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yuchen Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Heng-Wei Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Megan Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Carolina B. López
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
2
|
Yang Y, Wang Y, Campbell DE, Lee HW, Wang L, Baldridge M, López CB. SLC35A2 modulates paramyxovirus fusion events during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609835. [PMID: 39253522 PMCID: PMC11382999 DOI: 10.1101/2024.08.27.609835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized GFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. SLC35A1 knockout (KO) cells showed significantly reduced binding and infection of SeV, NDV and MuV due to the lack of cell surface sialic acids, which act as their receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events during infection with different paramyxoviruses. While the UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, the UGT promoted the formation of larger syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that the UGT facilitates paramyxovirus fusion processes involved in entry and spread.
Collapse
Affiliation(s)
- Yanling Yang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuchen Wang
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Danielle E. Campbell
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Heng-Wei Lee
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Liu Y, Katoh H, Sekizuka T, Bae C, Wakata A, Kato F, Sakata M, Yamaji T, Wang Z, Takeda M. SNARE protein USE1 is involved in the glycosylation and the expression of mumps virus fusion protein and important for viral propagation. PLoS Pathog 2022; 18:e1010949. [PMID: 36480520 PMCID: PMC9731409 DOI: 10.1371/journal.ppat.1010949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Mumps virus (MuV) is the etiological agent of mumps, a disease characterized by painful swelling of the parotid glands and often accompanied by severe complications. To understand the molecular mechanism of MuV infection, a functional analysis of the involved host factors is required. However, little is known about the host factors involved in MuV infection, especially those involved in the late stage of infection. Here, we identified 638 host proteins that have close proximity to MuV glycoproteins, which are a major component of the viral particles, by proximity labeling and examined comprehensive protein-protein interaction networks of the host proteins. From siRNA screening and immunoprecipitation results, we found that a SNARE subfamily protein, USE1, bound specifically to the MuV fusion (F) protein and was important for MuV propagation. In addition, USE1 plays a role in complete N-linked glycosylation and expression of the MuV F protein.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hiroshi Katoh
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- * E-mail:
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Chaewon Bae
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Aika Wakata
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Fumihiro Kato
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masafumi Sakata
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Zhiyu Wang
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| |
Collapse
|
4
|
Fischer K, Topallar S, Kraatz F, Groschup MH, Diederich S. The role of N-linked glycosylation in proteolytic processing and cell surface transport of the Cedar virus fusion protein. Virol J 2022; 19:136. [PMID: 35999637 PMCID: PMC9400332 DOI: 10.1186/s12985-022-01864-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background N-linked glycans on viral glycoproteins have been shown to be important for protein expression, processing and intracellular transport. The fusion glycoprotein F of Cedar virus (CedV) contains six potential N-glycosylation sites. Findings To investigate their impact on cell surface transport, proteolytic cleavage and biological activity, we disrupted the consensus sequences by conservative mutations (Asn to Gln) and found that five of the six potential N-glycosylation sites are actually utilized. The individual removal of N-glycan g1 (N66), g2 (N79) and g3 (N98) in the CedV F2 subunit had no or only little effect on cell surface transport, proteolytic cleavage and fusion activity of CedV F. Interestingly, removal of N-linked glycan g6 (N463) in the F1 subunit resulted in reduced cell surface expression but slightly increased fusogenicity upon co-expression with the CedV receptor-binding protein G. Most prominent effects however were observed for the disruption of N-glycosylation motif g4 (N413), which significantly impaired the transport of CedV F to the cell surface, thereby also affecting proteolytic cleavage and fusion activity. Conclusions Our findings indicate that the individual N-linked modifications, with the exception of glycan g4, are dispensable for processing of CedV F protein in transfection experiments. However, removal of g4 led to a phenotype that was strongly impaired concerning cell surface expression and proteolytic activation.
Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01864-5.
Collapse
Affiliation(s)
- Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Selin Topallar
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Franziska Kraatz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
5
|
Structural characteristics of measles virus entry. Curr Opin Virol 2020; 41:52-58. [PMID: 32413678 DOI: 10.1016/j.coviro.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/30/2022]
Abstract
Measles virus, a member of the genus Morbillivirus, is highly contagious and still shows considerable mortality with over 100000 deaths annually, although efficient attenuated vaccines exist. Recent studies of measles virus haemagglutinin (MeV-H) and its receptor, including crystallographic and electron microscopic structural analyses combined with functional assays, have revealed how the MeV-H protein recognizes its cognate receptors, SLAM and Nectin-4, and how the glycan shield ensures effective vaccination. In addition, the crystal structure of the MeV-F protein indicated its similarity to those of other paramyxoviruses. Taking into account these data, several models of viral entry/membrane fusion of measles viruses and related paramyxoviruses have been proposed. Furthermore, anti-MeV-F inhibitors targeted to specific regions to inhibit MeV-F protein activation were reported, with potency for preventing MeV infection. The inhibitors targeted for entry events may potentially be applied to treatment of MeV-derived diseases, although escape mutations and drug profiles should be considered.
Collapse
|
6
|
Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology 2019; 29:2-21. [PMID: 29878112 PMCID: PMC6291800 DOI: 10.1093/glycob/cwy053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/29/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Glycosylation is a biologically important protein modification process by which a carbohydrate chain is enzymatically added to a protein at a specific amino acid residue. This process plays roles in many cellular functions, including intracellular trafficking, cell-cell signaling, protein folding and receptor binding. While glycosylation is a common host cell process, it is utilized by many pathogens as well. Protein glycosylation is widely employed by viruses for both host invasion and evasion of host immune responses. Thus better understanding of viral glycosylation functions has potential applications for improved antiviral therapeutic and vaccine development. Here, we summarize our current knowledge on the broad biological functions of glycans for the Mononegavirales, an order of enveloped negative-sense single-stranded RNA viruses of high medical importance that includes Ebola, rabies, measles and Nipah viruses. We discuss glycobiological findings by genera in alphabetical order within each of eight Mononegavirales families, namely, the bornaviruses, filoviruses, mymonaviruses, nyamiviruses, paramyxoviruses, pneumoviruses, rhabdoviruses and sunviruses.
Collapse
Affiliation(s)
- Victoria Ortega
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jacquelyn A Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Erik M Contreras
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ronald M Iorio
- Department of Microbiology and Physiological Systems and Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
8
|
Stone JA, Nicola AV, Baum LG, Aguilar HC. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family. PLoS Pathog 2016; 12:e1005445. [PMID: 26867212 PMCID: PMC4750917 DOI: 10.1371/journal.ppat.1005445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023] Open
Abstract
O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.
Collapse
Affiliation(s)
- Jacquelyn A. Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Anthony V. Nicola
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Linda G. Baum
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, United States of America
| | - Hector C. Aguilar
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
9
|
Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins. Cancer Gene Ther 2013; 20:109-16. [PMID: 23306608 PMCID: PMC3573219 DOI: 10.1038/cgt.2012.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antibody-mediated neutralization may interfere with the efficacy of measles virus (MV) oncolysis. To circumvent vector neutralization, we sought to exchange the envelope glycoproteins, hemagglutinin (H) and fusion (F), with those from the non-cross reactive Tupaia paramyxovirus (TPMV). To sustain efficient particle assembly, we generated hybrid glycoproteins with the MV cytoplasmic tails and the TPMV ectodomains. Hybrid F-proteins that partially retained fusion function, and hybrid H-proteins that retained fusion support activity, were generated. However, when used in combination, the hybrid proteins did not support membrane fusion. An alternative strategy was developed based on a hybrid F protein and a truncated H protein that supported cell-cell fusion. A hybrid virus expressing these two proteins was rescued, and was able to spread by cell fusion, however was only capable of producing minimal amounts of particles. Lack of specific interactions between the matrix and the H-protein, in combination with sub-optimal F-protein processing and inefficient glycoprotein transport in the rescue cells, accounted for inefficient particle production. Ultimately, this interferes with applications for oncolytic virotherapy. Alternative strategies for the generation of shielded MV are discussed.
Collapse
|
10
|
Membrane fusion-mediated autophagy induction enhances morbillivirus cell-to-cell spread. J Virol 2012; 86:8527-35. [PMID: 22647692 DOI: 10.1128/jvi.00807-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the context of viral infections, autophagy induction can be beneficial or inhibitory. Within the Paramyxoviridae family, only morbilliviruses have been investigated and are reported to induce autophagy. Here we show that morbilliviruses rapidly induce autophagy and require this induction for efficient cell-to-cell spread. Coexpression of both glycoproteins in cells expressing one of the cellular receptors was required for autophagy induction, and LC3 punctum formation, indicative of autophagy, was mainly observed in syncytia. A similar correlation between syncytium formation and autophagy induction was also observed for other paramyxovirus glycoproteins, suggesting that membrane fusion-mediated autophagy may be common among paramyxoviruses and possibly other enveloped viruses.
Collapse
|
11
|
Live-cell visualization of transmembrane protein oligomerization and membrane fusion using two-fragment haptoEGFP methodology. Biosci Rep 2012; 32:333-43. [DOI: 10.1042/bsr20110100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein interactions play key roles throughout all subcellular compartments. In the present paper, we report the visualization of protein interactions throughout living mammalian cells using two oligomerizing MV (measles virus) transmembrane glycoproteins, the H (haemagglutinin) and the F (fusion) glycoproteins, which mediate MV entry into permissive cells. BiFC (bimolecular fluorescence complementation) has been used to examine the dimerization of these viral glycoproteins. The H glycoprotein is a type II membrane-receptor-binding homodimeric glycoprotein and the F glycoprotein is a type I disulfide-linked membrane glycoprotein which homotrimerizes. Together they co-operate to allow the enveloped virus to enter a cell by fusing the viral and cellular membranes. We generated a pair of chimaeric H glycoproteins linked to complementary fragments of EGFP (enhanced green fluorescent protein) – haptoEGFPs – which, on association, generate fluorescence. Homodimerization of H glycoproteins specifically drives this association, leading to the generation of a fluorescent signal in the ER (endoplasmic reticulum), the Golgi and at the plasma membrane. Similarly, the generation of a pair of corresponding F glycoprotein–haptoEGFP chimaeras also produced a comparable fluorescent signal. Co-expression of H and F glycoprotein chimaeras linked to complementary haptoEGFPs led to the formation of fluorescent fusion complexes at the cell surface which retained their biological activity as evidenced by cell-to-cell fusion.
Collapse
|
12
|
Abstract
Nipah (NiV) and Hendra (HeV) viruses cause cell-cell fusion (syncytia) in brain, lung, heart, and kidney tissues, leading to encephalitis, pneumonia, and often death. Membrane fusion is essential to both viral entry and virus-induced cell-cell fusion, a hallmark of henipavirus infections. Elucidiation of the mechanism(s) of membrane fusion is critical to understanding henipavirus pathobiology and has the potential to identify novel strategies for the development of antiviral therapeutic agents. Henipavirus membrane fusion requires the coordinated actions of the viral attachment (G) and fusion (F) glycoproteins. Current henipavirus fusion models posit that attachment of NiV or HeV G to its cell surface receptors releases F from its metastable pre-fusion conformation to mediate membrane fusion. The identification of ephrinB2 and ephrinB3 as henipavirus receptors has paved the way for recent advances in our understanding of henipavirus membrane fusion. These advances highlight mechanistic similarities and differences between membrane fusion for the henipavirus and other genera within the Paramyxoviridae family. Here, we review these mechanisms and the current gaps in our knowledge in the field.
Collapse
Affiliation(s)
- Hector C Aguilar
- Department of Veterinary Microbiology and Pathology, Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7010, USA.
| | | |
Collapse
|
13
|
Canine distemper viruses expressing a hemagglutinin without N-glycans lose virulence but retain immunosuppression. J Virol 2009; 84:2753-61. [PMID: 20042514 DOI: 10.1128/jvi.01813-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paramyxovirus glycoproteins are posttranslationally modified by the addition of N-linked glycans, which are often necessary for correct folding, processing, and cell surface expression. To establish the contribution of N glycosylation to morbillivirus attachment (H) protein function and overall virulence, we first determined the use of the potential N-glycosylation sites in the canine distemper virus (CDV) H proteins. Biochemical characterization revealed that the three sites conserved in all strains were N glycosylated, whereas only two of the up to five additional sites present in wild-type strains are used. A wild-type virus with an H protein reproducing the vaccine strain N-glycosylation pattern remained lethal in ferrets but with a prolonged course of disease. In contrast, introduction of the vaccine H protein in the wild-type context resulted in complete attenuation. To further characterize the role of N glycosylation in CDV pathogenesis, the N-glycosylation sites of wild-type H proteins were successively deleted, including a nonstandard site, to ultimately generate a nonglycosylated H protein. Despite reduced expression levels, this protein remained fully functional. Recombinant viruses expressing N-glycan-deficient H proteins no longer caused disease, even though their immunosuppressive capacities were retained, indicating that reduced N glycosylation contributes to attenuation without affecting immunosuppression.
Collapse
|
14
|
Griffin DE, Oldstone MBA. Measles virus glycoprotein complex assembly, receptor attachment, and cell entry. Curr Top Microbiol Immunol 2009; 329:59-76. [PMID: 19198562 PMCID: PMC7121846 DOI: 10.1007/978-3-540-70523-9_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Measles virus (MV) enters cells by membrane fusion at the cell surface at neutral pH. Two glycoproteins mediate this process: the hemagglutinin (H) and fusion (F) proteins. The H-protein binds to receptors, while the F-protein mediates fusion of the viral and cellular membranes. H naturally interacts with at least three different receptors. The wild-type virus primarily uses the signaling lymphocyte activation molecule (SLAM, CD150) expressed on certain lymphatic cells, while the vaccine strain has gained the ability to also use the ubiquitous membrane cofactor protein (MCP, CD46), a regulator of complement activation. Additionally, MV infects polarized epithelial cells through an unidentified receptor (EpR). The footprints of the three receptors on H have been characterized, and the focus of research is shifting to the characterization of receptor-specific conformational changes that occur in the H-protein dimer and how these are transmitted to the F-protein trimer. It was also shown that MV attachment and cell entry can be readily targeted to designated receptors by adding specificity determinants to the H-protein. These studies have contributed to our understanding of membrane fusion by the glycoprotein complex of paramyxoviruses in general.
Collapse
Affiliation(s)
- Diane E. Griffin
- Department of Molecular Microbiology, Johns Hopkins University School of Hygiene and Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037 USA
| |
Collapse
|
15
|
Ghannam A, Hammache D, Matias C, Louwagie M, Garin J, Gerlier D. High-density rafts preferentially host the complement activator measles virus F glycoprotein but not the regulators of complement activation. Mol Immunol 2008; 45:3036-44. [DOI: 10.1016/j.molimm.2008.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/26/2008] [Indexed: 12/22/2022]
|
16
|
Aguilar HC, Matreyek KA, Filone CM, Hashimi ST, Levroney EL, Negrete OA, Bertolotti-Ciarlet A, Choi DY, McHardy I, Fulcher JA, Su SV, Wolf MC, Kohatsu L, Baum LG, Lee B. N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J Virol 2006; 80:4878-89. [PMID: 16641279 PMCID: PMC1472062 DOI: 10.1128/jvi.80.10.4878-4889.2006] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV) is a deadly emerging paramyxovirus. The NiV attachment (NiV-G) and fusion (NiV-F) envelope glycoproteins mediate both syncytium formation and viral entry. Specific N-glycans on paramyxovirus fusion proteins are generally required for proper conformational integrity and biological function. However, removal of individual N-glycans on NiV-F had little negative effect on processing or fusogenicity and has even resulted in slightly increased fusogenicity. Here, we report that in both syncytium formation and viral entry assays, removal of multiple N-glycans on NiV-F resulted in marked increases in fusogenicity (>5-fold) but also resulted in increased sensitivity to neutralization by NiV-F-specific antisera. The mechanism underlying the hyperfusogenicity of these NiV-F N-glycan mutants is likely due to more-robust six-helix bundle formation, as these mutants showed increased fusion kinetics and were more resistant to neutralization by a fusion-inhibitory reagent based on the C-terminal heptad repeat region of NiV-F. Finally, we demonstrate that the fusogenicities of the NiV-F N-glycan mutants were inversely correlated with the relative avidities of NiV-F's interactions with NiV-G, providing support for the attachment protein "displacement" model of paramyxovirus fusion. Our results indicate that N-glycans on NiV-F protect NiV from antibody neutralization, suggest that this "shielding" role comes together with limiting cell-cell fusion and viral entry efficiencies, and point to the mechanisms underlying the hyperfusogenicity of these N-glycan mutants. These features underscore the varied roles that N-glycans on NiV-F play in the pathobiology of NiV entry but also shed light on the general mechanisms of paramyxovirus fusion with host cells.
Collapse
Affiliation(s)
- Hector C Aguilar
- Department of MIMG, David Geffen Schoo; of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Eichler R, Lenz O, Garten W, Strecker T. The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virol J 2006; 3:41. [PMID: 16737539 PMCID: PMC1524727 DOI: 10.1186/1743-422x-3-41] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/31/2006] [Indexed: 11/15/2022] Open
Abstract
Lassa virus glycoprotein is synthesised as a precursor (preGP-C) into the lumen of the endoplasmic reticulum. After cotranslational cleavage of the signal peptide, the immature GP-C is posttranslationally processed into the N-terminal subunit GP-1 and the C-terminal subunit GP-2 by the host cell subtilase SKI-1/S1P. The glycoprotein precursor contains eleven potential N-glycosylation sites. In this report, we investigated the effect of each N-glycan on proteolytic cleavage and cell surface transport by disrupting the consensus sequences of eleven potential N-glycan attachment sites individually. Five glycoprotein mutants with disrupted N-glycosylation sites were still proteolytically processed, whereas the remaining N-glycosylation sites are necessary for GP-C cleavage. Despite the lack of proteolytic processing, all cleavage-defective mutants were transported to the cell surface and remained completely endo H-sensitive. The findings indicate that N-glycans are needed for correct conformation of GP-C in order to be cleaved by SKI-1/S1P.
Collapse
Affiliation(s)
- Robert Eichler
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
- Abbott GmbH & Co KG, Max-Planck-Ring 2, 65205 Wiesbaden, Germany
| | - Oliver Lenz
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
- Tibotec BVBA, Gen De Wittelaan L 11B 3, 2800 Mechelen, Belgium
| | - Wolfgang Garten
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
| | - Thomas Strecker
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 3, 35037 Marburg, Germany
| |
Collapse
|
18
|
Moll M, Kaufmann A, Maisner A. Influence of N-glycans on processing and biological activity of the nipah virus fusion protein. J Virol 2004; 78:7274-8. [PMID: 15194804 PMCID: PMC421684 DOI: 10.1128/jvi.78.13.7274-7278.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV), a new member of the Paramyxoviridae, codes for a fusion (F) protein with five potential N-glycosylation sites. Because glycans are known to be important structural components affecting the conformation and function of viral glycoproteins, we analyzed the effect of the deletion of N-linked oligosaccharides on cell surface transport, proteolytic cleavage, and the biological activity of the NiV F protein. Each of the five potential glycosylation sites was removed either individually or in combination, revealing that four sites are actually utilized (g2 and g3 in the F(2) subunit and g4 and g5 in the F(1) subunit). While the removal of g2 and/or g3 had no or little effect on cleavage, surface transport, and fusion activity, the elimination of g4 or g5 reduced the surface expression by more than 80%. Similar to a mutant lacking all N-glycans, g4 deletion mutants in which the potential glycosylation site was destroyed by introducing a glycine residue were neither cleaved nor transported to the cell surface and consequently were not able to mediate cell-to-cell fusion. This finding indicates that in the absence of g4, the amino acid sequence around position 414 is important for folding and transport.
Collapse
Affiliation(s)
- Markus Moll
- Institut fur Virologie, Philipps University of Marburg, Germany
| | | | | |
Collapse
|
19
|
von Messling V, Cattaneo R. N-linked glycans with similar location in the fusion protein head modulate paramyxovirus fusion. J Virol 2003; 77:10202-12. [PMID: 12970405 PMCID: PMC228470 DOI: 10.1128/jvi.77.19.10202-10212.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-linked glycans not only orchestrate the folding and intracellular transport of viral glycoproteins but also modulate their function. We have characterized the three glycans attached to fusion (F) proteins of the morbilliviruses canine distemper virus and measles virus. The individual Morbillivirus glycans have similar functional properties: the glycan at position 68 is essential for protein transport, and those at positions 36 and 75 modulate fusion (numbering according to the Newcastle disease virus [NDV] F protein sequence). Based on the crystal structure of the NDV F protein, we then predicted the locations of the Morbillivirus glycans: the glycan at position 36 is located in the F protein head, and those at positions 68 and 75 are located near the neck-stalk interface. NDV position 36 is not occupied by a glycan; the only glycan in that F protein head also has a fusion control function and grows from residue 366, located only 6 A from residue 36. We then exchanged the glycan at position 36 with the glycan at position 366 and showed functional complementation. Thus, structural information about the F proteins of Paramyxoviridae coupled with functional analysis disclosed a location in the protein head into which fusion-modulating glycans independently evolved.
Collapse
|
20
|
Woelk CH, Pybus OG, Jin L, Brown DWG, Holmes EC. Increased positive selection pressure in persistent (SSPE) versus acute measles virus infections. J Gen Virol 2002; 83:1419-1430. [PMID: 12029157 DOI: 10.1099/0022-1317-83-6-1419] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We compared the extent of positive selection acting on acute and persistent strains of measles virus (MV). Far stronger positive selection was found in the fusion (F) and haemagglutinin (H) genes from subacute sclerosing panencephalitis (SSPE) compared to acute MV cases. Most of the positively selected sites identified in these surface glycoprotein genes from SSPE cases correspond to structural, functional or antigenic areas, and could not be explained by the effects of cell passaging. The correlations between selected sites and functional studies of MV are discussed in detail with reference to the maintenance of persistent infection. No positive selection was found in the matrix (M) gene from acute cases of MV and the effects of including hypermutated SSPE M gene sequences in phylogenetic inference were also explored. Finally, using H gene data, we estimated the rate of molecular evolution for SSPE strains as 3.4 x 10(-4) substitutions/site/year, which is similar to previous estimates obtained for acute strains.
Collapse
Affiliation(s)
- Christopher H Woelk
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK1
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK1
| | - Li Jin
- Enteric, Respiratory and Neurological Virus Laboratory, Central Public Health Laboratory, London NW9 5HT, UK2
| | - David W G Brown
- Enteric, Respiratory and Neurological Virus Laboratory, Central Public Health Laboratory, London NW9 5HT, UK2
| | - Edward C Holmes
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK1
| |
Collapse
|
21
|
Plemper RK, Hammond AL, Cattaneo R. Measles virus envelope glycoproteins hetero-oligomerize in the endoplasmic reticulum. J Biol Chem 2001; 276:44239-46. [PMID: 11535597 DOI: 10.1074/jbc.m105967200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) was investigated as the initial oligomerization site for the envelope glycoproteins H and F of measles virus (MV), a clinically relevant member of the Paramyxoviridae family, and consequences of this interaction for viral replication were studied. Both proteins were tagged at their cytosolic tails with RRR and KKXX motifs, respectively, resulting in their efficient retention in the ER. Co-transfection of the retained constructs with transport competent MV glycoproteins revealed a dominant negative effect on their biological activity indicating intracellular complex formation and thus retention. Pulse-chase analysis and co-immunoprecipitation experiments demonstrated that this effect is based on both homo- and hetero-oligomerization in the ER. Recombinant viruses additionally expressing ER-retained F showed an altered cytopathic phenotype accompanied by greatly reduced particle release. Similar mutant viruses additionally expressing ER-retained H could not be rescued indicating an even greater negative effect of this protein on virus viability. Our study suggests that both homo- and hetero-oligomerization of MV glycoproteins occur in the ER and that these events are of significance for early steps of particle assembly.
Collapse
Affiliation(s)
- R K Plemper
- Molecular Medicine Program, Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
22
|
McGinnes L, Sergel T, Reitter J, Morrison T. Carbohydrate modifications of the NDV fusion protein heptad repeat domains influence maturation and fusion activity. Virology 2001; 283:332-42. [PMID: 11336558 DOI: 10.1006/viro.2001.0899] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amino acid sequence of the fusion protein (F) of Newcastle disease virus (NDV) has six potential N-linked glycosylation addition sites, five in the ectodomain (at amino acids 85, 191, 366, 447, and 471) and one in the cytoplasmic domain at amino acid 542. Two of these sites, at positions 191 and 471, are within heptad repeat (HR) domains implicated in fusion activity of the protein. To determine glycosylation site usage as well as the function of added carbohydrate, each site was mutated by substituting alanine for the serine or threonine in the addition signal. The sizes of the resulting mutant proteins, expressed in Cos cells, showed that sites at amino acids 85, 191, 366, and 471 are used. This conclusion was verified by comparing sizes of mutant proteins missing all four used sites with that of unglycosylated F protein. The role of each added oligosaccharide in the structure and function of the F protein was determined by characterizing stability, proteolytic cleavage, surface expression, and fusion activity of the mutant proteins. Elimination of the site in F(2) at amino acid 85 had the most detrimental effect, decreasing cleavage, stability, and surface expression as well as fusion activity. The protein missing the site at 191, at the carboxyl terminus of the HR1 domain, also showed modestly reduced surface expression and negligible fusion activity. Proteins missing sites at 366 and 471 (within HR2) were expressed at nearly wild-type levels but had decreased fusion activity. These results suggest that all carbohydrate side chains, individually, influence the folding or activity of the NDV F protein. Importantly, carbohydrate modifications of the HR domains impact fusion activity of the protein.
Collapse
Affiliation(s)
- L McGinnes
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
23
|
Zimmer G, Trotz I, Herrler G. N-glycans of F protein differentially affect fusion activity of human respiratory syncytial virus. J Virol 2001; 75:4744-51. [PMID: 11312346 PMCID: PMC114229 DOI: 10.1128/jvi.75.10.4744-4751.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human respiratory syncytial virus (Long strain) fusion protein contains six potential N-glycosylation sites: N27, N70, N116, N120, N126, and N500. Site-directed mutagenesis of these positions revealed that the mature fusion protein contains three N-linked oligosaccharides, attached to N27, N70, and N500. By introducing these mutations into the F gene in different combinations, four more mutants were generated. All mutants, including a triple mutant devoid of any N-linked oligosaccharide, were efficiently transported to the plasma membrane, as determined by flow cytometry and cell surface biotinylation. None of the glycosylation mutations interfered with proteolytic activation of the fusion protein. Despite similar levels of cell surface expression, the glycosylation mutants affected fusion activity in different ways. While the N27Q mutation did not have an effect on syncytium formation, loss of the N70-glycan caused a fusion activity increase of 40%. Elimination of both N-glycans (N27/70Q mutant) reduced the fusion activity by about 50%. A more pronounced reduction of the fusion activity of about 90% was observed with the mutants N500Q, N27/500Q, and N70/500Q. Almost no fusion activity was detected with the triple mutant N27/70/500Q. These data indicate that N-glycosylation of the F2 subunit at N27 and N70 is of minor importance for the fusion activity of the F protein. The single N-glycan of the F1 subunit attached to N500, however, is required for efficient syncytium formation.
Collapse
Affiliation(s)
- G Zimmer
- Institut für Virologie, Tierärztliche Hochschule Hannover, D-30559 Hannover, Germany
| | | | | |
Collapse
|
24
|
Weidmann A, Maisner A, Garten W, Seufert M, ter Meulen V, Schneider-Schaulies S. Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immunosuppression in vitro. J Virol 2000; 74:1985-93. [PMID: 10644371 PMCID: PMC111676 DOI: 10.1128/jvi.74.4.1985-1993.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/1999] [Accepted: 11/22/1999] [Indexed: 11/20/2022] Open
Abstract
Immunosuppression induced by measles virus (MV) is associated with unresponsiveness of peripheral blood lymphocytes (PBL) to mitogenic stimulation ex vivo and in vitro. In mixed lymphocyte cultures and in an experimental animal model, the expression of the MV glycoproteins on the surface of UV-inactivated MV particles, MV-infected cells, or cells transfected to coexpress the MV fusion (F) and the hemagglutinin (H) proteins was found to be necessary and sufficient for this phenomenon. We now show that MV fusion-inhibitory peptides do not interfere with the induction of immunosuppression in vitro, indicating that MV F-H-mediated fusion is essentially not involved in this process. Proteolytic cleavage of MV F(0) protein by cellular proteases, such as furin, into the F(1)-F(2) subunits is, however, an absolute requirement, since (i) the inhibitory activity of MV-infected BJAB cells was significantly impaired in the presence of a furin-inhibitory peptide and (ii) cells expressing or viruses containing uncleaved F(0) proteins revealed a strongly reduced inhibitory activity which was improved following trypsin treatment. The low inhibitory activity of effector structures containing mainly F(0) proteins was not due to an impaired F(0)-H interaction, since both surface expression and cocapping efficiencies were similar to those found with the authentic MV F and H proteins. These results indicate that the fusogenic activity of the MV F-H complexes can be uncoupled from their immunosuppressive activity and that the immunosuppressive domains of these proteins are exposed only after proteolytic activation of the MV F(0) protein.
Collapse
Affiliation(s)
- A Weidmann
- Institute for Virology and Immunobiology, University of W]urzburg, D-97078 W]urzburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Manié SN, de Breyne S, Debreyne S, Vincent S, Gerlier D. Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 2000; 74:305-11. [PMID: 10590118 PMCID: PMC111540 DOI: 10.1128/jvi.74.1.305-311.2000] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of measles virus (MV) assembly and subsequent budding is thought to occur in localized regions of the plasma membrane, to favor specific incorporation of viral components, and to facilitate the exclusion of host proteins. We demonstrate that during the course of virus replication, a significant proportion of MV structural proteins were selectively enriched in the detergent-resistant glycosphingolipids and cholesterol-rich membranes (rafts). Isolated rafts could infect the cell through a membrane fusion step and thus contained all of the components required to create a functional virion. However, they could be distinguished from the mature virions with regards to density and Triton X-100 resistance behavior. We further show that raft localization of the viral internal nucleoprotein and matrix protein was independent of the envelope glycoproteins, indicating that raft membranes could provide a platform for MV assembly. Finally, at least part of the raft MV components were included in the viral particle during the budding process. Taken together, these results strongly suggest a role for raft membranes in the processes of MV assembly and budding.
Collapse
Affiliation(s)
- S N Manié
- Immunité et Infections Virales, IVMC, CNRS-UCBL UMR5537, 69372 Lyon Cedex 08, France.
| | | | | | | | | |
Collapse
|
26
|
Bolt G, Pedersen IR, Blixenkrone-Møller M. Processing of N-linked oligosaccharides on the measles virus glycoproteins: importance for antigenicity and for production of infectious virus particles. Virus Res 1999; 61:43-51. [PMID: 10426208 DOI: 10.1016/s0168-1702(99)00025-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The envelope of measles virus (MV) particles contains two viral glycoproteins, the haemagglutinin (H) and the fusion (F) protein, which together induce the entry of MV into cells. In the present study, we investigated the role of oligosaccharide processing for the function and antigenicity of the MV glycoproteins by means of glycosidase inhibitors. Golgi alpha-mannosidase inhibitors (1-deoxymannojirimycin and swainsonine) prevented the oligosaccharides on the MV glycoproteins from obtaining Endo H resistance, but that did not appear to influence in vitro MV infections, indicating that conversion of oligosaccharide chains into the complex form was not required for the function of the MV glycoproteins. The alpha-glucosidase inhibitor castanospermine (CSP) quantitatively reduced the production of infectious MV particles in cells infected with both vaccine strain and wild-type MV. CSP reduced the detection of the MV F protein by certain monoclonal antibodies (MAbs) that appeared to recognize nonlinear epitopes. CSP also inhibited syncytium formation in MV infected cells, but did not affect MV induced CD46 downregulation, suggesting that CSP primarily influenced the F protein. We propose that CSP induces aberrant folding of MV glycoproteins in a manner that influences their function and antigenicity.
Collapse
Affiliation(s)
- G Bolt
- Department of Medical Microbiology and Immunology, Panum Institute, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
27
|
Bouche F, Ammerlaan W, Fournier P, Schneider F, Muller CP. A simplified immunoassay based on measles virus recombinant hemagglutinin protein for testing the immune status of vaccinees. J Virol Methods 1998; 74:77-87. [PMID: 9763131 DOI: 10.1016/s0166-0934(98)00073-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Simplified tests based on recombinant antigens are considered to be important for monitoring immunity against measles virus (MV). The hemagglutinin protein (H) is the main target for neutralising and protective antibodies. We produced a recombinant MV-H protein, in a high-yield mammalian expression system based on the Semliki Forest virus replicon. The antigenicity of this recombinant protein was investigated with monoclonal antibodies and its suitability for measuring the immune status of vaccinees was tested in a large cohort by ELISA (H-ELISA). The results were evaluated against neutralisation (NT) and hemagglutination inhibition (HI) titers and MV-specific IgG measured in a commercial whole-virus based ELISA (MV-ELISA, Enzygnost). The H-ELISA correlated better with HI (r=0.78) and NT titers (r=0.80), than the MV-ELISA (HI, r=0.58; NT, r=0.59). In contrast to the MV-ELISA, the H-ELISA detected no false-positive sera (P < 0.02) and the number of false-negative sera was significantly lower in the H-ELISA than in the MV-ELISA (4/378 vs. 15/378; P < 0.025). The performance of the H-ELISA did not deteriorate significantly when, instead of background corrected net values, uncorrected raw O.D. values of the H-antigen were considered, or when early time points (30 min) were evaluated. These results demonstrate that the recombinant H-ELISA detects efficiently non-immune individuals among vaccinees, despite their relatively low MV-antibody levels. A simplified format with single value measurements did not result in loss of sensitivity or specificity and its performance compared favorably with commercial ELISAs based on whole virus.
Collapse
Affiliation(s)
- F Bouche
- Department of Immunology, Laboratoire National de Santé, Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
28
|
O'Conner SE, Imperiali B. A molecular basis for glycosylation-induced conformational switching. CHEMISTRY & BIOLOGY 1998; 5:427-37. [PMID: 9710565 DOI: 10.1016/s1074-5521(98)90159-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Asparagine-linked glycosylation has the capacity to greatly influence the structure and function of glycoproteins. In most cases, however, it is unclear specifically how the carbohydrate moiety interacts with the protein to influence its conformation. RESULTS A series of glycosylation based on the critical A285 glycosylation site of the hemagglutinin glycoprotein from influenza from influenza virus was used as a model system to study the effects of asparagine-linked glycosylation. Derivatization of this peptide with a family of short carbohydrates reveals that subtle changes in the structure of the carbohydrate have a dramatic impact on peptide conformation. Modification of the hemagglutinin glycopeptide with a truncated version of the native carbohydrate induces a beta-turn structure similar to the structure found in the native protein. Replacement of the C2 and C2' N-acetyl groups of the carbohydrates with hydroxyl moieties results in a less well-ordered peptide conformation. CONCLUSIONS It is likely that the N-acetyl groups of the carbohydrates have a critical role in promoting the more compact beta-turn conformation through steric interactions with the peptide. This study has demonstrated that relatively small changes in carbohydrate composition can have dramatic ramifications on glycopeptide conformation.
Collapse
Affiliation(s)
- S E O'Conner
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
29
|
Bouche F, Ammerlaan W, Berthet F, Houard S, Schneider F, Muller CP. Immunosorbent assay based on recombinant hemagglutinin protein produced in a high-efficiency mammalian expression system for surveillance of measles immunity. J Clin Microbiol 1998; 36:721-6. [PMID: 9508302 PMCID: PMC104615 DOI: 10.1128/jcm.36.3.721-726.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recombinant hemagglutinin (H) protein of the measles virus (MV) was produced in mammalian cells with a high-yield expression system based on the Semliki Forest virus replicon. Crude membrane preparations of H protein-transfected BHK-21 cells were used to coat microtiter plates to measure specific immunoglobulin G antibodies in 228 serologically defined serum samples mainly from measles late-convalescent adults. The titers by the enzyme-linked immunosorbent assay for the H protein (H-ELISA) closely correlated with neutralization test (NT) titers (R2 = 0.66), hemagglutination inhibition test (HI) titers (R2 = 0.64), with the titers from a certified commercial ELISA based on whole MV-infected cells (MV-ELISA; R2 = 0.45). The correlations described above were better than those of the commercial MV-ELISA titers with the NT (R2 = 0.52) or HI (R2 = 0.48) titers. By using the 2nd International Standard for anti-measles serum, the detection level of the assay corresponds to 215 mIU/ml for undiluted serum, which corresponds to the estimated threshold for protective immunity. The specificity, accuracy, and positive predictive value were, in general, better for the H-ELISA than for a commercial MV-ELISA, independent of whether HI, NT, or HI and NT were used as "gold standards." In contrast, the H-ELISA proved to be slightly less sensitive than the MV-ELISA (sensitivities, 98.6 versus 99.5%, respectively; P was not significant). The assays did not differ significantly in the number of serum samples with positive HI and NT results (n = 212) which measured false negative (H-ELISA, 2 of 212 [0.94%]; MV-ELISA, 1 of 212 [0.47%]), but the H-ELISA detected significantly more measles-susceptible individuals than the MV-ELISA (10 of 11 versus 3 of 11, respectively; P < 0.05) among the individuals whose sera had negative HI and NT results. Our data demonstrate that the H-protein preparation that we describe could be a cost-effective alternative to current whole-virus-based ELISAs for surveillance for immunity to measles and that such an assay could be more efficient in detecting susceptibility to measles. Furthermore, unlike whole MV-based antigens, H-protein would also be suitable for use in the development of a simple field test for the diagnosis of measles.
Collapse
Affiliation(s)
- F Bouche
- Laboratoire National de Santé, Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|
30
|
Spielhofer P, Bächi T, Fehr T, Christiansen G, Cattaneo R, Kaelin K, Billeter MA, Naim HY. Chimeric measles viruses with a foreign envelope. J Virol 1998; 72:2150-9. [PMID: 9499071 PMCID: PMC109510 DOI: 10.1128/jvi.72.3.2150-2159.1998] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/1997] [Accepted: 11/14/1997] [Indexed: 02/06/2023] Open
Abstract
Measles virus (MV) and vesicular stomatitis virus (VSV) are both members of the Mononegavirales but are only distantly related. We generated two genetically stable chimeric viruses. In MGV, the reading frames of the MV envelope glycoproteins H and F were substituted by a single reading frame encoding the VSV G glycoprotein; MG/FV is similar but encodes a G/F hybrid in which the VSV G cytoplasmic tail was replaced by that of MV F. In contrast to MG/FV, MGV virions do not contain the MV matrix (M) protein. This demonstrates that virus assembly is possible in the absence of M; conversely, the cytoplasmic domain of F allows incorporation of M and enhances assembly. The formation of chimeric viruses was substantially delayed and the titers obtained were reduced about 50-fold in comparison to standard MV. In the novel chimeras, transcription and replication are mediated by the MV ribonucleoproteins but the envelope glycoproteins dictate the host range. Mice immunized with the chimeric viruses were protected against lethal doses of wild-type VSV. These findings suggest that it is feasible to construct MV variants bearing a variety of different envelopes for use as vaccines or for gene therapeutic purposes.
Collapse
Affiliation(s)
- P Spielhofer
- Institute of Molecular Biology Division I, University of Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cathomen T, Naim HY, Cattaneo R. Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 1998; 72:1224-34. [PMID: 9445022 PMCID: PMC124600 DOI: 10.1128/jvi.72.2.1224-1234.1998] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1997] [Accepted: 10/16/1997] [Indexed: 02/05/2023] Open
Abstract
The cytoplasmic tail of the measles virus (MV) fusion (F) protein is often altered in viruses which spread through the brain of patients suffering from subacute sclerosing panencephalitis (SSPE). We transferred the coding regions of F tails from SSPE viruses in an MV genomic cDNA. Similarly, we constructed and transferred mutated tail-encoding regions of the other viral glycoprotein hemagglutinin (H) gene. From the mutated genomic cDNAs, we achieved rescue of viruses that harbor different alterations of the F tail, deletions in the membrane-distal half of the H tail, and combinations of these mutations. Viruses with alterations in any of the tails spread rapidly through the monolayer via enhanced cell-cell fusion. Double-tail mutants had even higher fusion competence but slightly decreased infectivity. Analysis of the protein composition of released mutant viral particles indicated that the tails are necessary for accurate virus envelope assembly and suggested a direct F tail-matrix (M) protein interaction. Since even tail-altered glycoproteins colocalized with M protein in intracellular patches, additional interactions may exist. We conclude that in MV infections, including SSPE, the glycoprotein tails are involved not only in virus envelope assembly but also in the control of virus-induced cell fusion.
Collapse
Affiliation(s)
- T Cathomen
- Institut für Molekularbiologie, Universität Zürich, Hönggerberg, Switzerland
| | | | | |
Collapse
|
32
|
Gerlier D, Varior-Krishnan G, Devaux P. CD46-mediated measles virus entry: a first key to host-range specificity. Trends Microbiol 1995; 3:338-45. [PMID: 8520886 DOI: 10.1016/s0966-842x(00)88972-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Humans are the sole natural host of measles virus. The identification of CD46 as a virus receptor and of the involvement of moesin sheds some light on the molecular events occurring during virus entry into the cell. Knowledge of the key role of CD46 paves the way to creating transgenic mice sensitive to measles virus infection.
Collapse
Affiliation(s)
- D Gerlier
- Laboratoire Immunité et Infections Virales, I.V.M.C. CNRS-UCBL UMR30, Faculté de Médecine Alexis Carrel, Lyon, France
| | | | | |
Collapse
|